1// List implementation -*- C++ -*-
2
3// Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
4// 2011, 2012 Free Software Foundation, Inc.
5//
6// This file is part of the GNU ISO C++ Library. This library is free
7// software; you can redistribute it and/or modify it under the
8// terms of the GNU General Public License as published by the
9// Free Software Foundation; either version 3, or (at your option)
10// any later version.
11
12// This library is distributed in the hope that it will be useful,
13// but WITHOUT ANY WARRANTY; without even the implied warranty of
14// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15// GNU General Public License for more details.
16
17// Under Section 7 of GPL version 3, you are granted additional
18// permissions described in the GCC Runtime Library Exception, version
19// 3.1, as published by the Free Software Foundation.
20
21// You should have received a copy of the GNU General Public License and
22// a copy of the GCC Runtime Library Exception along with this program;
23// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
24// <http://www.gnu.org/licenses/>.
25
26/*
27 *
28 * Copyright (c) 1994
29 * Hewlett-Packard Company
30 *
31 * Permission to use, copy, modify, distribute and sell this software
32 * and its documentation for any purpose is hereby granted without fee,
33 * provided that the above copyright notice appear in all copies and
34 * that both that copyright notice and this permission notice appear
35 * in supporting documentation. Hewlett-Packard Company makes no
36 * representations about the suitability of this software for any
37 * purpose. It is provided "as is" without express or implied warranty.
38 *
39 *
40 * Copyright (c) 1996,1997
41 * Silicon Graphics Computer Systems, Inc.
42 *
43 * Permission to use, copy, modify, distribute and sell this software
44 * and its documentation for any purpose is hereby granted without fee,
45 * provided that the above copyright notice appear in all copies and
46 * that both that copyright notice and this permission notice appear
47 * in supporting documentation. Silicon Graphics makes no
48 * representations about the suitability of this software for any
49 * purpose. It is provided "as is" without express or implied warranty.
50 */
51
52/** @file bits/stl_list.h
53 * This is an internal header file, included by other library headers.
54 * Do not attempt to use it directly. @headername{list}
55 */
56
57#ifndef _STL_LIST_H
58#define _STL_LIST_H 1
59
60#include <bits/concept_check.h>
61#ifdef __GXX_EXPERIMENTAL_CXX0X__
62#include <initializer_list>
63#endif
64
65namespace std _GLIBCXX_VISIBILITY(default)
66{
67 namespace __detail
68 {
69 _GLIBCXX_BEGIN_NAMESPACE_VERSION
70
71 // Supporting structures are split into common and templated
72 // types; the latter publicly inherits from the former in an
73 // effort to reduce code duplication. This results in some
74 // "needless" static_cast'ing later on, but it's all safe
75 // downcasting.
76
77 /// Common part of a node in the %list.
78 struct _List_node_base
79 {
80 _List_node_base* _M_next;
81 _List_node_base* _M_prev;
82
83 static void
84 swap(_List_node_base& __x, _List_node_base& __y) _GLIBCXX_USE_NOEXCEPT;
85
86 void
87 _M_transfer(_List_node_base* const __first,
88 _List_node_base* const __last) _GLIBCXX_USE_NOEXCEPT;
89
90 void
91 _M_reverse() _GLIBCXX_USE_NOEXCEPT;
92
93 void
94 _M_hook(_List_node_base* const __position) _GLIBCXX_USE_NOEXCEPT;
95
96 void
97 _M_unhook() _GLIBCXX_USE_NOEXCEPT;
98 };
99
100 _GLIBCXX_END_NAMESPACE_VERSION
101 } // namespace detail
102
103_GLIBCXX_BEGIN_NAMESPACE_CONTAINER
104
105 /// An actual node in the %list.
106 template<typename _Tp>
107 struct _List_node : public __detail::_List_node_base
108 {
109 ///< User's data.
110 _Tp _M_data;
111
112#ifdef __GXX_EXPERIMENTAL_CXX0X__
113 template<typename... _Args>
114 _List_node(_Args&&... __args)
115 : __detail::_List_node_base(), _M_data(std::forward<_Args>(__args)...)
116 { }
117#endif
118 };
119
120 /**
121 * @brief A list::iterator.
122 *
123 * All the functions are op overloads.
124 */
125 template<typename _Tp>
126 struct _List_iterator
127 {
128 typedef _List_iterator<_Tp> _Self;
129 typedef _List_node<_Tp> _Node;
130
131 typedef ptrdiff_t difference_type;
132 typedef std::bidirectional_iterator_tag iterator_category;
133 typedef _Tp value_type;
134 typedef _Tp* pointer;
135 typedef _Tp& reference;
136
137 _List_iterator()
138 : _M_node() { }
139
140 explicit
141 _List_iterator(__detail::_List_node_base* __x)
142 : _M_node(__x) { }
143
144 // Must downcast from _List_node_base to _List_node to get to _M_data.
145 reference
146 operator*() const
147 { return static_cast<_Node*>(_M_node)->_M_data; }
148
149 pointer
150 operator->() const
151 { return std::__addressof(static_cast<_Node*>(_M_node)->_M_data); }
152
153 _Self&
154 operator++()
155 {
156 _M_node = _M_node->_M_next;
157 return *this;
158 }
159
160 _Self
161 operator++(int)
162 {
163 _Self __tmp = *this;
164 _M_node = _M_node->_M_next;
165 return __tmp;
166 }
167
168 _Self&
169 operator--()
170 {
171 _M_node = _M_node->_M_prev;
172 return *this;
173 }
174
175 _Self
176 operator--(int)
177 {
178 _Self __tmp = *this;
179 _M_node = _M_node->_M_prev;
180 return __tmp;
181 }
182
183 bool
184 operator==(const _Self& __x) const
185 { return _M_node == __x._M_node; }
186
187 bool
188 operator!=(const _Self& __x) const
189 { return _M_node != __x._M_node; }
190
191 // The only member points to the %list element.
192 __detail::_List_node_base* _M_node;
193 };
194
195 /**
196 * @brief A list::const_iterator.
197 *
198 * All the functions are op overloads.
199 */
200 template<typename _Tp>
201 struct _List_const_iterator
202 {
203 typedef _List_const_iterator<_Tp> _Self;
204 typedef const _List_node<_Tp> _Node;
205 typedef _List_iterator<_Tp> iterator;
206
207 typedef ptrdiff_t difference_type;
208 typedef std::bidirectional_iterator_tag iterator_category;
209 typedef _Tp value_type;
210 typedef const _Tp* pointer;
211 typedef const _Tp& reference;
212
213 _List_const_iterator()
214 : _M_node() { }
215
216 explicit
217 _List_const_iterator(const __detail::_List_node_base* __x)
218 : _M_node(__x) { }
219
220 _List_const_iterator(const iterator& __x)
221 : _M_node(__x._M_node) { }
222
223 // Must downcast from List_node_base to _List_node to get to
224 // _M_data.
225 reference
226 operator*() const
227 { return static_cast<_Node*>(_M_node)->_M_data; }
228
229 pointer
230 operator->() const
231 { return std::__addressof(static_cast<_Node*>(_M_node)->_M_data); }
232
233 _Self&
234 operator++()
235 {
236 _M_node = _M_node->_M_next;
237 return *this;
238 }
239
240 _Self
241 operator++(int)
242 {
243 _Self __tmp = *this;
244 _M_node = _M_node->_M_next;
245 return __tmp;
246 }
247
248 _Self&
249 operator--()
250 {
251 _M_node = _M_node->_M_prev;
252 return *this;
253 }
254
255 _Self
256 operator--(int)
257 {
258 _Self __tmp = *this;
259 _M_node = _M_node->_M_prev;
260 return __tmp;
261 }
262
263 bool
264 operator==(const _Self& __x) const
265 { return _M_node == __x._M_node; }
266
267 bool
268 operator!=(const _Self& __x) const
269 { return _M_node != __x._M_node; }
270
271 // The only member points to the %list element.
272 const __detail::_List_node_base* _M_node;
273 };
274
275 template<typename _Val>
276 inline bool
277 operator==(const _List_iterator<_Val>& __x,
278 const _List_const_iterator<_Val>& __y)
279 { return __x._M_node == __y._M_node; }
280
281 template<typename _Val>
282 inline bool
283 operator!=(const _List_iterator<_Val>& __x,
284 const _List_const_iterator<_Val>& __y)
285 { return __x._M_node != __y._M_node; }
286
287
288 /// See bits/stl_deque.h's _Deque_base for an explanation.
289 template<typename _Tp, typename _Alloc>
290 class _List_base
291 {
292 protected:
293 // NOTA BENE
294 // The stored instance is not actually of "allocator_type"'s
295 // type. Instead we rebind the type to
296 // Allocator<List_node<Tp>>, which according to [20.1.5]/4
297 // should probably be the same. List_node<Tp> is not the same
298 // size as Tp (it's two pointers larger), and specializations on
299 // Tp may go unused because List_node<Tp> is being bound
300 // instead.
301 //
302 // We put this to the test in the constructors and in
303 // get_allocator, where we use conversions between
304 // allocator_type and _Node_alloc_type. The conversion is
305 // required by table 32 in [20.1.5].
306 typedef typename _Alloc::template rebind<_List_node<_Tp> >::other
307 _Node_alloc_type;
308
309 typedef typename _Alloc::template rebind<_Tp>::other _Tp_alloc_type;
310
311 struct _List_impl
312 : public _Node_alloc_type
313 {
314 __detail::_List_node_base _M_node;
315
316 _List_impl()
317 : _Node_alloc_type(), _M_node()
318 { }
319
320 _List_impl(const _Node_alloc_type& __a)
321 : _Node_alloc_type(__a), _M_node()
322 { }
323
324#ifdef __GXX_EXPERIMENTAL_CXX0X__
325 _List_impl(_Node_alloc_type&& __a)
326 : _Node_alloc_type(std::move(__a)), _M_node()
327 { }
328#endif
329 };
330
331 _List_impl _M_impl;
332
333 _List_node<_Tp>*
334 _M_get_node()
335 { return _M_impl._Node_alloc_type::allocate(1); }
336
337 void
338 _M_put_node(_List_node<_Tp>* __p)
339 { _M_impl._Node_alloc_type::deallocate(__p, 1); }
340
341 public:
342 typedef _Alloc allocator_type;
343
344 _Node_alloc_type&
345 _M_get_Node_allocator() _GLIBCXX_NOEXCEPT
346 { return *static_cast<_Node_alloc_type*>(&_M_impl); }
347
348 const _Node_alloc_type&
349 _M_get_Node_allocator() const _GLIBCXX_NOEXCEPT
350 { return *static_cast<const _Node_alloc_type*>(&_M_impl); }
351
352 _Tp_alloc_type
353 _M_get_Tp_allocator() const _GLIBCXX_NOEXCEPT
354 { return _Tp_alloc_type(_M_get_Node_allocator()); }
355
356 allocator_type
357 get_allocator() const _GLIBCXX_NOEXCEPT
358 { return allocator_type(_M_get_Node_allocator()); }
359
360 _List_base()
361 : _M_impl()
362 { _M_init(); }
363
364 _List_base(const _Node_alloc_type& __a)
365 : _M_impl(__a)
366 { _M_init(); }
367
368#ifdef __GXX_EXPERIMENTAL_CXX0X__
369 _List_base(_List_base&& __x)
370 : _M_impl(std::move(__x._M_get_Node_allocator()))
371 {
372 _M_init();
373 __detail::_List_node_base::swap(_M_impl._M_node, __x._M_impl._M_node);
374 }
375#endif
376
377 // This is what actually destroys the list.
378 ~_List_base() _GLIBCXX_NOEXCEPT
379 { _M_clear(); }
380
381 void
382 _M_clear();
383
384 void
385 _M_init()
386 {
387 this->_M_impl._M_node._M_next = &this->_M_impl._M_node;
388 this->_M_impl._M_node._M_prev = &this->_M_impl._M_node;
389 }
390 };
391
392 /**
393 * @brief A standard container with linear time access to elements,
394 * and fixed time insertion/deletion at any point in the sequence.
395 *
396 * @ingroup sequences
397 *
398 * Meets the requirements of a <a href="tables.html#65">container</a>, a
399 * <a href="tables.html#66">reversible container</a>, and a
400 * <a href="tables.html#67">sequence</a>, including the
401 * <a href="tables.html#68">optional sequence requirements</a> with the
402 * %exception of @c at and @c operator[].
403 *
404 * This is a @e doubly @e linked %list. Traversal up and down the
405 * %list requires linear time, but adding and removing elements (or
406 * @e nodes) is done in constant time, regardless of where the
407 * change takes place. Unlike std::vector and std::deque,
408 * random-access iterators are not provided, so subscripting ( @c
409 * [] ) access is not allowed. For algorithms which only need
410 * sequential access, this lack makes no difference.
411 *
412 * Also unlike the other standard containers, std::list provides
413 * specialized algorithms %unique to linked lists, such as
414 * splicing, sorting, and in-place reversal.
415 *
416 * A couple points on memory allocation for list<Tp>:
417 *
418 * First, we never actually allocate a Tp, we allocate
419 * List_node<Tp>'s and trust [20.1.5]/4 to DTRT. This is to ensure
420 * that after elements from %list<X,Alloc1> are spliced into
421 * %list<X,Alloc2>, destroying the memory of the second %list is a
422 * valid operation, i.e., Alloc1 giveth and Alloc2 taketh away.
423 *
424 * Second, a %list conceptually represented as
425 * @code
426 * A <---> B <---> C <---> D
427 * @endcode
428 * is actually circular; a link exists between A and D. The %list
429 * class holds (as its only data member) a private list::iterator
430 * pointing to @e D, not to @e A! To get to the head of the %list,
431 * we start at the tail and move forward by one. When this member
432 * iterator's next/previous pointers refer to itself, the %list is
433 * %empty.
434 */
435 template<typename _Tp, typename _Alloc = std::allocator<_Tp> >
436 class list : protected _List_base<_Tp, _Alloc>
437 {
438 // concept requirements
439 typedef typename _Alloc::value_type _Alloc_value_type;
440 __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
441 __glibcxx_class_requires2(_Tp, _Alloc_value_type, _SameTypeConcept)
442
443 typedef _List_base<_Tp, _Alloc> _Base;
444 typedef typename _Base::_Tp_alloc_type _Tp_alloc_type;
445 typedef typename _Base::_Node_alloc_type _Node_alloc_type;
446
447 public:
448 typedef _Tp value_type;
449 typedef typename _Tp_alloc_type::pointer pointer;
450 typedef typename _Tp_alloc_type::const_pointer const_pointer;
451 typedef typename _Tp_alloc_type::reference reference;
452 typedef typename _Tp_alloc_type::const_reference const_reference;
453 typedef _List_iterator<_Tp> iterator;
454 typedef _List_const_iterator<_Tp> const_iterator;
455 typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
456 typedef std::reverse_iterator<iterator> reverse_iterator;
457 typedef size_t size_type;
458 typedef ptrdiff_t difference_type;
459 typedef _Alloc allocator_type;
460
461 protected:
462 // Note that pointers-to-_Node's can be ctor-converted to
463 // iterator types.
464 typedef _List_node<_Tp> _Node;
465
466 using _Base::_M_impl;
467 using _Base::_M_put_node;
468 using _Base::_M_get_node;
469 using _Base::_M_get_Tp_allocator;
470 using _Base::_M_get_Node_allocator;
471
472 /**
473 * @param __args An instance of user data.
474 *
475 * Allocates space for a new node and constructs a copy of
476 * @a __args in it.
477 */
478#ifndef __GXX_EXPERIMENTAL_CXX0X__
479 _Node*
480 _M_create_node(const value_type& __x)
481 {
482 _Node* __p = this->_M_get_node();
483 __try
484 {
485 _M_get_Tp_allocator().construct
486 (std::__addressof(__p->_M_data), __x);
487 }
488 __catch(...)
489 {
490 _M_put_node(__p);
491 __throw_exception_again;
492 }
493 return __p;
494 }
495#else
496 template<typename... _Args>
497 _Node*
498 _M_create_node(_Args&&... __args)
499 {
500 _Node* __p = this->_M_get_node();
501 __try
502 {
503 _M_get_Node_allocator().construct(__p,
504 std::forward<_Args>(__args)...);
505 }
506 __catch(...)
507 {
508 _M_put_node(__p);
509 __throw_exception_again;
510 }
511 return __p;
512 }
513#endif
514
515 public:
516 // [23.2.2.1] construct/copy/destroy
517 // (assign() and get_allocator() are also listed in this section)
518 /**
519 * @brief Default constructor creates no elements.
520 */
521 list()
522 : _Base() { }
523
524 /**
525 * @brief Creates a %list with no elements.
526 * @param __a An allocator object.
527 */
528 explicit
529 list(const allocator_type& __a)
530 : _Base(_Node_alloc_type(__a)) { }
531
532#ifdef __GXX_EXPERIMENTAL_CXX0X__
533 /**
534 * @brief Creates a %list with default constructed elements.
535 * @param __n The number of elements to initially create.
536 *
537 * This constructor fills the %list with @a __n default
538 * constructed elements.
539 */
540 explicit
541 list(size_type __n)
542 : _Base()
543 { _M_default_initialize(__n); }
544
545 /**
546 * @brief Creates a %list with copies of an exemplar element.
547 * @param __n The number of elements to initially create.
548 * @param __value An element to copy.
549 * @param __a An allocator object.
550 *
551 * This constructor fills the %list with @a __n copies of @a __value.
552 */
553 list(size_type __n, const value_type& __value,
554 const allocator_type& __a = allocator_type())
555 : _Base(_Node_alloc_type(__a))
556 { _M_fill_initialize(__n, __value); }
557#else
558 /**
559 * @brief Creates a %list with copies of an exemplar element.
560 * @param __n The number of elements to initially create.
561 * @param __value An element to copy.
562 * @param __a An allocator object.
563 *
564 * This constructor fills the %list with @a __n copies of @a __value.
565 */
566 explicit
567 list(size_type __n, const value_type& __value = value_type(),
568 const allocator_type& __a = allocator_type())
569 : _Base(_Node_alloc_type(__a))
570 { _M_fill_initialize(__n, __value); }
571#endif
572
573 /**
574 * @brief %List copy constructor.
575 * @param __x A %list of identical element and allocator types.
576 *
577 * The newly-created %list uses a copy of the allocation object used
578 * by @a __x.
579 */
580 list(const list& __x)
581 : _Base(__x._M_get_Node_allocator())
582 { _M_initialize_dispatch(__x.begin(), __x.end(), __false_type()); }
583
584#ifdef __GXX_EXPERIMENTAL_CXX0X__
585 /**
586 * @brief %List move constructor.
587 * @param __x A %list of identical element and allocator types.
588 *
589 * The newly-created %list contains the exact contents of @a __x.
590 * The contents of @a __x are a valid, but unspecified %list.
591 */
592 list(list&& __x) noexcept
593 : _Base(std::move(__x)) { }
594
595 /**
596 * @brief Builds a %list from an initializer_list
597 * @param __l An initializer_list of value_type.
598 * @param __a An allocator object.
599 *
600 * Create a %list consisting of copies of the elements in the
601 * initializer_list @a __l. This is linear in __l.size().
602 */
603 list(initializer_list<value_type> __l,
604 const allocator_type& __a = allocator_type())
605 : _Base(_Node_alloc_type(__a))
606 { _M_initialize_dispatch(__l.begin(), __l.end(), __false_type()); }
607#endif
608
609 /**
610 * @brief Builds a %list from a range.
611 * @param __first An input iterator.
612 * @param __last An input iterator.
613 * @param __a An allocator object.
614 *
615 * Create a %list consisting of copies of the elements from
616 * [@a __first,@a __last). This is linear in N (where N is
617 * distance(@a __first,@a __last)).
618 */
619 template<typename _InputIterator>
620 list(_InputIterator __first, _InputIterator __last,
621 const allocator_type& __a = allocator_type())
622 : _Base(_Node_alloc_type(__a))
623 {
624 // Check whether it's an integral type. If so, it's not an iterator.
625 typedef typename std::__is_integer<_InputIterator>::__type _Integral;
626 _M_initialize_dispatch(__first, __last, _Integral());
627 }
628
629 /**
630 * No explicit dtor needed as the _Base dtor takes care of
631 * things. The _Base dtor only erases the elements, and note
632 * that if the elements themselves are pointers, the pointed-to
633 * memory is not touched in any way. Managing the pointer is
634 * the user's responsibility.
635 */
636
637 /**
638 * @brief %List assignment operator.
639 * @param __x A %list of identical element and allocator types.
640 *
641 * All the elements of @a __x are copied, but unlike the copy
642 * constructor, the allocator object is not copied.
643 */
644 list&
645 operator=(const list& __x);
646
647#ifdef __GXX_EXPERIMENTAL_CXX0X__
648 /**
649 * @brief %List move assignment operator.
650 * @param __x A %list of identical element and allocator types.
651 *
652 * The contents of @a __x are moved into this %list (without copying).
653 * @a __x is a valid, but unspecified %list
654 */
655 list&
656 operator=(list&& __x)
657 {
658 // NB: DR 1204.
659 // NB: DR 675.
660 this->clear();
661 this->swap(__x);
662 return *this;
663 }
664
665 /**
666 * @brief %List initializer list assignment operator.
667 * @param __l An initializer_list of value_type.
668 *
669 * Replace the contents of the %list with copies of the elements
670 * in the initializer_list @a __l. This is linear in l.size().
671 */
672 list&
673 operator=(initializer_list<value_type> __l)
674 {
675 this->assign(__l.begin(), __l.end());
676 return *this;
677 }
678#endif
679
680 /**
681 * @brief Assigns a given value to a %list.
682 * @param __n Number of elements to be assigned.
683 * @param __val Value to be assigned.
684 *
685 * This function fills a %list with @a __n copies of the given
686 * value. Note that the assignment completely changes the %list
687 * and that the resulting %list's size is the same as the number
688 * of elements assigned. Old data may be lost.
689 */
690 void
691 assign(size_type __n, const value_type& __val)
692 { _M_fill_assign(__n, __val); }
693
694 /**
695 * @brief Assigns a range to a %list.
696 * @param __first An input iterator.
697 * @param __last An input iterator.
698 *
699 * This function fills a %list with copies of the elements in the
700 * range [@a __first,@a __last).
701 *
702 * Note that the assignment completely changes the %list and
703 * that the resulting %list's size is the same as the number of
704 * elements assigned. Old data may be lost.
705 */
706 template<typename _InputIterator>
707 void
708 assign(_InputIterator __first, _InputIterator __last)
709 {
710 // Check whether it's an integral type. If so, it's not an iterator.
711 typedef typename std::__is_integer<_InputIterator>::__type _Integral;
712 _M_assign_dispatch(__first, __last, _Integral());
713 }
714
715#ifdef __GXX_EXPERIMENTAL_CXX0X__
716 /**
717 * @brief Assigns an initializer_list to a %list.
718 * @param __l An initializer_list of value_type.
719 *
720 * Replace the contents of the %list with copies of the elements
721 * in the initializer_list @a __l. This is linear in __l.size().
722 */
723 void
724 assign(initializer_list<value_type> __l)
725 { this->assign(__l.begin(), __l.end()); }
726#endif
727
728 /// Get a copy of the memory allocation object.
729 allocator_type
730 get_allocator() const _GLIBCXX_NOEXCEPT
731 { return _Base::get_allocator(); }
732
733 // iterators
734 /**
735 * Returns a read/write iterator that points to the first element in the
736 * %list. Iteration is done in ordinary element order.
737 */
738 iterator
739 begin() _GLIBCXX_NOEXCEPT
740 { return iterator(this->_M_impl._M_node._M_next); }
741
742 /**
743 * Returns a read-only (constant) iterator that points to the
744 * first element in the %list. Iteration is done in ordinary
745 * element order.
746 */
747 const_iterator
748 begin() const _GLIBCXX_NOEXCEPT
749 { return const_iterator(this->_M_impl._M_node._M_next); }
750
751 /**
752 * Returns a read/write iterator that points one past the last
753 * element in the %list. Iteration is done in ordinary element
754 * order.
755 */
756 iterator
757 end() _GLIBCXX_NOEXCEPT
758 { return iterator(&this->_M_impl._M_node); }
759
760 /**
761 * Returns a read-only (constant) iterator that points one past
762 * the last element in the %list. Iteration is done in ordinary
763 * element order.
764 */
765 const_iterator
766 end() const _GLIBCXX_NOEXCEPT
767 { return const_iterator(&this->_M_impl._M_node); }
768
769 /**
770 * Returns a read/write reverse iterator that points to the last
771 * element in the %list. Iteration is done in reverse element
772 * order.
773 */
774 reverse_iterator
775 rbegin() _GLIBCXX_NOEXCEPT
776 { return reverse_iterator(end()); }
777
778 /**
779 * Returns a read-only (constant) reverse iterator that points to
780 * the last element in the %list. Iteration is done in reverse
781 * element order.
782 */
783 const_reverse_iterator
784 rbegin() const _GLIBCXX_NOEXCEPT
785 { return const_reverse_iterator(end()); }
786
787 /**
788 * Returns a read/write reverse iterator that points to one
789 * before the first element in the %list. Iteration is done in
790 * reverse element order.
791 */
792 reverse_iterator
793 rend() _GLIBCXX_NOEXCEPT
794 { return reverse_iterator(begin()); }
795
796 /**
797 * Returns a read-only (constant) reverse iterator that points to one
798 * before the first element in the %list. Iteration is done in reverse
799 * element order.
800 */
801 const_reverse_iterator
802 rend() const _GLIBCXX_NOEXCEPT
803 { return const_reverse_iterator(begin()); }
804
805#ifdef __GXX_EXPERIMENTAL_CXX0X__
806 /**
807 * Returns a read-only (constant) iterator that points to the
808 * first element in the %list. Iteration is done in ordinary
809 * element order.
810 */
811 const_iterator
812 cbegin() const noexcept
813 { return const_iterator(this->_M_impl._M_node._M_next); }
814
815 /**
816 * Returns a read-only (constant) iterator that points one past
817 * the last element in the %list. Iteration is done in ordinary
818 * element order.
819 */
820 const_iterator
821 cend() const noexcept
822 { return const_iterator(&this->_M_impl._M_node); }
823
824 /**
825 * Returns a read-only (constant) reverse iterator that points to
826 * the last element in the %list. Iteration is done in reverse
827 * element order.
828 */
829 const_reverse_iterator
830 crbegin() const noexcept
831 { return const_reverse_iterator(end()); }
832
833 /**
834 * Returns a read-only (constant) reverse iterator that points to one
835 * before the first element in the %list. Iteration is done in reverse
836 * element order.
837 */
838 const_reverse_iterator
839 crend() const noexcept
840 { return const_reverse_iterator(begin()); }
841#endif
842
843 // [23.2.2.2] capacity
844 /**
845 * Returns true if the %list is empty. (Thus begin() would equal
846 * end().)
847 */
848 bool
849 empty() const _GLIBCXX_NOEXCEPT
850 { return this->_M_impl._M_node._M_next == &this->_M_impl._M_node; }
851
852 /** Returns the number of elements in the %list. */
853 size_type
854 size() const _GLIBCXX_NOEXCEPT
855 { return std::distance(begin(), end()); }
856
857 /** Returns the size() of the largest possible %list. */
858 size_type
859 max_size() const _GLIBCXX_NOEXCEPT
860 { return _M_get_Node_allocator().max_size(); }
861
862#ifdef __GXX_EXPERIMENTAL_CXX0X__
863 /**
864 * @brief Resizes the %list to the specified number of elements.
865 * @param __new_size Number of elements the %list should contain.
866 *
867 * This function will %resize the %list to the specified number
868 * of elements. If the number is smaller than the %list's
869 * current size the %list is truncated, otherwise default
870 * constructed elements are appended.
871 */
872 void
873 resize(size_type __new_size);
874
875 /**
876 * @brief Resizes the %list to the specified number of elements.
877 * @param __new_size Number of elements the %list should contain.
878 * @param __x Data with which new elements should be populated.
879 *
880 * This function will %resize the %list to the specified number
881 * of elements. If the number is smaller than the %list's
882 * current size the %list is truncated, otherwise the %list is
883 * extended and new elements are populated with given data.
884 */
885 void
886 resize(size_type __new_size, const value_type& __x);
887#else
888 /**
889 * @brief Resizes the %list to the specified number of elements.
890 * @param __new_size Number of elements the %list should contain.
891 * @param __x Data with which new elements should be populated.
892 *
893 * This function will %resize the %list to the specified number
894 * of elements. If the number is smaller than the %list's
895 * current size the %list is truncated, otherwise the %list is
896 * extended and new elements are populated with given data.
897 */
898 void
899 resize(size_type __new_size, value_type __x = value_type());
900#endif
901
902 // element access
903 /**
904 * Returns a read/write reference to the data at the first
905 * element of the %list.
906 */
907 reference
908 front()
909 { return *begin(); }
910
911 /**
912 * Returns a read-only (constant) reference to the data at the first
913 * element of the %list.
914 */
915 const_reference
916 front() const
917 { return *begin(); }
918
919 /**
920 * Returns a read/write reference to the data at the last element
921 * of the %list.
922 */
923 reference
924 back()
925 {
926 iterator __tmp = end();
927 --__tmp;
928 return *__tmp;
929 }
930
931 /**
932 * Returns a read-only (constant) reference to the data at the last
933 * element of the %list.
934 */
935 const_reference
936 back() const
937 {
938 const_iterator __tmp = end();
939 --__tmp;
940 return *__tmp;
941 }
942
943 // [23.2.2.3] modifiers
944 /**
945 * @brief Add data to the front of the %list.
946 * @param __x Data to be added.
947 *
948 * This is a typical stack operation. The function creates an
949 * element at the front of the %list and assigns the given data
950 * to it. Due to the nature of a %list this operation can be
951 * done in constant time, and does not invalidate iterators and
952 * references.
953 */
954 void
955 push_front(const value_type& __x)
956 { this->_M_insert(begin(), __x); }
957
958#ifdef __GXX_EXPERIMENTAL_CXX0X__
959 void
960 push_front(value_type&& __x)
961 { this->_M_insert(begin(), std::move(__x)); }
962
963 template<typename... _Args>
964 void
965 emplace_front(_Args&&... __args)
966 { this->_M_insert(begin(), std::forward<_Args>(__args)...); }
967#endif
968
969 /**
970 * @brief Removes first element.
971 *
972 * This is a typical stack operation. It shrinks the %list by
973 * one. Due to the nature of a %list this operation can be done
974 * in constant time, and only invalidates iterators/references to
975 * the element being removed.
976 *
977 * Note that no data is returned, and if the first element's data
978 * is needed, it should be retrieved before pop_front() is
979 * called.
980 */
981 void
982 pop_front()
983 { this->_M_erase(begin()); }
984
985 /**
986 * @brief Add data to the end of the %list.
987 * @param __x Data to be added.
988 *
989 * This is a typical stack operation. The function creates an
990 * element at the end of the %list and assigns the given data to
991 * it. Due to the nature of a %list this operation can be done
992 * in constant time, and does not invalidate iterators and
993 * references.
994 */
995 void
996 push_back(const value_type& __x)
997 { this->_M_insert(end(), __x); }
998
999#ifdef __GXX_EXPERIMENTAL_CXX0X__
1000 void
1001 push_back(value_type&& __x)
1002 { this->_M_insert(end(), std::move(__x)); }
1003
1004 template<typename... _Args>
1005 void
1006 emplace_back(_Args&&... __args)
1007 { this->_M_insert(end(), std::forward<_Args>(__args)...); }
1008#endif
1009
1010 /**
1011 * @brief Removes last element.
1012 *
1013 * This is a typical stack operation. It shrinks the %list by
1014 * one. Due to the nature of a %list this operation can be done
1015 * in constant time, and only invalidates iterators/references to
1016 * the element being removed.
1017 *
1018 * Note that no data is returned, and if the last element's data
1019 * is needed, it should be retrieved before pop_back() is called.
1020 */
1021 void
1022 pop_back()
1023 { this->_M_erase(iterator(this->_M_impl._M_node._M_prev)); }
1024
1025#ifdef __GXX_EXPERIMENTAL_CXX0X__
1026 /**
1027 * @brief Constructs object in %list before specified iterator.
1028 * @param __position A const_iterator into the %list.
1029 * @param __args Arguments.
1030 * @return An iterator that points to the inserted data.
1031 *
1032 * This function will insert an object of type T constructed
1033 * with T(std::forward<Args>(args)...) before the specified
1034 * location. Due to the nature of a %list this operation can
1035 * be done in constant time, and does not invalidate iterators
1036 * and references.
1037 */
1038 template<typename... _Args>
1039 iterator
1040 emplace(iterator __position, _Args&&... __args);
1041#endif
1042
1043 /**
1044 * @brief Inserts given value into %list before specified iterator.
1045 * @param __position An iterator into the %list.
1046 * @param __x Data to be inserted.
1047 * @return An iterator that points to the inserted data.
1048 *
1049 * This function will insert a copy of the given value before
1050 * the specified location. Due to the nature of a %list this
1051 * operation can be done in constant time, and does not
1052 * invalidate iterators and references.
1053 */
1054 iterator
1055 insert(iterator __position, const value_type& __x);
1056
1057#ifdef __GXX_EXPERIMENTAL_CXX0X__
1058 /**
1059 * @brief Inserts given rvalue into %list before specified iterator.
1060 * @param __position An iterator into the %list.
1061 * @param __x Data to be inserted.
1062 * @return An iterator that points to the inserted data.
1063 *
1064 * This function will insert a copy of the given rvalue before
1065 * the specified location. Due to the nature of a %list this
1066 * operation can be done in constant time, and does not
1067 * invalidate iterators and references.
1068 */
1069 iterator
1070 insert(iterator __position, value_type&& __x)
1071 { return emplace(__position, std::move(__x)); }
1072
1073 /**
1074 * @brief Inserts the contents of an initializer_list into %list
1075 * before specified iterator.
1076 * @param __p An iterator into the %list.
1077 * @param __l An initializer_list of value_type.
1078 *
1079 * This function will insert copies of the data in the
1080 * initializer_list @a l into the %list before the location
1081 * specified by @a p.
1082 *
1083 * This operation is linear in the number of elements inserted and
1084 * does not invalidate iterators and references.
1085 */
1086 void
1087 insert(iterator __p, initializer_list<value_type> __l)
1088 { this->insert(__p, __l.begin(), __l.end()); }
1089#endif
1090
1091 /**
1092 * @brief Inserts a number of copies of given data into the %list.
1093 * @param __position An iterator into the %list.
1094 * @param __n Number of elements to be inserted.
1095 * @param __x Data to be inserted.
1096 *
1097 * This function will insert a specified number of copies of the
1098 * given data before the location specified by @a position.
1099 *
1100 * This operation is linear in the number of elements inserted and
1101 * does not invalidate iterators and references.
1102 */
1103 void
1104 insert(iterator __position, size_type __n, const value_type& __x)
1105 {
1106 list __tmp(__n, __x, get_allocator());
1107 splice(__position, __tmp);
1108 }
1109
1110 /**
1111 * @brief Inserts a range into the %list.
1112 * @param __position An iterator into the %list.
1113 * @param __first An input iterator.
1114 * @param __last An input iterator.
1115 *
1116 * This function will insert copies of the data in the range [@a
1117 * first,@a last) into the %list before the location specified by
1118 * @a position.
1119 *
1120 * This operation is linear in the number of elements inserted and
1121 * does not invalidate iterators and references.
1122 */
1123 template<typename _InputIterator>
1124 void
1125 insert(iterator __position, _InputIterator __first,
1126 _InputIterator __last)
1127 {
1128 list __tmp(__first, __last, get_allocator());
1129 splice(__position, __tmp);
1130 }
1131
1132 /**
1133 * @brief Remove element at given position.
1134 * @param __position Iterator pointing to element to be erased.
1135 * @return An iterator pointing to the next element (or end()).
1136 *
1137 * This function will erase the element at the given position and thus
1138 * shorten the %list by one.
1139 *
1140 * Due to the nature of a %list this operation can be done in
1141 * constant time, and only invalidates iterators/references to
1142 * the element being removed. The user is also cautioned that
1143 * this function only erases the element, and that if the element
1144 * is itself a pointer, the pointed-to memory is not touched in
1145 * any way. Managing the pointer is the user's responsibility.
1146 */
1147 iterator
1148 erase(iterator __position);
1149
1150 /**
1151 * @brief Remove a range of elements.
1152 * @param __first Iterator pointing to the first element to be erased.
1153 * @param __last Iterator pointing to one past the last element to be
1154 * erased.
1155 * @return An iterator pointing to the element pointed to by @a last
1156 * prior to erasing (or end()).
1157 *
1158 * This function will erase the elements in the range @a
1159 * [first,last) and shorten the %list accordingly.
1160 *
1161 * This operation is linear time in the size of the range and only
1162 * invalidates iterators/references to the element being removed.
1163 * The user is also cautioned that this function only erases the
1164 * elements, and that if the elements themselves are pointers, the
1165 * pointed-to memory is not touched in any way. Managing the pointer
1166 * is the user's responsibility.
1167 */
1168 iterator
1169 erase(iterator __first, iterator __last)
1170 {
1171 while (__first != __last)
1172 __first = erase(__first);
1173 return __last;
1174 }
1175
1176 /**
1177 * @brief Swaps data with another %list.
1178 * @param __x A %list of the same element and allocator types.
1179 *
1180 * This exchanges the elements between two lists in constant
1181 * time. Note that the global std::swap() function is
1182 * specialized such that std::swap(l1,l2) will feed to this
1183 * function.
1184 */
1185 void
1186 swap(list& __x)
1187 {
1188 __detail::_List_node_base::swap(this->_M_impl._M_node,
1189 __x._M_impl._M_node);
1190
1191 // _GLIBCXX_RESOLVE_LIB_DEFECTS
1192 // 431. Swapping containers with unequal allocators.
1193 std::__alloc_swap<typename _Base::_Node_alloc_type>::
1194 _S_do_it(_M_get_Node_allocator(), __x._M_get_Node_allocator());
1195 }
1196
1197 /**
1198 * Erases all the elements. Note that this function only erases
1199 * the elements, and that if the elements themselves are
1200 * pointers, the pointed-to memory is not touched in any way.
1201 * Managing the pointer is the user's responsibility.
1202 */
1203 void
1204 clear() _GLIBCXX_NOEXCEPT
1205 {
1206 _Base::_M_clear();
1207 _Base::_M_init();
1208 }
1209
1210 // [23.2.2.4] list operations
1211 /**
1212 * @brief Insert contents of another %list.
1213 * @param __position Iterator referencing the element to insert before.
1214 * @param __x Source list.
1215 *
1216 * The elements of @a __x are inserted in constant time in front of
1217 * the element referenced by @a __position. @a __x becomes an empty
1218 * list.
1219 *
1220 * Requires this != @a __x.
1221 */
1222 void
1223#ifdef __GXX_EXPERIMENTAL_CXX0X__
1224 splice(iterator __position, list&& __x)
1225#else
1226 splice(iterator __position, list& __x)
1227#endif
1228 {
1229 if (!__x.empty())
1230 {
1231 _M_check_equal_allocators(__x);
1232
1233 this->_M_transfer(__position, __x.begin(), __x.end());
1234 }
1235 }
1236
1237#ifdef __GXX_EXPERIMENTAL_CXX0X__
1238 void
1239 splice(iterator __position, list& __x)
1240 { splice(__position, std::move(__x)); }
1241#endif
1242
1243 /**
1244 * @brief Insert element from another %list.
1245 * @param __position Iterator referencing the element to insert before.
1246 * @param __x Source list.
1247 * @param __i Iterator referencing the element to move.
1248 *
1249 * Removes the element in list @a __x referenced by @a __i and
1250 * inserts it into the current list before @a __position.
1251 */
1252 void
1253#ifdef __GXX_EXPERIMENTAL_CXX0X__
1254 splice(iterator __position, list&& __x, iterator __i)
1255#else
1256 splice(iterator __position, list& __x, iterator __i)
1257#endif
1258 {
1259 iterator __j = __i;
1260 ++__j;
1261 if (__position == __i || __position == __j)
1262 return;
1263
1264 if (this != &__x)
1265 _M_check_equal_allocators(__x);
1266
1267 this->_M_transfer(__position, __i, __j);
1268 }
1269
1270#ifdef __GXX_EXPERIMENTAL_CXX0X__
1271 void
1272 splice(iterator __position, list& __x, iterator __i)
1273 { splice(__position, std::move(__x), __i); }
1274#endif
1275
1276 /**
1277 * @brief Insert range from another %list.
1278 * @param __position Iterator referencing the element to insert before.
1279 * @param __x Source list.
1280 * @param __first Iterator referencing the start of range in x.
1281 * @param __last Iterator referencing the end of range in x.
1282 *
1283 * Removes elements in the range [__first,__last) and inserts them
1284 * before @a __position in constant time.
1285 *
1286 * Undefined if @a __position is in [__first,__last).
1287 */
1288 void
1289#ifdef __GXX_EXPERIMENTAL_CXX0X__
1290 splice(iterator __position, list&& __x, iterator __first,
1291 iterator __last)
1292#else
1293 splice(iterator __position, list& __x, iterator __first,
1294 iterator __last)
1295#endif
1296 {
1297 if (__first != __last)
1298 {
1299 if (this != &__x)
1300 _M_check_equal_allocators(__x);
1301
1302 this->_M_transfer(__position, __first, __last);
1303 }
1304 }
1305
1306#ifdef __GXX_EXPERIMENTAL_CXX0X__
1307 void
1308 splice(iterator __position, list& __x, iterator __first, iterator __last)
1309 { splice(__position, std::move(__x), __first, __last); }
1310#endif
1311
1312 /**
1313 * @brief Remove all elements equal to value.
1314 * @param __value The value to remove.
1315 *
1316 * Removes every element in the list equal to @a value.
1317 * Remaining elements stay in list order. Note that this
1318 * function only erases the elements, and that if the elements
1319 * themselves are pointers, the pointed-to memory is not
1320 * touched in any way. Managing the pointer is the user's
1321 * responsibility.
1322 */
1323 void
1324 remove(const _Tp& __value);
1325
1326 /**
1327 * @brief Remove all elements satisfying a predicate.
1328 * @tparam _Predicate Unary predicate function or object.
1329 *
1330 * Removes every element in the list for which the predicate
1331 * returns true. Remaining elements stay in list order. Note
1332 * that this function only erases the elements, and that if the
1333 * elements themselves are pointers, the pointed-to memory is
1334 * not touched in any way. Managing the pointer is the user's
1335 * responsibility.
1336 */
1337 template<typename _Predicate>
1338 void
1339 remove_if(_Predicate);
1340
1341 /**
1342 * @brief Remove consecutive duplicate elements.
1343 *
1344 * For each consecutive set of elements with the same value,
1345 * remove all but the first one. Remaining elements stay in
1346 * list order. Note that this function only erases the
1347 * elements, and that if the elements themselves are pointers,
1348 * the pointed-to memory is not touched in any way. Managing
1349 * the pointer is the user's responsibility.
1350 */
1351 void
1352 unique();
1353
1354 /**
1355 * @brief Remove consecutive elements satisfying a predicate.
1356 * @tparam _BinaryPredicate Binary predicate function or object.
1357 *
1358 * For each consecutive set of elements [first,last) that
1359 * satisfy predicate(first,i) where i is an iterator in
1360 * [first,last), remove all but the first one. Remaining
1361 * elements stay in list order. Note that this function only
1362 * erases the elements, and that if the elements themselves are
1363 * pointers, the pointed-to memory is not touched in any way.
1364 * Managing the pointer is the user's responsibility.
1365 */
1366 template<typename _BinaryPredicate>
1367 void
1368 unique(_BinaryPredicate);
1369
1370 /**
1371 * @brief Merge sorted lists.
1372 * @param __x Sorted list to merge.
1373 *
1374 * Assumes that both @a __x and this list are sorted according to
1375 * operator<(). Merges elements of @a __x into this list in
1376 * sorted order, leaving @a __x empty when complete. Elements in
1377 * this list precede elements in @a __x that are equal.
1378 */
1379#ifdef __GXX_EXPERIMENTAL_CXX0X__
1380 void
1381 merge(list&& __x);
1382
1383 void
1384 merge(list& __x)
1385 { merge(std::move(__x)); }
1386#else
1387 void
1388 merge(list& __x);
1389#endif
1390
1391 /**
1392 * @brief Merge sorted lists according to comparison function.
1393 * @tparam _StrictWeakOrdering Comparison function defining
1394 * sort order.
1395 * @param __x Sorted list to merge.
1396 * @param __comp Comparison functor.
1397 *
1398 * Assumes that both @a __x and this list are sorted according to
1399 * StrictWeakOrdering. Merges elements of @a __x into this list
1400 * in sorted order, leaving @a __x empty when complete. Elements
1401 * in this list precede elements in @a __x that are equivalent
1402 * according to StrictWeakOrdering().
1403 */
1404#ifdef __GXX_EXPERIMENTAL_CXX0X__
1405 template<typename _StrictWeakOrdering>
1406 void
1407 merge(list&& __x, _StrictWeakOrdering __comp);
1408
1409 template<typename _StrictWeakOrdering>
1410 void
1411 merge(list& __x, _StrictWeakOrdering __comp)
1412 { merge(std::move(__x), __comp); }
1413#else
1414 template<typename _StrictWeakOrdering>
1415 void
1416 merge(list& __x, _StrictWeakOrdering __comp);
1417#endif
1418
1419 /**
1420 * @brief Reverse the elements in list.
1421 *
1422 * Reverse the order of elements in the list in linear time.
1423 */
1424 void
1425 reverse() _GLIBCXX_NOEXCEPT
1426 { this->_M_impl._M_node._M_reverse(); }
1427
1428 /**
1429 * @brief Sort the elements.
1430 *
1431 * Sorts the elements of this list in NlogN time. Equivalent
1432 * elements remain in list order.
1433 */
1434 void
1435 sort();
1436
1437 /**
1438 * @brief Sort the elements according to comparison function.
1439 *
1440 * Sorts the elements of this list in NlogN time. Equivalent
1441 * elements remain in list order.
1442 */
1443 template<typename _StrictWeakOrdering>
1444 void
1445 sort(_StrictWeakOrdering);
1446
1447 protected:
1448 // Internal constructor functions follow.
1449
1450 // Called by the range constructor to implement [23.1.1]/9
1451
1452 // _GLIBCXX_RESOLVE_LIB_DEFECTS
1453 // 438. Ambiguity in the "do the right thing" clause
1454 template<typename _Integer>
1455 void
1456 _M_initialize_dispatch(_Integer __n, _Integer __x, __true_type)
1457 { _M_fill_initialize(static_cast<size_type>(__n), __x); }
1458
1459 // Called by the range constructor to implement [23.1.1]/9
1460 template<typename _InputIterator>
1461 void
1462 _M_initialize_dispatch(_InputIterator __first, _InputIterator __last,
1463 __false_type)
1464 {
1465 for (; __first != __last; ++__first)
1466 push_back(*__first);
1467 }
1468
1469 // Called by list(n,v,a), and the range constructor when it turns out
1470 // to be the same thing.
1471 void
1472 _M_fill_initialize(size_type __n, const value_type& __x)
1473 {
1474 for (; __n; --__n)
1475 push_back(__x);
1476 }
1477
1478#ifdef __GXX_EXPERIMENTAL_CXX0X__
1479 // Called by list(n).
1480 void
1481 _M_default_initialize(size_type __n)
1482 {
1483 for (; __n; --__n)
1484 emplace_back();
1485 }
1486
1487 // Called by resize(sz).
1488 void
1489 _M_default_append(size_type __n);
1490#endif
1491
1492 // Internal assign functions follow.
1493
1494 // Called by the range assign to implement [23.1.1]/9
1495
1496 // _GLIBCXX_RESOLVE_LIB_DEFECTS
1497 // 438. Ambiguity in the "do the right thing" clause
1498 template<typename _Integer>
1499 void
1500 _M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
1501 { _M_fill_assign(__n, __val); }
1502
1503 // Called by the range assign to implement [23.1.1]/9
1504 template<typename _InputIterator>
1505 void
1506 _M_assign_dispatch(_InputIterator __first, _InputIterator __last,
1507 __false_type);
1508
1509 // Called by assign(n,t), and the range assign when it turns out
1510 // to be the same thing.
1511 void
1512 _M_fill_assign(size_type __n, const value_type& __val);
1513
1514
1515 // Moves the elements from [first,last) before position.
1516 void
1517 _M_transfer(iterator __position, iterator __first, iterator __last)
1518 { __position._M_node->_M_transfer(__first._M_node, __last._M_node); }
1519
1520 // Inserts new element at position given and with value given.
1521#ifndef __GXX_EXPERIMENTAL_CXX0X__
1522 void
1523 _M_insert(iterator __position, const value_type& __x)
1524 {
1525 _Node* __tmp = _M_create_node(__x);
1526 __tmp->_M_hook(__position._M_node);
1527 }
1528#else
1529 template<typename... _Args>
1530 void
1531 _M_insert(iterator __position, _Args&&... __args)
1532 {
1533 _Node* __tmp = _M_create_node(std::forward<_Args>(__args)...);
1534 __tmp->_M_hook(__position._M_node);
1535 }
1536#endif
1537
1538 // Erases element at position given.
1539 void
1540 _M_erase(iterator __position)
1541 {
1542 __position._M_node->_M_unhook();
1543 _Node* __n = static_cast<_Node*>(__position._M_node);
1544#ifdef __GXX_EXPERIMENTAL_CXX0X__
1545 _M_get_Node_allocator().destroy(__n);
1546#else
1547 _M_get_Tp_allocator().destroy(std::__addressof(__n->_M_data));
1548#endif
1549 _M_put_node(__n);
1550 }
1551
1552 // To implement the splice (and merge) bits of N1599.
1553 void
1554 _M_check_equal_allocators(list& __x)
1555 {
1556 if (std::__alloc_neq<typename _Base::_Node_alloc_type>::
1557 _S_do_it(_M_get_Node_allocator(), __x._M_get_Node_allocator()))
1558 __throw_runtime_error(__N("list::_M_check_equal_allocators"));
1559 }
1560 };
1561
1562 /**
1563 * @brief List equality comparison.
1564 * @param __x A %list.
1565 * @param __y A %list of the same type as @a __x.
1566 * @return True iff the size and elements of the lists are equal.
1567 *
1568 * This is an equivalence relation. It is linear in the size of
1569 * the lists. Lists are considered equivalent if their sizes are
1570 * equal, and if corresponding elements compare equal.
1571 */
1572 template<typename _Tp, typename _Alloc>
1573 inline bool
1574 operator==(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y)
1575 {
1576 typedef typename list<_Tp, _Alloc>::const_iterator const_iterator;
1577 const_iterator __end1 = __x.end();
1578 const_iterator __end2 = __y.end();
1579
1580 const_iterator __i1 = __x.begin();
1581 const_iterator __i2 = __y.begin();
1582 while (__i1 != __end1 && __i2 != __end2 && *__i1 == *__i2)
1583 {
1584 ++__i1;
1585 ++__i2;
1586 }
1587 return __i1 == __end1 && __i2 == __end2;
1588 }
1589
1590 /**
1591 * @brief List ordering relation.
1592 * @param __x A %list.
1593 * @param __y A %list of the same type as @a __x.
1594 * @return True iff @a __x is lexicographically less than @a __y.
1595 *
1596 * This is a total ordering relation. It is linear in the size of the
1597 * lists. The elements must be comparable with @c <.
1598 *
1599 * See std::lexicographical_compare() for how the determination is made.
1600 */
1601 template<typename _Tp, typename _Alloc>
1602 inline bool
1603 operator<(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y)
1604 { return std::lexicographical_compare(__x.begin(), __x.end(),
1605 __y.begin(), __y.end()); }
1606
1607 /// Based on operator==
1608 template<typename _Tp, typename _Alloc>
1609 inline bool
1610 operator!=(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y)
1611 { return !(__x == __y); }
1612
1613 /// Based on operator<
1614 template<typename _Tp, typename _Alloc>
1615 inline bool
1616 operator>(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y)
1617 { return __y < __x; }
1618
1619 /// Based on operator<
1620 template<typename _Tp, typename _Alloc>
1621 inline bool
1622 operator<=(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y)
1623 { return !(__y < __x); }
1624
1625 /// Based on operator<
1626 template<typename _Tp, typename _Alloc>
1627 inline bool
1628 operator>=(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y)
1629 { return !(__x < __y); }
1630
1631 /// See std::list::swap().
1632 template<typename _Tp, typename _Alloc>
1633 inline void
1634 swap(list<_Tp, _Alloc>& __x, list<_Tp, _Alloc>& __y)
1635 { __x.swap(__y); }
1636
1637_GLIBCXX_END_NAMESPACE_CONTAINER
1638} // namespace std
1639
1640#endif /* _STL_LIST_H */
1641