1// auto_ptr implementation -*- C++ -*-
2
3// Copyright (C) 2007-2015 Free Software Foundation, Inc.
4//
5// This file is part of the GNU ISO C++ Library. This library is free
6// software; you can redistribute it and/or modify it under the
7// terms of the GNU General Public License as published by the
8// Free Software Foundation; either version 3, or (at your option)
9// any later version.
10
11// This library is distributed in the hope that it will be useful,
12// but WITHOUT ANY WARRANTY; without even the implied warranty of
13// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14// GNU General Public License for more details.
15
16// Under Section 7 of GPL version 3, you are granted additional
17// permissions described in the GCC Runtime Library Exception, version
18// 3.1, as published by the Free Software Foundation.
19
20// You should have received a copy of the GNU General Public License and
21// a copy of the GCC Runtime Library Exception along with this program;
22// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23// <http://www.gnu.org/licenses/>.
24
25/** @file backward/auto_ptr.h
26 * This is an internal header file, included by other library headers.
27 * Do not attempt to use it directly. @headername{memory}
28 */
29
30#ifndef _BACKWARD_AUTO_PTR_H
31#define _BACKWARD_AUTO_PTR_H 1
32
33#include <bits/c++config.h>
34#include <debug/debug.h>
35
36namespace std _GLIBCXX_VISIBILITY(default)
37{
38_GLIBCXX_BEGIN_NAMESPACE_VERSION
39
40 /**
41 * A wrapper class to provide auto_ptr with reference semantics.
42 * For example, an auto_ptr can be assigned (or constructed from)
43 * the result of a function which returns an auto_ptr by value.
44 *
45 * All the auto_ptr_ref stuff should happen behind the scenes.
46 */
47 template<typename _Tp1>
48 struct auto_ptr_ref
49 {
50 _Tp1* _M_ptr;
51
52 explicit
53 auto_ptr_ref(_Tp1* __p): _M_ptr(__p) { }
54 } _GLIBCXX_DEPRECATED;
55
56
57 /**
58 * @brief A simple smart pointer providing strict ownership semantics.
59 *
60 * The Standard says:
61 * <pre>
62 * An @c auto_ptr owns the object it holds a pointer to. Copying
63 * an @c auto_ptr copies the pointer and transfers ownership to the
64 * destination. If more than one @c auto_ptr owns the same object
65 * at the same time the behavior of the program is undefined.
66 *
67 * The uses of @c auto_ptr include providing temporary
68 * exception-safety for dynamically allocated memory, passing
69 * ownership of dynamically allocated memory to a function, and
70 * returning dynamically allocated memory from a function. @c
71 * auto_ptr does not meet the CopyConstructible and Assignable
72 * requirements for Standard Library <a
73 * href="tables.html#65">container</a> elements and thus
74 * instantiating a Standard Library container with an @c auto_ptr
75 * results in undefined behavior.
76 * </pre>
77 * Quoted from [20.4.5]/3.
78 *
79 * Good examples of what can and cannot be done with auto_ptr can
80 * be found in the libstdc++ testsuite.
81 *
82 * _GLIBCXX_RESOLVE_LIB_DEFECTS
83 * 127. auto_ptr<> conversion issues
84 * These resolutions have all been incorporated.
85 */
86 template<typename _Tp>
87 class auto_ptr
88 {
89 private:
90 _Tp* _M_ptr;
91
92 public:
93 /// The pointed-to type.
94 typedef _Tp element_type;
95
96 /**
97 * @brief An %auto_ptr is usually constructed from a raw pointer.
98 * @param __p A pointer (defaults to NULL).
99 *
100 * This object now @e owns the object pointed to by @a __p.
101 */
102 explicit
103 auto_ptr(element_type* __p = 0) throw() : _M_ptr(__p) { }
104
105 /**
106 * @brief An %auto_ptr can be constructed from another %auto_ptr.
107 * @param __a Another %auto_ptr of the same type.
108 *
109 * This object now @e owns the object previously owned by @a __a,
110 * which has given up ownership.
111 */
112 auto_ptr(auto_ptr& __a) throw() : _M_ptr(__a.release()) { }
113
114 /**
115 * @brief An %auto_ptr can be constructed from another %auto_ptr.
116 * @param __a Another %auto_ptr of a different but related type.
117 *
118 * A pointer-to-Tp1 must be convertible to a
119 * pointer-to-Tp/element_type.
120 *
121 * This object now @e owns the object previously owned by @a __a,
122 * which has given up ownership.
123 */
124 template<typename _Tp1>
125 auto_ptr(auto_ptr<_Tp1>& __a) throw() : _M_ptr(__a.release()) { }
126
127 /**
128 * @brief %auto_ptr assignment operator.
129 * @param __a Another %auto_ptr of the same type.
130 *
131 * This object now @e owns the object previously owned by @a __a,
132 * which has given up ownership. The object that this one @e
133 * used to own and track has been deleted.
134 */
135 auto_ptr&
136 operator=(auto_ptr& __a) throw()
137 {
138 reset(__a.release());
139 return *this;
140 }
141
142 /**
143 * @brief %auto_ptr assignment operator.
144 * @param __a Another %auto_ptr of a different but related type.
145 *
146 * A pointer-to-Tp1 must be convertible to a pointer-to-Tp/element_type.
147 *
148 * This object now @e owns the object previously owned by @a __a,
149 * which has given up ownership. The object that this one @e
150 * used to own and track has been deleted.
151 */
152 template<typename _Tp1>
153 auto_ptr&
154 operator=(auto_ptr<_Tp1>& __a) throw()
155 {
156 reset(__a.release());
157 return *this;
158 }
159
160 /**
161 * When the %auto_ptr goes out of scope, the object it owns is
162 * deleted. If it no longer owns anything (i.e., @c get() is
163 * @c NULL), then this has no effect.
164 *
165 * The C++ standard says there is supposed to be an empty throw
166 * specification here, but omitting it is standard conforming. Its
167 * presence can be detected only if _Tp::~_Tp() throws, but this is
168 * prohibited. [17.4.3.6]/2
169 */
170 ~auto_ptr() { delete _M_ptr; }
171
172 /**
173 * @brief Smart pointer dereferencing.
174 *
175 * If this %auto_ptr no longer owns anything, then this
176 * operation will crash. (For a smart pointer, <em>no longer owns
177 * anything</em> is the same as being a null pointer, and you know
178 * what happens when you dereference one of those...)
179 */
180 element_type&
181 operator*() const throw()
182 {
183 _GLIBCXX_DEBUG_ASSERT(_M_ptr != 0);
184 return *_M_ptr;
185 }
186
187 /**
188 * @brief Smart pointer dereferencing.
189 *
190 * This returns the pointer itself, which the language then will
191 * automatically cause to be dereferenced.
192 */
193 element_type*
194 operator->() const throw()
195 {
196 _GLIBCXX_DEBUG_ASSERT(_M_ptr != 0);
197 return _M_ptr;
198 }
199
200 /**
201 * @brief Bypassing the smart pointer.
202 * @return The raw pointer being managed.
203 *
204 * You can get a copy of the pointer that this object owns, for
205 * situations such as passing to a function which only accepts
206 * a raw pointer.
207 *
208 * @note This %auto_ptr still owns the memory.
209 */
210 element_type*
211 get() const throw() { return _M_ptr; }
212
213 /**
214 * @brief Bypassing the smart pointer.
215 * @return The raw pointer being managed.
216 *
217 * You can get a copy of the pointer that this object owns, for
218 * situations such as passing to a function which only accepts
219 * a raw pointer.
220 *
221 * @note This %auto_ptr no longer owns the memory. When this object
222 * goes out of scope, nothing will happen.
223 */
224 element_type*
225 release() throw()
226 {
227 element_type* __tmp = _M_ptr;
228 _M_ptr = 0;
229 return __tmp;
230 }
231
232 /**
233 * @brief Forcibly deletes the managed object.
234 * @param __p A pointer (defaults to NULL).
235 *
236 * This object now @e owns the object pointed to by @a __p. The
237 * previous object has been deleted.
238 */
239 void
240 reset(element_type* __p = 0) throw()
241 {
242 if (__p != _M_ptr)
243 {
244 delete _M_ptr;
245 _M_ptr = __p;
246 }
247 }
248
249 /**
250 * @brief Automatic conversions
251 *
252 * These operations convert an %auto_ptr into and from an auto_ptr_ref
253 * automatically as needed. This allows constructs such as
254 * @code
255 * auto_ptr<Derived> func_returning_auto_ptr(.....);
256 * ...
257 * auto_ptr<Base> ptr = func_returning_auto_ptr(.....);
258 * @endcode
259 */
260 auto_ptr(auto_ptr_ref<element_type> __ref) throw()
261 : _M_ptr(__ref._M_ptr) { }
262
263 auto_ptr&
264 operator=(auto_ptr_ref<element_type> __ref) throw()
265 {
266 if (__ref._M_ptr != this->get())
267 {
268 delete _M_ptr;
269 _M_ptr = __ref._M_ptr;
270 }
271 return *this;
272 }
273
274 template<typename _Tp1>
275 operator auto_ptr_ref<_Tp1>() throw()
276 { return auto_ptr_ref<_Tp1>(this->release()); }
277
278 template<typename _Tp1>
279 operator auto_ptr<_Tp1>() throw()
280 { return auto_ptr<_Tp1>(this->release()); }
281 } _GLIBCXX_DEPRECATED;
282
283 // _GLIBCXX_RESOLVE_LIB_DEFECTS
284 // 541. shared_ptr template assignment and void
285 template<>
286 class auto_ptr<void>
287 {
288 public:
289 typedef void element_type;
290 } _GLIBCXX_DEPRECATED;
291
292#if __cplusplus >= 201103L
293 template<_Lock_policy _Lp>
294 template<typename _Tp>
295 inline
296 __shared_count<_Lp>::__shared_count(std::auto_ptr<_Tp>&& __r)
297 : _M_pi(new _Sp_counted_ptr<_Tp*, _Lp>(__r.get()))
298 { __r.release(); }
299
300 template<typename _Tp, _Lock_policy _Lp>
301 template<typename _Tp1>
302 inline
303 __shared_ptr<_Tp, _Lp>::__shared_ptr(std::auto_ptr<_Tp1>&& __r)
304 : _M_ptr(__r.get()), _M_refcount()
305 {
306 __glibcxx_function_requires(_ConvertibleConcept<_Tp1*, _Tp*>)
307 static_assert( sizeof(_Tp1) > 0, "incomplete type" );
308 _Tp1* __tmp = __r.get();
309 _M_refcount = __shared_count<_Lp>(std::move(__r));
310 __enable_shared_from_this_helper(_M_refcount, __tmp, __tmp);
311 }
312
313 template<typename _Tp>
314 template<typename _Tp1>
315 inline
316 shared_ptr<_Tp>::shared_ptr(std::auto_ptr<_Tp1>&& __r)
317 : __shared_ptr<_Tp>(std::move(__r)) { }
318
319 template<typename _Tp, typename _Dp>
320 template<typename _Up, typename>
321 inline
322 unique_ptr<_Tp, _Dp>::unique_ptr(auto_ptr<_Up>&& __u) noexcept
323 : _M_t(__u.release(), deleter_type()) { }
324#endif
325
326_GLIBCXX_END_NAMESPACE_VERSION
327} // namespace
328
329#endif /* _BACKWARD_AUTO_PTR_H */
330