1 | /* Build expressions with type checking for C compiler. |
2 | Copyright (C) 1987-2017 Free Software Foundation, Inc. |
3 | |
4 | This file is part of GCC. |
5 | |
6 | GCC is free software; you can redistribute it and/or modify it under |
7 | the terms of the GNU General Public License as published by the Free |
8 | Software Foundation; either version 3, or (at your option) any later |
9 | version. |
10 | |
11 | GCC is distributed in the hope that it will be useful, but WITHOUT ANY |
12 | WARRANTY; without even the implied warranty of MERCHANTABILITY or |
13 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
14 | for more details. |
15 | |
16 | You should have received a copy of the GNU General Public License |
17 | along with GCC; see the file COPYING3. If not see |
18 | <http://www.gnu.org/licenses/>. */ |
19 | |
20 | |
21 | /* This file is part of the C front end. |
22 | It contains routines to build C expressions given their operands, |
23 | including computing the types of the result, C-specific error checks, |
24 | and some optimization. */ |
25 | |
26 | #include "config.h" |
27 | #include "system.h" |
28 | #include "coretypes.h" |
29 | #include "memmodel.h" |
30 | #include "target.h" |
31 | #include "function.h" |
32 | #include "bitmap.h" |
33 | #include "c-tree.h" |
34 | #include "gimple-expr.h" |
35 | #include "predict.h" |
36 | #include "stor-layout.h" |
37 | #include "trans-mem.h" |
38 | #include "varasm.h" |
39 | #include "stmt.h" |
40 | #include "langhooks.h" |
41 | #include "c-lang.h" |
42 | #include "intl.h" |
43 | #include "tree-iterator.h" |
44 | #include "gimplify.h" |
45 | #include "tree-inline.h" |
46 | #include "omp-general.h" |
47 | #include "c-family/c-objc.h" |
48 | #include "c-family/c-ubsan.h" |
49 | #include "gomp-constants.h" |
50 | #include "spellcheck-tree.h" |
51 | #include "gcc-rich-location.h" |
52 | #include "stringpool.h" |
53 | #include "attribs.h" |
54 | #include "asan.h" |
55 | |
56 | /* Possible cases of implicit bad conversions. Used to select |
57 | diagnostic messages in convert_for_assignment. */ |
58 | enum impl_conv { |
59 | ic_argpass, |
60 | ic_assign, |
61 | ic_init, |
62 | ic_return |
63 | }; |
64 | |
65 | /* The level of nesting inside "__alignof__". */ |
66 | int in_alignof; |
67 | |
68 | /* The level of nesting inside "sizeof". */ |
69 | int in_sizeof; |
70 | |
71 | /* The level of nesting inside "typeof". */ |
72 | int in_typeof; |
73 | |
74 | /* The argument of last parsed sizeof expression, only to be tested |
75 | if expr.original_code == SIZEOF_EXPR. */ |
76 | tree c_last_sizeof_arg; |
77 | location_t c_last_sizeof_loc; |
78 | |
79 | /* Nonzero if we might need to print a "missing braces around |
80 | initializer" message within this initializer. */ |
81 | static int found_missing_braces; |
82 | |
83 | static int require_constant_value; |
84 | static int require_constant_elements; |
85 | |
86 | static bool null_pointer_constant_p (const_tree); |
87 | static tree qualify_type (tree, tree); |
88 | static int tagged_types_tu_compatible_p (const_tree, const_tree, bool *, |
89 | bool *); |
90 | static int comp_target_types (location_t, tree, tree); |
91 | static int function_types_compatible_p (const_tree, const_tree, bool *, |
92 | bool *); |
93 | static int type_lists_compatible_p (const_tree, const_tree, bool *, bool *); |
94 | static tree lookup_field (tree, tree); |
95 | static int convert_arguments (location_t, vec<location_t>, tree, |
96 | vec<tree, va_gc> *, vec<tree, va_gc> *, tree, |
97 | tree); |
98 | static tree pointer_diff (location_t, tree, tree, tree *); |
99 | static tree convert_for_assignment (location_t, location_t, tree, tree, tree, |
100 | enum impl_conv, bool, tree, tree, int); |
101 | static tree valid_compound_expr_initializer (tree, tree); |
102 | static void push_string (const char *); |
103 | static void push_member_name (tree); |
104 | static int spelling_length (void); |
105 | static char *print_spelling (char *); |
106 | static void warning_init (location_t, int, const char *); |
107 | static tree digest_init (location_t, tree, tree, tree, bool, bool, int); |
108 | static void output_init_element (location_t, tree, tree, bool, tree, tree, bool, |
109 | bool, struct obstack *); |
110 | static void output_pending_init_elements (int, struct obstack *); |
111 | static bool set_designator (location_t, bool, struct obstack *); |
112 | static void push_range_stack (tree, struct obstack *); |
113 | static void add_pending_init (location_t, tree, tree, tree, bool, |
114 | struct obstack *); |
115 | static void set_nonincremental_init (struct obstack *); |
116 | static void set_nonincremental_init_from_string (tree, struct obstack *); |
117 | static tree find_init_member (tree, struct obstack *); |
118 | static void readonly_warning (tree, enum lvalue_use); |
119 | static int lvalue_or_else (location_t, const_tree, enum lvalue_use); |
120 | static void record_maybe_used_decl (tree); |
121 | static int comptypes_internal (const_tree, const_tree, bool *, bool *); |
122 | |
123 | /* Return true if EXP is a null pointer constant, false otherwise. */ |
124 | |
125 | static bool |
126 | null_pointer_constant_p (const_tree expr) |
127 | { |
128 | /* This should really operate on c_expr structures, but they aren't |
129 | yet available everywhere required. */ |
130 | tree type = TREE_TYPE (expr); |
131 | return (TREE_CODE (expr) == INTEGER_CST |
132 | && !TREE_OVERFLOW (expr) |
133 | && integer_zerop (expr) |
134 | && (INTEGRAL_TYPE_P (type) |
135 | || (TREE_CODE (type) == POINTER_TYPE |
136 | && VOID_TYPE_P (TREE_TYPE (type)) |
137 | && TYPE_QUALS (TREE_TYPE (type)) == TYPE_UNQUALIFIED))); |
138 | } |
139 | |
140 | /* EXPR may appear in an unevaluated part of an integer constant |
141 | expression, but not in an evaluated part. Wrap it in a |
142 | C_MAYBE_CONST_EXPR, or mark it with TREE_OVERFLOW if it is just an |
143 | INTEGER_CST and we cannot create a C_MAYBE_CONST_EXPR. */ |
144 | |
145 | static tree |
146 | note_integer_operands (tree expr) |
147 | { |
148 | tree ret; |
149 | if (TREE_CODE (expr) == INTEGER_CST && in_late_binary_op) |
150 | { |
151 | ret = copy_node (expr); |
152 | TREE_OVERFLOW (ret) = 1; |
153 | } |
154 | else |
155 | { |
156 | ret = build2 (C_MAYBE_CONST_EXPR, TREE_TYPE (expr), NULL_TREE, expr); |
157 | C_MAYBE_CONST_EXPR_INT_OPERANDS (ret) = 1; |
158 | } |
159 | return ret; |
160 | } |
161 | |
162 | /* Having checked whether EXPR may appear in an unevaluated part of an |
163 | integer constant expression and found that it may, remove any |
164 | C_MAYBE_CONST_EXPR noting this fact and return the resulting |
165 | expression. */ |
166 | |
167 | static inline tree |
168 | remove_c_maybe_const_expr (tree expr) |
169 | { |
170 | if (TREE_CODE (expr) == C_MAYBE_CONST_EXPR) |
171 | return C_MAYBE_CONST_EXPR_EXPR (expr); |
172 | else |
173 | return expr; |
174 | } |
175 | |
176 | /* This is a cache to hold if two types are compatible or not. */ |
177 | |
178 | struct tagged_tu_seen_cache { |
179 | const struct tagged_tu_seen_cache * next; |
180 | const_tree t1; |
181 | const_tree t2; |
182 | /* The return value of tagged_types_tu_compatible_p if we had seen |
183 | these two types already. */ |
184 | int val; |
185 | }; |
186 | |
187 | static const struct tagged_tu_seen_cache * tagged_tu_seen_base; |
188 | static void free_all_tagged_tu_seen_up_to (const struct tagged_tu_seen_cache *); |
189 | |
190 | /* Do `exp = require_complete_type (loc, exp);' to make sure exp |
191 | does not have an incomplete type. (That includes void types.) |
192 | LOC is the location of the use. */ |
193 | |
194 | tree |
195 | require_complete_type (location_t loc, tree value) |
196 | { |
197 | tree type = TREE_TYPE (value); |
198 | |
199 | if (error_operand_p (value)) |
200 | return error_mark_node; |
201 | |
202 | /* First, detect a valid value with a complete type. */ |
203 | if (COMPLETE_TYPE_P (type)) |
204 | return value; |
205 | |
206 | c_incomplete_type_error (loc, value, type); |
207 | return error_mark_node; |
208 | } |
209 | |
210 | /* Print an error message for invalid use of an incomplete type. |
211 | VALUE is the expression that was used (or 0 if that isn't known) |
212 | and TYPE is the type that was invalid. LOC is the location for |
213 | the error. */ |
214 | |
215 | void |
216 | c_incomplete_type_error (location_t loc, const_tree value, const_tree type) |
217 | { |
218 | /* Avoid duplicate error message. */ |
219 | if (TREE_CODE (type) == ERROR_MARK) |
220 | return; |
221 | |
222 | if (value != NULL_TREE && (VAR_P (value) || TREE_CODE (value) == PARM_DECL)) |
223 | error_at (loc, "%qD has an incomplete type %qT" , value, type); |
224 | else |
225 | { |
226 | retry: |
227 | /* We must print an error message. Be clever about what it says. */ |
228 | |
229 | switch (TREE_CODE (type)) |
230 | { |
231 | case RECORD_TYPE: |
232 | case UNION_TYPE: |
233 | case ENUMERAL_TYPE: |
234 | break; |
235 | |
236 | case VOID_TYPE: |
237 | error_at (loc, "invalid use of void expression" ); |
238 | return; |
239 | |
240 | case ARRAY_TYPE: |
241 | if (TYPE_DOMAIN (type)) |
242 | { |
243 | if (TYPE_MAX_VALUE (TYPE_DOMAIN (type)) == NULL) |
244 | { |
245 | error_at (loc, "invalid use of flexible array member" ); |
246 | return; |
247 | } |
248 | type = TREE_TYPE (type); |
249 | goto retry; |
250 | } |
251 | error_at (loc, "invalid use of array with unspecified bounds" ); |
252 | return; |
253 | |
254 | default: |
255 | gcc_unreachable (); |
256 | } |
257 | |
258 | if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE) |
259 | error_at (loc, "invalid use of undefined type %qT" , type); |
260 | else |
261 | /* If this type has a typedef-name, the TYPE_NAME is a TYPE_DECL. */ |
262 | error_at (loc, "invalid use of incomplete typedef %qT" , type); |
263 | } |
264 | } |
265 | |
266 | /* Given a type, apply default promotions wrt unnamed function |
267 | arguments and return the new type. */ |
268 | |
269 | tree |
270 | c_type_promotes_to (tree type) |
271 | { |
272 | tree ret = NULL_TREE; |
273 | |
274 | if (TYPE_MAIN_VARIANT (type) == float_type_node) |
275 | ret = double_type_node; |
276 | else if (c_promoting_integer_type_p (type)) |
277 | { |
278 | /* Preserve unsignedness if not really getting any wider. */ |
279 | if (TYPE_UNSIGNED (type) |
280 | && (TYPE_PRECISION (type) == TYPE_PRECISION (integer_type_node))) |
281 | ret = unsigned_type_node; |
282 | else |
283 | ret = integer_type_node; |
284 | } |
285 | |
286 | if (ret != NULL_TREE) |
287 | return (TYPE_ATOMIC (type) |
288 | ? c_build_qualified_type (ret, TYPE_QUAL_ATOMIC) |
289 | : ret); |
290 | |
291 | return type; |
292 | } |
293 | |
294 | /* Return true if between two named address spaces, whether there is a superset |
295 | named address space that encompasses both address spaces. If there is a |
296 | superset, return which address space is the superset. */ |
297 | |
298 | static bool |
299 | addr_space_superset (addr_space_t as1, addr_space_t as2, addr_space_t *common) |
300 | { |
301 | if (as1 == as2) |
302 | { |
303 | *common = as1; |
304 | return true; |
305 | } |
306 | else if (targetm.addr_space.subset_p (as1, as2)) |
307 | { |
308 | *common = as2; |
309 | return true; |
310 | } |
311 | else if (targetm.addr_space.subset_p (as2, as1)) |
312 | { |
313 | *common = as1; |
314 | return true; |
315 | } |
316 | else |
317 | return false; |
318 | } |
319 | |
320 | /* Return a variant of TYPE which has all the type qualifiers of LIKE |
321 | as well as those of TYPE. */ |
322 | |
323 | static tree |
324 | qualify_type (tree type, tree like) |
325 | { |
326 | addr_space_t as_type = TYPE_ADDR_SPACE (type); |
327 | addr_space_t as_like = TYPE_ADDR_SPACE (like); |
328 | addr_space_t as_common; |
329 | |
330 | /* If the two named address spaces are different, determine the common |
331 | superset address space. If there isn't one, raise an error. */ |
332 | if (!addr_space_superset (as_type, as_like, &as_common)) |
333 | { |
334 | as_common = as_type; |
335 | error ("%qT and %qT are in disjoint named address spaces" , |
336 | type, like); |
337 | } |
338 | |
339 | return c_build_qualified_type (type, |
340 | TYPE_QUALS_NO_ADDR_SPACE (type) |
341 | | TYPE_QUALS_NO_ADDR_SPACE_NO_ATOMIC (like) |
342 | | ENCODE_QUAL_ADDR_SPACE (as_common)); |
343 | } |
344 | |
345 | /* Return true iff the given tree T is a variable length array. */ |
346 | |
347 | bool |
348 | c_vla_type_p (const_tree t) |
349 | { |
350 | if (TREE_CODE (t) == ARRAY_TYPE |
351 | && C_TYPE_VARIABLE_SIZE (t)) |
352 | return true; |
353 | return false; |
354 | } |
355 | |
356 | /* Return the composite type of two compatible types. |
357 | |
358 | We assume that comptypes has already been done and returned |
359 | nonzero; if that isn't so, this may crash. In particular, we |
360 | assume that qualifiers match. */ |
361 | |
362 | tree |
363 | composite_type (tree t1, tree t2) |
364 | { |
365 | enum tree_code code1; |
366 | enum tree_code code2; |
367 | tree attributes; |
368 | |
369 | /* Save time if the two types are the same. */ |
370 | |
371 | if (t1 == t2) return t1; |
372 | |
373 | /* If one type is nonsense, use the other. */ |
374 | if (t1 == error_mark_node) |
375 | return t2; |
376 | if (t2 == error_mark_node) |
377 | return t1; |
378 | |
379 | code1 = TREE_CODE (t1); |
380 | code2 = TREE_CODE (t2); |
381 | |
382 | /* Merge the attributes. */ |
383 | attributes = targetm.merge_type_attributes (t1, t2); |
384 | |
385 | /* If one is an enumerated type and the other is the compatible |
386 | integer type, the composite type might be either of the two |
387 | (DR#013 question 3). For consistency, use the enumerated type as |
388 | the composite type. */ |
389 | |
390 | if (code1 == ENUMERAL_TYPE && code2 == INTEGER_TYPE) |
391 | return t1; |
392 | if (code2 == ENUMERAL_TYPE && code1 == INTEGER_TYPE) |
393 | return t2; |
394 | |
395 | gcc_assert (code1 == code2); |
396 | |
397 | switch (code1) |
398 | { |
399 | case POINTER_TYPE: |
400 | /* For two pointers, do this recursively on the target type. */ |
401 | { |
402 | tree pointed_to_1 = TREE_TYPE (t1); |
403 | tree pointed_to_2 = TREE_TYPE (t2); |
404 | tree target = composite_type (pointed_to_1, pointed_to_2); |
405 | t1 = build_pointer_type_for_mode (target, TYPE_MODE (t1), false); |
406 | t1 = build_type_attribute_variant (t1, attributes); |
407 | return qualify_type (t1, t2); |
408 | } |
409 | |
410 | case ARRAY_TYPE: |
411 | { |
412 | tree elt = composite_type (TREE_TYPE (t1), TREE_TYPE (t2)); |
413 | int quals; |
414 | tree unqual_elt; |
415 | tree d1 = TYPE_DOMAIN (t1); |
416 | tree d2 = TYPE_DOMAIN (t2); |
417 | bool d1_variable, d2_variable; |
418 | bool d1_zero, d2_zero; |
419 | bool t1_complete, t2_complete; |
420 | |
421 | /* We should not have any type quals on arrays at all. */ |
422 | gcc_assert (!TYPE_QUALS_NO_ADDR_SPACE (t1) |
423 | && !TYPE_QUALS_NO_ADDR_SPACE (t2)); |
424 | |
425 | t1_complete = COMPLETE_TYPE_P (t1); |
426 | t2_complete = COMPLETE_TYPE_P (t2); |
427 | |
428 | d1_zero = d1 == NULL_TREE || !TYPE_MAX_VALUE (d1); |
429 | d2_zero = d2 == NULL_TREE || !TYPE_MAX_VALUE (d2); |
430 | |
431 | d1_variable = (!d1_zero |
432 | && (TREE_CODE (TYPE_MIN_VALUE (d1)) != INTEGER_CST |
433 | || TREE_CODE (TYPE_MAX_VALUE (d1)) != INTEGER_CST)); |
434 | d2_variable = (!d2_zero |
435 | && (TREE_CODE (TYPE_MIN_VALUE (d2)) != INTEGER_CST |
436 | || TREE_CODE (TYPE_MAX_VALUE (d2)) != INTEGER_CST)); |
437 | d1_variable = d1_variable || (d1_zero && c_vla_type_p (t1)); |
438 | d2_variable = d2_variable || (d2_zero && c_vla_type_p (t2)); |
439 | |
440 | /* Save space: see if the result is identical to one of the args. */ |
441 | if (elt == TREE_TYPE (t1) && TYPE_DOMAIN (t1) |
442 | && (d2_variable || d2_zero || !d1_variable)) |
443 | return build_type_attribute_variant (t1, attributes); |
444 | if (elt == TREE_TYPE (t2) && TYPE_DOMAIN (t2) |
445 | && (d1_variable || d1_zero || !d2_variable)) |
446 | return build_type_attribute_variant (t2, attributes); |
447 | |
448 | if (elt == TREE_TYPE (t1) && !TYPE_DOMAIN (t2) && !TYPE_DOMAIN (t1)) |
449 | return build_type_attribute_variant (t1, attributes); |
450 | if (elt == TREE_TYPE (t2) && !TYPE_DOMAIN (t2) && !TYPE_DOMAIN (t1)) |
451 | return build_type_attribute_variant (t2, attributes); |
452 | |
453 | /* Merge the element types, and have a size if either arg has |
454 | one. We may have qualifiers on the element types. To set |
455 | up TYPE_MAIN_VARIANT correctly, we need to form the |
456 | composite of the unqualified types and add the qualifiers |
457 | back at the end. */ |
458 | quals = TYPE_QUALS (strip_array_types (elt)); |
459 | unqual_elt = c_build_qualified_type (elt, TYPE_UNQUALIFIED); |
460 | t1 = build_array_type (unqual_elt, |
461 | TYPE_DOMAIN ((TYPE_DOMAIN (t1) |
462 | && (d2_variable |
463 | || d2_zero |
464 | || !d1_variable)) |
465 | ? t1 |
466 | : t2)); |
467 | /* Ensure a composite type involving a zero-length array type |
468 | is a zero-length type not an incomplete type. */ |
469 | if (d1_zero && d2_zero |
470 | && (t1_complete || t2_complete) |
471 | && !COMPLETE_TYPE_P (t1)) |
472 | { |
473 | TYPE_SIZE (t1) = bitsize_zero_node; |
474 | TYPE_SIZE_UNIT (t1) = size_zero_node; |
475 | } |
476 | t1 = c_build_qualified_type (t1, quals); |
477 | return build_type_attribute_variant (t1, attributes); |
478 | } |
479 | |
480 | case ENUMERAL_TYPE: |
481 | case RECORD_TYPE: |
482 | case UNION_TYPE: |
483 | if (attributes != NULL) |
484 | { |
485 | /* Try harder not to create a new aggregate type. */ |
486 | if (attribute_list_equal (TYPE_ATTRIBUTES (t1), attributes)) |
487 | return t1; |
488 | if (attribute_list_equal (TYPE_ATTRIBUTES (t2), attributes)) |
489 | return t2; |
490 | } |
491 | return build_type_attribute_variant (t1, attributes); |
492 | |
493 | case FUNCTION_TYPE: |
494 | /* Function types: prefer the one that specified arg types. |
495 | If both do, merge the arg types. Also merge the return types. */ |
496 | { |
497 | tree valtype = composite_type (TREE_TYPE (t1), TREE_TYPE (t2)); |
498 | tree p1 = TYPE_ARG_TYPES (t1); |
499 | tree p2 = TYPE_ARG_TYPES (t2); |
500 | int len; |
501 | tree newargs, n; |
502 | int i; |
503 | |
504 | /* Save space: see if the result is identical to one of the args. */ |
505 | if (valtype == TREE_TYPE (t1) && !TYPE_ARG_TYPES (t2)) |
506 | return build_type_attribute_variant (t1, attributes); |
507 | if (valtype == TREE_TYPE (t2) && !TYPE_ARG_TYPES (t1)) |
508 | return build_type_attribute_variant (t2, attributes); |
509 | |
510 | /* Simple way if one arg fails to specify argument types. */ |
511 | if (TYPE_ARG_TYPES (t1) == NULL_TREE) |
512 | { |
513 | t1 = build_function_type (valtype, TYPE_ARG_TYPES (t2)); |
514 | t1 = build_type_attribute_variant (t1, attributes); |
515 | return qualify_type (t1, t2); |
516 | } |
517 | if (TYPE_ARG_TYPES (t2) == NULL_TREE) |
518 | { |
519 | t1 = build_function_type (valtype, TYPE_ARG_TYPES (t1)); |
520 | t1 = build_type_attribute_variant (t1, attributes); |
521 | return qualify_type (t1, t2); |
522 | } |
523 | |
524 | /* If both args specify argument types, we must merge the two |
525 | lists, argument by argument. */ |
526 | |
527 | for (len = 0, newargs = p1; |
528 | newargs && newargs != void_list_node; |
529 | len++, newargs = TREE_CHAIN (newargs)) |
530 | ; |
531 | |
532 | for (i = 0; i < len; i++) |
533 | newargs = tree_cons (NULL_TREE, NULL_TREE, newargs); |
534 | |
535 | n = newargs; |
536 | |
537 | for (; p1 && p1 != void_list_node; |
538 | p1 = TREE_CHAIN (p1), p2 = TREE_CHAIN (p2), n = TREE_CHAIN (n)) |
539 | { |
540 | /* A null type means arg type is not specified. |
541 | Take whatever the other function type has. */ |
542 | if (TREE_VALUE (p1) == NULL_TREE) |
543 | { |
544 | TREE_VALUE (n) = TREE_VALUE (p2); |
545 | goto parm_done; |
546 | } |
547 | if (TREE_VALUE (p2) == NULL_TREE) |
548 | { |
549 | TREE_VALUE (n) = TREE_VALUE (p1); |
550 | goto parm_done; |
551 | } |
552 | |
553 | /* Given wait (union {union wait *u; int *i} *) |
554 | and wait (union wait *), |
555 | prefer union wait * as type of parm. */ |
556 | if (TREE_CODE (TREE_VALUE (p1)) == UNION_TYPE |
557 | && TREE_VALUE (p1) != TREE_VALUE (p2)) |
558 | { |
559 | tree memb; |
560 | tree mv2 = TREE_VALUE (p2); |
561 | if (mv2 && mv2 != error_mark_node |
562 | && TREE_CODE (mv2) != ARRAY_TYPE) |
563 | mv2 = TYPE_MAIN_VARIANT (mv2); |
564 | for (memb = TYPE_FIELDS (TREE_VALUE (p1)); |
565 | memb; memb = DECL_CHAIN (memb)) |
566 | { |
567 | tree mv3 = TREE_TYPE (memb); |
568 | if (mv3 && mv3 != error_mark_node |
569 | && TREE_CODE (mv3) != ARRAY_TYPE) |
570 | mv3 = TYPE_MAIN_VARIANT (mv3); |
571 | if (comptypes (mv3, mv2)) |
572 | { |
573 | TREE_VALUE (n) = composite_type (TREE_TYPE (memb), |
574 | TREE_VALUE (p2)); |
575 | pedwarn (input_location, OPT_Wpedantic, |
576 | "function types not truly compatible in ISO C" ); |
577 | goto parm_done; |
578 | } |
579 | } |
580 | } |
581 | if (TREE_CODE (TREE_VALUE (p2)) == UNION_TYPE |
582 | && TREE_VALUE (p2) != TREE_VALUE (p1)) |
583 | { |
584 | tree memb; |
585 | tree mv1 = TREE_VALUE (p1); |
586 | if (mv1 && mv1 != error_mark_node |
587 | && TREE_CODE (mv1) != ARRAY_TYPE) |
588 | mv1 = TYPE_MAIN_VARIANT (mv1); |
589 | for (memb = TYPE_FIELDS (TREE_VALUE (p2)); |
590 | memb; memb = DECL_CHAIN (memb)) |
591 | { |
592 | tree mv3 = TREE_TYPE (memb); |
593 | if (mv3 && mv3 != error_mark_node |
594 | && TREE_CODE (mv3) != ARRAY_TYPE) |
595 | mv3 = TYPE_MAIN_VARIANT (mv3); |
596 | if (comptypes (mv3, mv1)) |
597 | { |
598 | TREE_VALUE (n) = composite_type (TREE_TYPE (memb), |
599 | TREE_VALUE (p1)); |
600 | pedwarn (input_location, OPT_Wpedantic, |
601 | "function types not truly compatible in ISO C" ); |
602 | goto parm_done; |
603 | } |
604 | } |
605 | } |
606 | TREE_VALUE (n) = composite_type (TREE_VALUE (p1), TREE_VALUE (p2)); |
607 | parm_done: ; |
608 | } |
609 | |
610 | t1 = build_function_type (valtype, newargs); |
611 | t1 = qualify_type (t1, t2); |
612 | } |
613 | /* FALLTHRU */ |
614 | |
615 | default: |
616 | return build_type_attribute_variant (t1, attributes); |
617 | } |
618 | |
619 | } |
620 | |
621 | /* Return the type of a conditional expression between pointers to |
622 | possibly differently qualified versions of compatible types. |
623 | |
624 | We assume that comp_target_types has already been done and returned |
625 | nonzero; if that isn't so, this may crash. */ |
626 | |
627 | static tree |
628 | common_pointer_type (tree t1, tree t2) |
629 | { |
630 | tree attributes; |
631 | tree pointed_to_1, mv1; |
632 | tree pointed_to_2, mv2; |
633 | tree target; |
634 | unsigned target_quals; |
635 | addr_space_t as1, as2, as_common; |
636 | int quals1, quals2; |
637 | |
638 | /* Save time if the two types are the same. */ |
639 | |
640 | if (t1 == t2) return t1; |
641 | |
642 | /* If one type is nonsense, use the other. */ |
643 | if (t1 == error_mark_node) |
644 | return t2; |
645 | if (t2 == error_mark_node) |
646 | return t1; |
647 | |
648 | gcc_assert (TREE_CODE (t1) == POINTER_TYPE |
649 | && TREE_CODE (t2) == POINTER_TYPE); |
650 | |
651 | /* Merge the attributes. */ |
652 | attributes = targetm.merge_type_attributes (t1, t2); |
653 | |
654 | /* Find the composite type of the target types, and combine the |
655 | qualifiers of the two types' targets. Do not lose qualifiers on |
656 | array element types by taking the TYPE_MAIN_VARIANT. */ |
657 | mv1 = pointed_to_1 = TREE_TYPE (t1); |
658 | mv2 = pointed_to_2 = TREE_TYPE (t2); |
659 | if (TREE_CODE (mv1) != ARRAY_TYPE) |
660 | mv1 = TYPE_MAIN_VARIANT (pointed_to_1); |
661 | if (TREE_CODE (mv2) != ARRAY_TYPE) |
662 | mv2 = TYPE_MAIN_VARIANT (pointed_to_2); |
663 | target = composite_type (mv1, mv2); |
664 | |
665 | /* Strip array types to get correct qualifier for pointers to arrays */ |
666 | quals1 = TYPE_QUALS_NO_ADDR_SPACE (strip_array_types (pointed_to_1)); |
667 | quals2 = TYPE_QUALS_NO_ADDR_SPACE (strip_array_types (pointed_to_2)); |
668 | |
669 | /* For function types do not merge const qualifiers, but drop them |
670 | if used inconsistently. The middle-end uses these to mark const |
671 | and noreturn functions. */ |
672 | if (TREE_CODE (pointed_to_1) == FUNCTION_TYPE) |
673 | target_quals = (quals1 & quals2); |
674 | else |
675 | target_quals = (quals1 | quals2); |
676 | |
677 | /* If the two named address spaces are different, determine the common |
678 | superset address space. This is guaranteed to exist due to the |
679 | assumption that comp_target_type returned non-zero. */ |
680 | as1 = TYPE_ADDR_SPACE (pointed_to_1); |
681 | as2 = TYPE_ADDR_SPACE (pointed_to_2); |
682 | if (!addr_space_superset (as1, as2, &as_common)) |
683 | gcc_unreachable (); |
684 | |
685 | target_quals |= ENCODE_QUAL_ADDR_SPACE (as_common); |
686 | |
687 | t1 = build_pointer_type (c_build_qualified_type (target, target_quals)); |
688 | return build_type_attribute_variant (t1, attributes); |
689 | } |
690 | |
691 | /* Return the common type for two arithmetic types under the usual |
692 | arithmetic conversions. The default conversions have already been |
693 | applied, and enumerated types converted to their compatible integer |
694 | types. The resulting type is unqualified and has no attributes. |
695 | |
696 | This is the type for the result of most arithmetic operations |
697 | if the operands have the given two types. */ |
698 | |
699 | static tree |
700 | c_common_type (tree t1, tree t2) |
701 | { |
702 | enum tree_code code1; |
703 | enum tree_code code2; |
704 | |
705 | /* If one type is nonsense, use the other. */ |
706 | if (t1 == error_mark_node) |
707 | return t2; |
708 | if (t2 == error_mark_node) |
709 | return t1; |
710 | |
711 | if (TYPE_QUALS (t1) != TYPE_UNQUALIFIED) |
712 | t1 = TYPE_MAIN_VARIANT (t1); |
713 | |
714 | if (TYPE_QUALS (t2) != TYPE_UNQUALIFIED) |
715 | t2 = TYPE_MAIN_VARIANT (t2); |
716 | |
717 | if (TYPE_ATTRIBUTES (t1) != NULL_TREE) |
718 | t1 = build_type_attribute_variant (t1, NULL_TREE); |
719 | |
720 | if (TYPE_ATTRIBUTES (t2) != NULL_TREE) |
721 | t2 = build_type_attribute_variant (t2, NULL_TREE); |
722 | |
723 | /* Save time if the two types are the same. */ |
724 | |
725 | if (t1 == t2) return t1; |
726 | |
727 | code1 = TREE_CODE (t1); |
728 | code2 = TREE_CODE (t2); |
729 | |
730 | gcc_assert (code1 == VECTOR_TYPE || code1 == COMPLEX_TYPE |
731 | || code1 == FIXED_POINT_TYPE || code1 == REAL_TYPE |
732 | || code1 == INTEGER_TYPE); |
733 | gcc_assert (code2 == VECTOR_TYPE || code2 == COMPLEX_TYPE |
734 | || code2 == FIXED_POINT_TYPE || code2 == REAL_TYPE |
735 | || code2 == INTEGER_TYPE); |
736 | |
737 | /* When one operand is a decimal float type, the other operand cannot be |
738 | a generic float type or a complex type. We also disallow vector types |
739 | here. */ |
740 | if ((DECIMAL_FLOAT_TYPE_P (t1) || DECIMAL_FLOAT_TYPE_P (t2)) |
741 | && !(DECIMAL_FLOAT_TYPE_P (t1) && DECIMAL_FLOAT_TYPE_P (t2))) |
742 | { |
743 | if (code1 == VECTOR_TYPE || code2 == VECTOR_TYPE) |
744 | { |
745 | error ("can%'t mix operands of decimal float and vector types" ); |
746 | return error_mark_node; |
747 | } |
748 | if (code1 == COMPLEX_TYPE || code2 == COMPLEX_TYPE) |
749 | { |
750 | error ("can%'t mix operands of decimal float and complex types" ); |
751 | return error_mark_node; |
752 | } |
753 | if (code1 == REAL_TYPE && code2 == REAL_TYPE) |
754 | { |
755 | error ("can%'t mix operands of decimal float and other float types" ); |
756 | return error_mark_node; |
757 | } |
758 | } |
759 | |
760 | /* If one type is a vector type, return that type. (How the usual |
761 | arithmetic conversions apply to the vector types extension is not |
762 | precisely specified.) */ |
763 | if (code1 == VECTOR_TYPE) |
764 | return t1; |
765 | |
766 | if (code2 == VECTOR_TYPE) |
767 | return t2; |
768 | |
769 | /* If one type is complex, form the common type of the non-complex |
770 | components, then make that complex. Use T1 or T2 if it is the |
771 | required type. */ |
772 | if (code1 == COMPLEX_TYPE || code2 == COMPLEX_TYPE) |
773 | { |
774 | tree subtype1 = code1 == COMPLEX_TYPE ? TREE_TYPE (t1) : t1; |
775 | tree subtype2 = code2 == COMPLEX_TYPE ? TREE_TYPE (t2) : t2; |
776 | tree subtype = c_common_type (subtype1, subtype2); |
777 | |
778 | if (code1 == COMPLEX_TYPE && TREE_TYPE (t1) == subtype) |
779 | return t1; |
780 | else if (code2 == COMPLEX_TYPE && TREE_TYPE (t2) == subtype) |
781 | return t2; |
782 | else |
783 | return build_complex_type (subtype); |
784 | } |
785 | |
786 | /* If only one is real, use it as the result. */ |
787 | |
788 | if (code1 == REAL_TYPE && code2 != REAL_TYPE) |
789 | return t1; |
790 | |
791 | if (code2 == REAL_TYPE && code1 != REAL_TYPE) |
792 | return t2; |
793 | |
794 | /* If both are real and either are decimal floating point types, use |
795 | the decimal floating point type with the greater precision. */ |
796 | |
797 | if (code1 == REAL_TYPE && code2 == REAL_TYPE) |
798 | { |
799 | if (TYPE_MAIN_VARIANT (t1) == dfloat128_type_node |
800 | || TYPE_MAIN_VARIANT (t2) == dfloat128_type_node) |
801 | return dfloat128_type_node; |
802 | else if (TYPE_MAIN_VARIANT (t1) == dfloat64_type_node |
803 | || TYPE_MAIN_VARIANT (t2) == dfloat64_type_node) |
804 | return dfloat64_type_node; |
805 | else if (TYPE_MAIN_VARIANT (t1) == dfloat32_type_node |
806 | || TYPE_MAIN_VARIANT (t2) == dfloat32_type_node) |
807 | return dfloat32_type_node; |
808 | } |
809 | |
810 | /* Deal with fixed-point types. */ |
811 | if (code1 == FIXED_POINT_TYPE || code2 == FIXED_POINT_TYPE) |
812 | { |
813 | unsigned int unsignedp = 0, satp = 0; |
814 | scalar_mode m1, m2; |
815 | unsigned int fbit1, ibit1, fbit2, ibit2, max_fbit, max_ibit; |
816 | |
817 | m1 = SCALAR_TYPE_MODE (t1); |
818 | m2 = SCALAR_TYPE_MODE (t2); |
819 | |
820 | /* If one input type is saturating, the result type is saturating. */ |
821 | if (TYPE_SATURATING (t1) || TYPE_SATURATING (t2)) |
822 | satp = 1; |
823 | |
824 | /* If both fixed-point types are unsigned, the result type is unsigned. |
825 | When mixing fixed-point and integer types, follow the sign of the |
826 | fixed-point type. |
827 | Otherwise, the result type is signed. */ |
828 | if ((TYPE_UNSIGNED (t1) && TYPE_UNSIGNED (t2) |
829 | && code1 == FIXED_POINT_TYPE && code2 == FIXED_POINT_TYPE) |
830 | || (code1 == FIXED_POINT_TYPE && code2 != FIXED_POINT_TYPE |
831 | && TYPE_UNSIGNED (t1)) |
832 | || (code1 != FIXED_POINT_TYPE && code2 == FIXED_POINT_TYPE |
833 | && TYPE_UNSIGNED (t2))) |
834 | unsignedp = 1; |
835 | |
836 | /* The result type is signed. */ |
837 | if (unsignedp == 0) |
838 | { |
839 | /* If the input type is unsigned, we need to convert to the |
840 | signed type. */ |
841 | if (code1 == FIXED_POINT_TYPE && TYPE_UNSIGNED (t1)) |
842 | { |
843 | enum mode_class mclass = (enum mode_class) 0; |
844 | if (GET_MODE_CLASS (m1) == MODE_UFRACT) |
845 | mclass = MODE_FRACT; |
846 | else if (GET_MODE_CLASS (m1) == MODE_UACCUM) |
847 | mclass = MODE_ACCUM; |
848 | else |
849 | gcc_unreachable (); |
850 | m1 = as_a <scalar_mode> |
851 | (mode_for_size (GET_MODE_PRECISION (m1), mclass, 0)); |
852 | } |
853 | if (code2 == FIXED_POINT_TYPE && TYPE_UNSIGNED (t2)) |
854 | { |
855 | enum mode_class mclass = (enum mode_class) 0; |
856 | if (GET_MODE_CLASS (m2) == MODE_UFRACT) |
857 | mclass = MODE_FRACT; |
858 | else if (GET_MODE_CLASS (m2) == MODE_UACCUM) |
859 | mclass = MODE_ACCUM; |
860 | else |
861 | gcc_unreachable (); |
862 | m2 = as_a <scalar_mode> |
863 | (mode_for_size (GET_MODE_PRECISION (m2), mclass, 0)); |
864 | } |
865 | } |
866 | |
867 | if (code1 == FIXED_POINT_TYPE) |
868 | { |
869 | fbit1 = GET_MODE_FBIT (m1); |
870 | ibit1 = GET_MODE_IBIT (m1); |
871 | } |
872 | else |
873 | { |
874 | fbit1 = 0; |
875 | /* Signed integers need to subtract one sign bit. */ |
876 | ibit1 = TYPE_PRECISION (t1) - (!TYPE_UNSIGNED (t1)); |
877 | } |
878 | |
879 | if (code2 == FIXED_POINT_TYPE) |
880 | { |
881 | fbit2 = GET_MODE_FBIT (m2); |
882 | ibit2 = GET_MODE_IBIT (m2); |
883 | } |
884 | else |
885 | { |
886 | fbit2 = 0; |
887 | /* Signed integers need to subtract one sign bit. */ |
888 | ibit2 = TYPE_PRECISION (t2) - (!TYPE_UNSIGNED (t2)); |
889 | } |
890 | |
891 | max_ibit = ibit1 >= ibit2 ? ibit1 : ibit2; |
892 | max_fbit = fbit1 >= fbit2 ? fbit1 : fbit2; |
893 | return c_common_fixed_point_type_for_size (max_ibit, max_fbit, unsignedp, |
894 | satp); |
895 | } |
896 | |
897 | /* Both real or both integers; use the one with greater precision. */ |
898 | |
899 | if (TYPE_PRECISION (t1) > TYPE_PRECISION (t2)) |
900 | return t1; |
901 | else if (TYPE_PRECISION (t2) > TYPE_PRECISION (t1)) |
902 | return t2; |
903 | |
904 | /* Same precision. Prefer long longs to longs to ints when the |
905 | same precision, following the C99 rules on integer type rank |
906 | (which are equivalent to the C90 rules for C90 types). */ |
907 | |
908 | if (TYPE_MAIN_VARIANT (t1) == long_long_unsigned_type_node |
909 | || TYPE_MAIN_VARIANT (t2) == long_long_unsigned_type_node) |
910 | return long_long_unsigned_type_node; |
911 | |
912 | if (TYPE_MAIN_VARIANT (t1) == long_long_integer_type_node |
913 | || TYPE_MAIN_VARIANT (t2) == long_long_integer_type_node) |
914 | { |
915 | if (TYPE_UNSIGNED (t1) || TYPE_UNSIGNED (t2)) |
916 | return long_long_unsigned_type_node; |
917 | else |
918 | return long_long_integer_type_node; |
919 | } |
920 | |
921 | if (TYPE_MAIN_VARIANT (t1) == long_unsigned_type_node |
922 | || TYPE_MAIN_VARIANT (t2) == long_unsigned_type_node) |
923 | return long_unsigned_type_node; |
924 | |
925 | if (TYPE_MAIN_VARIANT (t1) == long_integer_type_node |
926 | || TYPE_MAIN_VARIANT (t2) == long_integer_type_node) |
927 | { |
928 | /* But preserve unsignedness from the other type, |
929 | since long cannot hold all the values of an unsigned int. */ |
930 | if (TYPE_UNSIGNED (t1) || TYPE_UNSIGNED (t2)) |
931 | return long_unsigned_type_node; |
932 | else |
933 | return long_integer_type_node; |
934 | } |
935 | |
936 | /* For floating types of the same TYPE_PRECISION (which we here |
937 | assume means either the same set of values, or sets of values |
938 | neither a subset of the other, with behavior being undefined in |
939 | the latter case), follow the rules from TS 18661-3: prefer |
940 | interchange types _FloatN, then standard types long double, |
941 | double, float, then extended types _FloatNx. For extended types, |
942 | check them starting with _Float128x as that seems most consistent |
943 | in spirit with preferring long double to double; for interchange |
944 | types, also check in that order for consistency although it's not |
945 | possible for more than one of them to have the same |
946 | precision. */ |
947 | tree mv1 = TYPE_MAIN_VARIANT (t1); |
948 | tree mv2 = TYPE_MAIN_VARIANT (t2); |
949 | |
950 | for (int i = NUM_FLOATN_TYPES - 1; i >= 0; i--) |
951 | if (mv1 == FLOATN_TYPE_NODE (i) || mv2 == FLOATN_TYPE_NODE (i)) |
952 | return FLOATN_TYPE_NODE (i); |
953 | |
954 | /* Likewise, prefer long double to double even if same size. */ |
955 | if (mv1 == long_double_type_node || mv2 == long_double_type_node) |
956 | return long_double_type_node; |
957 | |
958 | /* Likewise, prefer double to float even if same size. |
959 | We got a couple of embedded targets with 32 bit doubles, and the |
960 | pdp11 might have 64 bit floats. */ |
961 | if (mv1 == double_type_node || mv2 == double_type_node) |
962 | return double_type_node; |
963 | |
964 | if (mv1 == float_type_node || mv2 == float_type_node) |
965 | return float_type_node; |
966 | |
967 | for (int i = NUM_FLOATNX_TYPES - 1; i >= 0; i--) |
968 | if (mv1 == FLOATNX_TYPE_NODE (i) || mv2 == FLOATNX_TYPE_NODE (i)) |
969 | return FLOATNX_TYPE_NODE (i); |
970 | |
971 | /* Otherwise prefer the unsigned one. */ |
972 | |
973 | if (TYPE_UNSIGNED (t1)) |
974 | return t1; |
975 | else |
976 | return t2; |
977 | } |
978 | |
979 | /* Wrapper around c_common_type that is used by c-common.c and other |
980 | front end optimizations that remove promotions. ENUMERAL_TYPEs |
981 | are allowed here and are converted to their compatible integer types. |
982 | BOOLEAN_TYPEs are allowed here and return either boolean_type_node or |
983 | preferably a non-Boolean type as the common type. */ |
984 | tree |
985 | common_type (tree t1, tree t2) |
986 | { |
987 | if (TREE_CODE (t1) == ENUMERAL_TYPE) |
988 | t1 = c_common_type_for_size (TYPE_PRECISION (t1), 1); |
989 | if (TREE_CODE (t2) == ENUMERAL_TYPE) |
990 | t2 = c_common_type_for_size (TYPE_PRECISION (t2), 1); |
991 | |
992 | /* If both types are BOOLEAN_TYPE, then return boolean_type_node. */ |
993 | if (TREE_CODE (t1) == BOOLEAN_TYPE |
994 | && TREE_CODE (t2) == BOOLEAN_TYPE) |
995 | return boolean_type_node; |
996 | |
997 | /* If either type is BOOLEAN_TYPE, then return the other. */ |
998 | if (TREE_CODE (t1) == BOOLEAN_TYPE) |
999 | return t2; |
1000 | if (TREE_CODE (t2) == BOOLEAN_TYPE) |
1001 | return t1; |
1002 | |
1003 | return c_common_type (t1, t2); |
1004 | } |
1005 | |
1006 | /* Return 1 if TYPE1 and TYPE2 are compatible types for assignment |
1007 | or various other operations. Return 2 if they are compatible |
1008 | but a warning may be needed if you use them together. */ |
1009 | |
1010 | int |
1011 | comptypes (tree type1, tree type2) |
1012 | { |
1013 | const struct tagged_tu_seen_cache * tagged_tu_seen_base1 = tagged_tu_seen_base; |
1014 | int val; |
1015 | |
1016 | val = comptypes_internal (type1, type2, NULL, NULL); |
1017 | free_all_tagged_tu_seen_up_to (tagged_tu_seen_base1); |
1018 | |
1019 | return val; |
1020 | } |
1021 | |
1022 | /* Like comptypes, but if it returns non-zero because enum and int are |
1023 | compatible, it sets *ENUM_AND_INT_P to true. */ |
1024 | |
1025 | static int |
1026 | comptypes_check_enum_int (tree type1, tree type2, bool *enum_and_int_p) |
1027 | { |
1028 | const struct tagged_tu_seen_cache * tagged_tu_seen_base1 = tagged_tu_seen_base; |
1029 | int val; |
1030 | |
1031 | val = comptypes_internal (type1, type2, enum_and_int_p, NULL); |
1032 | free_all_tagged_tu_seen_up_to (tagged_tu_seen_base1); |
1033 | |
1034 | return val; |
1035 | } |
1036 | |
1037 | /* Like comptypes, but if it returns nonzero for different types, it |
1038 | sets *DIFFERENT_TYPES_P to true. */ |
1039 | |
1040 | int |
1041 | comptypes_check_different_types (tree type1, tree type2, |
1042 | bool *different_types_p) |
1043 | { |
1044 | const struct tagged_tu_seen_cache * tagged_tu_seen_base1 = tagged_tu_seen_base; |
1045 | int val; |
1046 | |
1047 | val = comptypes_internal (type1, type2, NULL, different_types_p); |
1048 | free_all_tagged_tu_seen_up_to (tagged_tu_seen_base1); |
1049 | |
1050 | return val; |
1051 | } |
1052 | |
1053 | /* Return 1 if TYPE1 and TYPE2 are compatible types for assignment |
1054 | or various other operations. Return 2 if they are compatible |
1055 | but a warning may be needed if you use them together. If |
1056 | ENUM_AND_INT_P is not NULL, and one type is an enum and the other a |
1057 | compatible integer type, then this sets *ENUM_AND_INT_P to true; |
1058 | *ENUM_AND_INT_P is never set to false. If DIFFERENT_TYPES_P is not |
1059 | NULL, and the types are compatible but different enough not to be |
1060 | permitted in C11 typedef redeclarations, then this sets |
1061 | *DIFFERENT_TYPES_P to true; *DIFFERENT_TYPES_P is never set to |
1062 | false, but may or may not be set if the types are incompatible. |
1063 | This differs from comptypes, in that we don't free the seen |
1064 | types. */ |
1065 | |
1066 | static int |
1067 | comptypes_internal (const_tree type1, const_tree type2, bool *enum_and_int_p, |
1068 | bool *different_types_p) |
1069 | { |
1070 | const_tree t1 = type1; |
1071 | const_tree t2 = type2; |
1072 | int attrval, val; |
1073 | |
1074 | /* Suppress errors caused by previously reported errors. */ |
1075 | |
1076 | if (t1 == t2 || !t1 || !t2 |
1077 | || TREE_CODE (t1) == ERROR_MARK || TREE_CODE (t2) == ERROR_MARK) |
1078 | return 1; |
1079 | |
1080 | /* Enumerated types are compatible with integer types, but this is |
1081 | not transitive: two enumerated types in the same translation unit |
1082 | are compatible with each other only if they are the same type. */ |
1083 | |
1084 | if (TREE_CODE (t1) == ENUMERAL_TYPE && TREE_CODE (t2) != ENUMERAL_TYPE) |
1085 | { |
1086 | t1 = c_common_type_for_size (TYPE_PRECISION (t1), TYPE_UNSIGNED (t1)); |
1087 | if (TREE_CODE (t2) != VOID_TYPE) |
1088 | { |
1089 | if (enum_and_int_p != NULL) |
1090 | *enum_and_int_p = true; |
1091 | if (different_types_p != NULL) |
1092 | *different_types_p = true; |
1093 | } |
1094 | } |
1095 | else if (TREE_CODE (t2) == ENUMERAL_TYPE && TREE_CODE (t1) != ENUMERAL_TYPE) |
1096 | { |
1097 | t2 = c_common_type_for_size (TYPE_PRECISION (t2), TYPE_UNSIGNED (t2)); |
1098 | if (TREE_CODE (t1) != VOID_TYPE) |
1099 | { |
1100 | if (enum_and_int_p != NULL) |
1101 | *enum_and_int_p = true; |
1102 | if (different_types_p != NULL) |
1103 | *different_types_p = true; |
1104 | } |
1105 | } |
1106 | |
1107 | if (t1 == t2) |
1108 | return 1; |
1109 | |
1110 | /* Different classes of types can't be compatible. */ |
1111 | |
1112 | if (TREE_CODE (t1) != TREE_CODE (t2)) |
1113 | return 0; |
1114 | |
1115 | /* Qualifiers must match. C99 6.7.3p9 */ |
1116 | |
1117 | if (TYPE_QUALS (t1) != TYPE_QUALS (t2)) |
1118 | return 0; |
1119 | |
1120 | /* Allow for two different type nodes which have essentially the same |
1121 | definition. Note that we already checked for equality of the type |
1122 | qualifiers (just above). */ |
1123 | |
1124 | if (TREE_CODE (t1) != ARRAY_TYPE |
1125 | && TYPE_MAIN_VARIANT (t1) == TYPE_MAIN_VARIANT (t2)) |
1126 | return 1; |
1127 | |
1128 | /* 1 if no need for warning yet, 2 if warning cause has been seen. */ |
1129 | if (!(attrval = comp_type_attributes (t1, t2))) |
1130 | return 0; |
1131 | |
1132 | /* 1 if no need for warning yet, 2 if warning cause has been seen. */ |
1133 | val = 0; |
1134 | |
1135 | switch (TREE_CODE (t1)) |
1136 | { |
1137 | case INTEGER_TYPE: |
1138 | case FIXED_POINT_TYPE: |
1139 | case REAL_TYPE: |
1140 | /* With these nodes, we can't determine type equivalence by |
1141 | looking at what is stored in the nodes themselves, because |
1142 | two nodes might have different TYPE_MAIN_VARIANTs but still |
1143 | represent the same type. For example, wchar_t and int could |
1144 | have the same properties (TYPE_PRECISION, TYPE_MIN_VALUE, |
1145 | TYPE_MAX_VALUE, etc.), but have different TYPE_MAIN_VARIANTs |
1146 | and are distinct types. On the other hand, int and the |
1147 | following typedef |
1148 | |
1149 | typedef int INT __attribute((may_alias)); |
1150 | |
1151 | have identical properties, different TYPE_MAIN_VARIANTs, but |
1152 | represent the same type. The canonical type system keeps |
1153 | track of equivalence in this case, so we fall back on it. */ |
1154 | return TYPE_CANONICAL (t1) == TYPE_CANONICAL (t2); |
1155 | |
1156 | case POINTER_TYPE: |
1157 | /* Do not remove mode information. */ |
1158 | if (TYPE_MODE (t1) != TYPE_MODE (t2)) |
1159 | break; |
1160 | val = (TREE_TYPE (t1) == TREE_TYPE (t2) |
1161 | ? 1 : comptypes_internal (TREE_TYPE (t1), TREE_TYPE (t2), |
1162 | enum_and_int_p, different_types_p)); |
1163 | break; |
1164 | |
1165 | case FUNCTION_TYPE: |
1166 | val = function_types_compatible_p (t1, t2, enum_and_int_p, |
1167 | different_types_p); |
1168 | break; |
1169 | |
1170 | case ARRAY_TYPE: |
1171 | { |
1172 | tree d1 = TYPE_DOMAIN (t1); |
1173 | tree d2 = TYPE_DOMAIN (t2); |
1174 | bool d1_variable, d2_variable; |
1175 | bool d1_zero, d2_zero; |
1176 | val = 1; |
1177 | |
1178 | /* Target types must match incl. qualifiers. */ |
1179 | if (TREE_TYPE (t1) != TREE_TYPE (t2) |
1180 | && 0 == (val = comptypes_internal (TREE_TYPE (t1), TREE_TYPE (t2), |
1181 | enum_and_int_p, |
1182 | different_types_p))) |
1183 | return 0; |
1184 | |
1185 | if (different_types_p != NULL |
1186 | && (d1 == NULL_TREE) != (d2 == NULL_TREE)) |
1187 | *different_types_p = true; |
1188 | /* Sizes must match unless one is missing or variable. */ |
1189 | if (d1 == NULL_TREE || d2 == NULL_TREE || d1 == d2) |
1190 | break; |
1191 | |
1192 | d1_zero = !TYPE_MAX_VALUE (d1); |
1193 | d2_zero = !TYPE_MAX_VALUE (d2); |
1194 | |
1195 | d1_variable = (!d1_zero |
1196 | && (TREE_CODE (TYPE_MIN_VALUE (d1)) != INTEGER_CST |
1197 | || TREE_CODE (TYPE_MAX_VALUE (d1)) != INTEGER_CST)); |
1198 | d2_variable = (!d2_zero |
1199 | && (TREE_CODE (TYPE_MIN_VALUE (d2)) != INTEGER_CST |
1200 | || TREE_CODE (TYPE_MAX_VALUE (d2)) != INTEGER_CST)); |
1201 | d1_variable = d1_variable || (d1_zero && c_vla_type_p (t1)); |
1202 | d2_variable = d2_variable || (d2_zero && c_vla_type_p (t2)); |
1203 | |
1204 | if (different_types_p != NULL |
1205 | && d1_variable != d2_variable) |
1206 | *different_types_p = true; |
1207 | if (d1_variable || d2_variable) |
1208 | break; |
1209 | if (d1_zero && d2_zero) |
1210 | break; |
1211 | if (d1_zero || d2_zero |
1212 | || !tree_int_cst_equal (TYPE_MIN_VALUE (d1), TYPE_MIN_VALUE (d2)) |
1213 | || !tree_int_cst_equal (TYPE_MAX_VALUE (d1), TYPE_MAX_VALUE (d2))) |
1214 | val = 0; |
1215 | |
1216 | break; |
1217 | } |
1218 | |
1219 | case ENUMERAL_TYPE: |
1220 | case RECORD_TYPE: |
1221 | case UNION_TYPE: |
1222 | if (val != 1 && !same_translation_unit_p (t1, t2)) |
1223 | { |
1224 | tree a1 = TYPE_ATTRIBUTES (t1); |
1225 | tree a2 = TYPE_ATTRIBUTES (t2); |
1226 | |
1227 | if (! attribute_list_contained (a1, a2) |
1228 | && ! attribute_list_contained (a2, a1)) |
1229 | break; |
1230 | |
1231 | if (attrval != 2) |
1232 | return tagged_types_tu_compatible_p (t1, t2, enum_and_int_p, |
1233 | different_types_p); |
1234 | val = tagged_types_tu_compatible_p (t1, t2, enum_and_int_p, |
1235 | different_types_p); |
1236 | } |
1237 | break; |
1238 | |
1239 | case VECTOR_TYPE: |
1240 | val = (TYPE_VECTOR_SUBPARTS (t1) == TYPE_VECTOR_SUBPARTS (t2) |
1241 | && comptypes_internal (TREE_TYPE (t1), TREE_TYPE (t2), |
1242 | enum_and_int_p, different_types_p)); |
1243 | break; |
1244 | |
1245 | default: |
1246 | break; |
1247 | } |
1248 | return attrval == 2 && val == 1 ? 2 : val; |
1249 | } |
1250 | |
1251 | /* Return 1 if TTL and TTR are pointers to types that are equivalent, ignoring |
1252 | their qualifiers, except for named address spaces. If the pointers point to |
1253 | different named addresses, then we must determine if one address space is a |
1254 | subset of the other. */ |
1255 | |
1256 | static int |
1257 | comp_target_types (location_t location, tree ttl, tree ttr) |
1258 | { |
1259 | int val; |
1260 | int val_ped; |
1261 | tree mvl = TREE_TYPE (ttl); |
1262 | tree mvr = TREE_TYPE (ttr); |
1263 | addr_space_t asl = TYPE_ADDR_SPACE (mvl); |
1264 | addr_space_t asr = TYPE_ADDR_SPACE (mvr); |
1265 | addr_space_t as_common; |
1266 | bool enum_and_int_p; |
1267 | |
1268 | /* Fail if pointers point to incompatible address spaces. */ |
1269 | if (!addr_space_superset (asl, asr, &as_common)) |
1270 | return 0; |
1271 | |
1272 | /* For pedantic record result of comptypes on arrays before losing |
1273 | qualifiers on the element type below. */ |
1274 | val_ped = 1; |
1275 | |
1276 | if (TREE_CODE (mvl) == ARRAY_TYPE |
1277 | && TREE_CODE (mvr) == ARRAY_TYPE) |
1278 | val_ped = comptypes (mvl, mvr); |
1279 | |
1280 | /* Qualifiers on element types of array types that are |
1281 | pointer targets are lost by taking their TYPE_MAIN_VARIANT. */ |
1282 | |
1283 | mvl = (TYPE_ATOMIC (strip_array_types (mvl)) |
1284 | ? c_build_qualified_type (TYPE_MAIN_VARIANT (mvl), TYPE_QUAL_ATOMIC) |
1285 | : TYPE_MAIN_VARIANT (mvl)); |
1286 | |
1287 | mvr = (TYPE_ATOMIC (strip_array_types (mvr)) |
1288 | ? c_build_qualified_type (TYPE_MAIN_VARIANT (mvr), TYPE_QUAL_ATOMIC) |
1289 | : TYPE_MAIN_VARIANT (mvr)); |
1290 | |
1291 | enum_and_int_p = false; |
1292 | val = comptypes_check_enum_int (mvl, mvr, &enum_and_int_p); |
1293 | |
1294 | if (val == 1 && val_ped != 1) |
1295 | pedwarn (location, OPT_Wpedantic, "pointers to arrays with different qualifiers " |
1296 | "are incompatible in ISO C" ); |
1297 | |
1298 | if (val == 2) |
1299 | pedwarn (location, OPT_Wpedantic, "types are not quite compatible" ); |
1300 | |
1301 | if (val == 1 && enum_and_int_p && warn_cxx_compat) |
1302 | warning_at (location, OPT_Wc___compat, |
1303 | "pointer target types incompatible in C++" ); |
1304 | |
1305 | return val; |
1306 | } |
1307 | |
1308 | /* Subroutines of `comptypes'. */ |
1309 | |
1310 | /* Determine whether two trees derive from the same translation unit. |
1311 | If the CONTEXT chain ends in a null, that tree's context is still |
1312 | being parsed, so if two trees have context chains ending in null, |
1313 | they're in the same translation unit. */ |
1314 | |
1315 | bool |
1316 | same_translation_unit_p (const_tree t1, const_tree t2) |
1317 | { |
1318 | while (t1 && TREE_CODE (t1) != TRANSLATION_UNIT_DECL) |
1319 | switch (TREE_CODE_CLASS (TREE_CODE (t1))) |
1320 | { |
1321 | case tcc_declaration: |
1322 | t1 = DECL_CONTEXT (t1); break; |
1323 | case tcc_type: |
1324 | t1 = TYPE_CONTEXT (t1); break; |
1325 | case tcc_exceptional: |
1326 | t1 = BLOCK_SUPERCONTEXT (t1); break; /* assume block */ |
1327 | default: gcc_unreachable (); |
1328 | } |
1329 | |
1330 | while (t2 && TREE_CODE (t2) != TRANSLATION_UNIT_DECL) |
1331 | switch (TREE_CODE_CLASS (TREE_CODE (t2))) |
1332 | { |
1333 | case tcc_declaration: |
1334 | t2 = DECL_CONTEXT (t2); break; |
1335 | case tcc_type: |
1336 | t2 = TYPE_CONTEXT (t2); break; |
1337 | case tcc_exceptional: |
1338 | t2 = BLOCK_SUPERCONTEXT (t2); break; /* assume block */ |
1339 | default: gcc_unreachable (); |
1340 | } |
1341 | |
1342 | return t1 == t2; |
1343 | } |
1344 | |
1345 | /* Allocate the seen two types, assuming that they are compatible. */ |
1346 | |
1347 | static struct tagged_tu_seen_cache * |
1348 | alloc_tagged_tu_seen_cache (const_tree t1, const_tree t2) |
1349 | { |
1350 | struct tagged_tu_seen_cache *tu = XNEW (struct tagged_tu_seen_cache); |
1351 | tu->next = tagged_tu_seen_base; |
1352 | tu->t1 = t1; |
1353 | tu->t2 = t2; |
1354 | |
1355 | tagged_tu_seen_base = tu; |
1356 | |
1357 | /* The C standard says that two structures in different translation |
1358 | units are compatible with each other only if the types of their |
1359 | fields are compatible (among other things). We assume that they |
1360 | are compatible until proven otherwise when building the cache. |
1361 | An example where this can occur is: |
1362 | struct a |
1363 | { |
1364 | struct a *next; |
1365 | }; |
1366 | If we are comparing this against a similar struct in another TU, |
1367 | and did not assume they were compatible, we end up with an infinite |
1368 | loop. */ |
1369 | tu->val = 1; |
1370 | return tu; |
1371 | } |
1372 | |
1373 | /* Free the seen types until we get to TU_TIL. */ |
1374 | |
1375 | static void |
1376 | free_all_tagged_tu_seen_up_to (const struct tagged_tu_seen_cache *tu_til) |
1377 | { |
1378 | const struct tagged_tu_seen_cache *tu = tagged_tu_seen_base; |
1379 | while (tu != tu_til) |
1380 | { |
1381 | const struct tagged_tu_seen_cache *const tu1 |
1382 | = (const struct tagged_tu_seen_cache *) tu; |
1383 | tu = tu1->next; |
1384 | free (CONST_CAST (struct tagged_tu_seen_cache *, tu1)); |
1385 | } |
1386 | tagged_tu_seen_base = tu_til; |
1387 | } |
1388 | |
1389 | /* Return 1 if two 'struct', 'union', or 'enum' types T1 and T2 are |
1390 | compatible. If the two types are not the same (which has been |
1391 | checked earlier), this can only happen when multiple translation |
1392 | units are being compiled. See C99 6.2.7 paragraph 1 for the exact |
1393 | rules. ENUM_AND_INT_P and DIFFERENT_TYPES_P are as in |
1394 | comptypes_internal. */ |
1395 | |
1396 | static int |
1397 | tagged_types_tu_compatible_p (const_tree t1, const_tree t2, |
1398 | bool *enum_and_int_p, bool *different_types_p) |
1399 | { |
1400 | tree s1, s2; |
1401 | bool needs_warning = false; |
1402 | |
1403 | /* We have to verify that the tags of the types are the same. This |
1404 | is harder than it looks because this may be a typedef, so we have |
1405 | to go look at the original type. It may even be a typedef of a |
1406 | typedef... |
1407 | In the case of compiler-created builtin structs the TYPE_DECL |
1408 | may be a dummy, with no DECL_ORIGINAL_TYPE. Don't fault. */ |
1409 | while (TYPE_NAME (t1) |
1410 | && TREE_CODE (TYPE_NAME (t1)) == TYPE_DECL |
1411 | && DECL_ORIGINAL_TYPE (TYPE_NAME (t1))) |
1412 | t1 = DECL_ORIGINAL_TYPE (TYPE_NAME (t1)); |
1413 | |
1414 | while (TYPE_NAME (t2) |
1415 | && TREE_CODE (TYPE_NAME (t2)) == TYPE_DECL |
1416 | && DECL_ORIGINAL_TYPE (TYPE_NAME (t2))) |
1417 | t2 = DECL_ORIGINAL_TYPE (TYPE_NAME (t2)); |
1418 | |
1419 | /* C90 didn't have the requirement that the two tags be the same. */ |
1420 | if (flag_isoc99 && TYPE_NAME (t1) != TYPE_NAME (t2)) |
1421 | return 0; |
1422 | |
1423 | /* C90 didn't say what happened if one or both of the types were |
1424 | incomplete; we choose to follow C99 rules here, which is that they |
1425 | are compatible. */ |
1426 | if (TYPE_SIZE (t1) == NULL |
1427 | || TYPE_SIZE (t2) == NULL) |
1428 | return 1; |
1429 | |
1430 | { |
1431 | const struct tagged_tu_seen_cache * tts_i; |
1432 | for (tts_i = tagged_tu_seen_base; tts_i != NULL; tts_i = tts_i->next) |
1433 | if (tts_i->t1 == t1 && tts_i->t2 == t2) |
1434 | return tts_i->val; |
1435 | } |
1436 | |
1437 | switch (TREE_CODE (t1)) |
1438 | { |
1439 | case ENUMERAL_TYPE: |
1440 | { |
1441 | struct tagged_tu_seen_cache *tu = alloc_tagged_tu_seen_cache (t1, t2); |
1442 | /* Speed up the case where the type values are in the same order. */ |
1443 | tree tv1 = TYPE_VALUES (t1); |
1444 | tree tv2 = TYPE_VALUES (t2); |
1445 | |
1446 | if (tv1 == tv2) |
1447 | { |
1448 | return 1; |
1449 | } |
1450 | |
1451 | for (;tv1 && tv2; tv1 = TREE_CHAIN (tv1), tv2 = TREE_CHAIN (tv2)) |
1452 | { |
1453 | if (TREE_PURPOSE (tv1) != TREE_PURPOSE (tv2)) |
1454 | break; |
1455 | if (simple_cst_equal (TREE_VALUE (tv1), TREE_VALUE (tv2)) != 1) |
1456 | { |
1457 | tu->val = 0; |
1458 | return 0; |
1459 | } |
1460 | } |
1461 | |
1462 | if (tv1 == NULL_TREE && tv2 == NULL_TREE) |
1463 | { |
1464 | return 1; |
1465 | } |
1466 | if (tv1 == NULL_TREE || tv2 == NULL_TREE) |
1467 | { |
1468 | tu->val = 0; |
1469 | return 0; |
1470 | } |
1471 | |
1472 | if (list_length (TYPE_VALUES (t1)) != list_length (TYPE_VALUES (t2))) |
1473 | { |
1474 | tu->val = 0; |
1475 | return 0; |
1476 | } |
1477 | |
1478 | for (s1 = TYPE_VALUES (t1); s1; s1 = TREE_CHAIN (s1)) |
1479 | { |
1480 | s2 = purpose_member (TREE_PURPOSE (s1), TYPE_VALUES (t2)); |
1481 | if (s2 == NULL |
1482 | || simple_cst_equal (TREE_VALUE (s1), TREE_VALUE (s2)) != 1) |
1483 | { |
1484 | tu->val = 0; |
1485 | return 0; |
1486 | } |
1487 | } |
1488 | return 1; |
1489 | } |
1490 | |
1491 | case UNION_TYPE: |
1492 | { |
1493 | struct tagged_tu_seen_cache *tu = alloc_tagged_tu_seen_cache (t1, t2); |
1494 | if (list_length (TYPE_FIELDS (t1)) != list_length (TYPE_FIELDS (t2))) |
1495 | { |
1496 | tu->val = 0; |
1497 | return 0; |
1498 | } |
1499 | |
1500 | /* Speed up the common case where the fields are in the same order. */ |
1501 | for (s1 = TYPE_FIELDS (t1), s2 = TYPE_FIELDS (t2); s1 && s2; |
1502 | s1 = DECL_CHAIN (s1), s2 = DECL_CHAIN (s2)) |
1503 | { |
1504 | int result; |
1505 | |
1506 | if (DECL_NAME (s1) != DECL_NAME (s2)) |
1507 | break; |
1508 | result = comptypes_internal (TREE_TYPE (s1), TREE_TYPE (s2), |
1509 | enum_and_int_p, different_types_p); |
1510 | |
1511 | if (result != 1 && !DECL_NAME (s1)) |
1512 | break; |
1513 | if (result == 0) |
1514 | { |
1515 | tu->val = 0; |
1516 | return 0; |
1517 | } |
1518 | if (result == 2) |
1519 | needs_warning = true; |
1520 | |
1521 | if (TREE_CODE (s1) == FIELD_DECL |
1522 | && simple_cst_equal (DECL_FIELD_BIT_OFFSET (s1), |
1523 | DECL_FIELD_BIT_OFFSET (s2)) != 1) |
1524 | { |
1525 | tu->val = 0; |
1526 | return 0; |
1527 | } |
1528 | } |
1529 | if (!s1 && !s2) |
1530 | { |
1531 | tu->val = needs_warning ? 2 : 1; |
1532 | return tu->val; |
1533 | } |
1534 | |
1535 | for (s1 = TYPE_FIELDS (t1); s1; s1 = DECL_CHAIN (s1)) |
1536 | { |
1537 | bool ok = false; |
1538 | |
1539 | for (s2 = TYPE_FIELDS (t2); s2; s2 = DECL_CHAIN (s2)) |
1540 | if (DECL_NAME (s1) == DECL_NAME (s2)) |
1541 | { |
1542 | int result; |
1543 | |
1544 | result = comptypes_internal (TREE_TYPE (s1), TREE_TYPE (s2), |
1545 | enum_and_int_p, |
1546 | different_types_p); |
1547 | |
1548 | if (result != 1 && !DECL_NAME (s1)) |
1549 | continue; |
1550 | if (result == 0) |
1551 | { |
1552 | tu->val = 0; |
1553 | return 0; |
1554 | } |
1555 | if (result == 2) |
1556 | needs_warning = true; |
1557 | |
1558 | if (TREE_CODE (s1) == FIELD_DECL |
1559 | && simple_cst_equal (DECL_FIELD_BIT_OFFSET (s1), |
1560 | DECL_FIELD_BIT_OFFSET (s2)) != 1) |
1561 | break; |
1562 | |
1563 | ok = true; |
1564 | break; |
1565 | } |
1566 | if (!ok) |
1567 | { |
1568 | tu->val = 0; |
1569 | return 0; |
1570 | } |
1571 | } |
1572 | tu->val = needs_warning ? 2 : 10; |
1573 | return tu->val; |
1574 | } |
1575 | |
1576 | case RECORD_TYPE: |
1577 | { |
1578 | struct tagged_tu_seen_cache *tu = alloc_tagged_tu_seen_cache (t1, t2); |
1579 | |
1580 | for (s1 = TYPE_FIELDS (t1), s2 = TYPE_FIELDS (t2); |
1581 | s1 && s2; |
1582 | s1 = DECL_CHAIN (s1), s2 = DECL_CHAIN (s2)) |
1583 | { |
1584 | int result; |
1585 | if (TREE_CODE (s1) != TREE_CODE (s2) |
1586 | || DECL_NAME (s1) != DECL_NAME (s2)) |
1587 | break; |
1588 | result = comptypes_internal (TREE_TYPE (s1), TREE_TYPE (s2), |
1589 | enum_and_int_p, different_types_p); |
1590 | if (result == 0) |
1591 | break; |
1592 | if (result == 2) |
1593 | needs_warning = true; |
1594 | |
1595 | if (TREE_CODE (s1) == FIELD_DECL |
1596 | && simple_cst_equal (DECL_FIELD_BIT_OFFSET (s1), |
1597 | DECL_FIELD_BIT_OFFSET (s2)) != 1) |
1598 | break; |
1599 | } |
1600 | if (s1 && s2) |
1601 | tu->val = 0; |
1602 | else |
1603 | tu->val = needs_warning ? 2 : 1; |
1604 | return tu->val; |
1605 | } |
1606 | |
1607 | default: |
1608 | gcc_unreachable (); |
1609 | } |
1610 | } |
1611 | |
1612 | /* Return 1 if two function types F1 and F2 are compatible. |
1613 | If either type specifies no argument types, |
1614 | the other must specify a fixed number of self-promoting arg types. |
1615 | Otherwise, if one type specifies only the number of arguments, |
1616 | the other must specify that number of self-promoting arg types. |
1617 | Otherwise, the argument types must match. |
1618 | ENUM_AND_INT_P and DIFFERENT_TYPES_P are as in comptypes_internal. */ |
1619 | |
1620 | static int |
1621 | function_types_compatible_p (const_tree f1, const_tree f2, |
1622 | bool *enum_and_int_p, bool *different_types_p) |
1623 | { |
1624 | tree args1, args2; |
1625 | /* 1 if no need for warning yet, 2 if warning cause has been seen. */ |
1626 | int val = 1; |
1627 | int val1; |
1628 | tree ret1, ret2; |
1629 | |
1630 | ret1 = TREE_TYPE (f1); |
1631 | ret2 = TREE_TYPE (f2); |
1632 | |
1633 | /* 'volatile' qualifiers on a function's return type used to mean |
1634 | the function is noreturn. */ |
1635 | if (TYPE_VOLATILE (ret1) != TYPE_VOLATILE (ret2)) |
1636 | pedwarn (input_location, 0, "function return types not compatible due to %<volatile%>" ); |
1637 | if (TYPE_VOLATILE (ret1)) |
1638 | ret1 = build_qualified_type (TYPE_MAIN_VARIANT (ret1), |
1639 | TYPE_QUALS (ret1) & ~TYPE_QUAL_VOLATILE); |
1640 | if (TYPE_VOLATILE (ret2)) |
1641 | ret2 = build_qualified_type (TYPE_MAIN_VARIANT (ret2), |
1642 | TYPE_QUALS (ret2) & ~TYPE_QUAL_VOLATILE); |
1643 | val = comptypes_internal (ret1, ret2, enum_and_int_p, different_types_p); |
1644 | if (val == 0) |
1645 | return 0; |
1646 | |
1647 | args1 = TYPE_ARG_TYPES (f1); |
1648 | args2 = TYPE_ARG_TYPES (f2); |
1649 | |
1650 | if (different_types_p != NULL |
1651 | && (args1 == NULL_TREE) != (args2 == NULL_TREE)) |
1652 | *different_types_p = true; |
1653 | |
1654 | /* An unspecified parmlist matches any specified parmlist |
1655 | whose argument types don't need default promotions. */ |
1656 | |
1657 | if (args1 == NULL_TREE) |
1658 | { |
1659 | if (!self_promoting_args_p (args2)) |
1660 | return 0; |
1661 | /* If one of these types comes from a non-prototype fn definition, |
1662 | compare that with the other type's arglist. |
1663 | If they don't match, ask for a warning (but no error). */ |
1664 | if (TYPE_ACTUAL_ARG_TYPES (f1) |
1665 | && 1 != type_lists_compatible_p (args2, TYPE_ACTUAL_ARG_TYPES (f1), |
1666 | enum_and_int_p, different_types_p)) |
1667 | val = 2; |
1668 | return val; |
1669 | } |
1670 | if (args2 == NULL_TREE) |
1671 | { |
1672 | if (!self_promoting_args_p (args1)) |
1673 | return 0; |
1674 | if (TYPE_ACTUAL_ARG_TYPES (f2) |
1675 | && 1 != type_lists_compatible_p (args1, TYPE_ACTUAL_ARG_TYPES (f2), |
1676 | enum_and_int_p, different_types_p)) |
1677 | val = 2; |
1678 | return val; |
1679 | } |
1680 | |
1681 | /* Both types have argument lists: compare them and propagate results. */ |
1682 | val1 = type_lists_compatible_p (args1, args2, enum_and_int_p, |
1683 | different_types_p); |
1684 | return val1 != 1 ? val1 : val; |
1685 | } |
1686 | |
1687 | /* Check two lists of types for compatibility, returning 0 for |
1688 | incompatible, 1 for compatible, or 2 for compatible with |
1689 | warning. ENUM_AND_INT_P and DIFFERENT_TYPES_P are as in |
1690 | comptypes_internal. */ |
1691 | |
1692 | static int |
1693 | type_lists_compatible_p (const_tree args1, const_tree args2, |
1694 | bool *enum_and_int_p, bool *different_types_p) |
1695 | { |
1696 | /* 1 if no need for warning yet, 2 if warning cause has been seen. */ |
1697 | int val = 1; |
1698 | int newval = 0; |
1699 | |
1700 | while (1) |
1701 | { |
1702 | tree a1, mv1, a2, mv2; |
1703 | if (args1 == NULL_TREE && args2 == NULL_TREE) |
1704 | return val; |
1705 | /* If one list is shorter than the other, |
1706 | they fail to match. */ |
1707 | if (args1 == NULL_TREE || args2 == NULL_TREE) |
1708 | return 0; |
1709 | mv1 = a1 = TREE_VALUE (args1); |
1710 | mv2 = a2 = TREE_VALUE (args2); |
1711 | if (mv1 && mv1 != error_mark_node && TREE_CODE (mv1) != ARRAY_TYPE) |
1712 | mv1 = (TYPE_ATOMIC (mv1) |
1713 | ? c_build_qualified_type (TYPE_MAIN_VARIANT (mv1), |
1714 | TYPE_QUAL_ATOMIC) |
1715 | : TYPE_MAIN_VARIANT (mv1)); |
1716 | if (mv2 && mv2 != error_mark_node && TREE_CODE (mv2) != ARRAY_TYPE) |
1717 | mv2 = (TYPE_ATOMIC (mv2) |
1718 | ? c_build_qualified_type (TYPE_MAIN_VARIANT (mv2), |
1719 | TYPE_QUAL_ATOMIC) |
1720 | : TYPE_MAIN_VARIANT (mv2)); |
1721 | /* A null pointer instead of a type |
1722 | means there is supposed to be an argument |
1723 | but nothing is specified about what type it has. |
1724 | So match anything that self-promotes. */ |
1725 | if (different_types_p != NULL |
1726 | && (a1 == NULL_TREE) != (a2 == NULL_TREE)) |
1727 | *different_types_p = true; |
1728 | if (a1 == NULL_TREE) |
1729 | { |
1730 | if (c_type_promotes_to (a2) != a2) |
1731 | return 0; |
1732 | } |
1733 | else if (a2 == NULL_TREE) |
1734 | { |
1735 | if (c_type_promotes_to (a1) != a1) |
1736 | return 0; |
1737 | } |
1738 | /* If one of the lists has an error marker, ignore this arg. */ |
1739 | else if (TREE_CODE (a1) == ERROR_MARK |
1740 | || TREE_CODE (a2) == ERROR_MARK) |
1741 | ; |
1742 | else if (!(newval = comptypes_internal (mv1, mv2, enum_and_int_p, |
1743 | different_types_p))) |
1744 | { |
1745 | if (different_types_p != NULL) |
1746 | *different_types_p = true; |
1747 | /* Allow wait (union {union wait *u; int *i} *) |
1748 | and wait (union wait *) to be compatible. */ |
1749 | if (TREE_CODE (a1) == UNION_TYPE |
1750 | && (TYPE_NAME (a1) == NULL_TREE |
1751 | || TYPE_TRANSPARENT_AGGR (a1)) |
1752 | && TREE_CODE (TYPE_SIZE (a1)) == INTEGER_CST |
1753 | && tree_int_cst_equal (TYPE_SIZE (a1), |
1754 | TYPE_SIZE (a2))) |
1755 | { |
1756 | tree memb; |
1757 | for (memb = TYPE_FIELDS (a1); |
1758 | memb; memb = DECL_CHAIN (memb)) |
1759 | { |
1760 | tree mv3 = TREE_TYPE (memb); |
1761 | if (mv3 && mv3 != error_mark_node |
1762 | && TREE_CODE (mv3) != ARRAY_TYPE) |
1763 | mv3 = (TYPE_ATOMIC (mv3) |
1764 | ? c_build_qualified_type (TYPE_MAIN_VARIANT (mv3), |
1765 | TYPE_QUAL_ATOMIC) |
1766 | : TYPE_MAIN_VARIANT (mv3)); |
1767 | if (comptypes_internal (mv3, mv2, enum_and_int_p, |
1768 | different_types_p)) |
1769 | break; |
1770 | } |
1771 | if (memb == NULL_TREE) |
1772 | return 0; |
1773 | } |
1774 | else if (TREE_CODE (a2) == UNION_TYPE |
1775 | && (TYPE_NAME (a2) == NULL_TREE |
1776 | || TYPE_TRANSPARENT_AGGR (a2)) |
1777 | && TREE_CODE (TYPE_SIZE (a2)) == INTEGER_CST |
1778 | && tree_int_cst_equal (TYPE_SIZE (a2), |
1779 | TYPE_SIZE (a1))) |
1780 | { |
1781 | tree memb; |
1782 | for (memb = TYPE_FIELDS (a2); |
1783 | memb; memb = DECL_CHAIN (memb)) |
1784 | { |
1785 | tree mv3 = TREE_TYPE (memb); |
1786 | if (mv3 && mv3 != error_mark_node |
1787 | && TREE_CODE (mv3) != ARRAY_TYPE) |
1788 | mv3 = (TYPE_ATOMIC (mv3) |
1789 | ? c_build_qualified_type (TYPE_MAIN_VARIANT (mv3), |
1790 | TYPE_QUAL_ATOMIC) |
1791 | : TYPE_MAIN_VARIANT (mv3)); |
1792 | if (comptypes_internal (mv3, mv1, enum_and_int_p, |
1793 | different_types_p)) |
1794 | break; |
1795 | } |
1796 | if (memb == NULL_TREE) |
1797 | return 0; |
1798 | } |
1799 | else |
1800 | return 0; |
1801 | } |
1802 | |
1803 | /* comptypes said ok, but record if it said to warn. */ |
1804 | if (newval > val) |
1805 | val = newval; |
1806 | |
1807 | args1 = TREE_CHAIN (args1); |
1808 | args2 = TREE_CHAIN (args2); |
1809 | } |
1810 | } |
1811 | |
1812 | /* Compute the size to increment a pointer by. When a function type or void |
1813 | type or incomplete type is passed, size_one_node is returned. |
1814 | This function does not emit any diagnostics; the caller is responsible |
1815 | for that. */ |
1816 | |
1817 | static tree |
1818 | c_size_in_bytes (const_tree type) |
1819 | { |
1820 | enum tree_code code = TREE_CODE (type); |
1821 | |
1822 | if (code == FUNCTION_TYPE || code == VOID_TYPE || code == ERROR_MARK |
1823 | || !COMPLETE_TYPE_P (type)) |
1824 | return size_one_node; |
1825 | |
1826 | /* Convert in case a char is more than one unit. */ |
1827 | return size_binop_loc (input_location, CEIL_DIV_EXPR, TYPE_SIZE_UNIT (type), |
1828 | size_int (TYPE_PRECISION (char_type_node) |
1829 | / BITS_PER_UNIT)); |
1830 | } |
1831 | |
1832 | /* Return either DECL or its known constant value (if it has one). */ |
1833 | |
1834 | tree |
1835 | decl_constant_value_1 (tree decl) |
1836 | { |
1837 | if (/* Note that DECL_INITIAL isn't valid for a PARM_DECL. */ |
1838 | TREE_CODE (decl) != PARM_DECL |
1839 | && !TREE_THIS_VOLATILE (decl) |
1840 | && TREE_READONLY (decl) |
1841 | && DECL_INITIAL (decl) != NULL_TREE |
1842 | && TREE_CODE (DECL_INITIAL (decl)) != ERROR_MARK |
1843 | /* This is invalid if initial value is not constant. |
1844 | If it has either a function call, a memory reference, |
1845 | or a variable, then re-evaluating it could give different results. */ |
1846 | && TREE_CONSTANT (DECL_INITIAL (decl)) |
1847 | /* Check for cases where this is sub-optimal, even though valid. */ |
1848 | && TREE_CODE (DECL_INITIAL (decl)) != CONSTRUCTOR) |
1849 | return DECL_INITIAL (decl); |
1850 | return decl; |
1851 | } |
1852 | |
1853 | /* Return either DECL or its known constant value (if it has one). |
1854 | Like the above, but always return decl outside of functions. */ |
1855 | |
1856 | tree |
1857 | decl_constant_value (tree decl) |
1858 | { |
1859 | /* Don't change a variable array bound or initial value to a constant |
1860 | in a place where a variable is invalid. */ |
1861 | return current_function_decl ? decl_constant_value_1 (decl) : decl; |
1862 | } |
1863 | |
1864 | /* Convert the array expression EXP to a pointer. */ |
1865 | static tree |
1866 | array_to_pointer_conversion (location_t loc, tree exp) |
1867 | { |
1868 | tree orig_exp = exp; |
1869 | tree type = TREE_TYPE (exp); |
1870 | tree adr; |
1871 | tree restype = TREE_TYPE (type); |
1872 | tree ptrtype; |
1873 | |
1874 | gcc_assert (TREE_CODE (type) == ARRAY_TYPE); |
1875 | |
1876 | STRIP_TYPE_NOPS (exp); |
1877 | |
1878 | if (TREE_NO_WARNING (orig_exp)) |
1879 | TREE_NO_WARNING (exp) = 1; |
1880 | |
1881 | ptrtype = build_pointer_type (restype); |
1882 | |
1883 | if (INDIRECT_REF_P (exp)) |
1884 | return convert (ptrtype, TREE_OPERAND (exp, 0)); |
1885 | |
1886 | /* In C++ array compound literals are temporary objects unless they are |
1887 | const or appear in namespace scope, so they are destroyed too soon |
1888 | to use them for much of anything (c++/53220). */ |
1889 | if (warn_cxx_compat && TREE_CODE (exp) == COMPOUND_LITERAL_EXPR) |
1890 | { |
1891 | tree decl = TREE_OPERAND (TREE_OPERAND (exp, 0), 0); |
1892 | if (!TREE_READONLY (decl) && !TREE_STATIC (decl)) |
1893 | warning_at (DECL_SOURCE_LOCATION (decl), OPT_Wc___compat, |
1894 | "converting an array compound literal to a pointer " |
1895 | "is ill-formed in C++" ); |
1896 | } |
1897 | |
1898 | adr = build_unary_op (loc, ADDR_EXPR, exp, true); |
1899 | return convert (ptrtype, adr); |
1900 | } |
1901 | |
1902 | /* Convert the function expression EXP to a pointer. */ |
1903 | static tree |
1904 | function_to_pointer_conversion (location_t loc, tree exp) |
1905 | { |
1906 | tree orig_exp = exp; |
1907 | |
1908 | gcc_assert (TREE_CODE (TREE_TYPE (exp)) == FUNCTION_TYPE); |
1909 | |
1910 | STRIP_TYPE_NOPS (exp); |
1911 | |
1912 | if (TREE_NO_WARNING (orig_exp)) |
1913 | TREE_NO_WARNING (exp) = 1; |
1914 | |
1915 | return build_unary_op (loc, ADDR_EXPR, exp, false); |
1916 | } |
1917 | |
1918 | /* Mark EXP as read, not just set, for set but not used -Wunused |
1919 | warning purposes. */ |
1920 | |
1921 | void |
1922 | mark_exp_read (tree exp) |
1923 | { |
1924 | switch (TREE_CODE (exp)) |
1925 | { |
1926 | case VAR_DECL: |
1927 | case PARM_DECL: |
1928 | DECL_READ_P (exp) = 1; |
1929 | break; |
1930 | case ARRAY_REF: |
1931 | case COMPONENT_REF: |
1932 | case MODIFY_EXPR: |
1933 | case REALPART_EXPR: |
1934 | case IMAGPART_EXPR: |
1935 | CASE_CONVERT: |
1936 | case ADDR_EXPR: |
1937 | case VIEW_CONVERT_EXPR: |
1938 | mark_exp_read (TREE_OPERAND (exp, 0)); |
1939 | break; |
1940 | case COMPOUND_EXPR: |
1941 | case C_MAYBE_CONST_EXPR: |
1942 | mark_exp_read (TREE_OPERAND (exp, 1)); |
1943 | break; |
1944 | default: |
1945 | break; |
1946 | } |
1947 | } |
1948 | |
1949 | /* Perform the default conversion of arrays and functions to pointers. |
1950 | Return the result of converting EXP. For any other expression, just |
1951 | return EXP. |
1952 | |
1953 | LOC is the location of the expression. */ |
1954 | |
1955 | struct c_expr |
1956 | default_function_array_conversion (location_t loc, struct c_expr exp) |
1957 | { |
1958 | tree orig_exp = exp.value; |
1959 | tree type = TREE_TYPE (exp.value); |
1960 | enum tree_code code = TREE_CODE (type); |
1961 | |
1962 | switch (code) |
1963 | { |
1964 | case ARRAY_TYPE: |
1965 | { |
1966 | bool not_lvalue = false; |
1967 | bool lvalue_array_p; |
1968 | |
1969 | while ((TREE_CODE (exp.value) == NON_LVALUE_EXPR |
1970 | || CONVERT_EXPR_P (exp.value)) |
1971 | && TREE_TYPE (TREE_OPERAND (exp.value, 0)) == type) |
1972 | { |
1973 | if (TREE_CODE (exp.value) == NON_LVALUE_EXPR) |
1974 | not_lvalue = true; |
1975 | exp.value = TREE_OPERAND (exp.value, 0); |
1976 | } |
1977 | |
1978 | if (TREE_NO_WARNING (orig_exp)) |
1979 | TREE_NO_WARNING (exp.value) = 1; |
1980 | |
1981 | lvalue_array_p = !not_lvalue && lvalue_p (exp.value); |
1982 | if (!flag_isoc99 && !lvalue_array_p) |
1983 | { |
1984 | /* Before C99, non-lvalue arrays do not decay to pointers. |
1985 | Normally, using such an array would be invalid; but it can |
1986 | be used correctly inside sizeof or as a statement expression. |
1987 | Thus, do not give an error here; an error will result later. */ |
1988 | return exp; |
1989 | } |
1990 | |
1991 | exp.value = array_to_pointer_conversion (loc, exp.value); |
1992 | } |
1993 | break; |
1994 | case FUNCTION_TYPE: |
1995 | exp.value = function_to_pointer_conversion (loc, exp.value); |
1996 | break; |
1997 | default: |
1998 | break; |
1999 | } |
2000 | |
2001 | return exp; |
2002 | } |
2003 | |
2004 | struct c_expr |
2005 | default_function_array_read_conversion (location_t loc, struct c_expr exp) |
2006 | { |
2007 | mark_exp_read (exp.value); |
2008 | return default_function_array_conversion (loc, exp); |
2009 | } |
2010 | |
2011 | /* Return whether EXPR should be treated as an atomic lvalue for the |
2012 | purposes of load and store handling. */ |
2013 | |
2014 | static bool |
2015 | really_atomic_lvalue (tree expr) |
2016 | { |
2017 | if (error_operand_p (expr)) |
2018 | return false; |
2019 | if (!TYPE_ATOMIC (TREE_TYPE (expr))) |
2020 | return false; |
2021 | if (!lvalue_p (expr)) |
2022 | return false; |
2023 | |
2024 | /* Ignore _Atomic on register variables, since their addresses can't |
2025 | be taken so (a) atomicity is irrelevant and (b) the normal atomic |
2026 | sequences wouldn't work. Ignore _Atomic on structures containing |
2027 | bit-fields, since accessing elements of atomic structures or |
2028 | unions is undefined behavior (C11 6.5.2.3#5), but it's unclear if |
2029 | it's undefined at translation time or execution time, and the |
2030 | normal atomic sequences again wouldn't work. */ |
2031 | while (handled_component_p (expr)) |
2032 | { |
2033 | if (TREE_CODE (expr) == COMPONENT_REF |
2034 | && DECL_C_BIT_FIELD (TREE_OPERAND (expr, 1))) |
2035 | return false; |
2036 | expr = TREE_OPERAND (expr, 0); |
2037 | } |
2038 | if (DECL_P (expr) && C_DECL_REGISTER (expr)) |
2039 | return false; |
2040 | return true; |
2041 | } |
2042 | |
2043 | /* Convert expression EXP (location LOC) from lvalue to rvalue, |
2044 | including converting functions and arrays to pointers if CONVERT_P. |
2045 | If READ_P, also mark the expression as having been read. */ |
2046 | |
2047 | struct c_expr |
2048 | convert_lvalue_to_rvalue (location_t loc, struct c_expr exp, |
2049 | bool convert_p, bool read_p) |
2050 | { |
2051 | if (read_p) |
2052 | mark_exp_read (exp.value); |
2053 | if (convert_p) |
2054 | exp = default_function_array_conversion (loc, exp); |
2055 | if (really_atomic_lvalue (exp.value)) |
2056 | { |
2057 | vec<tree, va_gc> *params; |
2058 | tree nonatomic_type, tmp, tmp_addr, fndecl, func_call; |
2059 | tree expr_type = TREE_TYPE (exp.value); |
2060 | tree expr_addr = build_unary_op (loc, ADDR_EXPR, exp.value, false); |
2061 | tree seq_cst = build_int_cst (integer_type_node, MEMMODEL_SEQ_CST); |
2062 | |
2063 | gcc_assert (TYPE_ATOMIC (expr_type)); |
2064 | |
2065 | /* Expansion of a generic atomic load may require an addition |
2066 | element, so allocate enough to prevent a resize. */ |
2067 | vec_alloc (params, 4); |
2068 | |
2069 | /* Remove the qualifiers for the rest of the expressions and |
2070 | create the VAL temp variable to hold the RHS. */ |
2071 | nonatomic_type = build_qualified_type (expr_type, TYPE_UNQUALIFIED); |
2072 | tmp = create_tmp_var_raw (nonatomic_type); |
2073 | tmp_addr = build_unary_op (loc, ADDR_EXPR, tmp, false); |
2074 | TREE_ADDRESSABLE (tmp) = 1; |
2075 | TREE_NO_WARNING (tmp) = 1; |
2076 | |
2077 | /* Issue __atomic_load (&expr, &tmp, SEQ_CST); */ |
2078 | fndecl = builtin_decl_explicit (BUILT_IN_ATOMIC_LOAD); |
2079 | params->quick_push (expr_addr); |
2080 | params->quick_push (tmp_addr); |
2081 | params->quick_push (seq_cst); |
2082 | func_call = c_build_function_call_vec (loc, vNULL, fndecl, params, NULL); |
2083 | |
2084 | /* EXPR is always read. */ |
2085 | mark_exp_read (exp.value); |
2086 | |
2087 | /* Return tmp which contains the value loaded. */ |
2088 | exp.value = build4 (TARGET_EXPR, nonatomic_type, tmp, func_call, |
2089 | NULL_TREE, NULL_TREE); |
2090 | } |
2091 | return exp; |
2092 | } |
2093 | |
2094 | /* EXP is an expression of integer type. Apply the integer promotions |
2095 | to it and return the promoted value. */ |
2096 | |
2097 | tree |
2098 | perform_integral_promotions (tree exp) |
2099 | { |
2100 | tree type = TREE_TYPE (exp); |
2101 | enum tree_code code = TREE_CODE (type); |
2102 | |
2103 | gcc_assert (INTEGRAL_TYPE_P (type)); |
2104 | |
2105 | /* Normally convert enums to int, |
2106 | but convert wide enums to something wider. */ |
2107 | if (code == ENUMERAL_TYPE) |
2108 | { |
2109 | type = c_common_type_for_size (MAX (TYPE_PRECISION (type), |
2110 | TYPE_PRECISION (integer_type_node)), |
2111 | ((TYPE_PRECISION (type) |
2112 | >= TYPE_PRECISION (integer_type_node)) |
2113 | && TYPE_UNSIGNED (type))); |
2114 | |
2115 | return convert (type, exp); |
2116 | } |
2117 | |
2118 | /* ??? This should no longer be needed now bit-fields have their |
2119 | proper types. */ |
2120 | if (TREE_CODE (exp) == COMPONENT_REF |
2121 | && DECL_C_BIT_FIELD (TREE_OPERAND (exp, 1)) |
2122 | /* If it's thinner than an int, promote it like a |
2123 | c_promoting_integer_type_p, otherwise leave it alone. */ |
2124 | && 0 > compare_tree_int (DECL_SIZE (TREE_OPERAND (exp, 1)), |
2125 | TYPE_PRECISION (integer_type_node))) |
2126 | return convert (integer_type_node, exp); |
2127 | |
2128 | if (c_promoting_integer_type_p (type)) |
2129 | { |
2130 | /* Preserve unsignedness if not really getting any wider. */ |
2131 | if (TYPE_UNSIGNED (type) |
2132 | && TYPE_PRECISION (type) == TYPE_PRECISION (integer_type_node)) |
2133 | return convert (unsigned_type_node, exp); |
2134 | |
2135 | return convert (integer_type_node, exp); |
2136 | } |
2137 | |
2138 | return exp; |
2139 | } |
2140 | |
2141 | |
2142 | /* Perform default promotions for C data used in expressions. |
2143 | Enumeral types or short or char are converted to int. |
2144 | In addition, manifest constants symbols are replaced by their values. */ |
2145 | |
2146 | tree |
2147 | default_conversion (tree exp) |
2148 | { |
2149 | tree orig_exp; |
2150 | tree type = TREE_TYPE (exp); |
2151 | enum tree_code code = TREE_CODE (type); |
2152 | tree promoted_type; |
2153 | |
2154 | mark_exp_read (exp); |
2155 | |
2156 | /* Functions and arrays have been converted during parsing. */ |
2157 | gcc_assert (code != FUNCTION_TYPE); |
2158 | if (code == ARRAY_TYPE) |
2159 | return exp; |
2160 | |
2161 | /* Constants can be used directly unless they're not loadable. */ |
2162 | if (TREE_CODE (exp) == CONST_DECL) |
2163 | exp = DECL_INITIAL (exp); |
2164 | |
2165 | /* Strip no-op conversions. */ |
2166 | orig_exp = exp; |
2167 | STRIP_TYPE_NOPS (exp); |
2168 | |
2169 | if (TREE_NO_WARNING (orig_exp)) |
2170 | TREE_NO_WARNING (exp) = 1; |
2171 | |
2172 | if (code == VOID_TYPE) |
2173 | { |
2174 | error_at (EXPR_LOC_OR_LOC (exp, input_location), |
2175 | "void value not ignored as it ought to be" ); |
2176 | return error_mark_node; |
2177 | } |
2178 | |
2179 | exp = require_complete_type (EXPR_LOC_OR_LOC (exp, input_location), exp); |
2180 | if (exp == error_mark_node) |
2181 | return error_mark_node; |
2182 | |
2183 | promoted_type = targetm.promoted_type (type); |
2184 | if (promoted_type) |
2185 | return convert (promoted_type, exp); |
2186 | |
2187 | if (INTEGRAL_TYPE_P (type)) |
2188 | return perform_integral_promotions (exp); |
2189 | |
2190 | return exp; |
2191 | } |
2192 | |
2193 | /* Look up COMPONENT in a structure or union TYPE. |
2194 | |
2195 | If the component name is not found, returns NULL_TREE. Otherwise, |
2196 | the return value is a TREE_LIST, with each TREE_VALUE a FIELD_DECL |
2197 | stepping down the chain to the component, which is in the last |
2198 | TREE_VALUE of the list. Normally the list is of length one, but if |
2199 | the component is embedded within (nested) anonymous structures or |
2200 | unions, the list steps down the chain to the component. */ |
2201 | |
2202 | static tree |
2203 | lookup_field (tree type, tree component) |
2204 | { |
2205 | tree field; |
2206 | |
2207 | /* If TYPE_LANG_SPECIFIC is set, then it is a sorted array of pointers |
2208 | to the field elements. Use a binary search on this array to quickly |
2209 | find the element. Otherwise, do a linear search. TYPE_LANG_SPECIFIC |
2210 | will always be set for structures which have many elements. */ |
2211 | |
2212 | if (TYPE_LANG_SPECIFIC (type) && TYPE_LANG_SPECIFIC (type)->s) |
2213 | { |
2214 | int bot, top, half; |
2215 | tree *field_array = &TYPE_LANG_SPECIFIC (type)->s->elts[0]; |
2216 | |
2217 | field = TYPE_FIELDS (type); |
2218 | bot = 0; |
2219 | top = TYPE_LANG_SPECIFIC (type)->s->len; |
2220 | while (top - bot > 1) |
2221 | { |
2222 | half = (top - bot + 1) >> 1; |
2223 | field = field_array[bot+half]; |
2224 | |
2225 | if (DECL_NAME (field) == NULL_TREE) |
2226 | { |
2227 | /* Step through all anon unions in linear fashion. */ |
2228 | while (DECL_NAME (field_array[bot]) == NULL_TREE) |
2229 | { |
2230 | field = field_array[bot++]; |
2231 | if (RECORD_OR_UNION_TYPE_P (TREE_TYPE (field))) |
2232 | { |
2233 | tree anon = lookup_field (TREE_TYPE (field), component); |
2234 | |
2235 | if (anon) |
2236 | return tree_cons (NULL_TREE, field, anon); |
2237 | |
2238 | /* The Plan 9 compiler permits referring |
2239 | directly to an anonymous struct/union field |
2240 | using a typedef name. */ |
2241 | if (flag_plan9_extensions |
2242 | && TYPE_NAME (TREE_TYPE (field)) != NULL_TREE |
2243 | && (TREE_CODE (TYPE_NAME (TREE_TYPE (field))) |
2244 | == TYPE_DECL) |
2245 | && (DECL_NAME (TYPE_NAME (TREE_TYPE (field))) |
2246 | == component)) |
2247 | break; |
2248 | } |
2249 | } |
2250 | |
2251 | /* Entire record is only anon unions. */ |
2252 | if (bot > top) |
2253 | return NULL_TREE; |
2254 | |
2255 | /* Restart the binary search, with new lower bound. */ |
2256 | continue; |
2257 | } |
2258 | |
2259 | if (DECL_NAME (field) == component) |
2260 | break; |
2261 | if (DECL_NAME (field) < component) |
2262 | bot += half; |
2263 | else |
2264 | top = bot + half; |
2265 | } |
2266 | |
2267 | if (DECL_NAME (field_array[bot]) == component) |
2268 | field = field_array[bot]; |
2269 | else if (DECL_NAME (field) != component) |
2270 | return NULL_TREE; |
2271 | } |
2272 | else |
2273 | { |
2274 | for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field)) |
2275 | { |
2276 | if (DECL_NAME (field) == NULL_TREE |
2277 | && RECORD_OR_UNION_TYPE_P (TREE_TYPE (field))) |
2278 | { |
2279 | tree anon = lookup_field (TREE_TYPE (field), component); |
2280 | |
2281 | if (anon) |
2282 | return tree_cons (NULL_TREE, field, anon); |
2283 | |
2284 | /* The Plan 9 compiler permits referring directly to an |
2285 | anonymous struct/union field using a typedef |
2286 | name. */ |
2287 | if (flag_plan9_extensions |
2288 | && TYPE_NAME (TREE_TYPE (field)) != NULL_TREE |
2289 | && TREE_CODE (TYPE_NAME (TREE_TYPE (field))) == TYPE_DECL |
2290 | && (DECL_NAME (TYPE_NAME (TREE_TYPE (field))) |
2291 | == component)) |
2292 | break; |
2293 | } |
2294 | |
2295 | if (DECL_NAME (field) == component) |
2296 | break; |
2297 | } |
2298 | |
2299 | if (field == NULL_TREE) |
2300 | return NULL_TREE; |
2301 | } |
2302 | |
2303 | return tree_cons (NULL_TREE, field, NULL_TREE); |
2304 | } |
2305 | |
2306 | /* Recursively append candidate IDENTIFIER_NODEs to CANDIDATES. */ |
2307 | |
2308 | static void |
2309 | lookup_field_fuzzy_find_candidates (tree type, tree component, |
2310 | vec<tree> *candidates) |
2311 | { |
2312 | tree field; |
2313 | for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field)) |
2314 | { |
2315 | if (DECL_NAME (field) == NULL_TREE |
2316 | && RECORD_OR_UNION_TYPE_P (TREE_TYPE (field))) |
2317 | lookup_field_fuzzy_find_candidates (TREE_TYPE (field), component, |
2318 | candidates); |
2319 | |
2320 | if (DECL_NAME (field)) |
2321 | candidates->safe_push (DECL_NAME (field)); |
2322 | } |
2323 | } |
2324 | |
2325 | /* Like "lookup_field", but find the closest matching IDENTIFIER_NODE, |
2326 | rather than returning a TREE_LIST for an exact match. */ |
2327 | |
2328 | static tree |
2329 | lookup_field_fuzzy (tree type, tree component) |
2330 | { |
2331 | gcc_assert (TREE_CODE (component) == IDENTIFIER_NODE); |
2332 | |
2333 | /* First, gather a list of candidates. */ |
2334 | auto_vec <tree> candidates; |
2335 | |
2336 | lookup_field_fuzzy_find_candidates (type, component, |
2337 | &candidates); |
2338 | |
2339 | return find_closest_identifier (component, &candidates); |
2340 | } |
2341 | |
2342 | /* Support function for build_component_ref's error-handling. |
2343 | |
2344 | Given DATUM_TYPE, and "DATUM.COMPONENT", where DATUM is *not* a |
2345 | struct or union, should we suggest "DATUM->COMPONENT" as a hint? */ |
2346 | |
2347 | static bool |
2348 | should_suggest_deref_p (tree datum_type) |
2349 | { |
2350 | /* We don't do it for Objective-C, since Objective-C 2.0 dot-syntax |
2351 | allows "." for ptrs; we could be handling a failed attempt |
2352 | to access a property. */ |
2353 | if (c_dialect_objc ()) |
2354 | return false; |
2355 | |
2356 | /* Only suggest it for pointers... */ |
2357 | if (TREE_CODE (datum_type) != POINTER_TYPE) |
2358 | return false; |
2359 | |
2360 | /* ...to structs/unions. */ |
2361 | tree underlying_type = TREE_TYPE (datum_type); |
2362 | enum tree_code code = TREE_CODE (underlying_type); |
2363 | if (code == RECORD_TYPE || code == UNION_TYPE) |
2364 | return true; |
2365 | else |
2366 | return false; |
2367 | } |
2368 | |
2369 | /* Make an expression to refer to the COMPONENT field of structure or |
2370 | union value DATUM. COMPONENT is an IDENTIFIER_NODE. LOC is the |
2371 | location of the COMPONENT_REF. COMPONENT_LOC is the location |
2372 | of COMPONENT. */ |
2373 | |
2374 | tree |
2375 | build_component_ref (location_t loc, tree datum, tree component, |
2376 | location_t component_loc) |
2377 | { |
2378 | tree type = TREE_TYPE (datum); |
2379 | enum tree_code code = TREE_CODE (type); |
2380 | tree field = NULL; |
2381 | tree ref; |
2382 | bool datum_lvalue = lvalue_p (datum); |
2383 | |
2384 | if (!objc_is_public (datum, component)) |
2385 | return error_mark_node; |
2386 | |
2387 | /* Detect Objective-C property syntax object.property. */ |
2388 | if (c_dialect_objc () |
2389 | && (ref = objc_maybe_build_component_ref (datum, component))) |
2390 | return ref; |
2391 | |
2392 | /* See if there is a field or component with name COMPONENT. */ |
2393 | |
2394 | if (code == RECORD_TYPE || code == UNION_TYPE) |
2395 | { |
2396 | if (!COMPLETE_TYPE_P (type)) |
2397 | { |
2398 | c_incomplete_type_error (loc, NULL_TREE, type); |
2399 | return error_mark_node; |
2400 | } |
2401 | |
2402 | field = lookup_field (type, component); |
2403 | |
2404 | if (!field) |
2405 | { |
2406 | tree guessed_id = lookup_field_fuzzy (type, component); |
2407 | if (guessed_id) |
2408 | { |
2409 | /* Attempt to provide a fixit replacement hint, if |
2410 | we have a valid range for the component. */ |
2411 | location_t reported_loc |
2412 | = (component_loc != UNKNOWN_LOCATION) ? component_loc : loc; |
2413 | gcc_rich_location rich_loc (reported_loc); |
2414 | if (component_loc != UNKNOWN_LOCATION) |
2415 | rich_loc.add_fixit_misspelled_id (component_loc, guessed_id); |
2416 | error_at (&rich_loc, |
2417 | "%qT has no member named %qE; did you mean %qE?" , |
2418 | type, component, guessed_id); |
2419 | } |
2420 | else |
2421 | error_at (loc, "%qT has no member named %qE" , type, component); |
2422 | return error_mark_node; |
2423 | } |
2424 | |
2425 | /* Accessing elements of atomic structures or unions is undefined |
2426 | behavior (C11 6.5.2.3#5). */ |
2427 | if (TYPE_ATOMIC (type) && c_inhibit_evaluation_warnings == 0) |
2428 | { |
2429 | if (code == RECORD_TYPE) |
2430 | warning_at (loc, 0, "accessing a member %qE of an atomic " |
2431 | "structure %qE" , component, datum); |
2432 | else |
2433 | warning_at (loc, 0, "accessing a member %qE of an atomic " |
2434 | "union %qE" , component, datum); |
2435 | } |
2436 | |
2437 | /* Chain the COMPONENT_REFs if necessary down to the FIELD. |
2438 | This might be better solved in future the way the C++ front |
2439 | end does it - by giving the anonymous entities each a |
2440 | separate name and type, and then have build_component_ref |
2441 | recursively call itself. We can't do that here. */ |
2442 | do |
2443 | { |
2444 | tree subdatum = TREE_VALUE (field); |
2445 | int quals; |
2446 | tree subtype; |
2447 | bool use_datum_quals; |
2448 | |
2449 | if (TREE_TYPE (subdatum) == error_mark_node) |
2450 | return error_mark_node; |
2451 | |
2452 | /* If this is an rvalue, it does not have qualifiers in C |
2453 | standard terms and we must avoid propagating such |
2454 | qualifiers down to a non-lvalue array that is then |
2455 | converted to a pointer. */ |
2456 | use_datum_quals = (datum_lvalue |
2457 | || TREE_CODE (TREE_TYPE (subdatum)) != ARRAY_TYPE); |
2458 | |
2459 | quals = TYPE_QUALS (strip_array_types (TREE_TYPE (subdatum))); |
2460 | if (use_datum_quals) |
2461 | quals |= TYPE_QUALS (TREE_TYPE (datum)); |
2462 | subtype = c_build_qualified_type (TREE_TYPE (subdatum), quals); |
2463 | |
2464 | ref = build3 (COMPONENT_REF, subtype, datum, subdatum, |
2465 | NULL_TREE); |
2466 | SET_EXPR_LOCATION (ref, loc); |
2467 | if (TREE_READONLY (subdatum) |
2468 | || (use_datum_quals && TREE_READONLY (datum))) |
2469 | TREE_READONLY (ref) = 1; |
2470 | if (TREE_THIS_VOLATILE (subdatum) |
2471 | || (use_datum_quals && TREE_THIS_VOLATILE (datum))) |
2472 | TREE_THIS_VOLATILE (ref) = 1; |
2473 | |
2474 | if (TREE_DEPRECATED (subdatum)) |
2475 | warn_deprecated_use (subdatum, NULL_TREE); |
2476 | |
2477 | datum = ref; |
2478 | |
2479 | field = TREE_CHAIN (field); |
2480 | } |
2481 | while (field); |
2482 | |
2483 | return ref; |
2484 | } |
2485 | else if (should_suggest_deref_p (type)) |
2486 | { |
2487 | /* Special-case the error message for "ptr.field" for the case |
2488 | where the user has confused "." vs "->". */ |
2489 | rich_location richloc (line_table, loc); |
2490 | /* "loc" should be the "." token. */ |
2491 | richloc.add_fixit_replace ("->" ); |
2492 | error_at (&richloc, |
2493 | "%qE is a pointer; did you mean to use %<->%>?" , |
2494 | datum); |
2495 | return error_mark_node; |
2496 | } |
2497 | else if (code != ERROR_MARK) |
2498 | error_at (loc, |
2499 | "request for member %qE in something not a structure or union" , |
2500 | component); |
2501 | |
2502 | return error_mark_node; |
2503 | } |
2504 | |
2505 | /* Given an expression PTR for a pointer, return an expression |
2506 | for the value pointed to. |
2507 | ERRORSTRING is the name of the operator to appear in error messages. |
2508 | |
2509 | LOC is the location to use for the generated tree. */ |
2510 | |
2511 | tree |
2512 | build_indirect_ref (location_t loc, tree ptr, ref_operator errstring) |
2513 | { |
2514 | tree pointer = default_conversion (ptr); |
2515 | tree type = TREE_TYPE (pointer); |
2516 | tree ref; |
2517 | |
2518 | if (TREE_CODE (type) == POINTER_TYPE) |
2519 | { |
2520 | if (CONVERT_EXPR_P (pointer) |
2521 | || TREE_CODE (pointer) == VIEW_CONVERT_EXPR) |
2522 | { |
2523 | /* If a warning is issued, mark it to avoid duplicates from |
2524 | the backend. This only needs to be done at |
2525 | warn_strict_aliasing > 2. */ |
2526 | if (warn_strict_aliasing > 2) |
2527 | if (strict_aliasing_warning (TREE_TYPE (TREE_OPERAND (pointer, 0)), |
2528 | type, TREE_OPERAND (pointer, 0))) |
2529 | TREE_NO_WARNING (pointer) = 1; |
2530 | } |
2531 | |
2532 | if (TREE_CODE (pointer) == ADDR_EXPR |
2533 | && (TREE_TYPE (TREE_OPERAND (pointer, 0)) |
2534 | == TREE_TYPE (type))) |
2535 | { |
2536 | ref = TREE_OPERAND (pointer, 0); |
2537 | protected_set_expr_location (ref, loc); |
2538 | return ref; |
2539 | } |
2540 | else |
2541 | { |
2542 | tree t = TREE_TYPE (type); |
2543 | |
2544 | ref = build1 (INDIRECT_REF, t, pointer); |
2545 | |
2546 | if (!COMPLETE_OR_VOID_TYPE_P (t) && TREE_CODE (t) != ARRAY_TYPE) |
2547 | { |
2548 | if (!C_TYPE_ERROR_REPORTED (TREE_TYPE (ptr))) |
2549 | { |
2550 | error_at (loc, "dereferencing pointer to incomplete type " |
2551 | "%qT" , t); |
2552 | C_TYPE_ERROR_REPORTED (TREE_TYPE (ptr)) = 1; |
2553 | } |
2554 | return error_mark_node; |
2555 | } |
2556 | if (VOID_TYPE_P (t) && c_inhibit_evaluation_warnings == 0) |
2557 | warning_at (loc, 0, "dereferencing %<void *%> pointer" ); |
2558 | |
2559 | /* We *must* set TREE_READONLY when dereferencing a pointer to const, |
2560 | so that we get the proper error message if the result is used |
2561 | to assign to. Also, &* is supposed to be a no-op. |
2562 | And ANSI C seems to specify that the type of the result |
2563 | should be the const type. */ |
2564 | /* A de-reference of a pointer to const is not a const. It is valid |
2565 | to change it via some other pointer. */ |
2566 | TREE_READONLY (ref) = TYPE_READONLY (t); |
2567 | TREE_SIDE_EFFECTS (ref) |
2568 | = TYPE_VOLATILE (t) || TREE_SIDE_EFFECTS (pointer); |
2569 | TREE_THIS_VOLATILE (ref) = TYPE_VOLATILE (t); |
2570 | protected_set_expr_location (ref, loc); |
2571 | return ref; |
2572 | } |
2573 | } |
2574 | else if (TREE_CODE (pointer) != ERROR_MARK) |
2575 | invalid_indirection_error (loc, type, errstring); |
2576 | |
2577 | return error_mark_node; |
2578 | } |
2579 | |
2580 | /* This handles expressions of the form "a[i]", which denotes |
2581 | an array reference. |
2582 | |
2583 | This is logically equivalent in C to *(a+i), but we may do it differently. |
2584 | If A is a variable or a member, we generate a primitive ARRAY_REF. |
2585 | This avoids forcing the array out of registers, and can work on |
2586 | arrays that are not lvalues (for example, members of structures returned |
2587 | by functions). |
2588 | |
2589 | For vector types, allow vector[i] but not i[vector], and create |
2590 | *(((type*)&vectortype) + i) for the expression. |
2591 | |
2592 | LOC is the location to use for the returned expression. */ |
2593 | |
2594 | tree |
2595 | build_array_ref (location_t loc, tree array, tree index) |
2596 | { |
2597 | tree ret; |
2598 | bool swapped = false; |
2599 | if (TREE_TYPE (array) == error_mark_node |
2600 | || TREE_TYPE (index) == error_mark_node) |
2601 | return error_mark_node; |
2602 | |
2603 | if (TREE_CODE (TREE_TYPE (array)) != ARRAY_TYPE |
2604 | && TREE_CODE (TREE_TYPE (array)) != POINTER_TYPE |
2605 | /* Allow vector[index] but not index[vector]. */ |
2606 | && !VECTOR_TYPE_P (TREE_TYPE (array))) |
2607 | { |
2608 | if (TREE_CODE (TREE_TYPE (index)) != ARRAY_TYPE |
2609 | && TREE_CODE (TREE_TYPE (index)) != POINTER_TYPE) |
2610 | { |
2611 | error_at (loc, |
2612 | "subscripted value is neither array nor pointer nor vector" ); |
2613 | |
2614 | return error_mark_node; |
2615 | } |
2616 | std::swap (array, index); |
2617 | swapped = true; |
2618 | } |
2619 | |
2620 | if (!INTEGRAL_TYPE_P (TREE_TYPE (index))) |
2621 | { |
2622 | error_at (loc, "array subscript is not an integer" ); |
2623 | return error_mark_node; |
2624 | } |
2625 | |
2626 | if (TREE_CODE (TREE_TYPE (TREE_TYPE (array))) == FUNCTION_TYPE) |
2627 | { |
2628 | error_at (loc, "subscripted value is pointer to function" ); |
2629 | return error_mark_node; |
2630 | } |
2631 | |
2632 | /* ??? Existing practice has been to warn only when the char |
2633 | index is syntactically the index, not for char[array]. */ |
2634 | if (!swapped) |
2635 | warn_array_subscript_with_type_char (loc, index); |
2636 | |
2637 | /* Apply default promotions *after* noticing character types. */ |
2638 | index = default_conversion (index); |
2639 | if (index == error_mark_node) |
2640 | return error_mark_node; |
2641 | |
2642 | gcc_assert (TREE_CODE (TREE_TYPE (index)) == INTEGER_TYPE); |
2643 | |
2644 | bool was_vector = VECTOR_TYPE_P (TREE_TYPE (array)); |
2645 | bool non_lvalue = convert_vector_to_array_for_subscript (loc, &array, index); |
2646 | |
2647 | if (TREE_CODE (TREE_TYPE (array)) == ARRAY_TYPE) |
2648 | { |
2649 | tree rval, type; |
2650 | |
2651 | /* An array that is indexed by a non-constant |
2652 | cannot be stored in a register; we must be able to do |
2653 | address arithmetic on its address. |
2654 | Likewise an array of elements of variable size. */ |
2655 | if (TREE_CODE (index) != INTEGER_CST |
2656 | || (COMPLETE_TYPE_P (TREE_TYPE (TREE_TYPE (array))) |
2657 | && TREE_CODE (TYPE_SIZE (TREE_TYPE (TREE_TYPE (array)))) != INTEGER_CST)) |
2658 | { |
2659 | if (!c_mark_addressable (array, true)) |
2660 | return error_mark_node; |
2661 | } |
2662 | /* An array that is indexed by a constant value which is not within |
2663 | the array bounds cannot be stored in a register either; because we |
2664 | would get a crash in store_bit_field/extract_bit_field when trying |
2665 | to access a non-existent part of the register. */ |
2666 | if (TREE_CODE (index) == INTEGER_CST |
2667 | && TYPE_DOMAIN (TREE_TYPE (array)) |
2668 | && !int_fits_type_p (index, TYPE_DOMAIN (TREE_TYPE (array)))) |
2669 | { |
2670 | if (!c_mark_addressable (array)) |
2671 | return error_mark_node; |
2672 | } |
2673 | |
2674 | if ((pedantic || warn_c90_c99_compat) |
2675 | && ! was_vector) |
2676 | { |
2677 | tree foo = array; |
2678 | while (TREE_CODE (foo) == COMPONENT_REF) |
2679 | foo = TREE_OPERAND (foo, 0); |
2680 | if (VAR_P (foo) && C_DECL_REGISTER (foo)) |
2681 | pedwarn (loc, OPT_Wpedantic, |
2682 | "ISO C forbids subscripting %<register%> array" ); |
2683 | else if (!lvalue_p (foo)) |
2684 | pedwarn_c90 (loc, OPT_Wpedantic, |
2685 | "ISO C90 forbids subscripting non-lvalue " |
2686 | "array" ); |
2687 | } |
2688 | |
2689 | type = TREE_TYPE (TREE_TYPE (array)); |
2690 | rval = build4 (ARRAY_REF, type, array, index, NULL_TREE, NULL_TREE); |
2691 | /* Array ref is const/volatile if the array elements are |
2692 | or if the array is. */ |
2693 | TREE_READONLY (rval) |
2694 | |= (TYPE_READONLY (TREE_TYPE (TREE_TYPE (array))) |
2695 | | TREE_READONLY (array)); |
2696 | TREE_SIDE_EFFECTS (rval) |
2697 | |= (TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (array))) |
2698 | | TREE_SIDE_EFFECTS (array)); |
2699 | TREE_THIS_VOLATILE (rval) |
2700 | |= (TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (array))) |
2701 | /* This was added by rms on 16 Nov 91. |
2702 | It fixes vol struct foo *a; a->elts[1] |
2703 | in an inline function. |
2704 | Hope it doesn't break something else. */ |
2705 | | TREE_THIS_VOLATILE (array)); |
2706 | ret = require_complete_type (loc, rval); |
2707 | protected_set_expr_location (ret, loc); |
2708 | if (non_lvalue) |
2709 | ret = non_lvalue_loc (loc, ret); |
2710 | return ret; |
2711 | } |
2712 | else |
2713 | { |
2714 | tree ar = default_conversion (array); |
2715 | |
2716 | if (ar == error_mark_node) |
2717 | return ar; |
2718 | |
2719 | gcc_assert (TREE_CODE (TREE_TYPE (ar)) == POINTER_TYPE); |
2720 | gcc_assert (TREE_CODE (TREE_TYPE (TREE_TYPE (ar))) != FUNCTION_TYPE); |
2721 | |
2722 | ret = build_indirect_ref (loc, build_binary_op (loc, PLUS_EXPR, ar, |
2723 | index, false), |
2724 | RO_ARRAY_INDEXING); |
2725 | if (non_lvalue) |
2726 | ret = non_lvalue_loc (loc, ret); |
2727 | return ret; |
2728 | } |
2729 | } |
2730 | |
2731 | /* Build an external reference to identifier ID. FUN indicates |
2732 | whether this will be used for a function call. LOC is the source |
2733 | location of the identifier. This sets *TYPE to the type of the |
2734 | identifier, which is not the same as the type of the returned value |
2735 | for CONST_DECLs defined as enum constants. If the type of the |
2736 | identifier is not available, *TYPE is set to NULL. */ |
2737 | tree |
2738 | build_external_ref (location_t loc, tree id, bool fun, tree *type) |
2739 | { |
2740 | tree ref; |
2741 | tree decl = lookup_name (id); |
2742 | |
2743 | /* In Objective-C, an instance variable (ivar) may be preferred to |
2744 | whatever lookup_name() found. */ |
2745 | decl = objc_lookup_ivar (decl, id); |
2746 | |
2747 | *type = NULL; |
2748 | if (decl && decl != error_mark_node) |
2749 | { |
2750 | ref = decl; |
2751 | *type = TREE_TYPE (ref); |
2752 | } |
2753 | else if (fun) |
2754 | /* Implicit function declaration. */ |
2755 | ref = implicitly_declare (loc, id); |
2756 | else if (decl == error_mark_node) |
2757 | /* Don't complain about something that's already been |
2758 | complained about. */ |
2759 | return error_mark_node; |
2760 | else |
2761 | { |
2762 | undeclared_variable (loc, id); |
2763 | return error_mark_node; |
2764 | } |
2765 | |
2766 | if (TREE_TYPE (ref) == error_mark_node) |
2767 | return error_mark_node; |
2768 | |
2769 | if (TREE_DEPRECATED (ref)) |
2770 | warn_deprecated_use (ref, NULL_TREE); |
2771 | |
2772 | /* Recursive call does not count as usage. */ |
2773 | if (ref != current_function_decl) |
2774 | { |
2775 | TREE_USED (ref) = 1; |
2776 | } |
2777 | |
2778 | if (TREE_CODE (ref) == FUNCTION_DECL && !in_alignof) |
2779 | { |
2780 | if (!in_sizeof && !in_typeof) |
2781 | C_DECL_USED (ref) = 1; |
2782 | else if (DECL_INITIAL (ref) == NULL_TREE |
2783 | && DECL_EXTERNAL (ref) |
2784 | && !TREE_PUBLIC (ref)) |
2785 | record_maybe_used_decl (ref); |
2786 | } |
2787 | |
2788 | if (TREE_CODE (ref) == CONST_DECL) |
2789 | { |
2790 | used_types_insert (TREE_TYPE (ref)); |
2791 | |
2792 | if (warn_cxx_compat |
2793 | && TREE_CODE (TREE_TYPE (ref)) == ENUMERAL_TYPE |
2794 | && C_TYPE_DEFINED_IN_STRUCT (TREE_TYPE (ref))) |
2795 | { |
2796 | warning_at (loc, OPT_Wc___compat, |
2797 | ("enum constant defined in struct or union " |
2798 | "is not visible in C++" )); |
2799 | inform (DECL_SOURCE_LOCATION (ref), "enum constant defined here" ); |
2800 | } |
2801 | |
2802 | ref = DECL_INITIAL (ref); |
2803 | TREE_CONSTANT (ref) = 1; |
2804 | } |
2805 | else if (current_function_decl != NULL_TREE |
2806 | && !DECL_FILE_SCOPE_P (current_function_decl) |
2807 | && (VAR_OR_FUNCTION_DECL_P (ref) |
2808 | || TREE_CODE (ref) == PARM_DECL)) |
2809 | { |
2810 | tree context = decl_function_context (ref); |
2811 | |
2812 | if (context != NULL_TREE && context != current_function_decl) |
2813 | DECL_NONLOCAL (ref) = 1; |
2814 | } |
2815 | /* C99 6.7.4p3: An inline definition of a function with external |
2816 | linkage ... shall not contain a reference to an identifier with |
2817 | internal linkage. */ |
2818 | else if (current_function_decl != NULL_TREE |
2819 | && DECL_DECLARED_INLINE_P (current_function_decl) |
2820 | && DECL_EXTERNAL (current_function_decl) |
2821 | && VAR_OR_FUNCTION_DECL_P (ref) |
2822 | && (!VAR_P (ref) || TREE_STATIC (ref)) |
2823 | && ! TREE_PUBLIC (ref) |
2824 | && DECL_CONTEXT (ref) != current_function_decl) |
2825 | record_inline_static (loc, current_function_decl, ref, |
2826 | csi_internal); |
2827 | |
2828 | return ref; |
2829 | } |
2830 | |
2831 | /* Record details of decls possibly used inside sizeof or typeof. */ |
2832 | struct maybe_used_decl |
2833 | { |
2834 | /* The decl. */ |
2835 | tree decl; |
2836 | /* The level seen at (in_sizeof + in_typeof). */ |
2837 | int level; |
2838 | /* The next one at this level or above, or NULL. */ |
2839 | struct maybe_used_decl *next; |
2840 | }; |
2841 | |
2842 | static struct maybe_used_decl *maybe_used_decls; |
2843 | |
2844 | /* Record that DECL, an undefined static function reference seen |
2845 | inside sizeof or typeof, might be used if the operand of sizeof is |
2846 | a VLA type or the operand of typeof is a variably modified |
2847 | type. */ |
2848 | |
2849 | static void |
2850 | record_maybe_used_decl (tree decl) |
2851 | { |
2852 | struct maybe_used_decl *t = XOBNEW (&parser_obstack, struct maybe_used_decl); |
2853 | t->decl = decl; |
2854 | t->level = in_sizeof + in_typeof; |
2855 | t->next = maybe_used_decls; |
2856 | maybe_used_decls = t; |
2857 | } |
2858 | |
2859 | /* Pop the stack of decls possibly used inside sizeof or typeof. If |
2860 | USED is false, just discard them. If it is true, mark them used |
2861 | (if no longer inside sizeof or typeof) or move them to the next |
2862 | level up (if still inside sizeof or typeof). */ |
2863 | |
2864 | void |
2865 | pop_maybe_used (bool used) |
2866 | { |
2867 | struct maybe_used_decl *p = maybe_used_decls; |
2868 | int cur_level = in_sizeof + in_typeof; |
2869 | while (p && p->level > cur_level) |
2870 | { |
2871 | if (used) |
2872 | { |
2873 | if (cur_level == 0) |
2874 | C_DECL_USED (p->decl) = 1; |
2875 | else |
2876 | p->level = cur_level; |
2877 | } |
2878 | p = p->next; |
2879 | } |
2880 | if (!used || cur_level == 0) |
2881 | maybe_used_decls = p; |
2882 | } |
2883 | |
2884 | /* Return the result of sizeof applied to EXPR. */ |
2885 | |
2886 | struct c_expr |
2887 | c_expr_sizeof_expr (location_t loc, struct c_expr expr) |
2888 | { |
2889 | struct c_expr ret; |
2890 | if (expr.value == error_mark_node) |
2891 | { |
2892 | ret.value = error_mark_node; |
2893 | ret.original_code = ERROR_MARK; |
2894 | ret.original_type = NULL; |
2895 | pop_maybe_used (false); |
2896 | } |
2897 | else |
2898 | { |
2899 | bool expr_const_operands = true; |
2900 | |
2901 | if (TREE_CODE (expr.value) == PARM_DECL |
2902 | && C_ARRAY_PARAMETER (expr.value)) |
2903 | { |
2904 | if (warning_at (loc, OPT_Wsizeof_array_argument, |
2905 | "%<sizeof%> on array function parameter %qE will " |
2906 | "return size of %qT" , expr.value, |
2907 | TREE_TYPE (expr.value))) |
2908 | inform (DECL_SOURCE_LOCATION (expr.value), "declared here" ); |
2909 | } |
2910 | tree folded_expr = c_fully_fold (expr.value, require_constant_value, |
2911 | &expr_const_operands); |
2912 | ret.value = c_sizeof (loc, TREE_TYPE (folded_expr)); |
2913 | c_last_sizeof_arg = expr.value; |
2914 | c_last_sizeof_loc = loc; |
2915 | ret.original_code = SIZEOF_EXPR; |
2916 | ret.original_type = NULL; |
2917 | if (c_vla_type_p (TREE_TYPE (folded_expr))) |
2918 | { |
2919 | /* sizeof is evaluated when given a vla (C99 6.5.3.4p2). */ |
2920 | ret.value = build2 (C_MAYBE_CONST_EXPR, TREE_TYPE (ret.value), |
2921 | folded_expr, ret.value); |
2922 | C_MAYBE_CONST_EXPR_NON_CONST (ret.value) = !expr_const_operands; |
2923 | SET_EXPR_LOCATION (ret.value, loc); |
2924 | } |
2925 | pop_maybe_used (C_TYPE_VARIABLE_SIZE (TREE_TYPE (folded_expr))); |
2926 | } |
2927 | return ret; |
2928 | } |
2929 | |
2930 | /* Return the result of sizeof applied to T, a structure for the type |
2931 | name passed to sizeof (rather than the type itself). LOC is the |
2932 | location of the original expression. */ |
2933 | |
2934 | struct c_expr |
2935 | c_expr_sizeof_type (location_t loc, struct c_type_name *t) |
2936 | { |
2937 | tree type; |
2938 | struct c_expr ret; |
2939 | tree type_expr = NULL_TREE; |
2940 | bool type_expr_const = true; |
2941 | type = groktypename (t, &type_expr, &type_expr_const); |
2942 | ret.value = c_sizeof (loc, type); |
2943 | c_last_sizeof_arg = type; |
2944 | c_last_sizeof_loc = loc; |
2945 | ret.original_code = SIZEOF_EXPR; |
2946 | ret.original_type = NULL; |
2947 | if ((type_expr || TREE_CODE (ret.value) == INTEGER_CST) |
2948 | && c_vla_type_p (type)) |
2949 | { |
2950 | /* If the type is a [*] array, it is a VLA but is represented as |
2951 | having a size of zero. In such a case we must ensure that |
2952 | the result of sizeof does not get folded to a constant by |
2953 | c_fully_fold, because if the size is evaluated the result is |
2954 | not constant and so constraints on zero or negative size |
2955 | arrays must not be applied when this sizeof call is inside |
2956 | another array declarator. */ |
2957 | if (!type_expr) |
2958 | type_expr = integer_zero_node; |
2959 | ret.value = build2 (C_MAYBE_CONST_EXPR, TREE_TYPE (ret.value), |
2960 | type_expr, ret.value); |
2961 | C_MAYBE_CONST_EXPR_NON_CONST (ret.value) = !type_expr_const; |
2962 | } |
2963 | pop_maybe_used (type != error_mark_node |
2964 | ? C_TYPE_VARIABLE_SIZE (type) : false); |
2965 | return ret; |
2966 | } |
2967 | |
2968 | /* Build a function call to function FUNCTION with parameters PARAMS. |
2969 | The function call is at LOC. |
2970 | PARAMS is a list--a chain of TREE_LIST nodes--in which the |
2971 | TREE_VALUE of each node is a parameter-expression. |
2972 | FUNCTION's data type may be a function type or a pointer-to-function. */ |
2973 | |
2974 | tree |
2975 | build_function_call (location_t loc, tree function, tree params) |
2976 | { |
2977 | vec<tree, va_gc> *v; |
2978 | tree ret; |
2979 | |
2980 | vec_alloc (v, list_length (params)); |
2981 | for (; params; params = TREE_CHAIN (params)) |
2982 | v->quick_push (TREE_VALUE (params)); |
2983 | ret = c_build_function_call_vec (loc, vNULL, function, v, NULL); |
2984 | vec_free (v); |
2985 | return ret; |
2986 | } |
2987 | |
2988 | /* Give a note about the location of the declaration of DECL. */ |
2989 | |
2990 | static void |
2991 | inform_declaration (tree decl) |
2992 | { |
2993 | if (decl && (TREE_CODE (decl) != FUNCTION_DECL || !DECL_IS_BUILTIN (decl))) |
2994 | inform (DECL_SOURCE_LOCATION (decl), "declared here" ); |
2995 | } |
2996 | |
2997 | /* Build a function call to function FUNCTION with parameters PARAMS. |
2998 | ORIGTYPES, if not NULL, is a vector of types; each element is |
2999 | either NULL or the original type of the corresponding element in |
3000 | PARAMS. The original type may differ from TREE_TYPE of the |
3001 | parameter for enums. FUNCTION's data type may be a function type |
3002 | or pointer-to-function. This function changes the elements of |
3003 | PARAMS. */ |
3004 | |
3005 | tree |
3006 | build_function_call_vec (location_t loc, vec<location_t> arg_loc, |
3007 | tree function, vec<tree, va_gc> *params, |
3008 | vec<tree, va_gc> *origtypes) |
3009 | { |
3010 | tree fntype, fundecl = NULL_TREE; |
3011 | tree name = NULL_TREE, result; |
3012 | tree tem; |
3013 | int nargs; |
3014 | tree *argarray; |
3015 | |
3016 | |
3017 | /* Strip NON_LVALUE_EXPRs, etc., since we aren't using as an lvalue. */ |
3018 | STRIP_TYPE_NOPS (function); |
3019 | |
3020 | /* Convert anything with function type to a pointer-to-function. */ |
3021 | if (TREE_CODE (function) == FUNCTION_DECL) |
3022 | { |
3023 | name = DECL_NAME (function); |
3024 | |
3025 | if (flag_tm) |
3026 | tm_malloc_replacement (function); |
3027 | fundecl = function; |
3028 | /* Atomic functions have type checking/casting already done. They are |
3029 | often rewritten and don't match the original parameter list. */ |
3030 | if (name && !strncmp (IDENTIFIER_POINTER (name), "__atomic_" , 9)) |
3031 | origtypes = NULL; |
3032 | } |
3033 | if (TREE_CODE (TREE_TYPE (function)) == FUNCTION_TYPE) |
3034 | function = function_to_pointer_conversion (loc, function); |
3035 | |
3036 | /* For Objective-C, convert any calls via a cast to OBJC_TYPE_REF |
3037 | expressions, like those used for ObjC messenger dispatches. */ |
3038 | if (params && !params->is_empty ()) |
3039 | function = objc_rewrite_function_call (function, (*params)[0]); |
3040 | |
3041 | function = c_fully_fold (function, false, NULL); |
3042 | |
3043 | fntype = TREE_TYPE (function); |
3044 | |
3045 | if (TREE_CODE (fntype) == ERROR_MARK) |
3046 | return error_mark_node; |
3047 | |
3048 | if (!(TREE_CODE (fntype) == POINTER_TYPE |
3049 | && TREE_CODE (TREE_TYPE (fntype)) == FUNCTION_TYPE)) |
3050 | { |
3051 | if (!flag_diagnostics_show_caret) |
3052 | error_at (loc, |
3053 | "called object %qE is not a function or function pointer" , |
3054 | function); |
3055 | else if (DECL_P (function)) |
3056 | { |
3057 | error_at (loc, |
3058 | "called object %qD is not a function or function pointer" , |
3059 | function); |
3060 | inform_declaration (function); |
3061 | } |
3062 | else |
3063 | error_at (loc, |
3064 | "called object is not a function or function pointer" ); |
3065 | return error_mark_node; |
3066 | } |
3067 | |
3068 | if (fundecl && TREE_THIS_VOLATILE (fundecl)) |
3069 | current_function_returns_abnormally = 1; |
3070 | |
3071 | /* fntype now gets the type of function pointed to. */ |
3072 | fntype = TREE_TYPE (fntype); |
3073 | |
3074 | /* Convert the parameters to the types declared in the |
3075 | function prototype, or apply default promotions. */ |
3076 | |
3077 | nargs = convert_arguments (loc, arg_loc, TYPE_ARG_TYPES (fntype), params, |
3078 | origtypes, function, fundecl); |
3079 | if (nargs < 0) |
3080 | return error_mark_node; |
3081 | |
3082 | /* Check that the function is called through a compatible prototype. |
3083 | If it is not, warn. */ |
3084 | if (CONVERT_EXPR_P (function) |
3085 | && TREE_CODE (tem = TREE_OPERAND (function, 0)) == ADDR_EXPR |
3086 | && TREE_CODE (tem = TREE_OPERAND (tem, 0)) == FUNCTION_DECL |
3087 | && !comptypes (fntype, TREE_TYPE (tem))) |
3088 | { |
3089 | tree return_type = TREE_TYPE (fntype); |
3090 | |
3091 | /* This situation leads to run-time undefined behavior. We can't, |
3092 | therefore, simply error unless we can prove that all possible |
3093 | executions of the program must execute the code. */ |
3094 | warning_at (loc, 0, "function called through a non-compatible type" ); |
3095 | |
3096 | if (VOID_TYPE_P (return_type) |
3097 | && TYPE_QUALS (return_type) != TYPE_UNQUALIFIED) |
3098 | pedwarn (loc, 0, |
3099 | "function with qualified void return type called" ); |
3100 | } |
3101 | |
3102 | argarray = vec_safe_address (params); |
3103 | |
3104 | /* Check that arguments to builtin functions match the expectations. */ |
3105 | if (fundecl |
3106 | && DECL_BUILT_IN (fundecl) |
3107 | && DECL_BUILT_IN_CLASS (fundecl) == BUILT_IN_NORMAL |
3108 | && !check_builtin_function_arguments (loc, arg_loc, fundecl, nargs, |
3109 | argarray)) |
3110 | return error_mark_node; |
3111 | |
3112 | /* Check that the arguments to the function are valid. */ |
3113 | bool warned_p = check_function_arguments (loc, fundecl, fntype, |
3114 | nargs, argarray, &arg_loc); |
3115 | |
3116 | if (name != NULL_TREE |
3117 | && !strncmp (IDENTIFIER_POINTER (name), "__builtin_" , 10)) |
3118 | { |
3119 | if (require_constant_value) |
3120 | result |
3121 | = fold_build_call_array_initializer_loc (loc, TREE_TYPE (fntype), |
3122 | function, nargs, argarray); |
3123 | else |
3124 | result = fold_build_call_array_loc (loc, TREE_TYPE (fntype), |
3125 | function, nargs, argarray); |
3126 | if (TREE_CODE (result) == NOP_EXPR |
3127 | && TREE_CODE (TREE_OPERAND (result, 0)) == INTEGER_CST) |
3128 | STRIP_TYPE_NOPS (result); |
3129 | } |
3130 | else |
3131 | result = build_call_array_loc (loc, TREE_TYPE (fntype), |
3132 | function, nargs, argarray); |
3133 | /* If -Wnonnull warning has been diagnosed, avoid diagnosing it again |
3134 | later. */ |
3135 | if (warned_p && TREE_CODE (result) == CALL_EXPR) |
3136 | TREE_NO_WARNING (result) = 1; |
3137 | |
3138 | /* In this improbable scenario, a nested function returns a VM type. |
3139 | Create a TARGET_EXPR so that the call always has a LHS, much as |
3140 | what the C++ FE does for functions returning non-PODs. */ |
3141 | if (variably_modified_type_p (TREE_TYPE (fntype), NULL_TREE)) |
3142 | { |
3143 | tree tmp = create_tmp_var_raw (TREE_TYPE (fntype)); |
3144 | result = build4 (TARGET_EXPR, TREE_TYPE (fntype), tmp, result, |
3145 | NULL_TREE, NULL_TREE); |
3146 | } |
3147 | |
3148 | if (VOID_TYPE_P (TREE_TYPE (result))) |
3149 | { |
3150 | if (TYPE_QUALS (TREE_TYPE (result)) != TYPE_UNQUALIFIED) |
3151 | pedwarn (loc, 0, |
3152 | "function with qualified void return type called" ); |
3153 | return result; |
3154 | } |
3155 | return require_complete_type (loc, result); |
3156 | } |
3157 | |
3158 | /* Like build_function_call_vec, but call also resolve_overloaded_builtin. */ |
3159 | |
3160 | tree |
3161 | c_build_function_call_vec (location_t loc, vec<location_t> arg_loc, |
3162 | tree function, vec<tree, va_gc> *params, |
3163 | vec<tree, va_gc> *origtypes) |
3164 | { |
3165 | /* Strip NON_LVALUE_EXPRs, etc., since we aren't using as an lvalue. */ |
3166 | STRIP_TYPE_NOPS (function); |
3167 | |
3168 | /* Convert anything with function type to a pointer-to-function. */ |
3169 | if (TREE_CODE (function) == FUNCTION_DECL) |
3170 | { |
3171 | /* Implement type-directed function overloading for builtins. |
3172 | resolve_overloaded_builtin and targetm.resolve_overloaded_builtin |
3173 | handle all the type checking. The result is a complete expression |
3174 | that implements this function call. */ |
3175 | tree tem = resolve_overloaded_builtin (loc, function, params); |
3176 | if (tem) |
3177 | return tem; |
3178 | } |
3179 | return build_function_call_vec (loc, arg_loc, function, params, origtypes); |
3180 | } |
3181 | |
3182 | /* Convert the argument expressions in the vector VALUES |
3183 | to the types in the list TYPELIST. |
3184 | |
3185 | If TYPELIST is exhausted, or when an element has NULL as its type, |
3186 | perform the default conversions. |
3187 | |
3188 | ORIGTYPES is the original types of the expressions in VALUES. This |
3189 | holds the type of enum values which have been converted to integral |
3190 | types. It may be NULL. |
3191 | |
3192 | FUNCTION is a tree for the called function. It is used only for |
3193 | error messages, where it is formatted with %qE. |
3194 | |
3195 | This is also where warnings about wrong number of args are generated. |
3196 | |
3197 | ARG_LOC are locations of function arguments (if any). |
3198 | |
3199 | Returns the actual number of arguments processed (which may be less |
3200 | than the length of VALUES in some error situations), or -1 on |
3201 | failure. */ |
3202 | |
3203 | static int |
3204 | convert_arguments (location_t loc, vec<location_t> arg_loc, tree typelist, |
3205 | vec<tree, va_gc> *values, vec<tree, va_gc> *origtypes, |
3206 | tree function, tree fundecl) |
3207 | { |
3208 | tree typetail, val; |
3209 | unsigned int parmnum; |
3210 | bool error_args = false; |
3211 | const bool type_generic = fundecl |
3212 | && lookup_attribute ("type generic" , TYPE_ATTRIBUTES (TREE_TYPE (fundecl))); |
3213 | bool type_generic_remove_excess_precision = false; |
3214 | bool type_generic_overflow_p = false; |
3215 | tree selector; |
3216 | |
3217 | /* Change pointer to function to the function itself for |
3218 | diagnostics. */ |
3219 | if (TREE_CODE (function) == ADDR_EXPR |
3220 | && TREE_CODE (TREE_OPERAND (function, 0)) == FUNCTION_DECL) |
3221 | function = TREE_OPERAND (function, 0); |
3222 | |
3223 | /* Handle an ObjC selector specially for diagnostics. */ |
3224 | selector = objc_message_selector (); |
3225 | |
3226 | /* For type-generic built-in functions, determine whether excess |
3227 | precision should be removed (classification) or not |
3228 | (comparison). */ |
3229 | if (type_generic |
3230 | && DECL_BUILT_IN (fundecl) |
3231 | && DECL_BUILT_IN_CLASS (fundecl) == BUILT_IN_NORMAL) |
3232 | { |
3233 | switch (DECL_FUNCTION_CODE (fundecl)) |
3234 | { |
3235 | case BUILT_IN_ISFINITE: |
3236 | case BUILT_IN_ISINF: |
3237 | case BUILT_IN_ISINF_SIGN: |
3238 | case BUILT_IN_ISNAN: |
3239 | case BUILT_IN_ISNORMAL: |
3240 | case BUILT_IN_FPCLASSIFY: |
3241 | type_generic_remove_excess_precision = true; |
3242 | break; |
3243 | |
3244 | case BUILT_IN_ADD_OVERFLOW_P: |
3245 | case BUILT_IN_SUB_OVERFLOW_P: |
3246 | case BUILT_IN_MUL_OVERFLOW_P: |
3247 | /* The last argument of these type-generic builtins |
3248 | should not be promoted. */ |
3249 | type_generic_overflow_p = true; |
3250 | break; |
3251 | |
3252 | default: |
3253 | break; |
3254 | } |
3255 | } |
3256 | |
3257 | /* Scan the given expressions and types, producing individual |
3258 | converted arguments. */ |
3259 | |
3260 | for (typetail = typelist, parmnum = 0; |
3261 | values && values->iterate (parmnum, &val); |
3262 | ++parmnum) |
3263 | { |
3264 | tree type = typetail ? TREE_VALUE (typetail) : 0; |
3265 | tree valtype = TREE_TYPE (val); |
3266 | tree rname = function; |
3267 | int argnum = parmnum + 1; |
3268 | const char *invalid_func_diag; |
3269 | bool excess_precision = false; |
3270 | bool npc; |
3271 | tree parmval; |
3272 | /* Some __atomic_* builtins have additional hidden argument at |
3273 | position 0. */ |
3274 | location_t ploc |
3275 | = !arg_loc.is_empty () && values->length () == arg_loc.length () |
3276 | ? expansion_point_location_if_in_system_header (arg_loc[parmnum]) |
3277 | : input_location; |
3278 | |
3279 | if (type == void_type_node) |
3280 | { |
3281 | if (selector) |
3282 | error_at (loc, "too many arguments to method %qE" , selector); |
3283 | else |
3284 | error_at (loc, "too many arguments to function %qE" , function); |
3285 | inform_declaration (fundecl); |
3286 | return error_args ? -1 : (int) parmnum; |
3287 | } |
3288 | |
3289 | if (selector && argnum > 2) |
3290 | { |
3291 | rname = selector; |
3292 | argnum -= 2; |
3293 | } |
3294 | |
3295 | npc = null_pointer_constant_p (val); |
3296 | |
3297 | /* If there is excess precision and a prototype, convert once to |
3298 | the required type rather than converting via the semantic |
3299 | type. Likewise without a prototype a float value represented |
3300 | as long double should be converted once to double. But for |
3301 | type-generic classification functions excess precision must |
3302 | be removed here. */ |
3303 | if (TREE_CODE (val) == EXCESS_PRECISION_EXPR |
3304 | && (type || !type_generic || !type_generic_remove_excess_precision)) |
3305 | { |
3306 | val = TREE_OPERAND (val, 0); |
3307 | excess_precision = true; |
3308 | } |
3309 | val = c_fully_fold (val, false, NULL); |
3310 | STRIP_TYPE_NOPS (val); |
3311 | |
3312 | val = require_complete_type (ploc, val); |
3313 | |
3314 | /* Some floating-point arguments must be promoted to double when |
3315 | no type is specified by a prototype. This applies to |
3316 | arguments of type float, and to architecture-specific types |
3317 | (ARM __fp16), but not to _FloatN or _FloatNx types. */ |
3318 | bool promote_float_arg = false; |
3319 | if (type == NULL_TREE |
3320 | && TREE_CODE (valtype) == REAL_TYPE |
3321 | && (TYPE_PRECISION (valtype) |
3322 | <= TYPE_PRECISION (double_type_node)) |
3323 | && TYPE_MAIN_VARIANT (valtype) != double_type_node |
3324 | && TYPE_MAIN_VARIANT (valtype) != long_double_type_node |
3325 | && !DECIMAL_FLOAT_MODE_P (TYPE_MODE (valtype))) |
3326 | { |
3327 | /* Promote this argument, unless it has a _FloatN or |
3328 | _FloatNx type. */ |
3329 | promote_float_arg = true; |
3330 | for (int i = 0; i < NUM_FLOATN_NX_TYPES; i++) |
3331 | if (TYPE_MAIN_VARIANT (valtype) == FLOATN_NX_TYPE_NODE (i)) |
3332 | { |
3333 | promote_float_arg = false; |
3334 | break; |
3335 | } |
3336 | } |
3337 | |
3338 | if (type != NULL_TREE) |
3339 | { |
3340 | /* Formal parm type is specified by a function prototype. */ |
3341 | |
3342 | if (type == error_mark_node || !COMPLETE_TYPE_P (type)) |
3343 | { |
3344 | error_at (ploc, "type of formal parameter %d is incomplete" , |
3345 | parmnum + 1); |
3346 | parmval = val; |
3347 | } |
3348 | else |
3349 | { |
3350 | tree origtype; |
3351 | |
3352 | /* Optionally warn about conversions that |
3353 | differ from the default conversions. */ |
3354 | if (warn_traditional_conversion || warn_traditional) |
3355 | { |
3356 | unsigned int formal_prec = TYPE_PRECISION (type); |
3357 | |
3358 | if (INTEGRAL_TYPE_P (type) |
3359 | && TREE_CODE (valtype) == REAL_TYPE) |
3360 | warning_at (ploc, OPT_Wtraditional_conversion, |
3361 | "passing argument %d of %qE as integer rather " |
3362 | "than floating due to prototype" , |
3363 | argnum, rname); |
3364 | if (INTEGRAL_TYPE_P (type) |
3365 | && TREE_CODE (valtype) == COMPLEX_TYPE) |
3366 | warning_at (ploc, OPT_Wtraditional_conversion, |
3367 | "passing argument %d of %qE as integer rather " |
3368 | "than complex due to prototype" , |
3369 | argnum, rname); |
3370 | else if (TREE_CODE (type) == COMPLEX_TYPE |
3371 | && TREE_CODE (valtype) == REAL_TYPE) |
3372 | warning_at (ploc, OPT_Wtraditional_conversion, |
3373 | "passing argument %d of %qE as complex rather " |
3374 | "than floating due to prototype" , |
3375 | argnum, rname); |
3376 | else if (TREE_CODE (type) == REAL_TYPE |
3377 | && INTEGRAL_TYPE_P (valtype)) |
3378 | warning_at (ploc, OPT_Wtraditional_conversion, |
3379 | "passing argument %d of %qE as floating rather " |
3380 | "than integer due to prototype" , |
3381 | argnum, rname); |
3382 | else if (TREE_CODE (type) == COMPLEX_TYPE |
3383 | && INTEGRAL_TYPE_P (valtype)) |
3384 | warning_at (ploc, OPT_Wtraditional_conversion, |
3385 | "passing argument %d of %qE as complex rather " |
3386 | "than integer due to prototype" , |
3387 | argnum, rname); |
3388 | else if (TREE_CODE (type) == REAL_TYPE |
3389 | && TREE_CODE (valtype) == COMPLEX_TYPE) |
3390 | warning_at (ploc, OPT_Wtraditional_conversion, |
3391 | "passing argument %d of %qE as floating rather " |
3392 | "than complex due to prototype" , |
3393 | argnum, rname); |
3394 | /* ??? At some point, messages should be written about |
3395 | conversions between complex types, but that's too messy |
3396 | to do now. */ |
3397 | else if (TREE_CODE (type) == REAL_TYPE |
3398 | && TREE_CODE (valtype) == REAL_TYPE) |
3399 | { |
3400 | /* Warn if any argument is passed as `float', |
3401 | since without a prototype it would be `double'. */ |
3402 | if (formal_prec == TYPE_PRECISION (float_type_node) |
3403 | && type != dfloat32_type_node) |
3404 | warning_at (ploc, 0, |
3405 | "passing argument %d of %qE as %<float%> " |
3406 | "rather than %<double%> due to prototype" , |
3407 | argnum, rname); |
3408 | |
3409 | /* Warn if mismatch between argument and prototype |
3410 | for decimal float types. Warn of conversions with |
3411 | binary float types and of precision narrowing due to |
3412 | prototype. */ |
3413 | else if (type != valtype |
3414 | && (type == dfloat32_type_node |
3415 | || type == dfloat64_type_node |
3416 | || type == dfloat128_type_node |
3417 | || valtype == dfloat32_type_node |
3418 | || valtype == dfloat64_type_node |
3419 | || valtype == dfloat128_type_node) |
3420 | && (formal_prec |
3421 | <= TYPE_PRECISION (valtype) |
3422 | || (type == dfloat128_type_node |
3423 | && (valtype |
3424 | != dfloat64_type_node |
3425 | && (valtype |
3426 | != dfloat32_type_node))) |
3427 | || (type == dfloat64_type_node |
3428 | && (valtype |
3429 | != dfloat32_type_node)))) |
3430 | warning_at (ploc, 0, |
3431 | "passing argument %d of %qE as %qT " |
3432 | "rather than %qT due to prototype" , |
3433 | argnum, rname, type, valtype); |
3434 | |
3435 | } |
3436 | /* Detect integer changing in width or signedness. |
3437 | These warnings are only activated with |
3438 | -Wtraditional-conversion, not with -Wtraditional. */ |
3439 | else if (warn_traditional_conversion |
3440 | && INTEGRAL_TYPE_P (type) |
3441 | && INTEGRAL_TYPE_P (valtype)) |
3442 | { |
3443 | tree would_have_been = default_conversion (val); |
3444 | tree type1 = TREE_TYPE (would_have_been); |
3445 | |
3446 | if (val == error_mark_node) |
3447 | /* VAL could have been of incomplete type. */; |
3448 | else if (TREE_CODE (type) == ENUMERAL_TYPE |
3449 | && (TYPE_MAIN_VARIANT (type) |
3450 | == TYPE_MAIN_VARIANT (valtype))) |
3451 | /* No warning if function asks for enum |
3452 | and the actual arg is that enum type. */ |
3453 | ; |
3454 | else if (formal_prec != TYPE_PRECISION (type1)) |
3455 | warning_at (ploc, OPT_Wtraditional_conversion, |
3456 | "passing argument %d of %qE " |
3457 | "with different width due to prototype" , |
3458 | argnum, rname); |
3459 | else if (TYPE_UNSIGNED (type) == TYPE_UNSIGNED (type1)) |
3460 | ; |
3461 | /* Don't complain if the formal parameter type |
3462 | is an enum, because we can't tell now whether |
3463 | the value was an enum--even the same enum. */ |
3464 | else if (TREE_CODE (type) == ENUMERAL_TYPE) |
3465 | ; |
3466 | else if (TREE_CODE (val) == INTEGER_CST |
3467 | && int_fits_type_p (val, type)) |
3468 | /* Change in signedness doesn't matter |
3469 | if a constant value is unaffected. */ |
3470 | ; |
3471 | /* If the value is extended from a narrower |
3472 | unsigned type, it doesn't matter whether we |
3473 | pass it as signed or unsigned; the value |
3474 | certainly is the same either way. */ |
3475 | else if (TYPE_PRECISION (valtype) < TYPE_PRECISION (type) |
3476 | && TYPE_UNSIGNED (valtype)) |
3477 | ; |
3478 | else if (TYPE_UNSIGNED (type)) |
3479 | warning_at (ploc, OPT_Wtraditional_conversion, |
3480 | "passing argument %d of %qE " |
3481 | "as unsigned due to prototype" , |
3482 | argnum, rname); |
3483 | else |
3484 | warning_at (ploc, OPT_Wtraditional_conversion, |
3485 | "passing argument %d of %qE " |
3486 | "as signed due to prototype" , |
3487 | argnum, rname); |
3488 | } |
3489 | } |
3490 | |
3491 | /* Possibly restore an EXCESS_PRECISION_EXPR for the |
3492 | sake of better warnings from convert_and_check. */ |
3493 | if (excess_precision) |
3494 | val = build1 (EXCESS_PRECISION_EXPR, valtype, val); |
3495 | origtype = (!origtypes) ? NULL_TREE : (*origtypes)[parmnum]; |
3496 | parmval = convert_for_assignment (loc, ploc, type, |
3497 | val, origtype, ic_argpass, |
3498 | npc, fundecl, function, |
3499 | parmnum + 1); |
3500 | |
3501 | if (targetm.calls.promote_prototypes (fundecl ? TREE_TYPE (fundecl) : 0) |
3502 | && INTEGRAL_TYPE_P (type) |
3503 | && (TYPE_PRECISION (type) < TYPE_PRECISION (integer_type_node))) |
3504 | parmval = default_conversion (parmval); |
3505 | } |
3506 | } |
3507 | else if (promote_float_arg) |
3508 | { |
3509 | if (type_generic) |
3510 | parmval = val; |
3511 | else |
3512 | { |
3513 | /* Convert `float' to `double'. */ |
3514 | if (warn_double_promotion && !c_inhibit_evaluation_warnings) |
3515 | warning_at (ploc, OPT_Wdouble_promotion, |
3516 | "implicit conversion from %qT to %qT when passing " |
3517 | "argument to function" , |
3518 | valtype, double_type_node); |
3519 | parmval = convert (double_type_node, val); |
3520 | } |
3521 | } |
3522 | else if ((excess_precision && !type_generic) |
3523 | || (type_generic_overflow_p && parmnum == 2)) |
3524 | /* A "double" argument with excess precision being passed |
3525 | without a prototype or in variable arguments. |
3526 | The last argument of __builtin_*_overflow_p should not be |
3527 | promoted. */ |
3528 | parmval = convert (valtype, val); |
3529 | else if ((invalid_func_diag = |
3530 | targetm.calls.invalid_arg_for_unprototyped_fn (typelist, fundecl, val))) |
3531 | { |
3532 | error (invalid_func_diag); |
3533 | return -1; |
3534 | } |
3535 | else if (TREE_CODE (val) == ADDR_EXPR && reject_gcc_builtin (val)) |
3536 | { |
3537 | return -1; |
3538 | } |
3539 | else |
3540 | /* Convert `short' and `char' to full-size `int'. */ |
3541 | parmval = default_conversion (val); |
3542 | |
3543 | (*values)[parmnum] = parmval; |
3544 | if (parmval == error_mark_node) |
3545 | error_args = true; |
3546 | |
3547 | if (typetail) |
3548 | typetail = TREE_CHAIN (typetail); |
3549 | } |
3550 | |
3551 | gcc_assert (parmnum == vec_safe_length (values)); |
3552 | |
3553 | if (typetail != NULL_TREE && TREE_VALUE (typetail) != void_type_node) |
3554 | { |
3555 | error_at (loc, "too few arguments to function %qE" , function); |
3556 | inform_declaration (fundecl); |
3557 | return -1; |
3558 | } |
3559 | |
3560 | return error_args ? -1 : (int) parmnum; |
3561 | } |
3562 | |
3563 | /* This is the entry point used by the parser to build unary operators |
3564 | in the input. CODE, a tree_code, specifies the unary operator, and |
3565 | ARG is the operand. For unary plus, the C parser currently uses |
3566 | CONVERT_EXPR for code. |
3567 | |
3568 | LOC is the location to use for the tree generated. |
3569 | */ |
3570 | |
3571 | struct c_expr |
3572 | parser_build_unary_op (location_t loc, enum tree_code code, struct c_expr arg) |
3573 | { |
3574 | struct c_expr result; |
3575 | |
3576 | result.original_code = code; |
3577 | result.original_type = NULL; |
3578 | |
3579 | if (reject_gcc_builtin (arg.value)) |
3580 | { |
3581 | result.value = error_mark_node; |
3582 | } |
3583 | else |
3584 | { |
3585 | result.value = build_unary_op (loc, code, arg.value, false); |
3586 | |
3587 | if (TREE_OVERFLOW_P (result.value) && !TREE_OVERFLOW_P (arg.value)) |
3588 | overflow_warning (loc, result.value, arg.value); |
3589 | } |
3590 | |
3591 | /* We are typically called when parsing a prefix token at LOC acting on |
3592 | ARG. Reflect this by updating the source range of the result to |
3593 | start at LOC and end at the end of ARG. */ |
3594 | set_c_expr_source_range (&result, |
3595 | loc, arg.get_finish ()); |
3596 | |
3597 | return result; |
3598 | } |
3599 | |
3600 | /* Returns true if TYPE is a character type, *not* including wchar_t. */ |
3601 | |
3602 | static bool |
3603 | char_type_p (tree type) |
3604 | { |
3605 | return (type == char_type_node |
3606 | || type == unsigned_char_type_node |
3607 | || type == signed_char_type_node |
3608 | || type == char16_type_node |
3609 | || type == char32_type_node); |
3610 | } |
3611 | |
3612 | /* This is the entry point used by the parser to build binary operators |
3613 | in the input. CODE, a tree_code, specifies the binary operator, and |
3614 | ARG1 and ARG2 are the operands. In addition to constructing the |
3615 | expression, we check for operands that were written with other binary |
3616 | operators in a way that is likely to confuse the user. |
3617 | |
3618 | LOCATION is the location of the binary operator. */ |
3619 | |
3620 | struct c_expr |
3621 | parser_build_binary_op (location_t location, enum tree_code code, |
3622 | struct c_expr arg1, struct c_expr arg2) |
3623 | { |
3624 | struct c_expr result; |
3625 | |
3626 | enum tree_code code1 = arg1.original_code; |
3627 | enum tree_code code2 = arg2.original_code; |
3628 | tree type1 = (arg1.original_type |
3629 | ? arg1.original_type |
3630 | : TREE_TYPE (arg1.value)); |
3631 | tree type2 = (arg2.original_type |
3632 | ? arg2.original_type |
3633 | : TREE_TYPE (arg2.value)); |
3634 | |
3635 | result.value = build_binary_op (location, code, |
3636 | arg1.value, arg2.value, true); |
3637 | result.original_code = code; |
3638 | result.original_type = NULL; |
3639 | |
3640 | if (TREE_CODE (result.value) == ERROR_MARK) |
3641 | { |
3642 | set_c_expr_source_range (&result, |
3643 | arg1.get_start (), |
3644 | arg2.get_finish ()); |
3645 | return result; |
3646 | } |
3647 | |
3648 | if (location != UNKNOWN_LOCATION) |
3649 | protected_set_expr_location (result.value, location); |
3650 | |
3651 | set_c_expr_source_range (&result, |
3652 | arg1.get_start (), |
3653 | arg2.get_finish ()); |
3654 | |
3655 | /* Check for cases such as x+y<<z which users are likely |
3656 | to misinterpret. */ |
3657 | if (warn_parentheses) |
3658 | warn_about_parentheses (location, code, code1, arg1.value, code2, |
3659 | arg2.value); |
3660 | |
3661 | if (warn_logical_op) |
3662 | warn_logical_operator (location, code, TREE_TYPE (result.value), |
3663 | code1, arg1.value, code2, arg2.value); |
3664 | |
3665 | if (warn_tautological_compare) |
3666 | { |
3667 | tree lhs = arg1.value; |
3668 | tree rhs = arg2.value; |
3669 | if (TREE_CODE (lhs) == C_MAYBE_CONST_EXPR) |
3670 | { |
3671 | if (C_MAYBE_CONST_EXPR_PRE (lhs) != NULL_TREE |
3672 | && TREE_SIDE_EFFECTS (C_MAYBE_CONST_EXPR_PRE (lhs))) |
3673 | lhs = NULL_TREE; |
3674 | else |
3675 | lhs = C_MAYBE_CONST_EXPR_EXPR (lhs); |
3676 | } |
3677 | if (TREE_CODE (rhs) == C_MAYBE_CONST_EXPR) |
3678 | { |
3679 | if (C_MAYBE_CONST_EXPR_PRE (rhs) != NULL_TREE |
3680 | && TREE_SIDE_EFFECTS (C_MAYBE_CONST_EXPR_PRE (rhs))) |
3681 | rhs = NULL_TREE; |
3682 | else |
3683 | rhs = C_MAYBE_CONST_EXPR_EXPR (rhs); |
3684 | } |
3685 | if (lhs != NULL_TREE && rhs != NULL_TREE) |
3686 | warn_tautological_cmp (location, code, lhs, rhs); |
3687 | } |
3688 | |
3689 | if (warn_logical_not_paren |
3690 | && TREE_CODE_CLASS (code) == tcc_comparison |
3691 | && code1 == TRUTH_NOT_EXPR |
3692 | && code2 != TRUTH_NOT_EXPR |
3693 | /* Avoid warning for !!x == y. */ |
3694 | && (TREE_CODE (arg1.value) != NE_EXPR |
3695 | || !integer_zerop (TREE_OPERAND (arg1.value, 1)))) |
3696 | { |
3697 | /* Avoid warning for !b == y where b has _Bool type. */ |
3698 | tree t = integer_zero_node; |
3699 | if (TREE_CODE (arg1.value) == EQ_EXPR |
3700 | && integer_zerop (TREE_OPERAND (arg1.value, 1)) |
3701 | && TREE_TYPE (TREE_OPERAND (arg1.value, 0)) == integer_type_node) |
3702 | { |
3703 | t = TREE_OPERAND (arg1.value, 0); |
3704 | do |
3705 | { |
3706 | if (TREE_TYPE (t) != integer_type_node) |
3707 | break; |
3708 | if (TREE_CODE (t) == C_MAYBE_CONST_EXPR) |
3709 | t = C_MAYBE_CONST_EXPR_EXPR (t); |
3710 | else if (CONVERT_EXPR_P (t)) |
3711 | t = TREE_OPERAND (t, 0); |
3712 | else |
3713 | break; |
3714 | } |
3715 | while (1); |
3716 | } |
3717 | if (TREE_CODE (TREE_TYPE (t)) != BOOLEAN_TYPE) |
3718 | warn_logical_not_parentheses (location, code, arg1.value, arg2.value); |
3719 | } |
3720 | |
3721 | /* Warn about comparisons against string literals, with the exception |
3722 | of testing for equality or inequality of a string literal with NULL. */ |
3723 | if (code == EQ_EXPR || code == NE_EXPR) |
3724 | { |
3725 | if ((code1 == STRING_CST |
3726 | && !integer_zerop (tree_strip_nop_conversions (arg2.value))) |
3727 | || (code2 == STRING_CST |
3728 | && !integer_zerop (tree_strip_nop_conversions (arg1.value)))) |
3729 | warning_at (location, OPT_Waddress, |
3730 | "comparison with string literal results in unspecified behavior" ); |
3731 | /* Warn for ptr == '\0', it's likely that it should've been ptr[0]. */ |
3732 | if (POINTER_TYPE_P (type1) |
3733 | && null_pointer_constant_p (arg2.value) |
3734 | && char_type_p (type2) |
3735 | && warning_at (location, OPT_Wpointer_compare, |
3736 | "comparison between pointer and zero character " |
3737 | "constant" )) |
3738 | inform (arg1.get_start (), "did you mean to dereference the pointer?" ); |
3739 | else if (POINTER_TYPE_P (type2) |
3740 | && null_pointer_constant_p (arg1.value) |
3741 | && char_type_p (type1) |
3742 | && warning_at (location, OPT_Wpointer_compare, |
3743 | "comparison between pointer and zero character " |
3744 | "constant" )) |
3745 | inform (arg2.get_start (), "did you mean to dereference the pointer?" ); |
3746 | } |
3747 | else if (TREE_CODE_CLASS (code) == tcc_comparison |
3748 | && (code1 == STRING_CST || code2 == STRING_CST)) |
3749 | warning_at (location, OPT_Waddress, |
3750 | "comparison with string literal results in unspecified behavior" ); |
3751 | |
3752 | if (TREE_OVERFLOW_P (result.value) |
3753 | && !TREE_OVERFLOW_P (arg1.value) |
3754 | && !TREE_OVERFLOW_P (arg2.value)) |
3755 | overflow_warning (location, result.value); |
3756 | |
3757 | /* Warn about comparisons of different enum types. */ |
3758 | if (warn_enum_compare |
3759 | && TREE_CODE_CLASS (code) == tcc_comparison |
3760 | && TREE_CODE (type1) == ENUMERAL_TYPE |
3761 | && TREE_CODE (type2) == ENUMERAL_TYPE |
3762 | && TYPE_MAIN_VARIANT (type1) != TYPE_MAIN_VARIANT (type2)) |
3763 | warning_at (location, OPT_Wenum_compare, |
3764 | "comparison between %qT and %qT" , |
3765 | type1, type2); |
3766 | |
3767 | return result; |
3768 | } |
3769 | |
3770 | /* Return a tree for the difference of pointers OP0 and OP1. |
3771 | The resulting tree has type ptrdiff_t. If POINTER_SUBTRACT sanitization is |
3772 | enabled, assign to INSTRUMENT_EXPR call to libsanitizer. */ |
3773 | |
3774 | static tree |
3775 | pointer_diff (location_t loc, tree op0, tree op1, tree *instrument_expr) |
3776 | { |
3777 | tree restype = ptrdiff_type_node; |
3778 | tree result, inttype; |
3779 | |
3780 | addr_space_t as0 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (op0))); |
3781 | addr_space_t as1 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (op1))); |
3782 | tree target_type = TREE_TYPE (TREE_TYPE (op0)); |
3783 | tree orig_op1 = op1; |
3784 | |
3785 | /* If the operands point into different address spaces, we need to |
3786 | explicitly convert them to pointers into the common address space |
3787 | before we can subtract the numerical address values. */ |
3788 | if (as0 != as1) |
3789 | { |
3790 | addr_space_t as_common; |
3791 | tree common_type; |
3792 | |
3793 | /* Determine the common superset address space. This is guaranteed |
3794 | to exist because the caller verified that comp_target_types |
3795 | returned non-zero. */ |
3796 | if (!addr_space_superset (as0, as1, &as_common)) |
3797 | gcc_unreachable (); |
3798 | |
3799 | common_type = common_pointer_type (TREE_TYPE (op0), TREE_TYPE (op1)); |
3800 | op0 = convert (common_type, op0); |
3801 | op1 = convert (common_type, op1); |
3802 | } |
3803 | |
3804 | /* Determine integer type result of the subtraction. This will usually |
3805 | be the same as the result type (ptrdiff_t), but may need to be a wider |
3806 | type if pointers for the address space are wider than ptrdiff_t. */ |
3807 | if (TYPE_PRECISION (restype) < TYPE_PRECISION (TREE_TYPE (op0))) |
3808 | inttype = c_common_type_for_size (TYPE_PRECISION (TREE_TYPE (op0)), 0); |
3809 | else |
3810 | inttype = restype; |
3811 | |
3812 | if (TREE_CODE (target_type) == VOID_TYPE) |
3813 | pedwarn (loc, OPT_Wpointer_arith, |
3814 | "pointer of type %<void *%> used in subtraction" ); |
3815 | if (TREE_CODE (target_type) == FUNCTION_TYPE) |
3816 | pedwarn (loc, OPT_Wpointer_arith, |
3817 | "pointer to a function used in subtraction" ); |
3818 | |
3819 | if (sanitize_flags_p (SANITIZE_POINTER_SUBTRACT)) |
3820 | { |
3821 | gcc_assert (current_function_decl != NULL_TREE); |
3822 | |
3823 | op0 = save_expr (op0); |
3824 | op1 = save_expr (op1); |
3825 | |
3826 | tree tt = builtin_decl_explicit (BUILT_IN_ASAN_POINTER_SUBTRACT); |
3827 | *instrument_expr = build_call_expr_loc (loc, tt, 2, op0, op1); |
3828 | } |
3829 | |
3830 | /* First do the subtraction, then build the divide operator |
3831 | and only convert at the very end. |
3832 | Do not do default conversions in case restype is a short type. */ |
3833 | |
3834 | /* POINTER_DIFF_EXPR requires a signed integer type of the same size as |
3835 | pointers. If some platform cannot provide that, or has a larger |
3836 | ptrdiff_type to support differences larger than half the address |
3837 | space, cast the pointers to some larger integer type and do the |
3838 | computations in that type. */ |
3839 | if (TYPE_PRECISION (inttype) > TYPE_PRECISION (TREE_TYPE (op0))) |
3840 | op0 = build_binary_op (loc, MINUS_EXPR, convert (inttype, op0), |
3841 | convert (inttype, op1), false); |
3842 | else |
3843 | op0 = build2_loc (loc, POINTER_DIFF_EXPR, inttype, op0, op1); |
3844 | |
3845 | /* This generates an error if op1 is pointer to incomplete type. */ |
3846 | if (!COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (TREE_TYPE (orig_op1)))) |
3847 | error_at (loc, "arithmetic on pointer to an incomplete type" ); |
3848 | |
3849 | op1 = c_size_in_bytes (target_type); |
3850 | |
3851 | if (pointer_to_zero_sized_aggr_p (TREE_TYPE (orig_op1))) |
3852 | error_at (loc, "arithmetic on pointer to an empty aggregate" ); |
3853 | |
3854 | /* Divide by the size, in easiest possible way. */ |
3855 | result = fold_build2_loc (loc, EXACT_DIV_EXPR, inttype, |
3856 | op0, convert (inttype, op1)); |
3857 | |
3858 | /* Convert to final result type if necessary. */ |
3859 | return convert (restype, result); |
3860 | } |
3861 | |
3862 | /* Expand atomic compound assignments into an appropriate sequence as |
3863 | specified by the C11 standard section 6.5.16.2. |
3864 | |
3865 | _Atomic T1 E1 |
3866 | T2 E2 |
3867 | E1 op= E2 |
3868 | |
3869 | This sequence is used for all types for which these operations are |
3870 | supported. |
3871 | |
3872 | In addition, built-in versions of the 'fe' prefixed routines may |
3873 | need to be invoked for floating point (real, complex or vector) when |
3874 | floating-point exceptions are supported. See 6.5.16.2 footnote 113. |
3875 | |
3876 | T1 newval; |
3877 | T1 old; |
3878 | T1 *addr |
3879 | T2 val |
3880 | fenv_t fenv |
3881 | |
3882 | addr = &E1; |
3883 | val = (E2); |
3884 | __atomic_load (addr, &old, SEQ_CST); |
3885 | feholdexcept (&fenv); |
3886 | loop: |
3887 | newval = old op val; |
3888 | if (__atomic_compare_exchange_strong (addr, &old, &newval, SEQ_CST, |
3889 | SEQ_CST)) |
3890 | goto done; |
3891 | feclearexcept (FE_ALL_EXCEPT); |
3892 | goto loop: |
3893 | done: |
3894 | feupdateenv (&fenv); |
3895 | |
3896 | The compiler will issue the __atomic_fetch_* built-in when possible, |
3897 | otherwise it will generate the generic form of the atomic operations. |
3898 | This requires temp(s) and has their address taken. The atomic processing |
3899 | is smart enough to figure out when the size of an object can utilize |
3900 | a lock-free version, and convert the built-in call to the appropriate |
3901 | lock-free routine. The optimizers will then dispose of any temps that |
3902 | are no longer required, and lock-free implementations are utilized as |
3903 | long as there is target support for the required size. |
3904 | |
3905 | If the operator is NOP_EXPR, then this is a simple assignment, and |
3906 | an __atomic_store is issued to perform the assignment rather than |
3907 | the above loop. */ |
3908 | |
3909 | /* Build an atomic assignment at LOC, expanding into the proper |
3910 | sequence to store LHS MODIFYCODE= RHS. Return a value representing |
3911 | the result of the operation, unless RETURN_OLD_P, in which case |
3912 | return the old value of LHS (this is only for postincrement and |
3913 | postdecrement). */ |
3914 | |
3915 | static tree |
3916 | build_atomic_assign (location_t loc, tree lhs, enum tree_code modifycode, |
3917 | tree rhs, bool return_old_p) |
3918 | { |
3919 | tree fndecl, func_call; |
3920 | vec<tree, va_gc> *params; |
3921 | tree val, nonatomic_lhs_type, nonatomic_rhs_type, newval, newval_addr; |
3922 | tree old, old_addr; |
3923 | tree compound_stmt; |
3924 | tree stmt, goto_stmt; |
3925 | tree loop_label, loop_decl, done_label, done_decl; |
3926 | |
3927 | tree lhs_type = TREE_TYPE (lhs); |
3928 | tree lhs_addr = build_unary_op (loc, ADDR_EXPR, lhs, false); |
3929 | tree seq_cst = build_int_cst (integer_type_node, MEMMODEL_SEQ_CST); |
3930 | tree rhs_semantic_type = TREE_TYPE (rhs); |
3931 | tree nonatomic_rhs_semantic_type; |
3932 | tree rhs_type; |
3933 | |
3934 | gcc_assert (TYPE_ATOMIC (lhs_type)); |
3935 | |
3936 | if (return_old_p) |
3937 | gcc_assert (modifycode == PLUS_EXPR || modifycode == MINUS_EXPR); |
3938 | |
3939 | /* Allocate enough vector items for a compare_exchange. */ |
3940 | vec_alloc (params, 6); |
3941 | |
3942 | /* Create a compound statement to hold the sequence of statements |
3943 | with a loop. */ |
3944 | compound_stmt = c_begin_compound_stmt (false); |
3945 | |
3946 | /* Remove any excess precision (which is only present here in the |
3947 | case of compound assignments). */ |
3948 | if (TREE_CODE (rhs) == EXCESS_PRECISION_EXPR) |
3949 | { |
3950 | gcc_assert (modifycode != NOP_EXPR); |
3951 | rhs = TREE_OPERAND (rhs, 0); |
3952 | } |
3953 | rhs_type = TREE_TYPE (rhs); |
3954 | |
3955 | /* Fold the RHS if it hasn't already been folded. */ |
3956 | if (modifycode != NOP_EXPR) |
3957 | rhs = c_fully_fold (rhs, false, NULL); |
3958 | |
3959 | /* Remove the qualifiers for the rest of the expressions and create |
3960 | the VAL temp variable to hold the RHS. */ |
3961 | nonatomic_lhs_type = build_qualified_type (lhs_type, TYPE_UNQUALIFIED); |
3962 | nonatomic_rhs_type = build_qualified_type (rhs_type, TYPE_UNQUALIFIED); |
3963 | nonatomic_rhs_semantic_type = build_qualified_type (rhs_semantic_type, |
3964 | TYPE_UNQUALIFIED); |
3965 | val = create_tmp_var_raw (nonatomic_rhs_type); |
3966 | TREE_ADDRESSABLE (val) = 1; |
3967 | TREE_NO_WARNING (val) = 1; |
3968 | rhs = build4 (TARGET_EXPR, nonatomic_rhs_type, val, rhs, NULL_TREE, |
3969 | NULL_TREE); |
3970 | SET_EXPR_LOCATION (rhs, loc); |
3971 | add_stmt (rhs); |
3972 | |
3973 | /* NOP_EXPR indicates it's a straight store of the RHS. Simply issue |
3974 | an atomic_store. */ |
3975 | if (modifycode == NOP_EXPR) |
3976 | { |
3977 | /* Build __atomic_store (&lhs, &val, SEQ_CST) */ |
3978 | rhs = build_unary_op (loc, ADDR_EXPR, val, false); |
3979 | fndecl = builtin_decl_explicit (BUILT_IN_ATOMIC_STORE); |
3980 | params->quick_push (lhs_addr); |
3981 | params->quick_push (rhs); |
3982 | params->quick_push (seq_cst); |
3983 | func_call = c_build_function_call_vec (loc, vNULL, fndecl, params, NULL); |
3984 | add_stmt (func_call); |
3985 | |
3986 | /* Finish the compound statement. */ |
3987 | compound_stmt = c_end_compound_stmt (loc, compound_stmt, false); |
3988 | |
3989 | /* VAL is the value which was stored, return a COMPOUND_STMT of |
3990 | the statement and that value. */ |
3991 | return build2 (COMPOUND_EXPR, nonatomic_lhs_type, compound_stmt, val); |
3992 | } |
3993 | |
3994 | /* Attempt to implement the atomic operation as an __atomic_fetch_* or |
3995 | __atomic_*_fetch built-in rather than a CAS loop. atomic_bool type |
3996 | isn't applicable for such builtins. ??? Do we want to handle enums? */ |
3997 | if ((TREE_CODE (lhs_type) == INTEGER_TYPE || POINTER_TYPE_P (lhs_type)) |
3998 | && TREE_CODE (rhs_type) == INTEGER_TYPE) |
3999 | { |
4000 | built_in_function fncode; |
4001 | switch (modifycode) |
4002 | { |
4003 | case PLUS_EXPR: |
4004 | case POINTER_PLUS_EXPR: |
4005 | fncode = (return_old_p |
4006 | ? BUILT_IN_ATOMIC_FETCH_ADD_N |
4007 | : BUILT_IN_ATOMIC_ADD_FETCH_N); |
4008 | break; |
4009 | case MINUS_EXPR: |
4010 | fncode = (return_old_p |
4011 | ? BUILT_IN_ATOMIC_FETCH_SUB_N |
4012 | : BUILT_IN_ATOMIC_SUB_FETCH_N); |
4013 | break; |
4014 | case BIT_AND_EXPR: |
4015 | fncode = (return_old_p |
4016 | ? |
---|