1 | /* Handle initialization things in C++. |
2 | Copyright (C) 1987-2017 Free Software Foundation, Inc. |
3 | Contributed by Michael Tiemann (tiemann@cygnus.com) |
4 | |
5 | This file is part of GCC. |
6 | |
7 | GCC is free software; you can redistribute it and/or modify |
8 | it under the terms of the GNU General Public License as published by |
9 | the Free Software Foundation; either version 3, or (at your option) |
10 | any later version. |
11 | |
12 | GCC is distributed in the hope that it will be useful, |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
15 | GNU General Public License for more details. |
16 | |
17 | You should have received a copy of the GNU General Public License |
18 | along with GCC; see the file COPYING3. If not see |
19 | <http://www.gnu.org/licenses/>. */ |
20 | |
21 | /* High-level class interface. */ |
22 | |
23 | #include "config.h" |
24 | #include "system.h" |
25 | #include "coretypes.h" |
26 | #include "target.h" |
27 | #include "cp-tree.h" |
28 | #include "stringpool.h" |
29 | #include "varasm.h" |
30 | #include "gimplify.h" |
31 | #include "c-family/c-ubsan.h" |
32 | #include "intl.h" |
33 | #include "stringpool.h" |
34 | #include "attribs.h" |
35 | #include "asan.h" |
36 | |
37 | static bool begin_init_stmts (tree *, tree *); |
38 | static tree finish_init_stmts (bool, tree, tree); |
39 | static void construct_virtual_base (tree, tree); |
40 | static void expand_aggr_init_1 (tree, tree, tree, tree, int, tsubst_flags_t); |
41 | static void expand_default_init (tree, tree, tree, tree, int, tsubst_flags_t); |
42 | static void perform_member_init (tree, tree); |
43 | static int member_init_ok_or_else (tree, tree, tree); |
44 | static void expand_virtual_init (tree, tree); |
45 | static tree sort_mem_initializers (tree, tree); |
46 | static tree initializing_context (tree); |
47 | static void expand_cleanup_for_base (tree, tree); |
48 | static tree dfs_initialize_vtbl_ptrs (tree, void *); |
49 | static tree build_field_list (tree, tree, int *); |
50 | static int diagnose_uninitialized_cst_or_ref_member_1 (tree, tree, bool, bool); |
51 | |
52 | static GTY(()) tree fn; |
53 | |
54 | /* We are about to generate some complex initialization code. |
55 | Conceptually, it is all a single expression. However, we may want |
56 | to include conditionals, loops, and other such statement-level |
57 | constructs. Therefore, we build the initialization code inside a |
58 | statement-expression. This function starts such an expression. |
59 | STMT_EXPR_P and COMPOUND_STMT_P are filled in by this function; |
60 | pass them back to finish_init_stmts when the expression is |
61 | complete. */ |
62 | |
63 | static bool |
64 | begin_init_stmts (tree *stmt_expr_p, tree *compound_stmt_p) |
65 | { |
66 | bool is_global = !building_stmt_list_p (); |
67 | |
68 | *stmt_expr_p = begin_stmt_expr (); |
69 | *compound_stmt_p = begin_compound_stmt (BCS_NO_SCOPE); |
70 | |
71 | return is_global; |
72 | } |
73 | |
74 | /* Finish out the statement-expression begun by the previous call to |
75 | begin_init_stmts. Returns the statement-expression itself. */ |
76 | |
77 | static tree |
78 | finish_init_stmts (bool is_global, tree stmt_expr, tree compound_stmt) |
79 | { |
80 | finish_compound_stmt (compound_stmt); |
81 | |
82 | stmt_expr = finish_stmt_expr (stmt_expr, true); |
83 | |
84 | gcc_assert (!building_stmt_list_p () == is_global); |
85 | |
86 | return stmt_expr; |
87 | } |
88 | |
89 | /* Constructors */ |
90 | |
91 | /* Called from initialize_vtbl_ptrs via dfs_walk. BINFO is the base |
92 | which we want to initialize the vtable pointer for, DATA is |
93 | TREE_LIST whose TREE_VALUE is the this ptr expression. */ |
94 | |
95 | static tree |
96 | dfs_initialize_vtbl_ptrs (tree binfo, void *data) |
97 | { |
98 | if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo))) |
99 | return dfs_skip_bases; |
100 | |
101 | if (!BINFO_PRIMARY_P (binfo) || BINFO_VIRTUAL_P (binfo)) |
102 | { |
103 | tree base_ptr = TREE_VALUE ((tree) data); |
104 | |
105 | base_ptr = build_base_path (PLUS_EXPR, base_ptr, binfo, /*nonnull=*/1, |
106 | tf_warning_or_error); |
107 | |
108 | expand_virtual_init (binfo, base_ptr); |
109 | } |
110 | |
111 | return NULL_TREE; |
112 | } |
113 | |
114 | /* Initialize all the vtable pointers in the object pointed to by |
115 | ADDR. */ |
116 | |
117 | void |
118 | initialize_vtbl_ptrs (tree addr) |
119 | { |
120 | tree list; |
121 | tree type; |
122 | |
123 | type = TREE_TYPE (TREE_TYPE (addr)); |
124 | list = build_tree_list (type, addr); |
125 | |
126 | /* Walk through the hierarchy, initializing the vptr in each base |
127 | class. We do these in pre-order because we can't find the virtual |
128 | bases for a class until we've initialized the vtbl for that |
129 | class. */ |
130 | dfs_walk_once (TYPE_BINFO (type), dfs_initialize_vtbl_ptrs, NULL, list); |
131 | } |
132 | |
133 | /* Return an expression for the zero-initialization of an object with |
134 | type T. This expression will either be a constant (in the case |
135 | that T is a scalar), or a CONSTRUCTOR (in the case that T is an |
136 | aggregate), or NULL (in the case that T does not require |
137 | initialization). In either case, the value can be used as |
138 | DECL_INITIAL for a decl of the indicated TYPE; it is a valid static |
139 | initializer. If NELTS is non-NULL, and TYPE is an ARRAY_TYPE, NELTS |
140 | is the number of elements in the array. If STATIC_STORAGE_P is |
141 | TRUE, initializers are only generated for entities for which |
142 | zero-initialization does not simply mean filling the storage with |
143 | zero bytes. FIELD_SIZE, if non-NULL, is the bit size of the field, |
144 | subfields with bit positions at or above that bit size shouldn't |
145 | be added. Note that this only works when the result is assigned |
146 | to a base COMPONENT_REF; if we only have a pointer to the base subobject, |
147 | expand_assignment will end up clearing the full size of TYPE. */ |
148 | |
149 | static tree |
150 | build_zero_init_1 (tree type, tree nelts, bool static_storage_p, |
151 | tree field_size) |
152 | { |
153 | tree init = NULL_TREE; |
154 | |
155 | /* [dcl.init] |
156 | |
157 | To zero-initialize an object of type T means: |
158 | |
159 | -- if T is a scalar type, the storage is set to the value of zero |
160 | converted to T. |
161 | |
162 | -- if T is a non-union class type, the storage for each nonstatic |
163 | data member and each base-class subobject is zero-initialized. |
164 | |
165 | -- if T is a union type, the storage for its first data member is |
166 | zero-initialized. |
167 | |
168 | -- if T is an array type, the storage for each element is |
169 | zero-initialized. |
170 | |
171 | -- if T is a reference type, no initialization is performed. */ |
172 | |
173 | gcc_assert (nelts == NULL_TREE || TREE_CODE (nelts) == INTEGER_CST); |
174 | |
175 | if (type == error_mark_node) |
176 | ; |
177 | else if (static_storage_p && zero_init_p (type)) |
178 | /* In order to save space, we do not explicitly build initializers |
179 | for items that do not need them. GCC's semantics are that |
180 | items with static storage duration that are not otherwise |
181 | initialized are initialized to zero. */ |
182 | ; |
183 | else if (TYPE_PTR_OR_PTRMEM_P (type)) |
184 | init = fold (convert (type, nullptr_node)); |
185 | else if (SCALAR_TYPE_P (type)) |
186 | init = fold (convert (type, integer_zero_node)); |
187 | else if (RECORD_OR_UNION_CODE_P (TREE_CODE (type))) |
188 | { |
189 | tree field; |
190 | vec<constructor_elt, va_gc> *v = NULL; |
191 | |
192 | /* Iterate over the fields, building initializations. */ |
193 | for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field)) |
194 | { |
195 | if (TREE_CODE (field) != FIELD_DECL) |
196 | continue; |
197 | |
198 | if (TREE_TYPE (field) == error_mark_node) |
199 | continue; |
200 | |
201 | /* Don't add virtual bases for base classes if they are beyond |
202 | the size of the current field, that means it is present |
203 | somewhere else in the object. */ |
204 | if (field_size) |
205 | { |
206 | tree bitpos = bit_position (field); |
207 | if (TREE_CODE (bitpos) == INTEGER_CST |
208 | && !tree_int_cst_lt (bitpos, field_size)) |
209 | continue; |
210 | } |
211 | |
212 | /* Note that for class types there will be FIELD_DECLs |
213 | corresponding to base classes as well. Thus, iterating |
214 | over TYPE_FIELDs will result in correct initialization of |
215 | all of the subobjects. */ |
216 | if (!static_storage_p || !zero_init_p (TREE_TYPE (field))) |
217 | { |
218 | tree new_field_size |
219 | = (DECL_FIELD_IS_BASE (field) |
220 | && DECL_SIZE (field) |
221 | && TREE_CODE (DECL_SIZE (field)) == INTEGER_CST) |
222 | ? DECL_SIZE (field) : NULL_TREE; |
223 | tree value = build_zero_init_1 (TREE_TYPE (field), |
224 | /*nelts=*/NULL_TREE, |
225 | static_storage_p, |
226 | new_field_size); |
227 | if (value) |
228 | CONSTRUCTOR_APPEND_ELT(v, field, value); |
229 | } |
230 | |
231 | /* For unions, only the first field is initialized. */ |
232 | if (TREE_CODE (type) == UNION_TYPE) |
233 | break; |
234 | } |
235 | |
236 | /* Build a constructor to contain the initializations. */ |
237 | init = build_constructor (type, v); |
238 | } |
239 | else if (TREE_CODE (type) == ARRAY_TYPE) |
240 | { |
241 | tree max_index; |
242 | vec<constructor_elt, va_gc> *v = NULL; |
243 | |
244 | /* Iterate over the array elements, building initializations. */ |
245 | if (nelts) |
246 | max_index = fold_build2_loc (input_location, |
247 | MINUS_EXPR, TREE_TYPE (nelts), |
248 | nelts, integer_one_node); |
249 | else |
250 | max_index = array_type_nelts (type); |
251 | |
252 | /* If we have an error_mark here, we should just return error mark |
253 | as we don't know the size of the array yet. */ |
254 | if (max_index == error_mark_node) |
255 | return error_mark_node; |
256 | gcc_assert (TREE_CODE (max_index) == INTEGER_CST); |
257 | |
258 | /* A zero-sized array, which is accepted as an extension, will |
259 | have an upper bound of -1. */ |
260 | if (!tree_int_cst_equal (max_index, integer_minus_one_node)) |
261 | { |
262 | constructor_elt ce; |
263 | |
264 | /* If this is a one element array, we just use a regular init. */ |
265 | if (tree_int_cst_equal (size_zero_node, max_index)) |
266 | ce.index = size_zero_node; |
267 | else |
268 | ce.index = build2 (RANGE_EXPR, sizetype, size_zero_node, |
269 | max_index); |
270 | |
271 | ce.value = build_zero_init_1 (TREE_TYPE (type), |
272 | /*nelts=*/NULL_TREE, |
273 | static_storage_p, NULL_TREE); |
274 | if (ce.value) |
275 | { |
276 | vec_alloc (v, 1); |
277 | v->quick_push (ce); |
278 | } |
279 | } |
280 | |
281 | /* Build a constructor to contain the initializations. */ |
282 | init = build_constructor (type, v); |
283 | } |
284 | else if (VECTOR_TYPE_P (type)) |
285 | init = build_zero_cst (type); |
286 | else |
287 | gcc_assert (TREE_CODE (type) == REFERENCE_TYPE); |
288 | |
289 | /* In all cases, the initializer is a constant. */ |
290 | if (init) |
291 | TREE_CONSTANT (init) = 1; |
292 | |
293 | return init; |
294 | } |
295 | |
296 | /* Return an expression for the zero-initialization of an object with |
297 | type T. This expression will either be a constant (in the case |
298 | that T is a scalar), or a CONSTRUCTOR (in the case that T is an |
299 | aggregate), or NULL (in the case that T does not require |
300 | initialization). In either case, the value can be used as |
301 | DECL_INITIAL for a decl of the indicated TYPE; it is a valid static |
302 | initializer. If NELTS is non-NULL, and TYPE is an ARRAY_TYPE, NELTS |
303 | is the number of elements in the array. If STATIC_STORAGE_P is |
304 | TRUE, initializers are only generated for entities for which |
305 | zero-initialization does not simply mean filling the storage with |
306 | zero bytes. */ |
307 | |
308 | tree |
309 | build_zero_init (tree type, tree nelts, bool static_storage_p) |
310 | { |
311 | return build_zero_init_1 (type, nelts, static_storage_p, NULL_TREE); |
312 | } |
313 | |
314 | /* Return a suitable initializer for value-initializing an object of type |
315 | TYPE, as described in [dcl.init]. */ |
316 | |
317 | tree |
318 | build_value_init (tree type, tsubst_flags_t complain) |
319 | { |
320 | /* [dcl.init] |
321 | |
322 | To value-initialize an object of type T means: |
323 | |
324 | - if T is a class type (clause 9) with either no default constructor |
325 | (12.1) or a default constructor that is user-provided or deleted, |
326 | then the object is default-initialized; |
327 | |
328 | - if T is a (possibly cv-qualified) class type without a user-provided |
329 | or deleted default constructor, then the object is zero-initialized |
330 | and the semantic constraints for default-initialization are checked, |
331 | and if T has a non-trivial default constructor, the object is |
332 | default-initialized; |
333 | |
334 | - if T is an array type, then each element is value-initialized; |
335 | |
336 | - otherwise, the object is zero-initialized. |
337 | |
338 | A program that calls for default-initialization or |
339 | value-initialization of an entity of reference type is ill-formed. */ |
340 | |
341 | /* The AGGR_INIT_EXPR tweaking below breaks in templates. */ |
342 | gcc_assert (!processing_template_decl |
343 | || (SCALAR_TYPE_P (type) || TREE_CODE (type) == ARRAY_TYPE)); |
344 | |
345 | if (CLASS_TYPE_P (type) |
346 | && type_build_ctor_call (type)) |
347 | { |
348 | tree ctor = |
349 | build_special_member_call (NULL_TREE, complete_ctor_identifier, |
350 | NULL, type, LOOKUP_NORMAL, |
351 | complain); |
352 | if (ctor == error_mark_node) |
353 | return ctor; |
354 | tree fn = NULL_TREE; |
355 | if (TREE_CODE (ctor) == CALL_EXPR) |
356 | fn = get_callee_fndecl (ctor); |
357 | ctor = build_aggr_init_expr (type, ctor); |
358 | if (fn && user_provided_p (fn)) |
359 | return ctor; |
360 | else if (TYPE_HAS_COMPLEX_DFLT (type)) |
361 | { |
362 | /* This is a class that needs constructing, but doesn't have |
363 | a user-provided constructor. So we need to zero-initialize |
364 | the object and then call the implicitly defined ctor. |
365 | This will be handled in simplify_aggr_init_expr. */ |
366 | AGGR_INIT_ZERO_FIRST (ctor) = 1; |
367 | return ctor; |
368 | } |
369 | } |
370 | |
371 | /* Discard any access checking during subobject initialization; |
372 | the checks are implied by the call to the ctor which we have |
373 | verified is OK (cpp0x/defaulted46.C). */ |
374 | push_deferring_access_checks (dk_deferred); |
375 | tree r = build_value_init_noctor (type, complain); |
376 | pop_deferring_access_checks (); |
377 | return r; |
378 | } |
379 | |
380 | /* Like build_value_init, but don't call the constructor for TYPE. Used |
381 | for base initializers. */ |
382 | |
383 | tree |
384 | build_value_init_noctor (tree type, tsubst_flags_t complain) |
385 | { |
386 | if (!COMPLETE_TYPE_P (type)) |
387 | { |
388 | if (complain & tf_error) |
389 | error ("value-initialization of incomplete type %qT" , type); |
390 | return error_mark_node; |
391 | } |
392 | /* FIXME the class and array cases should just use digest_init once it is |
393 | SFINAE-enabled. */ |
394 | if (CLASS_TYPE_P (type)) |
395 | { |
396 | gcc_assert (!TYPE_HAS_COMPLEX_DFLT (type) |
397 | || errorcount != 0); |
398 | |
399 | if (TREE_CODE (type) != UNION_TYPE) |
400 | { |
401 | tree field; |
402 | vec<constructor_elt, va_gc> *v = NULL; |
403 | |
404 | /* Iterate over the fields, building initializations. */ |
405 | for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field)) |
406 | { |
407 | tree ftype, value; |
408 | |
409 | if (TREE_CODE (field) != FIELD_DECL) |
410 | continue; |
411 | |
412 | ftype = TREE_TYPE (field); |
413 | |
414 | if (ftype == error_mark_node) |
415 | continue; |
416 | |
417 | /* We could skip vfields and fields of types with |
418 | user-defined constructors, but I think that won't improve |
419 | performance at all; it should be simpler in general just |
420 | to zero out the entire object than try to only zero the |
421 | bits that actually need it. */ |
422 | |
423 | /* Note that for class types there will be FIELD_DECLs |
424 | corresponding to base classes as well. Thus, iterating |
425 | over TYPE_FIELDs will result in correct initialization of |
426 | all of the subobjects. */ |
427 | value = build_value_init (ftype, complain); |
428 | value = maybe_constant_init (value); |
429 | |
430 | if (value == error_mark_node) |
431 | return error_mark_node; |
432 | |
433 | CONSTRUCTOR_APPEND_ELT(v, field, value); |
434 | |
435 | /* We shouldn't have gotten here for anything that would need |
436 | non-trivial initialization, and gimplify_init_ctor_preeval |
437 | would need to be fixed to allow it. */ |
438 | gcc_assert (TREE_CODE (value) != TARGET_EXPR |
439 | && TREE_CODE (value) != AGGR_INIT_EXPR); |
440 | } |
441 | |
442 | /* Build a constructor to contain the zero- initializations. */ |
443 | return build_constructor (type, v); |
444 | } |
445 | } |
446 | else if (TREE_CODE (type) == ARRAY_TYPE) |
447 | { |
448 | vec<constructor_elt, va_gc> *v = NULL; |
449 | |
450 | /* Iterate over the array elements, building initializations. */ |
451 | tree max_index = array_type_nelts (type); |
452 | |
453 | /* If we have an error_mark here, we should just return error mark |
454 | as we don't know the size of the array yet. */ |
455 | if (max_index == error_mark_node) |
456 | { |
457 | if (complain & tf_error) |
458 | error ("cannot value-initialize array of unknown bound %qT" , |
459 | type); |
460 | return error_mark_node; |
461 | } |
462 | gcc_assert (TREE_CODE (max_index) == INTEGER_CST); |
463 | |
464 | /* A zero-sized array, which is accepted as an extension, will |
465 | have an upper bound of -1. */ |
466 | if (!tree_int_cst_equal (max_index, integer_minus_one_node)) |
467 | { |
468 | constructor_elt ce; |
469 | |
470 | /* If this is a one element array, we just use a regular init. */ |
471 | if (tree_int_cst_equal (size_zero_node, max_index)) |
472 | ce.index = size_zero_node; |
473 | else |
474 | ce.index = build2 (RANGE_EXPR, sizetype, size_zero_node, max_index); |
475 | |
476 | ce.value = build_value_init (TREE_TYPE (type), complain); |
477 | ce.value = maybe_constant_init (ce.value); |
478 | if (ce.value == error_mark_node) |
479 | return error_mark_node; |
480 | |
481 | vec_alloc (v, 1); |
482 | v->quick_push (ce); |
483 | |
484 | /* We shouldn't have gotten here for anything that would need |
485 | non-trivial initialization, and gimplify_init_ctor_preeval |
486 | would need to be fixed to allow it. */ |
487 | gcc_assert (TREE_CODE (ce.value) != TARGET_EXPR |
488 | && TREE_CODE (ce.value) != AGGR_INIT_EXPR); |
489 | } |
490 | |
491 | /* Build a constructor to contain the initializations. */ |
492 | return build_constructor (type, v); |
493 | } |
494 | else if (TREE_CODE (type) == FUNCTION_TYPE) |
495 | { |
496 | if (complain & tf_error) |
497 | error ("value-initialization of function type %qT" , type); |
498 | return error_mark_node; |
499 | } |
500 | else if (TREE_CODE (type) == REFERENCE_TYPE) |
501 | { |
502 | if (complain & tf_error) |
503 | error ("value-initialization of reference type %qT" , type); |
504 | return error_mark_node; |
505 | } |
506 | |
507 | return build_zero_init (type, NULL_TREE, /*static_storage_p=*/false); |
508 | } |
509 | |
510 | /* Initialize current class with INIT, a TREE_LIST of |
511 | arguments for a target constructor. If TREE_LIST is void_type_node, |
512 | an empty initializer list was given. */ |
513 | |
514 | static void |
515 | perform_target_ctor (tree init) |
516 | { |
517 | tree decl = current_class_ref; |
518 | tree type = current_class_type; |
519 | |
520 | finish_expr_stmt (build_aggr_init (decl, init, |
521 | LOOKUP_NORMAL|LOOKUP_DELEGATING_CONS, |
522 | tf_warning_or_error)); |
523 | if (type_build_dtor_call (type)) |
524 | { |
525 | tree expr = build_delete (type, decl, sfk_complete_destructor, |
526 | LOOKUP_NORMAL |
527 | |LOOKUP_NONVIRTUAL |
528 | |LOOKUP_DESTRUCTOR, |
529 | 0, tf_warning_or_error); |
530 | if (expr != error_mark_node |
531 | && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)) |
532 | finish_eh_cleanup (expr); |
533 | } |
534 | } |
535 | |
536 | /* Return the non-static data initializer for FIELD_DECL MEMBER. */ |
537 | |
538 | static GTY((cache)) tree_cache_map *nsdmi_inst; |
539 | |
540 | tree |
541 | get_nsdmi (tree member, bool in_ctor, tsubst_flags_t complain) |
542 | { |
543 | tree init; |
544 | tree save_ccp = current_class_ptr; |
545 | tree save_ccr = current_class_ref; |
546 | |
547 | if (DECL_LANG_SPECIFIC (member) && DECL_TEMPLATE_INFO (member)) |
548 | { |
549 | init = DECL_INITIAL (DECL_TI_TEMPLATE (member)); |
550 | location_t expr_loc |
551 | = EXPR_LOC_OR_LOC (init, DECL_SOURCE_LOCATION (member)); |
552 | tree *slot; |
553 | if (TREE_CODE (init) == DEFAULT_ARG) |
554 | /* Unparsed. */; |
555 | else if (nsdmi_inst && (slot = nsdmi_inst->get (member))) |
556 | init = *slot; |
557 | /* Check recursive instantiation. */ |
558 | else if (DECL_INSTANTIATING_NSDMI_P (member)) |
559 | { |
560 | if (complain & tf_error) |
561 | error_at (expr_loc, "recursive instantiation of default member " |
562 | "initializer for %qD" , member); |
563 | init = error_mark_node; |
564 | } |
565 | else |
566 | { |
567 | int un = cp_unevaluated_operand; |
568 | cp_unevaluated_operand = 0; |
569 | |
570 | location_t sloc = input_location; |
571 | input_location = expr_loc; |
572 | |
573 | DECL_INSTANTIATING_NSDMI_P (member) = 1; |
574 | |
575 | inject_this_parameter (DECL_CONTEXT (member), TYPE_UNQUALIFIED); |
576 | |
577 | start_lambda_scope (member); |
578 | |
579 | /* Do deferred instantiation of the NSDMI. */ |
580 | init = (tsubst_copy_and_build |
581 | (init, DECL_TI_ARGS (member), |
582 | complain, member, /*function_p=*/false, |
583 | /*integral_constant_expression_p=*/false)); |
584 | init = digest_nsdmi_init (member, init, complain); |
585 | |
586 | finish_lambda_scope (); |
587 | |
588 | DECL_INSTANTIATING_NSDMI_P (member) = 0; |
589 | |
590 | if (init != error_mark_node) |
591 | { |
592 | if (!nsdmi_inst) |
593 | nsdmi_inst = tree_cache_map::create_ggc (37); |
594 | nsdmi_inst->put (member, init); |
595 | } |
596 | |
597 | input_location = sloc; |
598 | cp_unevaluated_operand = un; |
599 | } |
600 | } |
601 | else |
602 | init = DECL_INITIAL (member); |
603 | |
604 | if (init && TREE_CODE (init) == DEFAULT_ARG) |
605 | { |
606 | if (complain & tf_error) |
607 | { |
608 | error ("default member initializer for %qD required before the end " |
609 | "of its enclosing class" , member); |
610 | inform (location_of (init), "defined here" ); |
611 | DECL_INITIAL (member) = error_mark_node; |
612 | } |
613 | init = error_mark_node; |
614 | } |
615 | |
616 | if (in_ctor) |
617 | { |
618 | current_class_ptr = save_ccp; |
619 | current_class_ref = save_ccr; |
620 | } |
621 | else |
622 | { |
623 | /* Use a PLACEHOLDER_EXPR when we don't have a 'this' parameter to |
624 | refer to; constexpr evaluation knows what to do with it. */ |
625 | current_class_ref = build0 (PLACEHOLDER_EXPR, DECL_CONTEXT (member)); |
626 | current_class_ptr = build_address (current_class_ref); |
627 | } |
628 | |
629 | /* Strip redundant TARGET_EXPR so we don't need to remap it, and |
630 | so the aggregate init code below will see a CONSTRUCTOR. */ |
631 | bool simple_target = (init && SIMPLE_TARGET_EXPR_P (init)); |
632 | if (simple_target) |
633 | init = TARGET_EXPR_INITIAL (init); |
634 | init = break_out_target_exprs (init); |
635 | if (simple_target && TREE_CODE (init) != CONSTRUCTOR) |
636 | /* Now put it back so C++17 copy elision works. */ |
637 | init = get_target_expr (init); |
638 | |
639 | current_class_ptr = save_ccp; |
640 | current_class_ref = save_ccr; |
641 | return init; |
642 | } |
643 | |
644 | /* Diagnose the flexible array MEMBER if its INITializer is non-null |
645 | and return true if so. Otherwise return false. */ |
646 | |
647 | bool |
648 | maybe_reject_flexarray_init (tree member, tree init) |
649 | { |
650 | tree type = TREE_TYPE (member); |
651 | |
652 | if (!init |
653 | || TREE_CODE (type) != ARRAY_TYPE |
654 | || TYPE_DOMAIN (type)) |
655 | return false; |
656 | |
657 | /* Point at the flexible array member declaration if it's initialized |
658 | in-class, and at the ctor if it's initialized in a ctor member |
659 | initializer list. */ |
660 | location_t loc; |
661 | if (DECL_INITIAL (member) == init |
662 | || !current_function_decl |
663 | || DECL_DEFAULTED_FN (current_function_decl)) |
664 | loc = DECL_SOURCE_LOCATION (member); |
665 | else |
666 | loc = DECL_SOURCE_LOCATION (current_function_decl); |
667 | |
668 | error_at (loc, "initializer for flexible array member %q#D" , member); |
669 | return true; |
670 | } |
671 | |
672 | /* Initialize MEMBER, a FIELD_DECL, with INIT, a TREE_LIST of |
673 | arguments. If TREE_LIST is void_type_node, an empty initializer |
674 | list was given; if NULL_TREE no initializer was given. */ |
675 | |
676 | static void |
677 | perform_member_init (tree member, tree init) |
678 | { |
679 | tree decl; |
680 | tree type = TREE_TYPE (member); |
681 | |
682 | /* Use the non-static data member initializer if there was no |
683 | mem-initializer for this field. */ |
684 | if (init == NULL_TREE) |
685 | init = get_nsdmi (member, /*ctor*/true, tf_warning_or_error); |
686 | |
687 | if (init == error_mark_node) |
688 | return; |
689 | |
690 | /* Effective C++ rule 12 requires that all data members be |
691 | initialized. */ |
692 | if (warn_ecpp && init == NULL_TREE && TREE_CODE (type) != ARRAY_TYPE) |
693 | warning_at (DECL_SOURCE_LOCATION (current_function_decl), OPT_Weffc__, |
694 | "%qD should be initialized in the member initialization list" , |
695 | member); |
696 | |
697 | /* Get an lvalue for the data member. */ |
698 | decl = build_class_member_access_expr (current_class_ref, member, |
699 | /*access_path=*/NULL_TREE, |
700 | /*preserve_reference=*/true, |
701 | tf_warning_or_error); |
702 | if (decl == error_mark_node) |
703 | return; |
704 | |
705 | if (warn_init_self && init && TREE_CODE (init) == TREE_LIST |
706 | && TREE_CHAIN (init) == NULL_TREE) |
707 | { |
708 | tree val = TREE_VALUE (init); |
709 | /* Handle references. */ |
710 | if (REFERENCE_REF_P (val)) |
711 | val = TREE_OPERAND (val, 0); |
712 | if (TREE_CODE (val) == COMPONENT_REF && TREE_OPERAND (val, 1) == member |
713 | && TREE_OPERAND (val, 0) == current_class_ref) |
714 | warning_at (DECL_SOURCE_LOCATION (current_function_decl), |
715 | OPT_Winit_self, "%qD is initialized with itself" , |
716 | member); |
717 | } |
718 | |
719 | if (init == void_type_node) |
720 | { |
721 | /* mem() means value-initialization. */ |
722 | if (TREE_CODE (type) == ARRAY_TYPE) |
723 | { |
724 | init = build_vec_init_expr (type, init, tf_warning_or_error); |
725 | init = build2 (INIT_EXPR, type, decl, init); |
726 | finish_expr_stmt (init); |
727 | } |
728 | else |
729 | { |
730 | tree value = build_value_init (type, tf_warning_or_error); |
731 | if (value == error_mark_node) |
732 | return; |
733 | init = build2 (INIT_EXPR, type, decl, value); |
734 | finish_expr_stmt (init); |
735 | } |
736 | } |
737 | /* Deal with this here, as we will get confused if we try to call the |
738 | assignment op for an anonymous union. This can happen in a |
739 | synthesized copy constructor. */ |
740 | else if (ANON_AGGR_TYPE_P (type)) |
741 | { |
742 | if (init) |
743 | { |
744 | init = build2 (INIT_EXPR, type, decl, TREE_VALUE (init)); |
745 | finish_expr_stmt (init); |
746 | } |
747 | } |
748 | else if (init |
749 | && (TREE_CODE (type) == REFERENCE_TYPE |
750 | /* Pre-digested NSDMI. */ |
751 | || (((TREE_CODE (init) == CONSTRUCTOR |
752 | && TREE_TYPE (init) == type) |
753 | /* { } mem-initializer. */ |
754 | || (TREE_CODE (init) == TREE_LIST |
755 | && DIRECT_LIST_INIT_P (TREE_VALUE (init)))) |
756 | && (CP_AGGREGATE_TYPE_P (type) |
757 | || is_std_init_list (type))))) |
758 | { |
759 | /* With references and list-initialization, we need to deal with |
760 | extending temporary lifetimes. 12.2p5: "A temporary bound to a |
761 | reference member in a constructor’s ctor-initializer (12.6.2) |
762 | persists until the constructor exits." */ |
763 | unsigned i; tree t; |
764 | vec<tree, va_gc> *cleanups = make_tree_vector (); |
765 | if (TREE_CODE (init) == TREE_LIST) |
766 | init = build_x_compound_expr_from_list (init, ELK_MEM_INIT, |
767 | tf_warning_or_error); |
768 | if (TREE_TYPE (init) != type) |
769 | { |
770 | if (BRACE_ENCLOSED_INITIALIZER_P (init) |
771 | && CP_AGGREGATE_TYPE_P (type)) |
772 | init = reshape_init (type, init, tf_warning_or_error); |
773 | init = digest_init (type, init, tf_warning_or_error); |
774 | } |
775 | if (init == error_mark_node) |
776 | return; |
777 | /* A FIELD_DECL doesn't really have a suitable lifetime, but |
778 | make_temporary_var_for_ref_to_temp will treat it as automatic and |
779 | set_up_extended_ref_temp wants to use the decl in a warning. */ |
780 | init = extend_ref_init_temps (member, init, &cleanups); |
781 | if (TREE_CODE (type) == ARRAY_TYPE |
782 | && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TREE_TYPE (type))) |
783 | init = build_vec_init_expr (type, init, tf_warning_or_error); |
784 | init = build2 (INIT_EXPR, type, decl, init); |
785 | finish_expr_stmt (init); |
786 | FOR_EACH_VEC_ELT (*cleanups, i, t) |
787 | push_cleanup (decl, t, false); |
788 | release_tree_vector (cleanups); |
789 | } |
790 | else if (type_build_ctor_call (type) |
791 | || (init && CLASS_TYPE_P (strip_array_types (type)))) |
792 | { |
793 | if (TREE_CODE (type) == ARRAY_TYPE) |
794 | { |
795 | if (init) |
796 | { |
797 | /* Check to make sure the member initializer is valid and |
798 | something like a CONSTRUCTOR in: T a[] = { 1, 2 } and |
799 | if it isn't, return early to avoid triggering another |
800 | error below. */ |
801 | if (maybe_reject_flexarray_init (member, init)) |
802 | return; |
803 | |
804 | if (TREE_CODE (init) != TREE_LIST || TREE_CHAIN (init)) |
805 | init = error_mark_node; |
806 | else |
807 | init = TREE_VALUE (init); |
808 | |
809 | if (BRACE_ENCLOSED_INITIALIZER_P (init)) |
810 | init = digest_init (type, init, tf_warning_or_error); |
811 | } |
812 | if (init == NULL_TREE |
813 | || same_type_ignoring_top_level_qualifiers_p (type, |
814 | TREE_TYPE (init))) |
815 | { |
816 | if (TYPE_DOMAIN (type) && TYPE_MAX_VALUE (TYPE_DOMAIN (type))) |
817 | { |
818 | /* Initialize the array only if it's not a flexible |
819 | array member (i.e., if it has an upper bound). */ |
820 | init = build_vec_init_expr (type, init, tf_warning_or_error); |
821 | init = build2 (INIT_EXPR, type, decl, init); |
822 | finish_expr_stmt (init); |
823 | } |
824 | } |
825 | else |
826 | error ("invalid initializer for array member %q#D" , member); |
827 | } |
828 | else |
829 | { |
830 | int flags = LOOKUP_NORMAL; |
831 | if (DECL_DEFAULTED_FN (current_function_decl)) |
832 | flags |= LOOKUP_DEFAULTED; |
833 | if (CP_TYPE_CONST_P (type) |
834 | && init == NULL_TREE |
835 | && default_init_uninitialized_part (type)) |
836 | { |
837 | /* TYPE_NEEDS_CONSTRUCTING can be set just because we have a |
838 | vtable; still give this diagnostic. */ |
839 | if (permerror (DECL_SOURCE_LOCATION (current_function_decl), |
840 | "uninitialized const member in %q#T" , type)) |
841 | inform (DECL_SOURCE_LOCATION (member), |
842 | "%q#D should be initialized" , member ); |
843 | } |
844 | finish_expr_stmt (build_aggr_init (decl, init, flags, |
845 | tf_warning_or_error)); |
846 | } |
847 | } |
848 | else |
849 | { |
850 | if (init == NULL_TREE) |
851 | { |
852 | tree core_type; |
853 | /* member traversal: note it leaves init NULL */ |
854 | if (TREE_CODE (type) == REFERENCE_TYPE) |
855 | { |
856 | if (permerror (DECL_SOURCE_LOCATION (current_function_decl), |
857 | "uninitialized reference member in %q#T" , type)) |
858 | inform (DECL_SOURCE_LOCATION (member), |
859 | "%q#D should be initialized" , member); |
860 | } |
861 | else if (CP_TYPE_CONST_P (type)) |
862 | { |
863 | if (permerror (DECL_SOURCE_LOCATION (current_function_decl), |
864 | "uninitialized const member in %q#T" , type)) |
865 | inform (DECL_SOURCE_LOCATION (member), |
866 | "%q#D should be initialized" , member ); |
867 | } |
868 | |
869 | core_type = strip_array_types (type); |
870 | |
871 | if (CLASS_TYPE_P (core_type) |
872 | && (CLASSTYPE_READONLY_FIELDS_NEED_INIT (core_type) |
873 | || CLASSTYPE_REF_FIELDS_NEED_INIT (core_type))) |
874 | diagnose_uninitialized_cst_or_ref_member (core_type, |
875 | /*using_new=*/false, |
876 | /*complain=*/true); |
877 | } |
878 | else if (TREE_CODE (init) == TREE_LIST) |
879 | /* There was an explicit member initialization. Do some work |
880 | in that case. */ |
881 | init = build_x_compound_expr_from_list (init, ELK_MEM_INIT, |
882 | tf_warning_or_error); |
883 | |
884 | /* Reject a member initializer for a flexible array member. */ |
885 | if (init && !maybe_reject_flexarray_init (member, init)) |
886 | finish_expr_stmt (cp_build_modify_expr (input_location, decl, |
887 | INIT_EXPR, init, |
888 | tf_warning_or_error)); |
889 | } |
890 | |
891 | if (type_build_dtor_call (type)) |
892 | { |
893 | tree expr; |
894 | |
895 | expr = build_class_member_access_expr (current_class_ref, member, |
896 | /*access_path=*/NULL_TREE, |
897 | /*preserve_reference=*/false, |
898 | tf_warning_or_error); |
899 | expr = build_delete (type, expr, sfk_complete_destructor, |
900 | LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR, 0, |
901 | tf_warning_or_error); |
902 | |
903 | if (expr != error_mark_node |
904 | && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)) |
905 | finish_eh_cleanup (expr); |
906 | } |
907 | } |
908 | |
909 | /* Returns a TREE_LIST containing (as the TREE_PURPOSE of each node) all |
910 | the FIELD_DECLs on the TYPE_FIELDS list for T, in reverse order. */ |
911 | |
912 | static tree |
913 | build_field_list (tree t, tree list, int *uses_unions_or_anon_p) |
914 | { |
915 | tree fields; |
916 | |
917 | /* Note whether or not T is a union. */ |
918 | if (TREE_CODE (t) == UNION_TYPE) |
919 | *uses_unions_or_anon_p = 1; |
920 | |
921 | for (fields = TYPE_FIELDS (t); fields; fields = DECL_CHAIN (fields)) |
922 | { |
923 | tree fieldtype; |
924 | |
925 | /* Skip CONST_DECLs for enumeration constants and so forth. */ |
926 | if (TREE_CODE (fields) != FIELD_DECL || DECL_ARTIFICIAL (fields)) |
927 | continue; |
928 | |
929 | fieldtype = TREE_TYPE (fields); |
930 | |
931 | /* For an anonymous struct or union, we must recursively |
932 | consider the fields of the anonymous type. They can be |
933 | directly initialized from the constructor. */ |
934 | if (ANON_AGGR_TYPE_P (fieldtype)) |
935 | { |
936 | /* Add this field itself. Synthesized copy constructors |
937 | initialize the entire aggregate. */ |
938 | list = tree_cons (fields, NULL_TREE, list); |
939 | /* And now add the fields in the anonymous aggregate. */ |
940 | list = build_field_list (fieldtype, list, uses_unions_or_anon_p); |
941 | *uses_unions_or_anon_p = 1; |
942 | } |
943 | /* Add this field. */ |
944 | else if (DECL_NAME (fields)) |
945 | list = tree_cons (fields, NULL_TREE, list); |
946 | } |
947 | |
948 | return list; |
949 | } |
950 | |
951 | /* Return the innermost aggregate scope for FIELD, whether that is |
952 | the enclosing class or an anonymous aggregate within it. */ |
953 | |
954 | static tree |
955 | innermost_aggr_scope (tree field) |
956 | { |
957 | if (ANON_AGGR_TYPE_P (TREE_TYPE (field))) |
958 | return TREE_TYPE (field); |
959 | else |
960 | return DECL_CONTEXT (field); |
961 | } |
962 | |
963 | /* The MEM_INITS are a TREE_LIST. The TREE_PURPOSE of each list gives |
964 | a FIELD_DECL or BINFO in T that needs initialization. The |
965 | TREE_VALUE gives the initializer, or list of initializer arguments. |
966 | |
967 | Return a TREE_LIST containing all of the initializations required |
968 | for T, in the order in which they should be performed. The output |
969 | list has the same format as the input. */ |
970 | |
971 | static tree |
972 | sort_mem_initializers (tree t, tree mem_inits) |
973 | { |
974 | tree init; |
975 | tree base, binfo, base_binfo; |
976 | tree sorted_inits; |
977 | tree next_subobject; |
978 | vec<tree, va_gc> *vbases; |
979 | int i; |
980 | int uses_unions_or_anon_p = 0; |
981 | |
982 | /* Build up a list of initializations. The TREE_PURPOSE of entry |
983 | will be the subobject (a FIELD_DECL or BINFO) to initialize. The |
984 | TREE_VALUE will be the constructor arguments, or NULL if no |
985 | explicit initialization was provided. */ |
986 | sorted_inits = NULL_TREE; |
987 | |
988 | /* Process the virtual bases. */ |
989 | for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0; |
990 | vec_safe_iterate (vbases, i, &base); i++) |
991 | sorted_inits = tree_cons (base, NULL_TREE, sorted_inits); |
992 | |
993 | /* Process the direct bases. */ |
994 | for (binfo = TYPE_BINFO (t), i = 0; |
995 | BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i) |
996 | if (!BINFO_VIRTUAL_P (base_binfo)) |
997 | sorted_inits = tree_cons (base_binfo, NULL_TREE, sorted_inits); |
998 | |
999 | /* Process the non-static data members. */ |
1000 | sorted_inits = build_field_list (t, sorted_inits, &uses_unions_or_anon_p); |
1001 | /* Reverse the entire list of initializations, so that they are in |
1002 | the order that they will actually be performed. */ |
1003 | sorted_inits = nreverse (sorted_inits); |
1004 | |
1005 | /* If the user presented the initializers in an order different from |
1006 | that in which they will actually occur, we issue a warning. Keep |
1007 | track of the next subobject which can be explicitly initialized |
1008 | without issuing a warning. */ |
1009 | next_subobject = sorted_inits; |
1010 | |
1011 | /* Go through the explicit initializers, filling in TREE_PURPOSE in |
1012 | the SORTED_INITS. */ |
1013 | for (init = mem_inits; init; init = TREE_CHAIN (init)) |
1014 | { |
1015 | tree subobject; |
1016 | tree subobject_init; |
1017 | |
1018 | subobject = TREE_PURPOSE (init); |
1019 | |
1020 | /* If the explicit initializers are in sorted order, then |
1021 | SUBOBJECT will be NEXT_SUBOBJECT, or something following |
1022 | it. */ |
1023 | for (subobject_init = next_subobject; |
1024 | subobject_init; |
1025 | subobject_init = TREE_CHAIN (subobject_init)) |
1026 | if (TREE_PURPOSE (subobject_init) == subobject) |
1027 | break; |
1028 | |
1029 | /* Issue a warning if the explicit initializer order does not |
1030 | match that which will actually occur. |
1031 | ??? Are all these on the correct lines? */ |
1032 | if (warn_reorder && !subobject_init) |
1033 | { |
1034 | if (TREE_CODE (TREE_PURPOSE (next_subobject)) == FIELD_DECL) |
1035 | warning_at (DECL_SOURCE_LOCATION (TREE_PURPOSE (next_subobject)), |
1036 | OPT_Wreorder, "%qD will be initialized after" , |
1037 | TREE_PURPOSE (next_subobject)); |
1038 | else |
1039 | warning (OPT_Wreorder, "base %qT will be initialized after" , |
1040 | TREE_PURPOSE (next_subobject)); |
1041 | if (TREE_CODE (subobject) == FIELD_DECL) |
1042 | warning_at (DECL_SOURCE_LOCATION (subobject), |
1043 | OPT_Wreorder, " %q#D" , subobject); |
1044 | else |
1045 | warning (OPT_Wreorder, " base %qT" , subobject); |
1046 | warning_at (DECL_SOURCE_LOCATION (current_function_decl), |
1047 | OPT_Wreorder, " when initialized here" ); |
1048 | } |
1049 | |
1050 | /* Look again, from the beginning of the list. */ |
1051 | if (!subobject_init) |
1052 | { |
1053 | subobject_init = sorted_inits; |
1054 | while (TREE_PURPOSE (subobject_init) != subobject) |
1055 | subobject_init = TREE_CHAIN (subobject_init); |
1056 | } |
1057 | |
1058 | /* It is invalid to initialize the same subobject more than |
1059 | once. */ |
1060 | if (TREE_VALUE (subobject_init)) |
1061 | { |
1062 | if (TREE_CODE (subobject) == FIELD_DECL) |
1063 | error_at (DECL_SOURCE_LOCATION (current_function_decl), |
1064 | "multiple initializations given for %qD" , |
1065 | subobject); |
1066 | else |
1067 | error_at (DECL_SOURCE_LOCATION (current_function_decl), |
1068 | "multiple initializations given for base %qT" , |
1069 | subobject); |
1070 | } |
1071 | |
1072 | /* Record the initialization. */ |
1073 | TREE_VALUE (subobject_init) = TREE_VALUE (init); |
1074 | next_subobject = subobject_init; |
1075 | } |
1076 | |
1077 | /* [class.base.init] |
1078 | |
1079 | If a ctor-initializer specifies more than one mem-initializer for |
1080 | multiple members of the same union (including members of |
1081 | anonymous unions), the ctor-initializer is ill-formed. |
1082 | |
1083 | Here we also splice out uninitialized union members. */ |
1084 | if (uses_unions_or_anon_p) |
1085 | { |
1086 | tree *last_p = NULL; |
1087 | tree *p; |
1088 | for (p = &sorted_inits; *p; ) |
1089 | { |
1090 | tree field; |
1091 | tree ctx; |
1092 | |
1093 | init = *p; |
1094 | |
1095 | field = TREE_PURPOSE (init); |
1096 | |
1097 | /* Skip base classes. */ |
1098 | if (TREE_CODE (field) != FIELD_DECL) |
1099 | goto next; |
1100 | |
1101 | /* If this is an anonymous aggregate with no explicit initializer, |
1102 | splice it out. */ |
1103 | if (!TREE_VALUE (init) && ANON_AGGR_TYPE_P (TREE_TYPE (field))) |
1104 | goto splice; |
1105 | |
1106 | /* See if this field is a member of a union, or a member of a |
1107 | structure contained in a union, etc. */ |
1108 | ctx = innermost_aggr_scope (field); |
1109 | |
1110 | /* If this field is not a member of a union, skip it. */ |
1111 | if (TREE_CODE (ctx) != UNION_TYPE |
1112 | && !ANON_AGGR_TYPE_P (ctx)) |
1113 | goto next; |
1114 | |
1115 | /* If this union member has no explicit initializer and no NSDMI, |
1116 | splice it out. */ |
1117 | if (TREE_VALUE (init) || DECL_INITIAL (field)) |
1118 | /* OK. */; |
1119 | else |
1120 | goto splice; |
1121 | |
1122 | /* It's only an error if we have two initializers for the same |
1123 | union type. */ |
1124 | if (!last_p) |
1125 | { |
1126 | last_p = p; |
1127 | goto next; |
1128 | } |
1129 | |
1130 | /* See if LAST_FIELD and the field initialized by INIT are |
1131 | members of the same union (or the union itself). If so, there's |
1132 | a problem, unless they're actually members of the same structure |
1133 | which is itself a member of a union. For example, given: |
1134 | |
1135 | union { struct { int i; int j; }; }; |
1136 | |
1137 | initializing both `i' and `j' makes sense. */ |
1138 | ctx = common_enclosing_class |
1139 | (innermost_aggr_scope (field), |
1140 | innermost_aggr_scope (TREE_PURPOSE (*last_p))); |
1141 | |
1142 | if (ctx && (TREE_CODE (ctx) == UNION_TYPE |
1143 | || ctx == TREE_TYPE (TREE_PURPOSE (*last_p)))) |
1144 | { |
1145 | /* A mem-initializer hides an NSDMI. */ |
1146 | if (TREE_VALUE (init) && !TREE_VALUE (*last_p)) |
1147 | *last_p = TREE_CHAIN (*last_p); |
1148 | else if (TREE_VALUE (*last_p) && !TREE_VALUE (init)) |
1149 | goto splice; |
1150 | else |
1151 | { |
1152 | error_at (DECL_SOURCE_LOCATION (current_function_decl), |
1153 | "initializations for multiple members of %qT" , |
1154 | ctx); |
1155 | goto splice; |
1156 | } |
1157 | } |
1158 | |
1159 | last_p = p; |
1160 | |
1161 | next: |
1162 | p = &TREE_CHAIN (*p); |
1163 | continue; |
1164 | splice: |
1165 | *p = TREE_CHAIN (*p); |
1166 | continue; |
1167 | } |
1168 | } |
1169 | |
1170 | return sorted_inits; |
1171 | } |
1172 | |
1173 | /* Callback for cp_walk_tree to mark all PARM_DECLs in a tree as read. */ |
1174 | |
1175 | static tree |
1176 | mark_exp_read_r (tree *tp, int *, void *) |
1177 | { |
1178 | tree t = *tp; |
1179 | if (TREE_CODE (t) == PARM_DECL) |
1180 | mark_exp_read (t); |
1181 | return NULL_TREE; |
1182 | } |
1183 | |
1184 | /* Initialize all bases and members of CURRENT_CLASS_TYPE. MEM_INITS |
1185 | is a TREE_LIST giving the explicit mem-initializer-list for the |
1186 | constructor. The TREE_PURPOSE of each entry is a subobject (a |
1187 | FIELD_DECL or a BINFO) of the CURRENT_CLASS_TYPE. The TREE_VALUE |
1188 | is a TREE_LIST giving the arguments to the constructor or |
1189 | void_type_node for an empty list of arguments. */ |
1190 | |
1191 | void |
1192 | emit_mem_initializers (tree mem_inits) |
1193 | { |
1194 | int flags = LOOKUP_NORMAL; |
1195 | |
1196 | /* We will already have issued an error message about the fact that |
1197 | the type is incomplete. */ |
1198 | if (!COMPLETE_TYPE_P (current_class_type)) |
1199 | return; |
1200 | |
1201 | if (mem_inits |
1202 | && TYPE_P (TREE_PURPOSE (mem_inits)) |
1203 | && same_type_p (TREE_PURPOSE (mem_inits), current_class_type)) |
1204 | { |
1205 | /* Delegating constructor. */ |
1206 | gcc_assert (TREE_CHAIN (mem_inits) == NULL_TREE); |
1207 | perform_target_ctor (TREE_VALUE (mem_inits)); |
1208 | return; |
1209 | } |
1210 | |
1211 | if (DECL_DEFAULTED_FN (current_function_decl) |
1212 | && ! DECL_INHERITED_CTOR (current_function_decl)) |
1213 | flags |= LOOKUP_DEFAULTED; |
1214 | |
1215 | /* Sort the mem-initializers into the order in which the |
1216 | initializations should be performed. */ |
1217 | mem_inits = sort_mem_initializers (current_class_type, mem_inits); |
1218 | |
1219 | in_base_initializer = 1; |
1220 | |
1221 | /* Initialize base classes. */ |
1222 | for (; (mem_inits |
1223 | && TREE_CODE (TREE_PURPOSE (mem_inits)) != FIELD_DECL); |
1224 | mem_inits = TREE_CHAIN (mem_inits)) |
1225 | { |
1226 | tree subobject = TREE_PURPOSE (mem_inits); |
1227 | tree arguments = TREE_VALUE (mem_inits); |
1228 | |
1229 | /* We already have issued an error message. */ |
1230 | if (arguments == error_mark_node) |
1231 | continue; |
1232 | |
1233 | /* Suppress access control when calling the inherited ctor. */ |
1234 | bool inherited_base = (DECL_INHERITED_CTOR (current_function_decl) |
1235 | && flag_new_inheriting_ctors |
1236 | && arguments); |
1237 | if (inherited_base) |
1238 | push_deferring_access_checks (dk_deferred); |
1239 | |
1240 | if (arguments == NULL_TREE) |
1241 | { |
1242 | /* If these initializations are taking place in a copy constructor, |
1243 | the base class should probably be explicitly initialized if there |
1244 | is a user-defined constructor in the base class (other than the |
1245 | default constructor, which will be called anyway). */ |
1246 | if (extra_warnings |
1247 | && DECL_COPY_CONSTRUCTOR_P (current_function_decl) |
1248 | && type_has_user_nondefault_constructor (BINFO_TYPE (subobject))) |
1249 | warning_at (DECL_SOURCE_LOCATION (current_function_decl), |
1250 | OPT_Wextra, "base class %q#T should be explicitly " |
1251 | "initialized in the copy constructor" , |
1252 | BINFO_TYPE (subobject)); |
1253 | } |
1254 | |
1255 | /* Initialize the base. */ |
1256 | if (!BINFO_VIRTUAL_P (subobject)) |
1257 | { |
1258 | tree base_addr; |
1259 | |
1260 | base_addr = build_base_path (PLUS_EXPR, current_class_ptr, |
1261 | subobject, 1, tf_warning_or_error); |
1262 | expand_aggr_init_1 (subobject, NULL_TREE, |
1263 | cp_build_fold_indirect_ref (base_addr), |
1264 | arguments, |
1265 | flags, |
1266 | tf_warning_or_error); |
1267 | expand_cleanup_for_base (subobject, NULL_TREE); |
1268 | } |
1269 | else if (!ABSTRACT_CLASS_TYPE_P (current_class_type)) |
1270 | /* C++14 DR1658 Means we do not have to construct vbases of |
1271 | abstract classes. */ |
1272 | construct_virtual_base (subobject, arguments); |
1273 | else |
1274 | /* When not constructing vbases of abstract classes, at least mark |
1275 | the arguments expressions as read to avoid |
1276 | -Wunused-but-set-parameter false positives. */ |
1277 | cp_walk_tree (&arguments, mark_exp_read_r, NULL, NULL); |
1278 | |
1279 | if (inherited_base) |
1280 | pop_deferring_access_checks (); |
1281 | } |
1282 | in_base_initializer = 0; |
1283 | |
1284 | /* Initialize the vptrs. */ |
1285 | initialize_vtbl_ptrs (current_class_ptr); |
1286 | |
1287 | /* Initialize the data members. */ |
1288 | while (mem_inits) |
1289 | { |
1290 | perform_member_init (TREE_PURPOSE (mem_inits), |
1291 | TREE_VALUE (mem_inits)); |
1292 | mem_inits = TREE_CHAIN (mem_inits); |
1293 | } |
1294 | } |
1295 | |
1296 | /* Returns the address of the vtable (i.e., the value that should be |
1297 | assigned to the vptr) for BINFO. */ |
1298 | |
1299 | tree |
1300 | build_vtbl_address (tree binfo) |
1301 | { |
1302 | tree binfo_for = binfo; |
1303 | tree vtbl; |
1304 | |
1305 | if (BINFO_VPTR_INDEX (binfo) && BINFO_VIRTUAL_P (binfo)) |
1306 | /* If this is a virtual primary base, then the vtable we want to store |
1307 | is that for the base this is being used as the primary base of. We |
1308 | can't simply skip the initialization, because we may be expanding the |
1309 | inits of a subobject constructor where the virtual base layout |
1310 | can be different. */ |
1311 | while (BINFO_PRIMARY_P (binfo_for)) |
1312 | binfo_for = BINFO_INHERITANCE_CHAIN (binfo_for); |
1313 | |
1314 | /* Figure out what vtable BINFO's vtable is based on, and mark it as |
1315 | used. */ |
1316 | vtbl = get_vtbl_decl_for_binfo (binfo_for); |
1317 | TREE_USED (vtbl) = true; |
1318 | |
1319 | /* Now compute the address to use when initializing the vptr. */ |
1320 | vtbl = unshare_expr (BINFO_VTABLE (binfo_for)); |
1321 | if (VAR_P (vtbl)) |
1322 | vtbl = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (vtbl)), vtbl); |
1323 | |
1324 | return vtbl; |
1325 | } |
1326 | |
1327 | /* This code sets up the virtual function tables appropriate for |
1328 | the pointer DECL. It is a one-ply initialization. |
1329 | |
1330 | BINFO is the exact type that DECL is supposed to be. In |
1331 | multiple inheritance, this might mean "C's A" if C : A, B. */ |
1332 | |
1333 | static void |
1334 | expand_virtual_init (tree binfo, tree decl) |
1335 | { |
1336 | tree vtbl, vtbl_ptr; |
1337 | tree vtt_index; |
1338 | |
1339 | /* Compute the initializer for vptr. */ |
1340 | vtbl = build_vtbl_address (binfo); |
1341 | |
1342 | /* We may get this vptr from a VTT, if this is a subobject |
1343 | constructor or subobject destructor. */ |
1344 | vtt_index = BINFO_VPTR_INDEX (binfo); |
1345 | if (vtt_index) |
1346 | { |
1347 | tree vtbl2; |
1348 | tree vtt_parm; |
1349 | |
1350 | /* Compute the value to use, when there's a VTT. */ |
1351 | vtt_parm = current_vtt_parm; |
1352 | vtbl2 = fold_build_pointer_plus (vtt_parm, vtt_index); |
1353 | vtbl2 = cp_build_fold_indirect_ref (vtbl2); |
1354 | vtbl2 = convert (TREE_TYPE (vtbl), vtbl2); |
1355 | |
1356 | /* The actual initializer is the VTT value only in the subobject |
1357 | constructor. In maybe_clone_body we'll substitute NULL for |
1358 | the vtt_parm in the case of the non-subobject constructor. */ |
1359 | vtbl = build_if_in_charge (vtbl, vtbl2); |
1360 | } |
1361 | |
1362 | /* Compute the location of the vtpr. */ |
1363 | vtbl_ptr = build_vfield_ref (cp_build_fold_indirect_ref (decl), |
1364 | TREE_TYPE (binfo)); |
1365 | gcc_assert (vtbl_ptr != error_mark_node); |
1366 | |
1367 | /* Assign the vtable to the vptr. */ |
1368 | vtbl = convert_force (TREE_TYPE (vtbl_ptr), vtbl, 0, tf_warning_or_error); |
1369 | finish_expr_stmt (cp_build_modify_expr (input_location, vtbl_ptr, NOP_EXPR, |
1370 | vtbl, tf_warning_or_error)); |
1371 | } |
1372 | |
1373 | /* If an exception is thrown in a constructor, those base classes already |
1374 | constructed must be destroyed. This function creates the cleanup |
1375 | for BINFO, which has just been constructed. If FLAG is non-NULL, |
1376 | it is a DECL which is nonzero when this base needs to be |
1377 | destroyed. */ |
1378 | |
1379 | static void |
1380 | expand_cleanup_for_base (tree binfo, tree flag) |
1381 | { |
1382 | tree expr; |
1383 | |
1384 | if (!type_build_dtor_call (BINFO_TYPE (binfo))) |
1385 | return; |
1386 | |
1387 | /* Call the destructor. */ |
1388 | expr = build_special_member_call (current_class_ref, |
1389 | base_dtor_identifier, |
1390 | NULL, |
1391 | binfo, |
1392 | LOOKUP_NORMAL | LOOKUP_NONVIRTUAL, |
1393 | tf_warning_or_error); |
1394 | |
1395 | if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (binfo))) |
1396 | return; |
1397 | |
1398 | if (flag) |
1399 | expr = fold_build3_loc (input_location, |
1400 | COND_EXPR, void_type_node, |
1401 | c_common_truthvalue_conversion (input_location, flag), |
1402 | expr, integer_zero_node); |
1403 | |
1404 | finish_eh_cleanup (expr); |
1405 | } |
1406 | |
1407 | /* Construct the virtual base-class VBASE passing the ARGUMENTS to its |
1408 | constructor. */ |
1409 | |
1410 | static void |
1411 | construct_virtual_base (tree vbase, tree arguments) |
1412 | { |
1413 | tree inner_if_stmt; |
1414 | tree exp; |
1415 | tree flag; |
1416 | |
1417 | /* If there are virtual base classes with destructors, we need to |
1418 | emit cleanups to destroy them if an exception is thrown during |
1419 | the construction process. These exception regions (i.e., the |
1420 | period during which the cleanups must occur) begin from the time |
1421 | the construction is complete to the end of the function. If we |
1422 | create a conditional block in which to initialize the |
1423 | base-classes, then the cleanup region for the virtual base begins |
1424 | inside a block, and ends outside of that block. This situation |
1425 | confuses the sjlj exception-handling code. Therefore, we do not |
1426 | create a single conditional block, but one for each |
1427 | initialization. (That way the cleanup regions always begin |
1428 | in the outer block.) We trust the back end to figure out |
1429 | that the FLAG will not change across initializations, and |
1430 | avoid doing multiple tests. */ |
1431 | flag = DECL_CHAIN (DECL_ARGUMENTS (current_function_decl)); |
1432 | inner_if_stmt = begin_if_stmt (); |
1433 | finish_if_stmt_cond (flag, inner_if_stmt); |
1434 | |
1435 | /* Compute the location of the virtual base. If we're |
1436 | constructing virtual bases, then we must be the most derived |
1437 | class. Therefore, we don't have to look up the virtual base; |
1438 | we already know where it is. */ |
1439 | exp = convert_to_base_statically (current_class_ref, vbase); |
1440 | |
1441 | expand_aggr_init_1 (vbase, current_class_ref, exp, arguments, |
1442 | 0, tf_warning_or_error); |
1443 | finish_then_clause (inner_if_stmt); |
1444 | finish_if_stmt (inner_if_stmt); |
1445 | |
1446 | expand_cleanup_for_base (vbase, flag); |
1447 | } |
1448 | |
1449 | /* Find the context in which this FIELD can be initialized. */ |
1450 | |
1451 | static tree |
1452 | initializing_context (tree field) |
1453 | { |
1454 | tree t = DECL_CONTEXT (field); |
1455 | |
1456 | /* Anonymous union members can be initialized in the first enclosing |
1457 | non-anonymous union context. */ |
1458 | while (t && ANON_AGGR_TYPE_P (t)) |
1459 | t = TYPE_CONTEXT (t); |
1460 | return t; |
1461 | } |
1462 | |
1463 | /* Function to give error message if member initialization specification |
1464 | is erroneous. FIELD is the member we decided to initialize. |
1465 | TYPE is the type for which the initialization is being performed. |
1466 | FIELD must be a member of TYPE. |
1467 | |
1468 | MEMBER_NAME is the name of the member. */ |
1469 | |
1470 | static int |
1471 | member_init_ok_or_else (tree field, tree type, tree member_name) |
1472 | { |
1473 | if (field == error_mark_node) |
1474 | return 0; |
1475 | if (!field) |
1476 | { |
1477 | error ("class %qT does not have any field named %qD" , type, |
1478 | member_name); |
1479 | return 0; |
1480 | } |
1481 | if (VAR_P (field)) |
1482 | { |
1483 | error ("%q#D is a static data member; it can only be " |
1484 | "initialized at its definition" , |
1485 | field); |
1486 | return 0; |
1487 | } |
1488 | if (TREE_CODE (field) != FIELD_DECL) |
1489 | { |
1490 | error ("%q#D is not a non-static data member of %qT" , |
1491 | field, type); |
1492 | return 0; |
1493 | } |
1494 | if (initializing_context (field) != type) |
1495 | { |
1496 | error ("class %qT does not have any field named %qD" , type, |
1497 | member_name); |
1498 | return 0; |
1499 | } |
1500 | |
1501 | return 1; |
1502 | } |
1503 | |
1504 | /* NAME is a FIELD_DECL, an IDENTIFIER_NODE which names a field, or it |
1505 | is a _TYPE node or TYPE_DECL which names a base for that type. |
1506 | Check the validity of NAME, and return either the base _TYPE, base |
1507 | binfo, or the FIELD_DECL of the member. If NAME is invalid, return |
1508 | NULL_TREE and issue a diagnostic. |
1509 | |
1510 | An old style unnamed direct single base construction is permitted, |
1511 | where NAME is NULL. */ |
1512 | |
1513 | tree |
1514 | expand_member_init (tree name) |
1515 | { |
1516 | tree basetype; |
1517 | tree field; |
1518 | |
1519 | if (!current_class_ref) |
1520 | return NULL_TREE; |
1521 | |
1522 | if (!name) |
1523 | { |
1524 | /* This is an obsolete unnamed base class initializer. The |
1525 | parser will already have warned about its use. */ |
1526 | switch (BINFO_N_BASE_BINFOS (TYPE_BINFO (current_class_type))) |
1527 | { |
1528 | case 0: |
1529 | error ("unnamed initializer for %qT, which has no base classes" , |
1530 | current_class_type); |
1531 | return NULL_TREE; |
1532 | case 1: |
1533 | basetype = BINFO_TYPE |
1534 | (BINFO_BASE_BINFO (TYPE_BINFO (current_class_type), 0)); |
1535 | break; |
1536 | default: |
1537 | error ("unnamed initializer for %qT, which uses multiple inheritance" , |
1538 | current_class_type); |
1539 | return NULL_TREE; |
1540 | } |
1541 | } |
1542 | else if (TYPE_P (name)) |
1543 | { |
1544 | basetype = TYPE_MAIN_VARIANT (name); |
1545 | name = TYPE_NAME (name); |
1546 | } |
1547 | else if (TREE_CODE (name) == TYPE_DECL) |
1548 | basetype = TYPE_MAIN_VARIANT (TREE_TYPE (name)); |
1549 | else |
1550 | basetype = NULL_TREE; |
1551 | |
1552 | if (basetype) |
1553 | { |
1554 | tree class_binfo; |
1555 | tree direct_binfo; |
1556 | tree virtual_binfo; |
1557 | int i; |
1558 | |
1559 | if (current_template_parms |
1560 | || same_type_p (basetype, current_class_type)) |
1561 | return basetype; |
1562 | |
1563 | class_binfo = TYPE_BINFO (current_class_type); |
1564 | direct_binfo = NULL_TREE; |
1565 | virtual_binfo = NULL_TREE; |
1566 | |
1567 | /* Look for a direct base. */ |
1568 | for (i = 0; BINFO_BASE_ITERATE (class_binfo, i, direct_binfo); ++i) |
1569 | if (SAME_BINFO_TYPE_P (BINFO_TYPE (direct_binfo), basetype)) |
1570 | break; |
1571 | |
1572 | /* Look for a virtual base -- unless the direct base is itself |
1573 | virtual. */ |
1574 | if (!direct_binfo || !BINFO_VIRTUAL_P (direct_binfo)) |
1575 | virtual_binfo = binfo_for_vbase (basetype, current_class_type); |
1576 | |
1577 | /* [class.base.init] |
1578 | |
1579 | If a mem-initializer-id is ambiguous because it designates |
1580 | both a direct non-virtual base class and an inherited virtual |
1581 | base class, the mem-initializer is ill-formed. */ |
1582 | if (direct_binfo && virtual_binfo) |
1583 | { |
1584 | error ("%qD is both a direct base and an indirect virtual base" , |
1585 | basetype); |
1586 | return NULL_TREE; |
1587 | } |
1588 | |
1589 | if (!direct_binfo && !virtual_binfo) |
1590 | { |
1591 | if (CLASSTYPE_VBASECLASSES (current_class_type)) |
1592 | error ("type %qT is not a direct or virtual base of %qT" , |
1593 | basetype, current_class_type); |
1594 | else |
1595 | error ("type %qT is not a direct base of %qT" , |
1596 | basetype, current_class_type); |
1597 | return NULL_TREE; |
1598 | } |
1599 | |
1600 | return direct_binfo ? direct_binfo : virtual_binfo; |
1601 | } |
1602 | else |
1603 | { |
1604 | if (identifier_p (name)) |
1605 | field = lookup_field (current_class_type, name, 1, false); |
1606 | else |
1607 | field = name; |
1608 | |
1609 | if (member_init_ok_or_else (field, current_class_type, name)) |
1610 | return field; |
1611 | } |
1612 | |
1613 | return NULL_TREE; |
1614 | } |
1615 | |
1616 | /* This is like `expand_member_init', only it stores one aggregate |
1617 | value into another. |
1618 | |
1619 | INIT comes in two flavors: it is either a value which |
1620 | is to be stored in EXP, or it is a parameter list |
1621 | to go to a constructor, which will operate on EXP. |
1622 | If INIT is not a parameter list for a constructor, then set |
1623 | LOOKUP_ONLYCONVERTING. |
1624 | If FLAGS is LOOKUP_ONLYCONVERTING then it is the = init form of |
1625 | the initializer, if FLAGS is 0, then it is the (init) form. |
1626 | If `init' is a CONSTRUCTOR, then we emit a warning message, |
1627 | explaining that such initializations are invalid. |
1628 | |
1629 | If INIT resolves to a CALL_EXPR which happens to return |
1630 | something of the type we are looking for, then we know |
1631 | that we can safely use that call to perform the |
1632 | initialization. |
1633 | |
1634 | The virtual function table pointer cannot be set up here, because |
1635 | we do not really know its type. |
1636 | |
1637 | This never calls operator=(). |
1638 | |
1639 | When initializing, nothing is CONST. |
1640 | |
1641 | A default copy constructor may have to be used to perform the |
1642 | initialization. |
1643 | |
1644 | A constructor or a conversion operator may have to be used to |
1645 | perform the initialization, but not both, as it would be ambiguous. */ |
1646 | |
1647 | tree |
1648 | build_aggr_init (tree exp, tree init, int flags, tsubst_flags_t complain) |
1649 | { |
1650 | tree stmt_expr; |
1651 | tree compound_stmt; |
1652 | int destroy_temps; |
1653 | tree type = TREE_TYPE (exp); |
1654 | int was_const = TREE_READONLY (exp); |
1655 | int was_volatile = TREE_THIS_VOLATILE (exp); |
1656 | int is_global; |
1657 | |
1658 | if (init == error_mark_node) |
1659 | return error_mark_node; |
1660 | |
1661 | location_t init_loc = (init |
1662 | ? EXPR_LOC_OR_LOC (init, input_location) |
1663 | : location_of (exp)); |
1664 | |
1665 | TREE_READONLY (exp) = 0; |
1666 | TREE_THIS_VOLATILE (exp) = 0; |
1667 | |
1668 | if (TREE_CODE (type) == ARRAY_TYPE) |
1669 | { |
1670 | tree itype = init ? TREE_TYPE (init) : NULL_TREE; |
1671 | int from_array = 0; |
1672 | |
1673 | if (VAR_P (exp) && DECL_DECOMPOSITION_P (exp)) |
1674 | { |
1675 | from_array = 1; |
1676 | if (init && DECL_P (init) |
1677 | && !(flags & LOOKUP_ONLYCONVERTING)) |
1678 | { |
1679 | /* Wrap the initializer in a CONSTRUCTOR so that build_vec_init |
1680 | recognizes it as direct-initialization. */ |
1681 | init = build_constructor_single (init_list_type_node, |
1682 | NULL_TREE, init); |
1683 | CONSTRUCTOR_IS_DIRECT_INIT (init) = true; |
1684 | } |
1685 | } |
1686 | else |
1687 | { |
1688 | /* An array may not be initialized use the parenthesized |
1689 | initialization form -- unless the initializer is "()". */ |
1690 | if (init && TREE_CODE (init) == TREE_LIST) |
1691 | { |
1692 | if (complain & tf_error) |
1693 | error ("bad array initializer" ); |
1694 | return error_mark_node; |
1695 | } |
1696 | /* Must arrange to initialize each element of EXP |
1697 | from elements of INIT. */ |
1698 | if (cv_qualified_p (type)) |
1699 | TREE_TYPE (exp) = cv_unqualified (type); |
1700 | if (itype && cv_qualified_p (itype)) |
1701 | TREE_TYPE (init) = cv_unqualified (itype); |
1702 | from_array = (itype && same_type_p (TREE_TYPE (init), |
1703 | TREE_TYPE (exp))); |
1704 | |
1705 | if (init && !from_array |
1706 | && !BRACE_ENCLOSED_INITIALIZER_P (init)) |
1707 | { |
1708 | if (complain & tf_error) |
1709 | permerror (init_loc, "array must be initialized " |
1710 | "with a brace-enclosed initializer" ); |
1711 | else |
1712 | return error_mark_node; |
1713 | } |
1714 | } |
1715 | |
1716 | stmt_expr = build_vec_init (exp, NULL_TREE, init, |
1717 | /*explicit_value_init_p=*/false, |
1718 | from_array, |
1719 | complain); |
1720 | TREE_READONLY (exp) = was_const; |
1721 | TREE_THIS_VOLATILE (exp) = was_volatile; |
1722 | TREE_TYPE (exp) = type; |
1723 | /* Restore the type of init unless it was used directly. */ |
1724 | if (init && TREE_CODE (stmt_expr) != INIT_EXPR) |
1725 | TREE_TYPE (init) = itype; |
1726 | return stmt_expr; |
1727 | } |
1728 | |
1729 | if (init && init != void_type_node |
1730 | && TREE_CODE (init) != TREE_LIST |
1731 | && !(TREE_CODE (init) == TARGET_EXPR |
1732 | && TARGET_EXPR_DIRECT_INIT_P (init)) |
1733 | && !DIRECT_LIST_INIT_P (init)) |
1734 | flags |= LOOKUP_ONLYCONVERTING; |
1735 | |
1736 | if ((VAR_P (exp) || TREE_CODE (exp) == PARM_DECL) |
1737 | && !lookup_attribute ("warn_unused" , TYPE_ATTRIBUTES (type))) |
1738 | /* Just know that we've seen something for this node. */ |
1739 | TREE_USED (exp) = 1; |
1740 | |
1741 | is_global = begin_init_stmts (&stmt_expr, &compound_stmt); |
1742 | destroy_temps = stmts_are_full_exprs_p (); |
1743 | current_stmt_tree ()->stmts_are_full_exprs_p = 0; |
1744 | expand_aggr_init_1 (TYPE_BINFO (type), exp, exp, |
1745 | init, LOOKUP_NORMAL|flags, complain); |
1746 | stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt); |
1747 | current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps; |
1748 | TREE_READONLY (exp) = was_const; |
1749 | TREE_THIS_VOLATILE (exp) = was_volatile; |
1750 | |
1751 | return stmt_expr; |
1752 | } |
1753 | |
1754 | static void |
1755 | expand_default_init (tree binfo, tree true_exp, tree exp, tree init, int flags, |
1756 | tsubst_flags_t complain) |
1757 | { |
1758 | tree type = TREE_TYPE (exp); |
1759 | |
1760 | /* It fails because there may not be a constructor which takes |
1761 | its own type as the first (or only parameter), but which does |
1762 | take other types via a conversion. So, if the thing initializing |
1763 | the expression is a unit element of type X, first try X(X&), |
1764 | followed by initialization by X. If neither of these work |
1765 | out, then look hard. */ |
1766 | tree rval; |
1767 | vec<tree, va_gc> *parms; |
1768 | |
1769 | /* If we have direct-initialization from an initializer list, pull |
1770 | it out of the TREE_LIST so the code below can see it. */ |
1771 | if (init && TREE_CODE (init) == TREE_LIST |
1772 | && DIRECT_LIST_INIT_P (TREE_VALUE (init))) |
1773 | { |
1774 | gcc_checking_assert ((flags & LOOKUP_ONLYCONVERTING) == 0 |
1775 | && TREE_CHAIN (init) == NULL_TREE); |
1776 | init = TREE_VALUE (init); |
1777 | /* Only call reshape_init if it has not been called earlier |
1778 | by the callers. */ |
1779 | if (BRACE_ENCLOSED_INITIALIZER_P (init) && CP_AGGREGATE_TYPE_P (type)) |
1780 | init = reshape_init (type, init, complain); |
1781 | } |
1782 | |
1783 | if (init && BRACE_ENCLOSED_INITIALIZER_P (init) |
1784 | && CP_AGGREGATE_TYPE_P (type)) |
1785 | /* A brace-enclosed initializer for an aggregate. In C++0x this can |
1786 | happen for direct-initialization, too. */ |
1787 | init = digest_init (type, init, complain); |
1788 | |
1789 | /* A CONSTRUCTOR of the target's type is a previously digested |
1790 | initializer, whether that happened just above or in |
1791 | cp_parser_late_parsing_nsdmi. |
1792 | |
1793 | A TARGET_EXPR with TARGET_EXPR_DIRECT_INIT_P or TARGET_EXPR_LIST_INIT_P |
1794 | set represents the whole initialization, so we shouldn't build up |
1795 | another ctor call. */ |
1796 | if (init |
1797 | && (TREE_CODE (init) == CONSTRUCTOR |
1798 | || (TREE_CODE (init) == TARGET_EXPR |
1799 | && (TARGET_EXPR_DIRECT_INIT_P (init) |
1800 | || TARGET_EXPR_LIST_INIT_P (init)))) |
1801 | && same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (init), type)) |
1802 | { |
1803 | /* Early initialization via a TARGET_EXPR only works for |
1804 | complete objects. */ |
1805 | gcc_assert (TREE_CODE (init) == CONSTRUCTOR || true_exp == exp); |
1806 | |
1807 | init = build2 (INIT_EXPR, TREE_TYPE (exp), exp, init); |
1808 | TREE_SIDE_EFFECTS (init) = 1; |
1809 | finish_expr_stmt (init); |
1810 | return; |
1811 | } |
1812 | |
1813 | if (init && TREE_CODE (init) != TREE_LIST |
1814 | && (flags & LOOKUP_ONLYCONVERTING)) |
1815 | { |
1816 | /* Base subobjects should only get direct-initialization. */ |
1817 | gcc_assert (true_exp == exp); |
1818 | |
1819 | if (flags & DIRECT_BIND) |
1820 | /* Do nothing. We hit this in two cases: Reference initialization, |
1821 | where we aren't initializing a real variable, so we don't want |
1822 | to run a new constructor; and catching an exception, where we |
1823 | have already built up the constructor call so we could wrap it |
1824 | in an exception region. */; |
1825 | else |
1826 | init = ocp_convert (type, init, CONV_IMPLICIT|CONV_FORCE_TEMP, |
1827 | flags, complain); |
1828 | |
1829 | if (TREE_CODE (init) == MUST_NOT_THROW_EXPR) |
1830 | /* We need to protect the initialization of a catch parm with a |
1831 | call to terminate(), which shows up as a MUST_NOT_THROW_EXPR |
1832 | around the TARGET_EXPR for the copy constructor. See |
1833 | initialize_handler_parm. */ |
1834 | { |
1835 | TREE_OPERAND (init, 0) = build2 (INIT_EXPR, TREE_TYPE (exp), exp, |
1836 | TREE_OPERAND (init, 0)); |
1837 | TREE_TYPE (init) = void_type_node; |
1838 | } |
1839 | else |
1840 | init = build2 (INIT_EXPR, TREE_TYPE (exp), exp, init); |
1841 | TREE_SIDE_EFFECTS (init) = 1; |
1842 | finish_expr_stmt (init); |
1843 | return; |
1844 | } |
1845 | |
1846 | if (init == NULL_TREE) |
1847 | parms = NULL; |
1848 | else if (TREE_CODE (init) == TREE_LIST && !TREE_TYPE (init)) |
1849 | { |
1850 | parms = make_tree_vector (); |
1851 | for (; init != NULL_TREE; init = TREE_CHAIN (init)) |
1852 | vec_safe_push (parms, TREE_VALUE (init)); |
1853 | } |
1854 | else |
1855 | parms = make_tree_vector_single (init); |
1856 | |
1857 | if (exp == current_class_ref && current_function_decl |
1858 | && DECL_HAS_IN_CHARGE_PARM_P (current_function_decl)) |
1859 | { |
1860 | /* Delegating constructor. */ |
1861 | tree complete; |
1862 | tree base; |
1863 | tree elt; unsigned i; |
1864 | |
1865 | /* Unshare the arguments for the second call. */ |
1866 | vec<tree, va_gc> *parms2 = make_tree_vector (); |
1867 | FOR_EACH_VEC_SAFE_ELT (parms, i, elt) |
1868 | { |
1869 | elt = break_out_target_exprs (elt); |
1870 | vec_safe_push (parms2, elt); |
1871 | } |
1872 | complete = build_special_member_call (exp, complete_ctor_identifier, |
1873 | &parms2, binfo, flags, |
1874 | complain); |
1875 | complete = fold_build_cleanup_point_expr (void_type_node, complete); |
1876 | release_tree_vector (parms2); |
1877 | |
1878 | base = build_special_member_call (exp, base_ctor_identifier, |
1879 | &parms, binfo, flags, |
1880 | complain); |
1881 | base = fold_build_cleanup_point_expr (void_type_node, base); |
1882 | rval = build_if_in_charge (complete, base); |
1883 | } |
1884 | else |
1885 | { |
1886 | tree ctor_name = (true_exp == exp |
1887 | ? complete_ctor_identifier : base_ctor_identifier); |
1888 | |
1889 | rval = build_special_member_call (exp, ctor_name, &parms, binfo, flags, |
1890 | complain); |
1891 | } |
1892 | |
1893 | if (parms != NULL) |
1894 | release_tree_vector (parms); |
1895 | |
1896 | if (exp == true_exp && TREE_CODE (rval) == CALL_EXPR) |
1897 | { |
1898 | tree fn = get_callee_fndecl (rval); |
1899 | if (fn && DECL_DECLARED_CONSTEXPR_P (fn)) |
1900 | { |
1901 | tree e = maybe_constant_init (rval, exp); |
1902 | if (TREE_CONSTANT (e)) |
1903 | rval = build2 (INIT_EXPR, type, exp, e); |
1904 | } |
1905 | } |
1906 | |
1907 | /* FIXME put back convert_to_void? */ |
1908 | if (TREE_SIDE_EFFECTS (rval)) |
1909 | finish_expr_stmt (rval); |
1910 | } |
1911 | |
1912 | /* This function is responsible for initializing EXP with INIT |
1913 | (if any). |
1914 | |
1915 | BINFO is the binfo of the type for who we are performing the |
1916 | initialization. For example, if W is a virtual base class of A and B, |
1917 | and C : A, B. |
1918 | If we are initializing B, then W must contain B's W vtable, whereas |
1919 | were we initializing C, W must contain C's W vtable. |
1920 | |
1921 | TRUE_EXP is nonzero if it is the true expression being initialized. |
1922 | In this case, it may be EXP, or may just contain EXP. The reason we |
1923 | need this is because if EXP is a base element of TRUE_EXP, we |
1924 | don't necessarily know by looking at EXP where its virtual |
1925 | baseclass fields should really be pointing. But we do know |
1926 | from TRUE_EXP. In constructors, we don't know anything about |
1927 | the value being initialized. |
1928 | |
1929 | FLAGS is just passed to `build_new_method_call'. See that function |
1930 | for its description. */ |
1931 | |
1932 | static void |
1933 | expand_aggr_init_1 (tree binfo, tree true_exp, tree exp, tree init, int flags, |
1934 | tsubst_flags_t complain) |
1935 | { |
1936 | tree type = TREE_TYPE (exp); |
1937 | |
1938 | gcc_assert (init != error_mark_node && type != error_mark_node); |
1939 | gcc_assert (building_stmt_list_p ()); |
1940 | |
1941 | /* Use a function returning the desired type to initialize EXP for us. |
1942 | If the function is a constructor, and its first argument is |
1943 | NULL_TREE, know that it was meant for us--just slide exp on |
1944 | in and expand the constructor. Constructors now come |
1945 | as TARGET_EXPRs. */ |
1946 | |
1947 | if (init && VAR_P (exp) |
1948 | && COMPOUND_LITERAL_P (init)) |
1949 | { |
1950 | vec<tree, va_gc> *cleanups = NULL; |
1951 | /* If store_init_value returns NULL_TREE, the INIT has been |
1952 | recorded as the DECL_INITIAL for EXP. That means there's |
1953 | nothing more we have to do. */ |
1954 | init = store_init_value (exp, init, &cleanups, flags); |
1955 | if (init) |
1956 | finish_expr_stmt (init); |
1957 | gcc_assert (!cleanups); |
1958 | return; |
1959 | } |
1960 | |
1961 | /* List-initialization from {} becomes value-initialization for non-aggregate |
1962 | classes with default constructors. Handle this here when we're |
1963 | initializing a base, so protected access works. */ |
1964 | if (exp != true_exp && init && TREE_CODE (init) == TREE_LIST) |
1965 | { |
1966 | tree elt = TREE_VALUE (init); |
1967 | if (DIRECT_LIST_INIT_P (elt) |
1968 | && CONSTRUCTOR_ELTS (elt) == 0 |
1969 | && CLASSTYPE_NON_AGGREGATE (type) |
1970 | && TYPE_HAS_DEFAULT_CONSTRUCTOR (type)) |
1971 | init = void_type_node; |
1972 | } |
1973 | |
1974 | /* If an explicit -- but empty -- initializer list was present, |
1975 | that's value-initialization. */ |
1976 | if (init == void_type_node) |
1977 | { |
1978 | /* If the type has data but no user-provided ctor, we need to zero |
1979 | out the object. */ |
1980 | if (!type_has_user_provided_constructor (type) |
1981 | && !is_really_empty_class (type)) |
1982 | { |
1983 | tree field_size = NULL_TREE; |
1984 | if (exp != true_exp && CLASSTYPE_AS_BASE (type) != type) |
1985 | /* Don't clobber already initialized virtual bases. */ |
1986 | field_size = TYPE_SIZE (CLASSTYPE_AS_BASE (type)); |
1987 | init = build_zero_init_1 (type, NULL_TREE, /*static_storage_p=*/false, |
1988 | field_size); |
1989 | init = build2 (INIT_EXPR, type, exp, init); |
1990 | finish_expr_stmt (init); |
1991 | } |
1992 | |
1993 | /* If we don't need to mess with the constructor at all, |
1994 | then we're done. */ |
1995 | if (! type_build_ctor_call (type)) |
1996 | return; |
1997 | |
1998 | /* Otherwise fall through and call the constructor. */ |
1999 | init = NULL_TREE; |
2000 | } |
2001 | |
2002 | /* We know that expand_default_init can handle everything we want |
2003 | at this point. */ |
2004 | expand_default_init (binfo, true_exp, exp, init, flags, complain); |
2005 | } |
2006 | |
2007 | /* Report an error if TYPE is not a user-defined, class type. If |
2008 | OR_ELSE is nonzero, give an error message. */ |
2009 | |
2010 | int |
2011 | is_class_type (tree type, int or_else) |
2012 | { |
2013 | if (type == error_mark_node) |
2014 | return 0; |
2015 | |
2016 | if (! CLASS_TYPE_P (type)) |
2017 | { |
2018 | if (or_else) |
2019 | error ("%qT is not a class type" , type); |
2020 | return 0; |
2021 | } |
2022 | return 1; |
2023 | } |
2024 | |
2025 | tree |
2026 | get_type_value (tree name) |
2027 | { |
2028 | if (name == error_mark_node) |
2029 | return NULL_TREE; |
2030 | |
2031 | if (IDENTIFIER_HAS_TYPE_VALUE (name)) |
2032 | return IDENTIFIER_TYPE_VALUE (name); |
2033 | else |
2034 | return NULL_TREE; |
2035 | } |
2036 | |
2037 | /* Build a reference to a member of an aggregate. This is not a C++ |
2038 | `&', but really something which can have its address taken, and |
2039 | then act as a pointer to member, for example TYPE :: FIELD can have |
2040 | its address taken by saying & TYPE :: FIELD. ADDRESS_P is true if |
2041 | this expression is the operand of "&". |
2042 | |
2043 | @@ Prints out lousy diagnostics for operator <typename> |
2044 | @@ fields. |
2045 | |
2046 | @@ This function should be rewritten and placed in search.c. */ |
2047 | |
2048 | tree |
2049 | build_offset_ref (tree type, tree member, bool address_p, |
2050 | tsubst_flags_t complain) |
2051 | { |
2052 | tree decl; |
2053 | tree basebinfo = NULL_TREE; |
2054 | |
2055 | /* class templates can come in as TEMPLATE_DECLs here. */ |
2056 | if (TREE_CODE (member) == TEMPLATE_DECL) |
2057 | return member; |
2058 | |
2059 | if (dependent_scope_p (type) || type_dependent_expression_p (member)) |
2060 | return build_qualified_name (NULL_TREE, type, member, |
2061 | /*template_p=*/false); |
2062 | |
2063 | gcc_assert (TYPE_P (type)); |
2064 | if (! is_class_type (type, 1)) |
2065 | return error_mark_node; |
2066 | |
2067 | gcc_assert (DECL_P (member) || BASELINK_P (member)); |
2068 | /* Callers should call mark_used before this point. */ |
2069 | gcc_assert (!DECL_P (member) || TREE_USED (member)); |
2070 | |
2071 | type = TYPE_MAIN_VARIANT (type); |
2072 | if (!COMPLETE_OR_OPEN_TYPE_P (complete_type (type))) |
2073 | { |
2074 | if (complain & tf_error) |
2075 | error ("incomplete type %qT does not have member %qD" , type, member); |
2076 | return error_mark_node; |
2077 | } |
2078 | |
2079 | /* Entities other than non-static members need no further |
2080 | processing. */ |
2081 | if (TREE_CODE (member) == TYPE_DECL) |
2082 | return member; |
2083 | if (VAR_P (member) || TREE_CODE (member) == CONST_DECL) |
2084 | return convert_from_reference (member); |
2085 | |
2086 | if (TREE_CODE (member) == FIELD_DECL && DECL_C_BIT_FIELD (member)) |
2087 | { |
2088 | if (complain & tf_error) |
2089 | error ("invalid pointer to bit-field %qD" , member); |
2090 | return error_mark_node; |
2091 | } |
2092 | |
2093 | /* Set up BASEBINFO for member lookup. */ |
2094 | decl = maybe_dummy_object (type, &basebinfo); |
2095 | |
2096 | /* A lot of this logic is now handled in lookup_member. */ |
2097 | if (BASELINK_P (member)) |
2098 | { |
2099 | /* Go from the TREE_BASELINK to the member function info. */ |
2100 | tree t = BASELINK_FUNCTIONS (member); |
2101 | |
2102 | if (TREE_CODE (t) != TEMPLATE_ID_EXPR && !really_overloaded_fn (t)) |
2103 | { |
2104 | /* Get rid of a potential OVERLOAD around it. */ |
2105 | t = OVL_FIRST (t); |
2106 | |
2107 | /* Unique functions are handled easily. */ |
2108 | |
2109 | /* For non-static member of base class, we need a special rule |
2110 | for access checking [class.protected]: |
2111 | |
2112 | If the access is to form a pointer to member, the |
2113 | nested-name-specifier shall name the derived class |
2114 | (or any class derived from that class). */ |
2115 | bool ok; |
2116 | if (address_p && DECL_P (t) |
2117 | && DECL_NONSTATIC_MEMBER_P (t)) |
2118 | ok = perform_or_defer_access_check (TYPE_BINFO (type), t, t, |
2119 | complain); |
2120 | else |
2121 | ok = perform_or_defer_access_check (basebinfo, t, t, |
2122 | complain); |
2123 | if (!ok) |
2124 | return error_mark_node; |
2125 | if (DECL_STATIC_FUNCTION_P (t)) |
2126 | return t; |
2127 | member = t; |
2128 | } |
2129 | else |
2130 | TREE_TYPE (member) = unknown_type_node; |
2131 | } |
2132 | else if (address_p && TREE_CODE (member) == FIELD_DECL) |
2133 | { |
2134 | /* We need additional test besides the one in |
2135 | check_accessibility_of_qualified_id in case it is |
2136 | a pointer to non-static member. */ |
2137 | if (!perform_or_defer_access_check (TYPE_BINFO (type), member, member, |
2138 | complain)) |
2139 | return error_mark_node; |
2140 | } |
2141 | |
2142 | if (!address_p) |
2143 | { |
2144 | /* If MEMBER is non-static, then the program has fallen afoul of |
2145 | [expr.prim]: |
2146 | |
2147 | An id-expression that denotes a nonstatic data member or |
2148 | nonstatic member function of a class can only be used: |
2149 | |
2150 | -- as part of a class member access (_expr.ref_) in which the |
2151 | object-expression refers to the member's class or a class |
2152 | derived from that class, or |
2153 | |
2154 | -- to form a pointer to member (_expr.unary.op_), or |
2155 | |
2156 | -- in the body of a nonstatic member function of that class or |
2157 | of a class derived from that class (_class.mfct.nonstatic_), or |
2158 | |
2159 | -- in a mem-initializer for a constructor for that class or for |
2160 | a class derived from that class (_class.base.init_). */ |
2161 | if (DECL_NONSTATIC_MEMBER_FUNCTION_P (member)) |
2162 | { |
2163 | /* Build a representation of the qualified name suitable |
2164 | for use as the operand to "&" -- even though the "&" is |
2165 | not actually present. */ |
2166 | member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member); |
2167 | /* In Microsoft mode, treat a non-static member function as if |
2168 | it were a pointer-to-member. */ |
2169 | if (flag_ms_extensions) |
2170 | { |
2171 | PTRMEM_OK_P (member) = 1; |
2172 | return cp_build_addr_expr (member, complain); |
2173 | } |
2174 | if (complain & tf_error) |
2175 | error ("invalid use of non-static member function %qD" , |
2176 | TREE_OPERAND (member, 1)); |
2177 | return error_mark_node; |
2178 | } |
2179 | else if (TREE_CODE (member) == FIELD_DECL) |
2180 | { |
2181 | if (complain & tf_error) |
2182 | error ("invalid use of non-static data member %qD" , member); |
2183 | return error_mark_node; |
2184 | } |
2185 | return member; |
2186 | } |
2187 | |
2188 | member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member); |
2189 | PTRMEM_OK_P (member) = 1; |
2190 | return member; |
2191 | } |
2192 | |
2193 | /* If DECL is a scalar enumeration constant or variable with a |
2194 | constant initializer, return the initializer (or, its initializers, |
2195 | recursively); otherwise, return DECL. If STRICT_P, the |
2196 | initializer is only returned if DECL is a |
2197 | constant-expression. If RETURN_AGGREGATE_CST_OK_P, it is ok to |
2198 | return an aggregate constant. */ |
2199 | |
2200 | static tree |
2201 | constant_value_1 (tree decl, bool strict_p, bool return_aggregate_cst_ok_p) |
2202 | { |
2203 | while (TREE_CODE (decl) == CONST_DECL |
2204 | || decl_constant_var_p (decl) |
2205 | || (!strict_p && VAR_P (decl) |
2206 | && CP_TYPE_CONST_NON_VOLATILE_P (TREE_TYPE (decl)))) |
2207 | { |
2208 | tree init; |
2209 | /* If DECL is a static data member in a template |
2210 | specialization, we must instantiate it here. The |
2211 | initializer for the static data member is not processed |
2212 | until needed; we need it now. */ |
2213 | mark_used (decl, tf_none); |
2214 | init = DECL_INITIAL (decl); |
2215 | if (init == error_mark_node) |
2216 | { |
2217 | if (TREE_CODE (decl) == CONST_DECL |
2218 | || DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (decl)) |
2219 | /* Treat the error as a constant to avoid cascading errors on |
2220 | excessively recursive template instantiation (c++/9335). */ |
2221 | return init; |
2222 | else |
2223 | return decl; |
2224 | } |
2225 | /* Initializers in templates are generally expanded during |
2226 | instantiation, so before that for const int i(2) |
2227 | INIT is a TREE_LIST with the actual initializer as |
2228 | TREE_VALUE. */ |
2229 | if (processing_template_decl |
2230 | && init |
2231 | && TREE_CODE (init) == TREE_LIST |
2232 | && TREE_CHAIN (init) == NULL_TREE) |
2233 | init = TREE_VALUE (init); |
2234 | /* Instantiate a non-dependent initializer for user variables. We |
2235 | mustn't do this for the temporary for an array compound literal; |
2236 | trying to instatiate the initializer will keep creating new |
2237 | temporaries until we crash. Probably it's not useful to do it for |
2238 | other artificial variables, either. */ |
2239 | if (!DECL_ARTIFICIAL (decl)) |
2240 | init = instantiate_non_dependent_or_null (init); |
2241 | if (!init |
2242 | || !TREE_TYPE (init) |
2243 | || !TREE_CONSTANT (init) |
2244 | || (!return_aggregate_cst_ok_p |
2245 | /* Unless RETURN_AGGREGATE_CST_OK_P is true, do not |
2246 | return an aggregate constant (of which string |
2247 | literals are a special case), as we do not want |
2248 | to make inadvertent copies of such entities, and |
2249 | we must be sure that their addresses are the |
2250 | same everywhere. */ |
2251 | && (TREE_CODE (init) == CONSTRUCTOR |
2252 | || TREE_CODE (init) == STRING_CST))) |
2253 | break; |
2254 | /* Don't return a CONSTRUCTOR for a variable with partial run-time |
2255 | initialization, since it doesn't represent the entire value. */ |
2256 | if (TREE_CODE (init) == CONSTRUCTOR |
2257 | && !DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (decl)) |
2258 | break; |
2259 | /* If the variable has a dynamic initializer, don't use its |
2260 | DECL_INITIAL which doesn't reflect the real value. */ |
2261 | if (VAR_P (decl) |
2262 | && TREE_STATIC (decl) |
2263 | && !DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (decl) |
2264 | && DECL_NONTRIVIALLY_INITIALIZED_P (decl)) |
2265 | break; |
2266 | decl = unshare_expr (init); |
2267 | } |
2268 | return decl; |
2269 | } |
2270 | |
2271 | /* If DECL is a CONST_DECL, or a constant VAR_DECL initialized by constant |
2272 | of integral or enumeration type, or a constexpr variable of scalar type, |
2273 | then return that value. These are those variables permitted in constant |
2274 | expressions by [5.19/1]. */ |
2275 | |
2276 | tree |
2277 | scalar_constant_value (tree decl) |
2278 | { |
2279 | return constant_value_1 (decl, /*strict_p=*/true, |
2280 | /*return_aggregate_cst_ok_p=*/false); |
2281 | } |
2282 | |
2283 | /* Like scalar_constant_value, but can also return aggregate initializers. */ |
2284 | |
2285 | tree |
2286 | decl_really_constant_value (tree decl) |
2287 | { |
2288 | return constant_value_1 (decl, /*strict_p=*/true, |
2289 | /*return_aggregate_cst_ok_p=*/true); |
2290 | } |
2291 | |
2292 | /* A more relaxed version of scalar_constant_value, used by the |
2293 | common C/C++ code. */ |
2294 | |
2295 | tree |
2296 | decl_constant_value (tree decl) |
2297 | { |
2298 | return constant_value_1 (decl, /*strict_p=*/processing_template_decl, |
2299 | /*return_aggregate_cst_ok_p=*/true); |
2300 | } |
2301 | |
2302 | /* Common subroutines of build_new and build_vec_delete. */ |
2303 | |
2304 | /* Build and return a NEW_EXPR. If NELTS is non-NULL, TYPE[NELTS] is |
2305 | the type of the object being allocated; otherwise, it's just TYPE. |
2306 | INIT is the initializer, if any. USE_GLOBAL_NEW is true if the |
2307 | user explicitly wrote "::operator new". PLACEMENT, if non-NULL, is |
2308 | a vector of arguments to be provided as arguments to a placement |
2309 | new operator. This routine performs no semantic checks; it just |
2310 | creates and returns a NEW_EXPR. */ |
2311 | |
2312 | static tree |
2313 | build_raw_new_expr (vec<tree, va_gc> *placement, tree type, tree nelts, |
2314 | vec<tree, va_gc> *init, int use_global_new) |
2315 | { |
2316 | tree init_list; |
2317 | tree new_expr; |
2318 | |
2319 | /* If INIT is NULL, the we want to store NULL_TREE in the NEW_EXPR. |
2320 | If INIT is not NULL, then we want to store VOID_ZERO_NODE. This |
2321 | permits us to distinguish the case of a missing initializer "new |
2322 | int" from an empty initializer "new int()". */ |
2323 | if (init == NULL) |
2324 | init_list = NULL_TREE; |
2325 | else if (init->is_empty ()) |
2326 | init_list = void_node; |
2327 | else |
2328 | init_list = build_tree_list_vec (init); |
2329 | |
2330 | new_expr = build4 (NEW_EXPR, build_pointer_type (type), |
2331 | build_tree_list_vec (placement), type, nelts, |
2332 | init_list); |
2333 | NEW_EXPR_USE_GLOBAL (new_expr) = use_global_new; |
2334 | TREE_SIDE_EFFECTS (new_expr) = 1; |
2335 | |
2336 | return new_expr; |
2337 | } |
2338 | |
2339 | /* Diagnose uninitialized const members or reference members of type |
2340 | TYPE. USING_NEW is used to disambiguate the diagnostic between a |
2341 | new expression without a new-initializer and a declaration. Returns |
2342 | the error count. */ |
2343 | |
2344 | static int |
2345 | diagnose_uninitialized_cst_or_ref_member_1 (tree type, tree origin, |
2346 | bool using_new, bool complain) |
2347 | { |
2348 | tree field; |
2349 | int error_count = 0; |
2350 | |
2351 | if (type_has_user_provided_constructor (type)) |
2352 | return 0; |
2353 | |
2354 | for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field)) |
2355 | { |
2356 | tree field_type; |
2357 | |
2358 | if (TREE_CODE (field) != FIELD_DECL) |
2359 | continue; |
2360 | |
2361 | field_type = strip_array_types (TREE_TYPE (field)); |
2362 | |
2363 | if (type_has_user_provided_constructor (field_type)) |
2364 | continue; |
2365 | |
2366 | if (TREE_CODE (field_type) == REFERENCE_TYPE) |
2367 | { |
2368 | ++ error_count; |
2369 | if (complain) |
2370 | { |
2371 | if (DECL_CONTEXT (field) == origin) |
2372 | { |
2373 | if (using_new) |
2374 | error ("uninitialized reference member in %q#T " |
2375 | "using %<new%> without new-initializer" , origin); |
2376 | else |
2377 | error ("uninitialized reference member in %q#T" , origin); |
2378 | } |
2379 | else |
2380 | { |
2381 | if (using_new) |
2382 | error ("uninitialized reference member in base %q#T " |
2383 | "of %q#T using %<new%> without new-initializer" , |
2384 | DECL_CONTEXT (field), origin); |
2385 | else |
2386 | error ("uninitialized reference member in base %q#T " |
2387 | "of %q#T" , DECL_CONTEXT (field), origin); |
2388 | } |
2389 | inform (DECL_SOURCE_LOCATION (field), |
2390 | "%q#D should be initialized" , field); |
2391 | } |
2392 | } |
2393 | |
2394 | if (CP_TYPE_CONST_P (field_type)) |
2395 | { |
2396 | ++ error_count; |
2397 | if (complain) |
2398 | { |
2399 | if (DECL_CONTEXT (field) == origin) |
2400 | { |
2401 | if (using_new) |
2402 | error ("uninitialized const member in %q#T " |
2403 | "using %<new%> without new-initializer" , origin); |
2404 | else |
2405 | error ("uninitialized const member in %q#T" , origin); |
2406 | } |
2407 | else |
2408 | { |
2409 | if (using_new) |
2410 | error ("uninitialized const member in base %q#T " |
2411 | "of %q#T using %<new%> without new-initializer" , |
2412 | DECL_CONTEXT (field), origin); |
2413 | else |
2414 | error ("uninitialized const member in base %q#T " |
2415 | "of %q#T" , DECL_CONTEXT (field), origin); |
2416 | } |
2417 | inform (DECL_SOURCE_LOCATION (field), |
2418 | "%q#D should be initialized" , field); |
2419 | } |
2420 | } |
2421 | |
2422 | if (CLASS_TYPE_P (field_type)) |
2423 | error_count |
2424 | += diagnose_uninitialized_cst_or_ref_member_1 (field_type, origin, |
2425 | using_new, complain); |
2426 | } |
2427 | return error_count; |
2428 | } |
2429 | |
2430 | int |
2431 | diagnose_uninitialized_cst_or_ref_member (tree type, bool using_new, bool complain) |
2432 | { |
2433 | return diagnose_uninitialized_cst_or_ref_member_1 (type, type, using_new, complain); |
2434 | } |
2435 | |
2436 | /* Call __cxa_bad_array_new_length to indicate that the size calculation |
2437 | overflowed. Pretend it returns sizetype so that it plays nicely in the |
2438 | COND_EXPR. */ |
2439 | |
2440 | tree |
2441 | throw_bad_array_new_length (void) |
2442 | { |
2443 | if (!fn) |
2444 | { |
2445 | tree name = get_identifier ("__cxa_throw_bad_array_new_length" ); |
2446 | |
2447 | fn = get_global_binding (name); |
2448 | if (!fn) |
2449 | fn = push_throw_library_fn |
2450 | (name, build_function_type_list (sizetype, NULL_TREE)); |
2451 | } |
2452 | |
2453 | return build_cxx_call (fn, 0, NULL, tf_warning_or_error); |
2454 | } |
2455 | |
2456 | /* Attempt to find the initializer for field T in the initializer INIT, |
2457 | when non-null. Returns the initializer when successful and NULL |
2458 | otherwise. */ |
2459 | static tree |
2460 | find_field_init (tree t, tree init) |
2461 | { |
2462 | if (!init) |
2463 | return NULL_TREE; |
2464 | |
2465 | unsigned HOST_WIDE_INT idx; |
2466 | tree field, elt; |
2467 | |
2468 | /* Iterate over all top-level initializer elements. */ |
2469 | FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), idx, field, elt) |
2470 | { |
2471 | /* If the member T is found, return it. */ |
2472 | if (field == t) |
2473 | return elt; |
2474 | |
2475 | /* Otherwise continue and/or recurse into nested initializers. */ |
2476 | if (TREE_CODE (elt) == CONSTRUCTOR |
2477 | && (init = find_field_init (t, elt))) |
2478 | return init; |
2479 | } |
2480 | return NULL_TREE; |
2481 | } |
2482 | |
2483 | /* Attempt to verify that the argument, OPER, of a placement new expression |
2484 | refers to an object sufficiently large for an object of TYPE or an array |
2485 | of NELTS of such objects when NELTS is non-null, and issue a warning when |
2486 | it does not. SIZE specifies the size needed to construct the object or |
2487 | array and captures the result of NELTS * sizeof (TYPE). (SIZE could be |
2488 | greater when the array under construction requires a cookie to store |
2489 | NELTS. GCC's placement new expression stores the cookie when invoking |
2490 | a user-defined placement new operator function but not the default one. |
2491 | Placement new expressions with user-defined placement new operator are |
2492 | not diagnosed since we don't know how they use the buffer (this could |
2493 | be a future extension). */ |
2494 | static void |
2495 | warn_placement_new_too_small (tree type, tree nelts, tree size, tree oper) |
2496 | { |
2497 | location_t loc = EXPR_LOC_OR_LOC (oper, input_location); |
2498 | |
2499 | /* The number of bytes to add to or subtract from the size of the provided |
2500 | buffer based on an offset into an array or an array element reference. |
2501 | Although intermediate results may be negative (as in a[3] - 2) a valid |
2502 | final result cannot be. */ |
2503 | offset_int adjust = 0; |
2504 | /* True when the size of the entire destination object should be used |
2505 | to compute the possibly optimistic estimate of the available space. */ |
2506 | bool use_obj_size = false; |
2507 | /* True when the reference to the destination buffer is an ADDR_EXPR. */ |
2508 | bool addr_expr = false; |
2509 | |
2510 | STRIP_NOPS (oper); |
2511 | |
2512 | /* Using a function argument or a (non-array) variable as an argument |
2513 | to placement new is not checked since it's unknown what it might |
2514 | point to. */ |
2515 | if (TREE_CODE (oper) == PARM_DECL |
2516 | || VAR_P (oper) |
2517 | || TREE_CODE (oper) == COMPONENT_REF) |
2518 | return; |
2519 | |
2520 | /* Evaluate any constant expressions. */ |
2521 | size = fold_non_dependent_expr (size); |
2522 | |
2523 | /* Handle the common case of array + offset expression when the offset |
2524 | is a constant. */ |
2525 | if (TREE_CODE (oper) == POINTER_PLUS_EXPR) |
2526 | { |
2527 | /* If the offset is compile-time constant, use it to compute a more |
2528 | accurate estimate of the size of the buffer. Since the operand |
2529 | of POINTER_PLUS_EXPR is represented as an unsigned type, convert |
2530 | it to signed first. |
2531 | Otherwise, use the size of the entire array as an optimistic |
2532 | estimate (this may lead to false negatives). */ |
2533 | tree adj = TREE_OPERAND (oper, 1); |
2534 | if (CONSTANT_CLASS_P (adj)) |
2535 | adjust += wi::to_offset (convert (ssizetype, adj)); |
2536 | else |
2537 | use_obj_size = true; |
2538 | |
2539 | oper = TREE_OPERAND (oper, 0); |
2540 | |
2541 | STRIP_NOPS (oper); |
2542 | } |
2543 | |
2544 | if (TREE_CODE (oper) == TARGET_EXPR) |
2545 | oper = TREE_OPERAND (oper, 1); |
2546 | else if (TREE_CODE (oper) == ADDR_EXPR) |
2547 | { |
2548 | addr_expr = true; |
2549 | oper = TREE_OPERAND (oper, 0); |
2550 | } |
2551 | |
2552 | STRIP_NOPS (oper); |
2553 | |
2554 | if (TREE_CODE (oper) == ARRAY_REF |
2555 | && (addr_expr || TREE_CODE (TREE_TYPE (oper)) == ARRAY_TYPE)) |
2556 | { |
2557 | /* Similar to the offset computed above, see if the array index |
2558 | is a compile-time constant. If so, and unless the offset was |
2559 | not a compile-time constant, use the index to determine the |
2560 | size of the buffer. Otherwise, use the entire array as |
2561 | an optimistic estimate of the size. */ |
2562 | const_tree adj = fold_non_dependent_expr (TREE_OPERAND (oper, 1)); |
2563 | if (!use_obj_size && CONSTANT_CLASS_P (adj)) |
2564 | adjust += wi::to_offset (adj); |
2565 | else |
2566 | { |
2567 | use_obj_size = true; |
2568 | adjust = 0; |
2569 | } |
2570 | |
2571 | oper = TREE_OPERAND (oper, 0); |
2572 | } |
2573 | |
2574 | /* Refers to the declared object that constains the subobject referenced |
2575 | by OPER. When the object is initialized, makes it possible to determine |
2576 | the actual size of a flexible array member used as the buffer passed |
2577 | as OPER to placement new. */ |
2578 | tree var_decl = NULL_TREE; |
2579 | /* True when operand is a COMPONENT_REF, to distinguish flexible array |
2580 | members from arrays of unspecified size. */ |
2581 | bool compref = TREE_CODE (oper) == COMPONENT_REF; |
2582 | |
2583 | /* For COMPONENT_REF (i.e., a struct member) the size of the entire |
2584 | enclosing struct. Used to validate the adjustment (offset) into |
2585 | an array at the end of a struct. */ |
2586 | offset_int compsize = 0; |
2587 | |
2588 | /* Descend into a struct or union to find the member whose address |
2589 | is being used as the argument. */ |
2590 | if (TREE_CODE (oper) == COMPONENT_REF) |
2591 | { |
2592 | tree comptype = TREE_TYPE (TREE_OPERAND (oper, 0)); |
2593 | compsize = wi::to_offset (TYPE_SIZE_UNIT (comptype)); |
2594 | |
2595 | tree op0 = oper; |
2596 | while (TREE_CODE (op0 = TREE_OPERAND (op0, 0)) == COMPONENT_REF); |
2597 | if (VAR_P (op0)) |
2598 | var_decl = op0; |
2599 | oper = TREE_OPERAND (oper, 1); |
2600 | } |
2601 | |
2602 | tree opertype = TREE_TYPE (oper); |
2603 | if ((addr_expr || !POINTER_TYPE_P (opertype)) |
2604 | && (VAR_P (oper) |
2605 | || TREE_CODE (oper) == FIELD_DECL |
2606 | || TREE_CODE (oper) == PARM_DECL)) |
2607 | { |
2608 | /* A possibly optimistic estimate of the number of bytes available |
2609 | in the destination buffer. */ |
2610 | offset_int bytes_avail = 0; |
2611 | /* True when the estimate above is in fact the exact size |
2612 | of the destination buffer rather than an estimate. */ |
2613 | bool exact_size = true; |
2614 | |
2615 | /* Treat members of unions and members of structs uniformly, even |
2616 | though the size of a member of a union may be viewed as extending |
2617 | to the end of the union itself (it is by __builtin_object_size). */ |
2618 | if ((VAR_P (oper) || use_obj_size) |
2619 | && DECL_SIZE_UNIT (oper) |
2620 | && tree_fits_uhwi_p (DECL_SIZE_UNIT (oper))) |
2621 | { |
2622 | /* Use the size of the entire array object when the expression |
2623 | refers to a variable or its size depends on an expression |
2624 | that's not a compile-time constant. */ |
2625 | bytes_avail = wi::to_offset (DECL_SIZE_UNIT (oper)); |
2626 | exact_size = !use_obj_size; |
2627 | } |
2628 | else if (tree opersize = TYPE_SIZE_UNIT (opertype)) |
2629 | { |
2630 | /* Use the size of the type of the destination buffer object |
2631 | as the optimistic estimate of the available space in it. |
2632 | Use the maximum possible size for zero-size arrays and |
2633 | flexible array members (except of initialized objects |
2634 | thereof). */ |
2635 | if (TREE_CODE (opersize) == INTEGER_CST) |
2636 | bytes_avail = wi::to_offset (opersize); |
2637 | } |
2638 | |
2639 | if (bytes_avail == 0) |
2640 | { |
2641 | if (var_decl) |
2642 | { |
2643 | /* Constructing into a buffer provided by the flexible array |
2644 | member of a declared object (which is permitted as a G++ |
2645 | extension). If the array member has been initialized, |
2646 | determine its size from the initializer. Otherwise, |
2647 | the array size is zero. */ |
2648 | if (tree init = find_field_init (oper, DECL_INITIAL (var_decl))) |
2649 | bytes_avail = wi::to_offset (TYPE_SIZE_UNIT (TREE_TYPE (init))); |
2650 | } |
2651 | else |
2652 | bytes_avail = (wi::to_offset (TYPE_MAX_VALUE (ptrdiff_type_node)) |
2653 | - compsize); |
2654 | } |
2655 | |
2656 | tree_code oper_code = TREE_CODE (opertype); |
2657 | |
2658 | if (compref && oper_code == ARRAY_TYPE) |
2659 | { |
2660 | tree nelts = array_type_nelts_top (opertype); |
2661 | tree nelts_cst = maybe_constant_value (nelts); |
2662 | if (TREE_CODE (nelts_cst) == INTEGER_CST |
2663 | && integer_onep (nelts_cst) |
2664 | && !var_decl |
2665 | && warn_placement_new < 2) |
2666 | return; |
2667 | } |
2668 | |
2669 | /* Reduce the size of the buffer by the adjustment computed above |
2670 | from the offset and/or the index into the array. */ |
2671 | if (bytes_avail < adjust || adjust < 0) |
2672 | bytes_avail = 0; |
2673 | else |
2674 | { |
2675 | tree elttype = (TREE_CODE (opertype) == ARRAY_TYPE |
2676 | ? TREE_TYPE (opertype) : opertype); |
2677 | if (tree eltsize = TYPE_SIZE_UNIT (elttype)) |
2678 | { |
2679 | bytes_avail -= adjust * wi::to_offset (eltsize); |
2680 | if (bytes_avail < 0) |
2681 | bytes_avail = 0; |
2682 | } |
2683 | } |
2684 | |
2685 | /* The minimum amount of space needed for the allocation. This |
2686 | is an optimistic estimate that makes it possible to detect |
2687 | placement new invocation for some undersize buffers but not |
2688 | others. */ |
2689 | offset_int bytes_need; |
2690 | |
2691 | if (CONSTANT_CLASS_P (size)) |
2692 | bytes_need = wi::to_offset (size); |
2693 | else if (nelts && CONSTANT_CLASS_P (nelts)) |
2694 | bytes_need = (wi::to_offset (nelts) |
2695 | * wi::to_offset (TYPE_SIZE_UNIT (type))); |
2696 | else if (tree_fits_uhwi_p (TYPE_SIZE_UNIT (type))) |
2697 | bytes_need = wi::to_offset (TYPE_SIZE_UNIT (type)); |
2698 | else |
2699 | { |
2700 | /* The type is a VLA. */ |
2701 | return; |
2702 | } |
2703 | |
2704 | if (bytes_avail < bytes_need) |
2705 | { |
2706 | if (nelts) |
2707 | if (CONSTANT_CLASS_P (nelts)) |
2708 | warning_at (loc, OPT_Wplacement_new_, |
2709 | exact_size ? |
2710 | "placement new constructing an object of type " |
2711 | "%<%T [%wu]%> and size %qwu in a region of type %qT " |
2712 | "and size %qwi" |
2713 | : "placement new constructing an object of type " |
2714 | "%<%T [%wu]%> and size %qwu in a region of type %qT " |
2715 | "and size at most %qwu" , |
2716 | type, tree_to_uhwi (nelts), bytes_need.to_uhwi (), |
2717 | opertype, bytes_avail.to_uhwi ()); |
2718 | else |
2719 | warning_at (loc, OPT_Wplacement_new_, |
2720 | exact_size ? |
2721 | "placement new constructing an array of objects " |
2722 | "of type %qT and size %qwu in a region of type %qT " |
2723 | "and size %qwi" |
2724 | : "placement new constructing an array of objects " |
2725 | "of type %qT and size %qwu in a region of type %qT " |
2726 | "and size at most %qwu" , |
2727 | type, bytes_need.to_uhwi (), opertype, |
2728 | bytes_avail.to_uhwi ()); |
2729 | else |
2730 | warning_at (loc, OPT_Wplacement_new_, |
2731 | exact_size ? |
2732 | "placement new constructing an object of type %qT " |
2733 | "and size %qwu in a region of type %qT and size %qwi" |
2734 | : "placement new constructing an object of type %qT " |
2735 | "and size %qwu in a region of type %qT and size " |
2736 | "at most %qwu" , |
2737 | type, bytes_need.to_uhwi (), opertype, |
2738 | bytes_avail.to_uhwi ()); |
2739 | } |
2740 | } |
2741 | } |
2742 | |
2743 | /* True if alignof(T) > __STDCPP_DEFAULT_NEW_ALIGNMENT__. */ |
2744 | |
2745 | bool |
2746 | type_has_new_extended_alignment (tree t) |
2747 | { |
2748 | return (aligned_new_threshold |
2749 | && TYPE_ALIGN_UNIT (t) > (unsigned)aligned_new_threshold); |
2750 | } |
2751 | |
2752 | /* Return the alignment we expect malloc to guarantee. This should just be |
2753 | MALLOC_ABI_ALIGNMENT, but that macro defaults to only BITS_PER_WORD for some |
2754 | reason, so don't let the threshold be smaller than max_align_t_align. */ |
2755 | |
2756 | unsigned |
2757 | malloc_alignment () |
2758 | { |
2759 | return MAX (max_align_t_align(), MALLOC_ABI_ALIGNMENT); |
2760 | } |
2761 | |
2762 | /* Determine whether an allocation function is a namespace-scope |
2763 | non-replaceable placement new function. See DR 1748. |
2764 | TODO: Enable in all standard modes. */ |
2765 | static bool |
2766 | std_placement_new_fn_p (tree alloc_fn) |
2767 | { |
2768 | if (DECL_NAMESPACE_SCOPE_P (alloc_fn)) |
2769 | { |
2770 | tree first_arg = TREE_CHAIN (TYPE_ARG_TYPES (TREE_TYPE (alloc_fn))); |
2771 | if ((TREE_VALUE (first_arg) == ptr_type_node) |
2772 | && TREE_CHAIN (first_arg) == void_list_node) |
2773 | return true; |
2774 | } |
2775 | return false; |
2776 | } |
2777 | |
2778 | /* Generate code for a new-expression, including calling the "operator |
2779 | new" function, initializing the object, and, if an exception occurs |
2780 | during construction, cleaning up. The arguments are as for |
2781 | build_raw_new_expr. This may change PLACEMENT and INIT. |
2782 | TYPE is the type of the object being constructed, possibly an array |
2783 | of NELTS elements when NELTS is non-null (in "new T[NELTS]", T may |
2784 | be an array of the form U[inner], with the whole expression being |
2785 | "new U[NELTS][inner]"). */ |
2786 | |
2787 | static tree |
2788 | build_new_1 (vec<tree, va_gc> **placement, tree type, tree nelts, |
2789 | vec<tree, va_gc> **init, bool globally_qualified_p, |
2790 | tsubst_flags_t complain) |
2791 | { |
2792 | tree size, rval; |
2793 | /* True iff this is a call to "operator new[]" instead of just |
2794 | "operator new". */ |
2795 | bool array_p = false; |
2796 | /* If ARRAY_P is true, the element type of the array. This is never |
2797 | an ARRAY_TYPE; for something like "new int[3][4]", the |
2798 | ELT_TYPE is "int". If ARRAY_P is false, this is the same type as |
2799 | TYPE. */ |
2800 | tree elt_type; |
2801 | /* The type of the new-expression. (This type is always a pointer |
2802 | type.) */ |
2803 | tree pointer_type; |
2804 | tree non_const_pointer_type; |
2805 | /* The most significant array bound in int[OUTER_NELTS][inner]. */ |
2806 | tree outer_nelts = NULL_TREE; |
2807 | /* For arrays with a non-constant number of elements, a bounds checks |
2808 | on the NELTS parameter to avoid integer overflow at runtime. */ |
2809 | tree outer_nelts_check = NULL_TREE; |
2810 | bool outer_nelts_from_type = false; |
2811 | /* Number of the "inner" elements in "new T[OUTER_NELTS][inner]". */ |
2812 | offset_int inner_nelts_count = 1; |
2813 | tree alloc_call, alloc_expr; |
2814 | /* Size of the inner array elements (those with constant dimensions). */ |
2815 | offset_int inner_size; |
2816 | /* The address returned by the call to "operator new". This node is |
2817 | a VAR_DECL and is therefore reusable. */ |
2818 | tree alloc_node; |
2819 | tree alloc_fn; |
2820 | tree cookie_expr, init_expr; |
2821 | int nothrow, check_new; |
2822 | /* If non-NULL, the number of extra bytes to allocate at the |
2823 | beginning of the storage allocated for an array-new expression in |
2824 | order to store the number of elements. */ |
2825 | tree cookie_size = NULL_TREE; |
2826 | tree placement_first; |
2827 | tree placement_expr = NULL_TREE; |
2828 | /* True if the function we are calling is a placement allocation |
2829 | function. */ |
2830 | bool placement_allocation_fn_p; |
2831 | /* True if the storage must be initialized, either by a constructor |
2832 | or due to an explicit new-initializer. */ |
2833 | bool is_initialized; |
2834 | /* The address of the thing allocated, not including any cookie. In |
2835 | particular, if an array cookie is in use, DATA_ADDR is the |
2836 | address of the first array element. This node is a VAR_DECL, and |
2837 | is therefore reusable. */ |
2838 | tree data_addr; |
2839 | tree init_preeval_expr = NULL_TREE; |
2840 | tree orig_type = type; |
2841 | |
2842 | if (nelts) |
2843 | { |
2844 | outer_nelts = nelts; |
2845 | array_p = true; |
2846 | } |
2847 | else if (TREE_CODE (type) == ARRAY_TYPE) |
2848 | { |
2849 | /* Transforms new (T[N]) to new T[N]. The former is a GNU |
2850 | extension for variable N. (This also covers new T where T is |
2851 | a VLA typedef.) */ |
2852 | array_p = true; |
2853 | nelts = array_type_nelts_top (type); |
2854 | outer_nelts = nelts; |
2855 | type = TREE_TYPE (type); |
2856 | outer_nelts_from_type = true; |
2857 | } |
2858 | |
2859 | /* Lots of logic below. depends on whether we have a constant number of |
2860 | elements, so go ahead and fold it now. */ |
2861 | if (outer_nelts) |
2862 | outer_nelts = maybe_constant_value (outer_nelts); |
2863 | |
2864 | /* If our base type is an array, then make sure we know how many elements |
2865 | it has. */ |
2866 | for (elt_type = type; |
2867 | TREE_CODE (elt_type) == ARRAY_TYPE; |
2868 | elt_type = TREE_TYPE (elt_type)) |
2869 | { |
2870 | tree inner_nelts = array_type_nelts_top (elt_type); |
2871 | tree inner_nelts_cst = maybe_constant_value (inner_nelts); |
2872 | if (TREE_CODE (inner_nelts_cst) == INTEGER_CST) |
2873 | { |
2874 | bool overflow; |
2875 | offset_int result = wi::mul (wi::to_offset (inner_nelts_cst), |
2876 | inner_nelts_count, SIGNED, &overflow); |
2877 | if (overflow) |
2878 | { |
2879 | if (complain & tf_error) |
2880 | error ("integer overflow in array size" ); |
2881 | nelts = error_mark_node; |
2882 | } |
2883 | inner_nelts_count = result; |
2884 | } |
2885 | else |
2886 | { |
2887 | if (complain & tf_error) |
2888 | { |
2889 | error_at (EXPR_LOC_OR_LOC (inner_nelts, input_location), |
2890 | "array size in new-expression must be constant" ); |
2891 | cxx_constant_value(inner_nelts); |
2892 | } |
2893 | nelts = error_mark_node; |
2894 | } |
2895 | if (nelts != error_mark_node) |
2896 | nelts = cp_build_binary_op (input_location, |
2897 | MULT_EXPR, nelts, |
2898 | inner_nelts_cst, |
2899 | complain); |
2900 | } |
2901 | |
2902 | if (variably_modified_type_p (elt_type, NULL_TREE) && (complain & tf_error)) |
2903 | { |
2904 | error ("variably modified type not allowed in new-expression" ); |
2905 | return error_mark_node; |
2906 | } |
2907 | |
2908 | if (nelts == error_mark_node) |
2909 | return error_mark_node; |
2910 | |
2911 | /* Warn if we performed the (T[N]) to T[N] transformation and N is |
2912 | variable. */ |
2913 | if (outer_nelts_from_type |
2914 | && !TREE_CONSTANT (outer_nelts)) |
2915 | { |
2916 | if (complain & tf_warning_or_error) |
2917 | { |
2918 | pedwarn (EXPR_LOC_OR_LOC (outer_nelts, input_location), OPT_Wvla, |
2919 | typedef_variant_p (orig_type) |
2920 | ? G_("non-constant array new length must be specified " |
2921 | "directly, not by typedef" ) |
2922 | : G_("non-constant array new length must be specified " |
2923 | "without parentheses around the type-id" )); |
2924 | } |
2925 | else |
2926 | return error_mark_node; |
2927 | } |
2928 | |
2929 | if (VOID_TYPE_P (elt_type)) |
2930 | { |
2931 | if (complain & tf_error) |
2932 | error ("invalid type %<void%> for new" ); |
2933 | return error_mark_node; |
2934 | } |
2935 | |
2936 | if (abstract_virtuals_error_sfinae (ACU_NEW, elt_type, complain)) |
2937 | return error_mark_node; |
2938 | |
2939 | is_initialized = (type_build_ctor_call (elt_type) || *init != NULL); |
2940 | |
2941 | if (*init == NULL && cxx_dialect < cxx11) |
2942 | { |
2943 | bool maybe_uninitialized_error = false; |
2944 | /* A program that calls for default-initialization [...] of an |
2945 | entity of reference type is ill-formed. */ |
2946 | if (CLASSTYPE_REF_FIELDS_NEED_INIT (elt_type)) |
2947 | maybe_uninitialized_error = true; |
2948 | |
2949 | /* A new-expression that creates an object of type T initializes |
2950 | that object as follows: |
2951 | - If the new-initializer is omitted: |
2952 | -- If T is a (possibly cv-qualified) non-POD class type |
2953 | (or array thereof), the object is default-initialized (8.5). |
2954 | [...] |
2955 | -- Otherwise, the object created has indeterminate |
2956 | value. If T is a const-qualified type, or a (possibly |
2957 | cv-qualified) POD class type (or array thereof) |
2958 | containing (directly or indirectly) a member of |
2959 | const-qualified type, the program is ill-formed; */ |
2960 | |
2961 | if (CLASSTYPE_READONLY_FIELDS_NEED_INIT (elt_type)) |
2962 | maybe_uninitialized_error = true; |
2963 | |
2964 | if (maybe_uninitialized_error |
2965 | && diagnose_uninitialized_cst_or_ref_member (elt_type, |
2966 | /*using_new=*/true, |
2967 | complain & tf_error)) |
2968 | return error_mark_node; |
2969 | } |
2970 | |
2971 | if (CP_TYPE_CONST_P (elt_type) && *init == NULL |
2972 | && default_init_uninitialized_part (elt_type)) |
2973 | { |
2974 | if (complain & tf_error) |
2975 | error ("uninitialized const in %<new%> of %q#T" , elt_type); |
2976 | return error_mark_node; |
2977 | } |
2978 | |
2979 | size = size_in_bytes (elt_type); |
2980 | if (array_p) |
2981 | { |
2982 | /* Maximum available size in bytes. Half of the address space |
2983 | minus the cookie size. */ |
2984 | offset_int max_size |
2985 | = wi::set_bit_in_zero <offset_int> (TYPE_PRECISION (sizetype) - 1); |
2986 | /* Maximum number of outer elements which can be allocated. */ |
2987 | offset_int max_outer_nelts; |
2988 | tree max_outer_nelts_tree; |
2989 | |
2990 | gcc_assert (TREE_CODE (size) == INTEGER_CST); |
2991 | cookie_size = targetm.cxx.get_cookie_size (elt_type); |
2992 | gcc_assert (TREE_CODE (cookie_size) == INTEGER_CST); |
2993 | gcc_checking_assert (wi::ltu_p (wi::to_offset (cookie_size), max_size)); |
2994 | /* Unconditionally subtract the cookie size. This decreases the |
2995 | maximum object size and is safe even if we choose not to use |
2996 | a cookie after all. */ |
2997 | max_size -= wi::to_offset (cookie_size); |
2998 | bool overflow; |
2999 | inner_size = wi::mul (wi::to_offset (size), inner_nelts_count, SIGNED, |
3000 | &overflow); |
3001 | if (overflow || wi::gtu_p (inner_size, max_size)) |
3002 | { |
3003 | if (complain & tf_error) |
3004 | error ("size of array is too large" ); |
3005 | return error_mark_node; |
3006 | } |
3007 | |
3008 | max_outer_nelts = wi::udiv_trunc (max_size, inner_size); |
3009 | max_outer_nelts_tree = wide_int_to_tree (sizetype, max_outer_nelts); |
3010 | |
3011 | size = size_binop (MULT_EXPR, size, fold_convert (sizetype, nelts)); |
3012 | |
3013 | if (INTEGER_CST == TREE_CODE (outer_nelts)) |
3014 | { |
3015 | if (tree_int_cst_lt (max_outer_nelts_tree, outer_nelts)) |
3016 | { |
3017 | /* When the array size is constant, check it at compile time |
3018 | to make sure it doesn't exceed the implementation-defined |
3019 | maximum, as required by C++ 14 (in C++ 11 this requirement |
3020 | isn't explicitly stated but it's enforced anyway -- see |
3021 | grokdeclarator in cp/decl.c). */ |
3022 | if (complain & tf_error) |
3023 | error ("size of array is too large" ); |
3024 | return error_mark_node; |
3025 | } |
3026 | } |
3027 | else |
3028 | { |
3029 | /* When a runtime check is necessary because the array size |
3030 | isn't constant, keep only the top-most seven bits (starting |
3031 | with the most significant non-zero bit) of the maximum size |
3032 | to compare the array size against, to simplify encoding the |
3033 | constant maximum size in the instruction stream. */ |
3034 | |
3035 | unsigned shift = (max_outer_nelts.get_precision ()) - 7 |
3036 | - wi::clz (max_outer_nelts); |
3037 | max_outer_nelts = (max_outer_nelts >> shift) << shift; |
3038 | |
3039 | outer_nelts_check = fold_build2 (LE_EXPR, boolean_type_node, |
3040 | outer_nelts, |
3041 | max_outer_nelts_tree); |
3042 | } |
3043 | } |
3044 | |
3045 | tree align_arg = NULL_TREE; |
3046 | if (type_has_new_extended_alignment (elt_type)) |
3047 | align_arg = build_int_cst (align_type_node, TYPE_ALIGN_UNIT (elt_type)); |
3048 | |
3049 | alloc_fn = NULL_TREE; |
3050 | |
3051 | /* If PLACEMENT is a single simple pointer type not passed by |
3052 | reference, prepare to capture it in a temporary variable. Do |
3053 | this now, since PLACEMENT will change in the calls below. */ |
3054 | placement_first = NULL_TREE; |
3055 | if (vec_safe_length (*placement) == 1 |
3056 | && (TYPE_PTR_P (TREE_TYPE ((**placement)[0])))) |
3057 | placement_first = (**placement)[0]; |
3058 | |
3059 | bool member_new_p = false; |
3060 | |
3061 | /* Allocate the object. */ |
3062 | tree fnname; |
3063 | tree fns; |
3064 | |
3065 | fnname = ovl_op_identifier (false, array_p ? VEC_NEW_EXPR : NEW_EXPR); |
3066 | |
3067 | member_new_p = !globally_qualified_p |
3068 | && CLASS_TYPE_P (elt_type) |
3069 | && (array_p |
3070 | ? TYPE_HAS_ARRAY_NEW_OPERATOR (elt_type) |
3071 | : TYPE_HAS_NEW_OPERATOR (elt_type)); |
3072 | |
3073 | if (member_new_p) |
3074 | { |
3075 | /* Use a class-specific operator new. */ |
3076 | /* If a cookie is required, add some extra space. */ |
3077 | if (array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type)) |
3078 | size = size_binop (PLUS_EXPR, size, cookie_size); |
3079 | else |
3080 | { |
3081 | cookie_size = NULL_TREE; |
3082 | /* No size arithmetic necessary, so the size check is |
3083 | not needed. */ |
3084 | if (outer_nelts_check != NULL && inner_size == 1) |
3085 | outer_nelts_check = NULL_TREE; |
3086 | } |
3087 | /* Perform the overflow check. */ |
3088 | tree errval = TYPE_MAX_VALUE (sizetype); |
3089 | if (cxx_dialect >= cxx11 && flag_exceptions) |
3090 | errval = throw_bad_array_new_length (); |
3091 | if (outer_nelts_check != NULL_TREE) |
3092 | size = fold_build3 (COND_EXPR, sizetype, outer_nelts_check, |
3093 | size, errval); |
3094 | /* Create the argument list. */ |
3095 | vec_safe_insert (*placement, 0, size); |
3096 | /* Do name-lookup to find the appropriate operator. */ |
3097 | fns = lookup_fnfields (elt_type, fnname, /*protect=*/2); |
3098 | if (fns == NULL_TREE) |
3099 | { |
3100 | if (complain & tf_error) |
3101 | error ("no suitable %qD found in class %qT" , fnname, elt_type); |
3102 | return error_mark_node; |
3103 | } |
3104 | if (TREE_CODE (fns) == TREE_LIST) |
3105 | { |
3106 | if (complain & tf_error) |
3107 | { |
3108 | error ("request for member %qD is ambiguous" , fnname); |
3109 | print_candidates (fns); |
3110 | } |
3111 | return error_mark_node; |
3112 | } |
3113 | tree dummy = build_dummy_object (elt_type); |
3114 | alloc_call = NULL_TREE; |
3115 | if (align_arg) |
3116 | { |
3117 | vec<tree, va_gc> *align_args |
3118 | = vec_copy_and_insert (*placement, align_arg, 1); |
3119 | alloc_call |
3120 | = build_new_method_call (dummy, fns, &align_args, |
3121 | /*conversion_path=*/NULL_TREE, |
3122 | LOOKUP_NORMAL, &alloc_fn, tf_none); |
3123 | /* If no matching function is found and the allocated object type |
3124 | has new-extended alignment, the alignment argument is removed |
3125 | from the argument list, and overload resolution is performed |
3126 | again. */ |
3127 | if (alloc_call == error_mark_node) |
3128 | alloc_call = NULL_TREE; |
3129 | } |
3130 | if (!alloc_call) |
3131 | alloc_call = build_new_method_call (dummy, fns, placement, |
3132 | /*conversion_path=*/NULL_TREE, |
3133 | LOOKUP_NORMAL, |
3134 | &alloc_fn, complain); |
3135 | } |
3136 | else |
3137 | { |
3138 | /* Use a global operator new. */ |
3139 | /* See if a cookie might be required. */ |
3140 | if (!(array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type))) |
3141 | { |
3142 | cookie_size = NULL_TREE; |
3143 | /* No size arithmetic necessary, so the size check is |
3144 | not needed. */ |
3145 | if (outer_nelts_check != NULL && inner_size == 1) |
3146 | outer_nelts_check = NULL_TREE; |
3147 | } |
3148 | |
3149 | alloc_call = build_operator_new_call (fnname, placement, |
3150 | &size, &cookie_size, |
3151 | align_arg, outer_nelts_check, |
3152 | &alloc_fn, complain); |
3153 | } |
3154 | |
3155 | if (alloc_call == error_mark_node) |
3156 | return error_mark_node; |
3157 | |
3158 | gcc_assert (alloc_fn != NULL_TREE); |
3159 | |
3160 | /* Now, check to see if this function is actually a placement |
3161 | allocation function. This can happen even when PLACEMENT is NULL |
3162 | because we might have something like: |
3163 | |
3164 | struct S { void* operator new (size_t, int i = 0); }; |
3165 | |
3166 | A call to `new S' will get this allocation function, even though |
3167 | there is no explicit placement argument. If there is more than |
3168 | one argument, or there are variable arguments, then this is a |
3169 | placement allocation function. */ |
3170 | placement_allocation_fn_p |
3171 | = (type_num_arguments (TREE_TYPE (alloc_fn)) > 1 |
3172 | || varargs_function_p (alloc_fn)); |
3173 | |
3174 | if (warn_aligned_new |
3175 | && !placement_allocation_fn_p |
3176 | && TYPE_ALIGN (elt_type) > malloc_alignment () |
3177 | && (warn_aligned_new > 1 |
3178 | || CP_DECL_CONTEXT (alloc_fn) == global_namespace) |
3179 | && !aligned_allocation_fn_p (alloc_fn)) |
3180 | { |
3181 | if (warning (OPT_Waligned_new_, "%<new%> of type %qT with extended " |
3182 | "alignment %d" , elt_type, TYPE_ALIGN_UNIT (elt_type))) |
3183 | { |
3184 | inform (input_location, "uses %qD, which does not have an alignment " |
3185 | "parameter" , alloc_fn); |
3186 | if (!aligned_new_threshold) |
3187 | inform (input_location, "use %<-faligned-new%> to enable C++17 " |
3188 | "over-aligned new support" ); |
3189 | } |
3190 | } |
3191 | |
3192 | /* If we found a simple case of PLACEMENT_EXPR above, then copy it |
3193 | into a temporary variable. */ |
3194 | if (!processing_template_decl |
3195 | && TREE_CODE (alloc_call) == CALL_EXPR |
3196 | && call_expr_nargs (alloc_call) == 2 |
3197 | && TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (alloc_call, 0))) == INTEGER_TYPE |
3198 | && TYPE_PTR_P (TREE_TYPE (CALL_EXPR_ARG (alloc_call, 1)))) |
3199 | { |
3200 | tree placement = CALL_EXPR_ARG (alloc_call, 1); |
3201 | |
3202 | if (placement_first != NULL_TREE |
3203 | && (INTEGRAL_OR_ENUMERATION_TYPE_P (TREE_TYPE (TREE_TYPE (placement))) |
3204 | || VOID_TYPE_P (TREE_TYPE (TREE_TYPE (placement))))) |
3205 | { |
3206 | placement_expr = get_target_expr (placement_first); |
3207 | CALL_EXPR_ARG (alloc_call, 1) |
3208 | = fold_convert (TREE_TYPE (placement), placement_expr); |
3209 | } |
3210 | |
3211 | if (!member_new_p |
3212 | && VOID_TYPE_P (TREE_TYPE (TREE_TYPE (CALL_EXPR_ARG (alloc_call, 1))))) |
3213 | { |
3214 | /* Attempt to make the warning point at the operator new argument. */ |
3215 | if (placement_first) |
3216 | placement = placement_first; |
3217 | |
3218 | warn_placement_new_too_small (orig_type, nelts, size, placement); |
3219 | } |
3220 | } |
3221 | |
3222 | /* In the simple case, we can stop now. */ |
3223 | pointer_type = build_pointer_type (type); |
3224 | if (!cookie_size && !is_initialized) |
3225 | return build_nop (pointer_type, alloc_call); |
3226 | |
3227 | /* Store the result of the allocation call in a variable so that we can |
3228 | use it more than once. */ |
3229 | alloc_expr = get_target_expr (alloc_call); |
3230 | alloc_node = TARGET_EXPR_SLOT (alloc_expr); |
3231 | |
3232 | /* Strip any COMPOUND_EXPRs from ALLOC_CALL. */ |
3233 | while (TREE_CODE (alloc_call) == COMPOUND_EXPR) |
3234 | alloc_call = TREE_OPERAND (alloc_call, 1); |
3235 | |
3236 | /* Preevaluate the placement args so that we don't reevaluate them for a |
3237 | placement delete. */ |
3238 | if (placement_allocation_fn_p) |
3239 | { |
3240 | tree inits; |
3241 | stabilize_call (alloc_call, &inits); |
3242 | if (inits) |
3243 | alloc_expr = build2 (COMPOUND_EXPR, TREE_TYPE (alloc_expr), inits, |
3244 | alloc_expr); |
3245 | } |
3246 | |
3247 | /* unless an allocation function is declared with an empty excep- |
3248 | tion-specification (_except.spec_), throw(), it indicates failure to |
3249 | allocate storage by throwing a bad_alloc exception (clause _except_, |
3250 | _lib.bad.alloc_); it returns a non-null pointer otherwise If the allo- |
3251 | cation function is declared with an empty exception-specification, |
3252 | throw(), it returns null to indicate failure to allocate storage and a |
3253 | non-null pointer otherwise. |
3254 | |
3255 | So check for a null exception spec on the op new we just called. */ |
3256 | |
3257 | nothrow = TYPE_NOTHROW_P (TREE_TYPE (alloc_fn)); |
3258 | check_new |
3259 | = flag_check_new || (nothrow && !std_placement_new_fn_p (alloc_fn)); |
3260 | |
3261 | if (cookie_size) |
3262 | { |
3263 | tree cookie; |
3264 | tree cookie_ptr; |
3265 | tree size_ptr_type; |
3266 | |
3267 | /* Adjust so we're pointing to the start of the object. */ |
3268 | data_addr = fold_build_pointer_plus (alloc_node, cookie_size); |
3269 | |
3270 | /* Store the number of bytes allocated so that we can know how |
3271 | many elements to destroy later. We use the last sizeof |
3272 | (size_t) bytes to store the number of elements. */ |
3273 | cookie_ptr = size_binop (MINUS_EXPR, cookie_size, size_in_bytes (sizetype)); |
3274 | cookie_ptr = fold_build_pointer_plus_loc (input_location, |
3275 | alloc_node, cookie_ptr); |
3276 | size_ptr_type = build_pointer_type (sizetype); |
3277 | cookie_ptr = fold_convert (size_ptr_type, cookie_ptr); |
3278 | cookie = cp_build_fold_indirect_ref (cookie_ptr); |
3279 | |
3280 | cookie_expr = build2 (MODIFY_EXPR, sizetype, cookie, nelts); |
3281 | |
3282 | if (targetm.cxx.cookie_has_size ()) |
3283 | { |
3284 | /* Also store the element size. */ |
3285 | cookie_ptr = fold_build_pointer_plus (cookie_ptr, |
3286 | fold_build1_loc (input_location, |
3287 | NEGATE_EXPR, sizetype, |
3288 | size_in_bytes (sizetype))); |
3289 | |
3290 | cookie = cp_build_fold_indirect_ref (cookie_ptr); |
3291 | cookie = build2 (MODIFY_EXPR, sizetype, cookie, |
3292 | size_in_bytes (elt_type)); |
3293 | cookie_expr = build2 (COMPOUND_EXPR, TREE_TYPE (cookie_expr), |
3294 | cookie, cookie_expr); |
3295 | } |
3296 | } |
3297 | else |
3298 | { |
3299 | cookie_expr = NULL_TREE; |
3300 | data_addr = alloc_node; |
3301 | } |
3302 | |
3303 | /* Now use a pointer to the type we've actually allocated. */ |
3304 | |
3305 | /* But we want to operate on a non-const version to start with, |
3306 | since we'll be modifying the elements. */ |
3307 | non_const_pointer_type = build_pointer_type |
3308 | (cp_build_qualified_type (type, cp_type_quals (type) & ~TYPE_QUAL_CONST)); |
3309 | |
3310 | data_addr = fold_convert (non_const_pointer_type, data_addr); |
3311 | /* Any further uses of alloc_node will want this type, too. */ |
3312 | alloc_node = fold_convert (non_const_pointer_type, alloc_node); |
3313 | |
3314 | /* Now initialize the allocated object. Note that we preevaluate the |
3315 | initialization expression, apart from the actual constructor call or |
3316 | assignment--we do this because we want to delay the allocation as long |
3317 | as possible in order to minimize the size of the exception region for |
3318 | placement delete. */ |
3319 | if (is_initialized) |
3320 | { |
3321 | bool stable; |
3322 | bool explicit_value_init_p = false; |
3323 | |
3324 | if (*init != NULL && (*init)->is_empty ()) |
3325 | { |
3326 | *init = NULL; |
3327 | explicit_value_init_p = true; |
3328 | } |
3329 | |
3330 | if (processing_template_decl && explicit_value_init_p) |
3331 | { |
3332 | /* build_value_init doesn't work in templates, and we don't need |
3333 | the initializer anyway since we're going to throw it away and |
3334 | rebuild it at instantiation time, so just build up a single |
3335 | constructor call to get any appropriate diagnostics. */ |
3336 | init_expr = cp_build_fold_indirect_ref (data_addr); |
3337 | if (type_build_ctor_call (elt_type)) |
3338 | init_expr = build_special_member_call (init_expr, |
3339 | complete_ctor_identifier, |
3340 | init, elt_type, |
3341 | LOOKUP_NORMAL, |
3342 | complain); |
3343 | stable = stabilize_init (init_expr, &init_preeval_expr); |
3344 | } |
3345 | else if (array_p) |
3346 | { |
3347 | tree vecinit = NULL_TREE; |
3348 | if (vec_safe_length (*init) == 1 |
3349 | && DIRECT_LIST_INIT_P ((**init)[0])) |
3350 | { |
3351 | vecinit = (**init)[0]; |
3352 | if (CONSTRUCTOR_NELTS (vecinit) == 0) |
3353 | /* List-value-initialization, leave it alone. */; |
3354 | else |
3355 | { |
3356 | tree arraytype, domain; |
3357 | if (TREE_CONSTANT (nelts)) |
3358 | domain = compute_array_index_type (NULL_TREE, nelts, |
3359 | complain); |
3360 | else |
3361 | /* We'll check the length at runtime. */ |
3362 | domain = NULL_TREE; |
3363 | arraytype = build_cplus_array_type (type, domain); |
3364 | vecinit = digest_init (arraytype, vecinit, complain); |
3365 | } |
3366 | } |
3367 | else if (*init) |
3368 | { |
3369 | if (complain & tf_error) |
3370 | permerror (input_location, |
3371 | "parenthesized initializer in array new" ); |
3372 | else |
3373 | return error_mark_node; |
3374 | vecinit = build_tree_list_vec (*init); |
3375 | } |
3376 | init_expr |
3377 | = build_vec_init (data_addr, |
3378 | cp_build_binary_op (input_location, |
3379 | MINUS_EXPR, outer_nelts, |
3380 | integer_one_node, |
3381 | complain), |
3382 | vecinit, |
3383 | explicit_value_init_p, |
3384 | /*from_array=*/0, |
3385 | complain); |
3386 | |
3387 | /* An array initialization is stable because the initialization |
3388 | of each element is a full-expression, so the temporaries don't |
3389 | leak out. */ |
3390 | stable = true; |
3391 | } |
3392 | else |
3393 | { |
3394 | init_expr = cp_build_fold_indirect_ref (data_addr); |
3395 | |
3396 | if (type_build_ctor_call (type) && !explicit_value_init_p) |
3397 | { |
3398 | init_expr = build_special_member_call (init_expr, |
3399 | complete_ctor_identifier, |
3400 | init, elt_type, |
3401 | LOOKUP_NORMAL, |
3402 | complain); |
3403 | } |
3404 | else if (explicit_value_init_p) |
3405 | { |
3406 | /* Something like `new int()'. NO_CLEANUP is needed so |
3407 | we don't try and build a (possibly ill-formed) |
3408 | destructor. */ |
3409 | tree val = build_value_init (type, complain | tf_no_cleanup); |
3410 | if (val == error_mark_node) |
3411 | return error_mark_node; |
3412 | init_expr = build2 (INIT_EXPR, type, init_expr, val); |
3413 | } |
3414 | else |
3415 | { |
3416 | tree ie; |
3417 | |
3418 | /* We are processing something like `new int (10)', which |
3419 | means allocate an int, and initialize it with 10. */ |
3420 | |
3421 | ie = build_x_compound_expr_from_vec (*init, "new initializer" , |
3422 | complain); |
3423 | init_expr = cp_build_modify_expr (input_location, init_expr, |
3424 | INIT_EXPR, ie, complain); |
3425 | } |
3426 | /* If the initializer uses C++14 aggregate NSDMI that refer to the |
3427 | object being initialized, replace them now and don't try to |
3428 | preevaluate. */ |
3429 | bool had_placeholder = false; |
3430 | if (!processing_template_decl |
3431 | && TREE_CODE (init_expr) == INIT_EXPR) |
3432 | TREE_OPERAND (init_expr, 1) |
3433 | = replace_placeholders (TREE_OPERAND (init_expr, 1), |
3434 | TREE_OPERAND (init_expr, 0), |
3435 | &had_placeholder); |
3436 | stable = (!had_placeholder |
3437 | && stabilize_init (init_expr, &init_preeval_expr)); |
3438 | } |
3439 | |
3440 | if (init_expr == error_mark_node) |
3441 | return error_mark_node; |
3442 | |
3443 | /* If any part of the object initialization terminates by throwing an |
3444 | exception and a suitable deallocation function can be found, the |
3445 | deallocation function is called to free the memory in which the |
3446 | object was being constructed, after which the exception continues |
3447 | to propagate in the context of the new-expression. If no |
3448 | unambiguous matching deallocation function can be found, |
3449 | propagating the exception does not cause the object's memory to be |
3450 | freed. */ |
3451 | if (flag_exceptions) |
3452 | { |
3453 | enum tree_code dcode = array_p ? VEC_DELETE_EXPR : DELETE_EXPR; |
3454 | tree cleanup; |
3455 | |
3456 | /* The Standard is unclear here, but the right thing to do |
3457 | is to use the same method for finding deallocation |
3458 | functions that we use for finding allocation functions. */ |
3459 | cleanup = (build_op_delete_call |
3460 | (dcode, |
3461 | alloc_node, |
3462 | size, |
3463 | globally_qualified_p, |
3464 | placement_allocation_fn_p ? alloc_call : NULL_TREE, |
3465 | alloc_fn, |
3466 | complain)); |
3467 | |
3468 | if (!cleanup) |
3469 | /* We're done. */; |
3470 | else if (stable) |
3471 | /* This is much simpler if we were able to preevaluate all of |
3472 | the arguments to the constructor call. */ |
3473 | { |
3474 | /* CLEANUP is compiler-generated, so no diagnostics. */ |
3475 | TREE_NO_WARNING (cleanup) = true; |
3476 | init_expr = build2 (TRY_CATCH_EXPR, void_type_node, |
3477 | init_expr, cleanup); |
3478 | /* Likewise, this try-catch is compiler-generated. */ |
3479 | TREE_NO_WARNING (init_expr) = true; |
3480 | } |
3481 | else |
3482 | /* Ack! First we allocate the memory. Then we set our sentry |
3483 | variable to true, and expand a cleanup that deletes the |
3484 | memory if sentry is true. Then we run the constructor, and |
3485 | finally clear the sentry. |
3486 | |
3487 | We need to do this because we allocate the space first, so |
3488 | if there are any temporaries with cleanups in the |
3489 | constructor args and we weren't able to preevaluate them, we |
3490 | need this EH region to extend until end of full-expression |
3491 | to preserve nesting. */ |
3492 | { |
3493 | tree end, sentry, begin; |
3494 | |
3495 | begin = get_target_expr (boolean_true_node); |
3496 | CLEANUP_EH_ONLY (begin) = 1; |
3497 | |
3498 | sentry = TARGET_EXPR_SLOT (begin); |
3499 | |
3500 | /* CLEANUP is compiler-generated, so no diagnostics. */ |
3501 | TREE_NO_WARNING (cleanup) = true; |
3502 | |
3503 | TARGET_EXPR_CLEANUP (begin) |
3504 | = build3 (COND_EXPR, void_type_node, sentry, |
3505 | cleanup, void_node); |
3506 | |
3507 | end = build2 (MODIFY_EXPR, TREE_TYPE (sentry), |
3508 | sentry, boolean_false_node); |
3509 | |
3510 | init_expr |
3511 | = build2 (COMPOUND_EXPR, void_type_node, begin, |
3512 | build2 (COMPOUND_EXPR, void_type_node, init_expr, |
3513 | end)); |
3514 | /* Likewise, this is compiler-generated. */ |
3515 | TREE_NO_WARNING (init_expr) = true; |
3516 | } |
3517 | } |
3518 | } |
3519 | else |
3520 | init_expr = NULL_TREE; |
3521 | |
3522 | /* Now build up the return value in reverse order. */ |
3523 | |
3524 | rval = data_addr; |
3525 | |
3526 | if (init_expr) |
3527 | rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_expr, rval); |
3528 | if (cookie_expr) |
3529 | rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), cookie_expr, rval); |
3530 | |
3531 | if (rval == data_addr) |
3532 | /* If we don't have an initializer or a cookie, strip the TARGET_EXPR |
3533 | and return the call (which doesn't need to be adjusted). */ |
3534 | rval = TARGET_EXPR_INITIAL (alloc_expr); |
3535 | else |
3536 | { |
3537 | if (check_new) |
3538 | { |
3539 | tree ifexp = cp_build_binary_op (input_location, |
3540 | NE_EXPR, alloc_node, |
3541 | nullptr_node, |
3542 | complain); |
3543 | rval = build_conditional_expr (input_location, ifexp, rval, |
3544 | alloc_node, complain); |
3545 | } |
3546 | |
3547 | /* Perform the allocation before anything else, so that ALLOC_NODE |
3548 | has been initialized before we start using it. */ |
3549 | rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), alloc_expr, rval); |
3550 | } |
3551 | |
3552 | if (init_preeval_expr) |
3553 | rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_preeval_expr, rval); |
3554 | |
3555 | /* A new-expression is never an lvalue. */ |
3556 | gcc_assert (!obvalue_p (rval)); |
3557 | |
3558 | return convert (pointer_type, rval); |
3559 | } |
3560 | |
3561 | /* Generate a representation for a C++ "new" expression. *PLACEMENT |
3562 | is a vector of placement-new arguments (or NULL if none). If NELTS |
3563 | is NULL, TYPE is the type of the storage to be allocated. If NELTS |
3564 | is not NULL, then this is an array-new allocation; TYPE is the type |
3565 | of the elements in the array and NELTS is the number of elements in |
3566 | the array. *INIT, if non-NULL, is the initializer for the new |
3567 | object, or an empty vector to indicate an initializer of "()". If |
3568 | USE_GLOBAL_NEW is true, then the user explicitly wrote "::new" |
3569 | rather than just "new". This may change PLACEMENT and INIT. */ |
3570 | |
3571 | tree |
3572 | build_new (vec<tree, va_gc> **placement, tree type, tree nelts, |
3573 | vec<tree, va_gc> **init, int use_global_new, tsubst_flags_t complain) |
3574 | { |
3575 | tree rval; |
3576 | vec<tree, va_gc> *orig_placement = NULL; |
3577 | tree orig_nelts = NULL_TREE; |
3578 | vec<tree, va_gc> *orig_init = NULL; |
3579 | |
3580 | if (type == error_mark_node) |
3581 | return error_mark_node; |
3582 | |
3583 | if (nelts == NULL_TREE |
3584 | /* Don't do auto deduction where it might affect mangling. */ |
3585 | && (!processing_template_decl || at_function_scope_p ())) |
3586 | { |
3587 | tree auto_node = type_uses_auto (type); |
3588 | if (auto_node) |
3589 | { |
3590 | tree d_init = NULL_TREE; |
3591 | if (vec_safe_length (*init) == 1) |
3592 | { |
3593 | d_init = (**init)[0]; |
3594 | d_init = resolve_nondeduced_context (d_init, complain); |
3595 | } |
3596 | type = do_auto_deduction (type, d_init, auto_node); |
3597 | } |
3598 | } |
3599 | |
3600 | if (processing_template_decl) |
3601 | { |
3602 | if (dependent_type_p (type) |
3603 | || any_type_dependent_arguments_p (*placement) |
3604 | || (nelts && type_dependent_expression_p (nelts)) |
3605 | || (nelts && *init) |
3606 | || any_type_dependent_arguments_p (*init)) |
3607 | return build_raw_new_expr (*placement, type, nelts, *init, |
3608 | use_global_new); |
3609 | |
3610 | orig_placement = make_tree_vector_copy (*placement); |
3611 | orig_nelts = nelts; |
3612 | if (*init) |
3613 | { |
3614 | orig_init = make_tree_vector_copy (*init); |
3615 | /* Also copy any CONSTRUCTORs in *init, since reshape_init and |
3616 | digest_init clobber them in place. */ |
3617 | for (unsigned i = 0; i < orig_init->length(); ++i) |
3618 | { |
3619 | tree e = (**init)[i]; |
3620 | if (TREE_CODE (e) == CONSTRUCTOR) |
3621 | (**init)[i] = copy_node (e); |
3622 | } |
3623 | } |
3624 | |
3625 | make_args_non_dependent (*placement); |
3626 | if (nelts) |
3627 | nelts = build_non_dependent_expr (nelts); |
3628 | make_args_non_dependent (*init); |
3629 | } |
3630 | |
3631 | if (nelts) |
3632 | { |
3633 | if (!build_expr_type_conversion (WANT_INT | WANT_ENUM, nelts, false)) |
3634 | { |
3635 | if (complain & tf_error) |
3636 | permerror (input_location, "size in array new must have integral type" ); |
3637 | else |
3638 | return error_mark_node; |
3639 | } |
3640 | |
3641 | /* Try to determine the constant value only for the purposes |
3642 | of the diagnostic below but continue to use the original |
3643 | value and handle const folding later. */ |
3644 | const_tree cst_nelts = maybe_constant_value (nelts); |
3645 | |
3646 | /* The expression in a noptr-new-declarator is erroneous if it's of |
3647 | non-class type and its value before converting to std::size_t is |
3648 | less than zero. ... If the expression is a constant expression, |
3649 | the program is ill-fomed. */ |
3650 | if (INTEGER_CST == TREE_CODE (cst_nelts) |
3651 | && tree_int_cst_sgn (cst_nelts) == -1) |
3652 | { |
3653 | if (complain & tf_error) |
3654 | error ("size of array is negative" ); |
3655 | return error_mark_node; |
3656 | } |
3657 | |
3658 | nelts = mark_rvalue_use (nelts); |
3659 | nelts = cp_save_expr (cp_convert (sizetype, nelts, complain)); |
3660 | } |
3661 | |
3662 | /* ``A reference cannot be created by the new operator. A reference |
3663 | is not an object (8.2.2, 8.4.3), so a pointer to it could not be |
3664 | returned by new.'' ARM 5.3.3 */ |
3665 | if (TREE_CODE (type) == REFERENCE_TYPE) |
3666 | { |
3667 | if (complain & tf_error) |
3668 | error ("new cannot be applied to a reference type" ); |
3669 | else |
3670 | return error_mark_node; |
3671 | type = TREE_TYPE (type); |
3672 | } |
3673 | |
3674 | if (TREE_CODE (type) == FUNCTION_TYPE) |
3675 | { |
3676 | if (complain & tf_error) |
3677 | error ("new cannot be applied to a function type" ); |
3678 | return error_mark_node; |
3679 | } |
3680 | |
3681 | /* The type allocated must be complete. If the new-type-id was |
3682 | "T[N]" then we are just checking that "T" is complete here, but |
3683 | that is equivalent, since the value of "N" doesn't matter. */ |
3684 | if (!complete_type_or_maybe_complain (type, NULL_TREE, complain)) |
3685 | return error_mark_node; |
3686 | |
3687 | rval = build_new_1 (placement, type, nelts, init, use_global_new, complain); |
3688 | if (rval == error_mark_node) |
3689 | return error_mark_node; |
3690 | |
3691 | if (processing_template_decl) |
3692 | { |
3693 | tree ret = build_raw_new_expr (orig_placement, type, orig_nelts, |
3694 | orig_init, use_global_new); |
3695 | release_tree_vector (orig_placement); |
3696 | release_tree_vector (orig_init); |
3697 | return ret; |
3698 | } |
3699 | |
3700 | /* Wrap it in a NOP_EXPR so warn_if_unused_value doesn't complain. */ |
3701 | rval = build1 (NOP_EXPR, TREE_TYPE (rval), rval); |
3702 | TREE_NO_WARNING (rval) = 1; |
3703 | |
3704 | return rval; |
3705 | } |
3706 | |
3707 | static tree |
3708 | build_vec_delete_1 (tree base, tree maxindex, tree type, |
3709 | special_function_kind auto_delete_vec, |
3710 | int use_global_delete, tsubst_flags_t complain) |
3711 | { |
3712 | tree virtual_size; |
3713 | tree ptype = build_pointer_type (type = complete_type (type)); |
3714 | tree size_exp; |
3715 | |
3716 | /* Temporary variables used by the loop. */ |
3717 | tree tbase, tbase_init; |
3718 | |
3719 | /* This is the body of the loop that implements the deletion of a |
3720 | single element, and moves temp variables to next elements. */ |
3721 | tree body; |
3722 | |
3723 | /* This is the LOOP_EXPR that governs the deletion of the elements. */ |
3724 | tree loop = 0; |
3725 | |
3726 | /* This is the thing that governs what to do after the loop has run. */ |
3727 | tree deallocate_expr = 0; |
3728 | |
3729 | /* This is the BIND_EXPR which holds the outermost iterator of the |
3730 | loop. It is convenient to set this variable up and test it before |
3731 | executing any other code in the loop. |
3732 | This is also the containing expression returned by this function. */ |
3733 | tree controller = NULL_TREE; |
3734 | tree tmp; |
3735 | |
3736 | /* We should only have 1-D arrays here. */ |
3737 | gcc_assert (TREE_CODE (type) != ARRAY_TYPE); |
3738 | |
3739 | if (base == error_mark_node || maxindex == error_mark_node) |
3740 | return error_mark_node; |
3741 | |
3742 | if (!COMPLETE_TYPE_P (type)) |
3743 | { |
3744 | if ((complain & tf_warning) |
3745 | && warning (OPT_Wdelete_incomplete, |
3746 | "possible problem detected in invocation of " |
3747 | "delete [] operator:" )) |
3748 | { |
3749 | cxx_incomplete_type_diagnostic (base, type, DK_WARNING); |
3750 | inform (input_location, "neither the destructor nor the " |
3751 | "class-specific operator delete [] will be called, " |
3752 | "even if they are declared when the class is defined" ); |
3753 | } |
3754 | /* This size won't actually be used. */ |
3755 | size_exp = size_one_node; |
3756 | goto no_destructor; |
3757 | } |
3758 | |
3759 | size_exp = size_in_bytes (type); |
3760 | |
3761 | if (! MAYBE_CLASS_TYPE_P (type)) |
3762 | goto no_destructor; |
3763 | else if (TYPE_HAS_TRIVIAL_DESTRUCTOR (type)) |
3764 | { |
3765 | /* Make sure the destructor is callable. */ |
3766 | if (type_build_dtor_call (type)) |
3767 | { |
3768 | tmp = build_delete (ptype, base, sfk_complete_destructor, |
3769 | LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 1, |
3770 | complain); |
3771 | if (tmp == error_mark_node) |
3772 | return error_mark_node; |
3773 | } |
3774 | goto no_destructor; |
3775 | } |
3776 | |
3777 | /* The below is short by the cookie size. */ |
3778 | virtual_size = size_binop (MULT_EXPR, size_exp, |
3779 | fold_convert (sizetype, maxindex)); |
3780 | |
3781 | tbase = create_temporary_var (ptype); |
3782 | tbase_init |
3783 | = cp_build_modify_expr (input_location, tbase, NOP_EXPR, |
3784 | fold_build_pointer_plus_loc (input_location, |
3785 | fold_convert (ptype, |
3786 | base), |
3787 | virtual_size), |
3788 | complain); |
3789 | if (tbase_init == error_mark_node) |
3790 | return error_mark_node; |
3791 | controller = build3 (BIND_EXPR, void_type_node, tbase, |
3792 | NULL_TREE, NULL_TREE); |
3793 | TREE_SIDE_EFFECTS (controller) = 1; |
3794 | |
3795 | body = build1 (EXIT_EXPR, void_type_node, |
3796 | build2 (EQ_EXPR, boolean_type_node, tbase, |
3797 | fold_convert (ptype, base))); |
3798 | tmp = fold_build1_loc (input_location, NEGATE_EXPR, sizetype, size_exp); |
3799 | tmp = fold_build_pointer_plus (tbase, tmp); |
3800 | tmp = cp_build_modify_expr (input_location, tbase, NOP_EXPR, tmp, complain); |
3801 | if (tmp == error_mark_node) |
3802 | return error_mark_node; |
3803 | body = build_compound_expr (input_location, body, tmp); |
3804 | tmp = build_delete (ptype, tbase, sfk_complete_destructor, |
3805 | LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 1, |
3806 | complain); |
3807 | if (tmp == error_mark_node) |
3808 | return error_mark_node; |
3809 | body = build_compound_expr (input_location, body, tmp); |
3810 | |
3811 | loop = build1 (LOOP_EXPR, void_type_node, body); |
3812 | loop = build_compound_expr (input_location, tbase_init, loop); |
3813 | |
3814 | no_destructor: |
3815 | /* Delete the storage if appropriate. */ |
3816 | if (auto_delete_vec == sfk_deleting_destructor) |
3817 | { |
3818 | tree base_tbd; |
3819 | |
3820 | /* The below is short by the cookie size. */ |
3821 | virtual_size = size_binop (MULT_EXPR, size_exp, |
3822 | fold_convert (sizetype, maxindex)); |
3823 | |
3824 | if (! TYPE_VEC_NEW_USES_COOKIE (type)) |
3825 | /* no header */ |
3826 | base_tbd = base; |
3827 | else |
3828 | { |
3829 | tree cookie_size; |
3830 | |
3831 | cookie_size = targetm.cxx.get_cookie_size (type); |
3832 | base_tbd = cp_build_binary_op (input_location, |
3833 | MINUS_EXPR, |
3834 | cp_convert (string_type_node, |
3835 | base, complain), |
3836 | cookie_size, |
3837 | complain); |
3838 | if (base_tbd == error_mark_node) |
3839 | return error_mark_node; |
3840 | base_tbd = cp_convert (ptype, base_tbd, complain); |
3841 | /* True size with header. */ |
3842 | virtual_size = size_binop (PLUS_EXPR, virtual_size, cookie_size); |
3843 | } |
3844 | |
3845 | deallocate_expr = build_op_delete_call (VEC_DELETE_EXPR, |
3846 | base_tbd, virtual_size, |
3847 | use_global_delete & 1, |
3848 | /*placement=*/NULL_TREE, |
3849 | /*alloc_fn=*/NULL_TREE, |
3850 | complain); |
3851 | } |
3852 | |
3853 | body = loop; |
3854 | if (!deallocate_expr) |
3855 | ; |
3856 | else if (!body) |
3857 | body = deallocate_expr; |
3858 | else |
3859 | /* The delete operator mist be called, even if a destructor |
3860 | throws. */ |
3861 | body = build2 (TRY_FINALLY_EXPR, void_type_node, body, deallocate_expr); |
3862 | |
3863 | if (!body) |
3864 | body = integer_zero_node; |
3865 | |
3866 | /* Outermost wrapper: If pointer is null, punt. */ |
3867 | tree cond = build2_loc (input_location, NE_EXPR, boolean_type_node, base, |
3868 | fold_convert (TREE_TYPE (base), nullptr_node)); |
3869 | /* This is a compiler generated comparison, don't emit |
3870 | e.g. -Wnonnull-compare warning for it. */ |
3871 | TREE_NO_WARNING (cond) = 1; |
3872 | body = build3_loc (input_location, COND_EXPR, void_type_node, |
3873 | cond, body, integer_zero_node); |
3874 | COND_EXPR_IS_VEC_DELETE (body) = true; |
3875 | body = build1 (NOP_EXPR, void_type_node, body); |
3876 | |
3877 | if (controller) |
3878 | { |
3879 | TREE_OPERAND (controller, 1) = body; |
3880 | body = controller; |
3881 | } |
3882 | |
3883 | if (TREE_CODE (base) == SAVE_EXPR) |
3884 | /* Pre-evaluate the SAVE_EXPR outside of the BIND_EXPR. */ |
3885 | body = build2 (COMPOUND_EXPR, void_type_node, base, body); |
3886 | |
3887 | return convert_to_void (body, ICV_CAST, complain); |
3888 | } |
3889 | |
3890 | /* Create an unnamed variable of the indicated TYPE. */ |
3891 | |
3892 | tree |
3893 | create_temporary_var (tree type) |
3894 | { |
3895 | tree decl; |
3896 | |
3897 | decl = build_decl (input_location, |
3898 | VAR_DECL, NULL_TREE, type); |
3899 | TREE_USED (decl) = 1; |
3900 | DECL_ARTIFICIAL (decl) = 1; |
3901 | DECL_IGNORED_P (decl) = 1; |
3902 | DECL_CONTEXT (decl) = current_function_decl; |
3903 | |
3904 | return decl; |
3905 | } |
3906 | |
3907 | /* Create a new temporary variable of the indicated TYPE, initialized |
3908 | to INIT. |
3909 | |
3910 | It is not entered into current_binding_level, because that breaks |
3911 | things when it comes time to do final cleanups (which take place |
3912 | "outside" the binding contour of the function). */ |
3913 | |
3914 | tree |
3915 | get_temp_regvar (tree type, tree init) |
3916 | { |
3917 | tree decl; |
3918 | |
3919 | decl = create_temporary_var (type); |
3920 | add_decl_expr (decl); |
3921 | |
3922 | finish_expr_stmt (cp_build_modify_expr (input_location, decl, INIT_EXPR, |
3923 | init, tf_warning_or_error)); |
3924 | |
3925 | return decl; |
3926 | } |
3927 | |
3928 | /* Subroutine of build_vec_init. Returns true if assigning to an array of |
3929 | INNER_ELT_TYPE from INIT is trivial. */ |
3930 | |
3931 | static bool |
3932 | vec_copy_assign_is_trivial (tree inner_elt_type, tree init) |
3933 | { |
3934 | tree fromtype = inner_elt_type; |
3935 | if (lvalue_p (init)) |
3936 | fromtype = cp_build_reference_type (fromtype, /*rval*/false); |
3937 | return is_trivially_xible (MODIFY_EXPR, inner_elt_type, fromtype); |
3938 | } |
3939 | |
3940 | /* Subroutine of build_vec_init: Check that the array has at least N |
3941 | elements. Other parameters are local variables in build_vec_init. */ |
3942 | |
3943 | void |
3944 | finish_length_check (tree atype, tree iterator, tree obase, unsigned n) |
3945 | { |
3946 | tree nelts = build_int_cst (ptrdiff_type_node, n - 1); |
3947 | if (TREE_CODE (atype) != ARRAY_TYPE) |
3948 | { |
3949 | if (flag_exceptions) |
3950 | { |
3951 | tree c = fold_build2 (LT_EXPR, boolean_type_node, iterator, |
3952 | nelts); |
3953 | c = build3 (COND_EXPR, void_type_node, c, |
3954 | throw_bad_array_new_length (), void_node); |
3955 | finish_expr_stmt (c); |
3956 | } |
3957 | /* Don't check an array new when -fno-exceptions. */ |
3958 | } |
3959 | else if (sanitize_flags_p (SANITIZE_BOUNDS) |
3960 | && current_function_decl != NULL_TREE) |
3961 | { |
3962 | /* Make sure the last element of the initializer is in bounds. */ |
3963 | finish_expr_stmt |
3964 | (ubsan_instrument_bounds |
3965 | (input_location, obase, &nelts, /*ignore_off_by_one*/false)); |
3966 | } |
3967 | } |
3968 | |
3969 | /* `build_vec_init' returns tree structure that performs |
3970 | initialization of a vector of aggregate types. |
3971 | |
3972 | BASE is a reference to the vector, of ARRAY_TYPE, or a pointer |
3973 | to the first element, of POINTER_TYPE. |
3974 | MAXINDEX is the maximum index of the array (one less than the |
3975 | number of elements). It is only used if BASE is a pointer or |
3976 | TYPE_DOMAIN (TREE_TYPE (BASE)) == NULL_TREE. |
3977 | |
3978 | INIT is the (possibly NULL) initializer. |
3979 | |
3980 | If EXPLICIT_VALUE_INIT_P is true, then INIT must be NULL. All |
3981 | elements in the array are value-initialized. |
3982 | |
3983 | FROM_ARRAY is 0 if we should init everything with INIT |
3984 | (i.e., every element initialized from INIT). |
3985 | FROM_ARRAY is 1 if we should index into INIT in parallel |
3986 | with initialization of DECL. |
3987 | FROM_ARRAY is 2 if we should index into INIT in parallel, |
3988 | but use assignment instead of initialization. */ |
3989 | |
3990 | tree |
3991 | build_vec_init (tree base, tree maxindex, tree init, |
3992 | bool explicit_value_init_p, |
3993 | int from_array, tsubst_flags_t complain) |
3994 | { |
3995 | tree rval; |
3996 | tree base2 = NULL_TREE; |
3997 | tree itype = NULL_TREE; |
3998 | tree iterator; |
3999 | /* The type of BASE. */ |
4000 | tree atype = TREE_TYPE (base); |
4001 | /* The type of an element in the array. */ |
4002 | tree type = TREE_TYPE (atype); |
4003 | /* The element type reached after removing all outer array |
4004 | types. */ |
4005 | tree inner_elt_type; |
4006 | /* The type of a pointer to an element in the array. */ |
4007 | tree ptype; |
4008 | tree stmt_expr; |
4009 | tree compound_stmt; |
4010 | int destroy_temps; |
4011 | tree try_block = NULL_TREE; |
4012 | int num_initialized_elts = 0; |
4013 | bool is_global; |
4014 | tree obase = base; |
4015 | bool xvalue = false; |
4016 | bool errors = false; |
4017 | location_t loc = (init ? EXPR_LOC_OR_LOC (init, input_location) |
4018 | : location_of (base)); |
4019 | |
4020 | if (TREE_CODE (atype) == ARRAY_TYPE && TYPE_DOMAIN (atype)) |
4021 | maxindex = array_type_nelts (atype); |
4022 | |
4023 | if (maxindex == NULL_TREE || maxindex == error_mark_node) |
4024 | return error_mark_node; |
4025 | |
4026 | maxindex = maybe_constant_value (maxindex); |
4027 | if (explicit_value_init_p) |
4028 | gcc_assert (!init); |
4029 | |
4030 | inner_elt_type = strip_array_types (type); |
4031 | |
4032 | /* Look through the TARGET_EXPR around a compound literal. */ |
4033 | if (init && TREE_CODE (init) == TARGET_EXPR |
4034 | && TREE_CODE (TARGET_EXPR_INITIAL (init)) == CONSTRUCTOR |
4035 | && from_array != 2) |
4036 | init = TARGET_EXPR_INITIAL (init); |
4037 | |
4038 | bool direct_init = false; |
4039 | if (from_array && init && BRACE_ENCLOSED_INITIALIZER_P (init) |
4040 | && CONSTRUCTOR_NELTS (init) == 1) |
4041 | { |
4042 | tree elt = CONSTRUCTOR_ELT (init, 0)->value; |
4043 | if (TREE_CODE (TREE_TYPE (elt)) == ARRAY_TYPE) |
4044 | { |
4045 | direct_init = DIRECT_LIST_INIT_P (init); |
4046 | init = elt; |
4047 | } |
4048 | } |
4049 | |
4050 | /* If we have a braced-init-list or string constant, make sure that the array |
4051 | is big enough for all the initializers. */ |
4052 | bool length_check = (init |
4053 | && (TREE_CODE (init) == STRING_CST |
4054 | || (TREE_CODE (init) == CONSTRUCTOR |
4055 | && CONSTRUCTOR_NELTS (init) > 0)) |
4056 | && !TREE_CONSTANT (maxindex)); |
4057 | |
4058 | if (init |
4059 | && TREE_CODE (atype) == ARRAY_TYPE |
4060 | && TREE_CONSTANT (maxindex) |
4061 | && (from_array == 2 |
4062 | ? vec_copy_assign_is_trivial (inner_elt_type, init) |
4063 | : !TYPE_NEEDS_CONSTRUCTING (type)) |
4064 | && ((TREE_CODE (init) == CONSTRUCTOR |
4065 | && (BRACE_ENCLOSED_INITIALIZER_P (init) |
4066 | || (same_type_ignoring_top_level_qualifiers_p |
4067 | (atype, TREE_TYPE (init)))) |
4068 | /* Don't do this if the CONSTRUCTOR might contain something |
4069 | that might throw and require us to clean up. */ |
4070 | && (vec_safe_is_empty (CONSTRUCTOR_ELTS (init)) |
4071 | || ! TYPE_HAS_NONTRIVIAL_DESTRUCTOR (inner_elt_type))) |
4072 | || from_array)) |
4073 | { |
4074 | /* Do non-default initialization of trivial arrays resulting from |
4075 | brace-enclosed initializers. In this case, digest_init and |
4076 | store_constructor will handle the semantics for us. */ |
4077 | |
4078 | if (BRACE_ENCLOSED_INITIALIZER_P (init)) |
4079 | init = digest_init (atype, init, complain); |
4080 | stmt_expr = build2 (INIT_EXPR, atype, base, init); |
4081 | return stmt_expr; |
4082 | } |
4083 | |
4084 | maxindex = cp_convert (ptrdiff_type_node, maxindex, complain); |
4085 | maxindex = fold_simple (maxindex); |
4086 | |
4087 | if (TREE_CODE (atype) == ARRAY_TYPE) |
4088 | { |
4089 | ptype = build_pointer_type (type); |
4090 | base = decay_conversion (base, complain); |
4091 | if (base == error_mark_node) |
4092 | return error_mark_node; |
4093 | base = cp_convert (ptype, base, complain); |
4094 | } |
4095 | else |
4096 | ptype = atype; |
4097 | |
4098 | /* The code we are generating looks like: |
4099 | ({ |
4100 | T* t1 = (T*) base; |
4101 | T* rval = t1; |
4102 | ptrdiff_t iterator = maxindex; |
4103 | try { |
4104 | for (; iterator != -1; --iterator) { |
4105 | ... initialize *t1 ... |
4106 | ++t1; |
4107 | } |
4108 | } catch (...) { |
4109 | ... destroy elements that were constructed ... |
4110 | } |
4111 | rval; |
4112 | }) |
4113 | |
4114 | We can omit the try and catch blocks if we know that the |
4115 | initialization will never throw an exception, or if the array |
4116 | elements do not have destructors. We can omit the loop completely if |
4117 | the elements of the array do not have constructors. |
4118 | |
4119 | We actually wrap the entire body of the above in a STMT_EXPR, for |
4120 | tidiness. |
4121 | |
4122 | When copying from array to another, when the array elements have |
4123 | only trivial copy constructors, we should use __builtin_memcpy |
4124 | rather than generating a loop. That way, we could take advantage |
4125 | of whatever cleverness the back end has for dealing with copies |
4126 | of blocks of memory. */ |
4127 | |
4128 | is_global = begin_init_stmts (&stmt_expr, &compound_stmt); |
4129 | destroy_temps = stmts_are_full_exprs_p (); |
4130 | current_stmt_tree ()->stmts_are_full_exprs_p = 0; |
4131 | rval = get_temp_regvar (ptype, base); |
4132 | base = get_temp_regvar (ptype, rval); |
4133 | iterator = get_temp_regvar (ptrdiff_type_node, maxindex); |
4134 | |
4135 | /* If initializing one array from another, initialize element by |
4136 | element. We rely upon the below calls to do the argument |
4137 | checking. Evaluate the initializer before entering the try block. */ |
4138 | if (from_array && init && TREE_CODE (init) != CONSTRUCTOR) |
4139 | { |
4140 | if (lvalue_kind (init) & clk_rvalueref) |
4141 | xvalue = true; |
4142 | base2 = decay_conversion (init, complain); |
4143 | if (base2 == error_mark_node) |
4144 | return error_mark_node; |
4145 | itype = TREE_TYPE (base2); |
4146 | base2 = get_temp_regvar (itype, base2); |
4147 | itype = TREE_TYPE (itype); |
4148 | } |
4149 | |
4150 | /* Protect the entire array initialization so that we can destroy |
4151 | the partially constructed array if an exception is thrown. |
4152 | But don't do this if we're assigning. */ |
4153 | if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type) |
4154 | && from_array != 2) |
4155 | { |
4156 | try_block = begin_try_block (); |
4157 | } |
4158 | |
4159 | /* Should we try to create a constant initializer? */ |
4160 | bool try_const = (TREE_CODE (atype) == ARRAY_TYPE |
4161 | && TREE_CONSTANT (maxindex) |
4162 | && (init ? TREE_CODE (init) == CONSTRUCTOR |
4163 | : (type_has_constexpr_default_constructor |
4164 | (inner_elt_type))) |
4165 | && (literal_type_p (inner_elt_type) |
4166 | || TYPE_HAS_CONSTEXPR_CTOR (inner_elt_type))); |
4167 | vec<constructor_elt, va_gc> *const_vec = NULL; |
4168 | bool saw_non_const = false; |
4169 | /* If we're initializing a static array, we want to do static |
4170 | initialization of any elements with constant initializers even if |
4171 | some are non-constant. */ |
4172 | bool do_static_init = (DECL_P (obase) && TREE_STATIC (obase)); |
4173 | |
4174 | bool empty_list = false; |
4175 | if (init && BRACE_ENCLOSED_INITIALIZER_P (init) |
4176 | && CONSTRUCTOR_NELTS (init) == 0) |
4177 | /* Skip over the handling of non-empty init lists. */ |
4178 | empty_list = true; |
4179 | |
4180 | /* Maybe pull out constant value when from_array? */ |
4181 | |
4182 | else if (init != NULL_TREE && TREE_CODE (init) == CONSTRUCTOR) |
4183 | { |
4184 | /* Do non-default initialization of non-trivial arrays resulting from |
4185 | brace-enclosed initializers. */ |
4186 | unsigned HOST_WIDE_INT idx; |
4187 | tree field, elt; |
4188 | /* If the constructor already has the array type, it's been through |
4189 | digest_init, so we shouldn't try to do anything more. */ |
4190 | bool digested = same_type_p (atype, TREE_TYPE (init)); |
4191 | from_array = 0; |
4192 | |
4193 | if (length_check) |
4194 | finish_length_check (atype, iterator, obase, CONSTRUCTOR_NELTS (init)); |
4195 | |
4196 | if (try_const) |
4197 | vec_alloc (const_vec, CONSTRUCTOR_NELTS (init)); |
4198 | |
4199 | FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), idx, field, elt) |
4200 | { |
4201 | tree baseref = build1 (INDIRECT_REF, type, base); |
4202 | tree one_init; |
4203 | |
4204 | num_initialized_elts++; |
4205 | |
4206 | current_stmt_tree ()->stmts_are_full_exprs_p = 1; |
4207 | if (digested) |
4208 | one_init = build2 (INIT_EXPR, type, baseref, elt); |
4209 | else if (MAYBE_CLASS_TYPE_P (type) || TREE_CODE (type) == ARRAY_TYPE) |
4210 | one_init = build_aggr_init (baseref, elt, 0, complain); |
4211 | else |
4212 | one_init = cp_build_modify_expr (input_location, baseref, |
4213 | NOP_EXPR, elt, complain); |
4214 | if (one_init == error_mark_node) |
4215 | errors = true; |
4216 | if (try_const) |
4217 | { |
4218 | tree e = maybe_constant_init (one_init); |
4219 | if (reduced_constant_expression_p (e)) |
4220 | { |
4221 | CONSTRUCTOR_APPEND_ELT (const_vec, field, e); |
4222 | if (do_static_init) |
4223 | one_init = NULL_TREE; |
4224 | else |
4225 | one_init = build2 (INIT_EXPR, type, baseref, e); |
4226 | } |
4227 | else |
4228 | { |
4229 | if (do_static_init) |
4230 | { |
4231 | tree value = build_zero_init (TREE_TYPE (e), NULL_TREE, |
4232 | true); |
4233 | if (value) |
4234 | CONSTRUCTOR_APPEND_ELT (const_vec, field, value); |
4235 | } |
4236 | saw_non_const = true; |
4237 | } |
4238 | } |
4239 | |
4240 | if (one_init) |
4241 | finish_expr_stmt (one_init); |
4242 | current_stmt_tree ()->stmts_are_full_exprs_p = 0; |
4243 | |
4244 | one_init = cp_build_unary_op (PREINCREMENT_EXPR, base, false, |
4245 | complain); |
4246 | if (one_init == error_mark_node) |
4247 | errors = true; |
4248 | else |
4249 | finish_expr_stmt (one_init); |
4250 | |
4251 | one_init = cp_build_unary_op (PREDECREMENT_EXPR, iterator, false, |
4252 | complain); |
4253 | if (one_init == error_mark_node) |
4254 | errors = true; |
4255 | else |
4256 | finish_expr_stmt (one_init); |
4257 | } |
4258 | |
4259 | /* Any elements without explicit initializers get T{}. */ |
4260 | empty_list = true; |
4261 | } |
4262 | else if (init && TREE_CODE (init) == STRING_CST) |
4263 | { |
4264 | /* Check that the array is at least as long as the string. */ |
4265 | if (length_check) |
4266 | finish_length_check (atype, iterator, obase, |
4267 | TREE_STRING_LENGTH (init)); |
4268 | tree length = build_int_cst (ptrdiff_type_node, |
4269 | TREE_STRING_LENGTH (init)); |
4270 | |
4271 | /* Copy the string to the first part of the array. */ |
4272 | tree alias_set = build_int_cst (build_pointer_type (type), 0); |
4273 | tree lhs = build2 (MEM_REF, TREE_TYPE (init), base, alias_set); |
4274 | tree stmt = build2 (MODIFY_EXPR, void_type_node, lhs, init); |
4275 | finish_expr_stmt (stmt); |
4276 | |
4277 | /* Adjust the counter and pointer. */ |
4278 | stmt = cp_build_binary_op (loc, MINUS_EXPR, iterator, length, complain); |
4279 | stmt = build2 (MODIFY_EXPR, void_type_node, iterator, stmt); |
4280 | finish_expr_stmt (stmt); |
4281 | |
4282 | stmt = cp_build_binary_op (loc, PLUS_EXPR, base, length, complain); |
4283 | stmt = build2 (MODIFY_EXPR, void_type_node, base, stmt); |
4284 | finish_expr_stmt (stmt); |
4285 | |
4286 | /* And set the rest of the array to NUL. */ |
4287 | from_array = 0; |
4288 | explicit_value_init_p = true; |
4289 | } |
4290 | else if (from_array) |
4291 | { |
4292 | if (init) |
4293 | /* OK, we set base2 above. */; |
4294 | else if (CLASS_TYPE_P (type) |
4295 | && ! TYPE_HAS_DEFAULT_CONSTRUCTOR (type)) |
4296 | { |
4297 | if (complain & tf_error) |
4298 | error ("initializer ends prematurely" ); |
4299 | errors = true; |
4300 | } |
4301 | } |
4302 | |
4303 | /* Now, default-initialize any remaining elements. We don't need to |
4304 | do that if a) the type does not need constructing, or b) we've |
4305 | already initialized all the elements. |
4306 | |
4307 | We do need to keep going if we're copying an array. */ |
4308 | |
4309 | if (try_const && !init) |
4310 | /* With a constexpr default constructor, which we checked for when |
4311 | setting try_const above, default-initialization is equivalent to |
4312 | value-initialization, and build_value_init gives us something more |
4313 | friendly to maybe_constant_init. */ |
4314 | explicit_value_init_p = true; |
4315 | if (from_array |
4316 | || ((type_build_ctor_call (type) || init || explicit_value_init_p) |
4317 | && ! (tree_fits_shwi_p (maxindex) |
4318 | && (num_initialized_elts |
4319 | == tree_to_shwi (maxindex) + 1)))) |
4320 | { |
4321 | /* If the ITERATOR is lesser or equal to -1, then we don't have to loop; |
4322 | we've already initialized all the elements. */ |
4323 | tree for_stmt; |
4324 | tree elt_init; |
4325 | tree to; |
4326 | |
4327 | for_stmt = begin_for_stmt (NULL_TREE, NULL_TREE); |
4328 | finish_init_stmt (for_stmt); |
4329 | finish_for_cond (build2 (GT_EXPR, boolean_type_node, iterator, |
4330 | build_int_cst (TREE_TYPE (iterator), -1)), |
4331 | for_stmt, false); |
4332 | elt_init = cp_build_unary_op (PREDECREMENT_EXPR, iterator, false, |
4333 | complain); |
4334 | if (elt_init == error_mark_node) |
4335 | errors = true; |
4336 | finish_for_expr (elt_init, for_stmt); |
4337 | |
4338 | to = build1 (INDIRECT_REF, type, base); |
4339 | |
4340 | /* If the initializer is {}, then all elements are initialized from T{}. |
4341 | But for non-classes, that's the same as value-initialization. */ |
4342 | if |
---|