1 | /* Breadth-first and depth-first routines for |
2 | searching multiple-inheritance lattice for GNU C++. |
3 | Copyright (C) 1987-2017 Free Software Foundation, Inc. |
4 | Contributed by Michael Tiemann (tiemann@cygnus.com) |
5 | |
6 | This file is part of GCC. |
7 | |
8 | GCC is free software; you can redistribute it and/or modify |
9 | it under the terms of the GNU General Public License as published by |
10 | the Free Software Foundation; either version 3, or (at your option) |
11 | any later version. |
12 | |
13 | GCC is distributed in the hope that it will be useful, |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
16 | GNU General Public License for more details. |
17 | |
18 | You should have received a copy of the GNU General Public License |
19 | along with GCC; see the file COPYING3. If not see |
20 | <http://www.gnu.org/licenses/>. */ |
21 | |
22 | /* High-level class interface. */ |
23 | |
24 | #include "config.h" |
25 | #include "system.h" |
26 | #include "coretypes.h" |
27 | #include "cp-tree.h" |
28 | #include "intl.h" |
29 | #include "toplev.h" |
30 | #include "spellcheck-tree.h" |
31 | #include "stringpool.h" |
32 | #include "attribs.h" |
33 | |
34 | static int is_subobject_of_p (tree, tree); |
35 | static tree dfs_lookup_base (tree, void *); |
36 | static tree dfs_dcast_hint_pre (tree, void *); |
37 | static tree dfs_dcast_hint_post (tree, void *); |
38 | static tree dfs_debug_mark (tree, void *); |
39 | static int check_hidden_convs (tree, int, int, tree, tree, tree); |
40 | static tree split_conversions (tree, tree, tree, tree); |
41 | static int lookup_conversions_r (tree, int, int, tree, tree, tree *); |
42 | static int look_for_overrides_r (tree, tree); |
43 | static tree lookup_field_r (tree, void *); |
44 | static tree dfs_accessible_post (tree, void *); |
45 | static tree dfs_walk_once_accessible (tree, bool, |
46 | tree (*pre_fn) (tree, void *), |
47 | tree (*post_fn) (tree, void *), |
48 | void *data); |
49 | static tree dfs_access_in_type (tree, void *); |
50 | static access_kind access_in_type (tree, tree); |
51 | static tree dfs_get_pure_virtuals (tree, void *); |
52 | |
53 | |
54 | /* Data for lookup_base and its workers. */ |
55 | |
56 | struct lookup_base_data_s |
57 | { |
58 | tree t; /* type being searched. */ |
59 | tree base; /* The base type we're looking for. */ |
60 | tree binfo; /* Found binfo. */ |
61 | bool via_virtual; /* Found via a virtual path. */ |
62 | bool ambiguous; /* Found multiply ambiguous */ |
63 | bool repeated_base; /* Whether there are repeated bases in the |
64 | hierarchy. */ |
65 | bool want_any; /* Whether we want any matching binfo. */ |
66 | }; |
67 | |
68 | /* Worker function for lookup_base. See if we've found the desired |
69 | base and update DATA_ (a pointer to LOOKUP_BASE_DATA_S). */ |
70 | |
71 | static tree |
72 | dfs_lookup_base (tree binfo, void *data_) |
73 | { |
74 | struct lookup_base_data_s *data = (struct lookup_base_data_s *) data_; |
75 | |
76 | if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), data->base)) |
77 | { |
78 | if (!data->binfo) |
79 | { |
80 | data->binfo = binfo; |
81 | data->via_virtual |
82 | = binfo_via_virtual (data->binfo, data->t) != NULL_TREE; |
83 | |
84 | if (!data->repeated_base) |
85 | /* If there are no repeated bases, we can stop now. */ |
86 | return binfo; |
87 | |
88 | if (data->want_any && !data->via_virtual) |
89 | /* If this is a non-virtual base, then we can't do |
90 | better. */ |
91 | return binfo; |
92 | |
93 | return dfs_skip_bases; |
94 | } |
95 | else |
96 | { |
97 | gcc_assert (binfo != data->binfo); |
98 | |
99 | /* We've found more than one matching binfo. */ |
100 | if (!data->want_any) |
101 | { |
102 | /* This is immediately ambiguous. */ |
103 | data->binfo = NULL_TREE; |
104 | data->ambiguous = true; |
105 | return error_mark_node; |
106 | } |
107 | |
108 | /* Prefer one via a non-virtual path. */ |
109 | if (!binfo_via_virtual (binfo, data->t)) |
110 | { |
111 | data->binfo = binfo; |
112 | data->via_virtual = false; |
113 | return binfo; |
114 | } |
115 | |
116 | /* There must be repeated bases, otherwise we'd have stopped |
117 | on the first base we found. */ |
118 | return dfs_skip_bases; |
119 | } |
120 | } |
121 | |
122 | return NULL_TREE; |
123 | } |
124 | |
125 | /* Returns true if type BASE is accessible in T. (BASE is known to be |
126 | a (possibly non-proper) base class of T.) If CONSIDER_LOCAL_P is |
127 | true, consider any special access of the current scope, or access |
128 | bestowed by friendship. */ |
129 | |
130 | bool |
131 | accessible_base_p (tree t, tree base, bool consider_local_p) |
132 | { |
133 | tree decl; |
134 | |
135 | /* [class.access.base] |
136 | |
137 | A base class is said to be accessible if an invented public |
138 | member of the base class is accessible. |
139 | |
140 | If BASE is a non-proper base, this condition is trivially |
141 | true. */ |
142 | if (same_type_p (t, base)) |
143 | return true; |
144 | /* Rather than inventing a public member, we use the implicit |
145 | public typedef created in the scope of every class. */ |
146 | decl = TYPE_FIELDS (base); |
147 | while (!DECL_SELF_REFERENCE_P (decl)) |
148 | decl = DECL_CHAIN (decl); |
149 | while (ANON_AGGR_TYPE_P (t)) |
150 | t = TYPE_CONTEXT (t); |
151 | return accessible_p (t, decl, consider_local_p); |
152 | } |
153 | |
154 | /* Lookup BASE in the hierarchy dominated by T. Do access checking as |
155 | ACCESS specifies. Return the binfo we discover. If KIND_PTR is |
156 | non-NULL, fill with information about what kind of base we |
157 | discovered. |
158 | |
159 | If the base is inaccessible, or ambiguous, then error_mark_node is |
160 | returned. If the tf_error bit of COMPLAIN is not set, no error |
161 | is issued. */ |
162 | |
163 | tree |
164 | lookup_base (tree t, tree base, base_access access, |
165 | base_kind *kind_ptr, tsubst_flags_t complain) |
166 | { |
167 | tree binfo; |
168 | tree t_binfo; |
169 | base_kind bk; |
170 | |
171 | /* "Nothing" is definitely not derived from Base. */ |
172 | if (t == NULL_TREE) |
173 | { |
174 | if (kind_ptr) |
175 | *kind_ptr = bk_not_base; |
176 | return NULL_TREE; |
177 | } |
178 | |
179 | if (t == error_mark_node || base == error_mark_node) |
180 | { |
181 | if (kind_ptr) |
182 | *kind_ptr = bk_not_base; |
183 | return error_mark_node; |
184 | } |
185 | gcc_assert (TYPE_P (base)); |
186 | |
187 | if (!TYPE_P (t)) |
188 | { |
189 | t_binfo = t; |
190 | t = BINFO_TYPE (t); |
191 | } |
192 | else |
193 | { |
194 | t = complete_type (TYPE_MAIN_VARIANT (t)); |
195 | t_binfo = TYPE_BINFO (t); |
196 | } |
197 | |
198 | base = TYPE_MAIN_VARIANT (base); |
199 | |
200 | /* If BASE is incomplete, it can't be a base of T--and instantiating it |
201 | might cause an error. */ |
202 | if (t_binfo && CLASS_TYPE_P (base) && COMPLETE_OR_OPEN_TYPE_P (base)) |
203 | { |
204 | struct lookup_base_data_s data; |
205 | |
206 | data.t = t; |
207 | data.base = base; |
208 | data.binfo = NULL_TREE; |
209 | data.ambiguous = data.via_virtual = false; |
210 | data.repeated_base = CLASSTYPE_REPEATED_BASE_P (t); |
211 | data.want_any = access == ba_any; |
212 | |
213 | dfs_walk_once (t_binfo, dfs_lookup_base, NULL, &data); |
214 | binfo = data.binfo; |
215 | |
216 | if (!binfo) |
217 | bk = data.ambiguous ? bk_ambig : bk_not_base; |
218 | else if (binfo == t_binfo) |
219 | bk = bk_same_type; |
220 | else if (data.via_virtual) |
221 | bk = bk_via_virtual; |
222 | else |
223 | bk = bk_proper_base; |
224 | } |
225 | else |
226 | { |
227 | binfo = NULL_TREE; |
228 | bk = bk_not_base; |
229 | } |
230 | |
231 | /* Check that the base is unambiguous and accessible. */ |
232 | if (access != ba_any) |
233 | switch (bk) |
234 | { |
235 | case bk_not_base: |
236 | break; |
237 | |
238 | case bk_ambig: |
239 | if (complain & tf_error) |
240 | error ("%qT is an ambiguous base of %qT" , base, t); |
241 | binfo = error_mark_node; |
242 | break; |
243 | |
244 | default: |
245 | if ((access & ba_check_bit) |
246 | /* If BASE is incomplete, then BASE and TYPE are probably |
247 | the same, in which case BASE is accessible. If they |
248 | are not the same, then TYPE is invalid. In that case, |
249 | there's no need to issue another error here, and |
250 | there's no implicit typedef to use in the code that |
251 | follows, so we skip the check. */ |
252 | && COMPLETE_TYPE_P (base) |
253 | && !accessible_base_p (t, base, !(access & ba_ignore_scope))) |
254 | { |
255 | if (complain & tf_error) |
256 | error ("%qT is an inaccessible base of %qT" , base, t); |
257 | binfo = error_mark_node; |
258 | bk = bk_inaccessible; |
259 | } |
260 | break; |
261 | } |
262 | |
263 | if (kind_ptr) |
264 | *kind_ptr = bk; |
265 | |
266 | return binfo; |
267 | } |
268 | |
269 | /* Data for dcast_base_hint walker. */ |
270 | |
271 | struct dcast_data_s |
272 | { |
273 | tree subtype; /* The base type we're looking for. */ |
274 | int virt_depth; /* Number of virtual bases encountered from most |
275 | derived. */ |
276 | tree offset; /* Best hint offset discovered so far. */ |
277 | bool repeated_base; /* Whether there are repeated bases in the |
278 | hierarchy. */ |
279 | }; |
280 | |
281 | /* Worker for dcast_base_hint. Search for the base type being cast |
282 | from. */ |
283 | |
284 | static tree |
285 | dfs_dcast_hint_pre (tree binfo, void *data_) |
286 | { |
287 | struct dcast_data_s *data = (struct dcast_data_s *) data_; |
288 | |
289 | if (BINFO_VIRTUAL_P (binfo)) |
290 | data->virt_depth++; |
291 | |
292 | if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), data->subtype)) |
293 | { |
294 | if (data->virt_depth) |
295 | { |
296 | data->offset = ssize_int (-1); |
297 | return data->offset; |
298 | } |
299 | if (data->offset) |
300 | data->offset = ssize_int (-3); |
301 | else |
302 | data->offset = BINFO_OFFSET (binfo); |
303 | |
304 | return data->repeated_base ? dfs_skip_bases : data->offset; |
305 | } |
306 | |
307 | return NULL_TREE; |
308 | } |
309 | |
310 | /* Worker for dcast_base_hint. Track the virtual depth. */ |
311 | |
312 | static tree |
313 | dfs_dcast_hint_post (tree binfo, void *data_) |
314 | { |
315 | struct dcast_data_s *data = (struct dcast_data_s *) data_; |
316 | |
317 | if (BINFO_VIRTUAL_P (binfo)) |
318 | data->virt_depth--; |
319 | |
320 | return NULL_TREE; |
321 | } |
322 | |
323 | /* The dynamic cast runtime needs a hint about how the static SUBTYPE type |
324 | started from is related to the required TARGET type, in order to optimize |
325 | the inheritance graph search. This information is independent of the |
326 | current context, and ignores private paths, hence get_base_distance is |
327 | inappropriate. Return a TREE specifying the base offset, BOFF. |
328 | BOFF >= 0, there is only one public non-virtual SUBTYPE base at offset BOFF, |
329 | and there are no public virtual SUBTYPE bases. |
330 | BOFF == -1, SUBTYPE occurs as multiple public virtual or non-virtual bases. |
331 | BOFF == -2, SUBTYPE is not a public base. |
332 | BOFF == -3, SUBTYPE occurs as multiple public non-virtual bases. */ |
333 | |
334 | tree |
335 | dcast_base_hint (tree subtype, tree target) |
336 | { |
337 | struct dcast_data_s data; |
338 | |
339 | data.subtype = subtype; |
340 | data.virt_depth = 0; |
341 | data.offset = NULL_TREE; |
342 | data.repeated_base = CLASSTYPE_REPEATED_BASE_P (target); |
343 | |
344 | dfs_walk_once_accessible (TYPE_BINFO (target), /*friends=*/false, |
345 | dfs_dcast_hint_pre, dfs_dcast_hint_post, &data); |
346 | return data.offset ? data.offset : ssize_int (-2); |
347 | } |
348 | |
349 | /* Search for a member with name NAME in a multiple inheritance |
350 | lattice specified by TYPE. If it does not exist, return NULL_TREE. |
351 | If the member is ambiguously referenced, return `error_mark_node'. |
352 | Otherwise, return a DECL with the indicated name. If WANT_TYPE is |
353 | true, type declarations are preferred. */ |
354 | |
355 | /* Return the FUNCTION_DECL, RECORD_TYPE, UNION_TYPE, or |
356 | NAMESPACE_DECL corresponding to the innermost non-block scope. */ |
357 | |
358 | tree |
359 | current_scope (void) |
360 | { |
361 | /* There are a number of cases we need to be aware of here: |
362 | current_class_type current_function_decl |
363 | global NULL NULL |
364 | fn-local NULL SET |
365 | class-local SET NULL |
366 | class->fn SET SET |
367 | fn->class SET SET |
368 | |
369 | Those last two make life interesting. If we're in a function which is |
370 | itself inside a class, we need decls to go into the fn's decls (our |
371 | second case below). But if we're in a class and the class itself is |
372 | inside a function, we need decls to go into the decls for the class. To |
373 | achieve this last goal, we must see if, when both current_class_ptr and |
374 | current_function_decl are set, the class was declared inside that |
375 | function. If so, we know to put the decls into the class's scope. */ |
376 | if (current_function_decl && current_class_type |
377 | && ((DECL_FUNCTION_MEMBER_P (current_function_decl) |
378 | && same_type_p (DECL_CONTEXT (current_function_decl), |
379 | current_class_type)) |
380 | || (DECL_FRIEND_CONTEXT (current_function_decl) |
381 | && same_type_p (DECL_FRIEND_CONTEXT (current_function_decl), |
382 | current_class_type)))) |
383 | return current_function_decl; |
384 | |
385 | if (current_class_type) |
386 | return current_class_type; |
387 | |
388 | if (current_function_decl) |
389 | return current_function_decl; |
390 | |
391 | return current_namespace; |
392 | } |
393 | |
394 | /* Returns nonzero if we are currently in a function scope. Note |
395 | that this function returns zero if we are within a local class, but |
396 | not within a member function body of the local class. */ |
397 | |
398 | int |
399 | at_function_scope_p (void) |
400 | { |
401 | tree cs = current_scope (); |
402 | /* Also check cfun to make sure that we're really compiling |
403 | this function (as opposed to having set current_function_decl |
404 | for access checking or some such). */ |
405 | return (cs && TREE_CODE (cs) == FUNCTION_DECL |
406 | && cfun && cfun->decl == current_function_decl); |
407 | } |
408 | |
409 | /* Returns true if the innermost active scope is a class scope. */ |
410 | |
411 | bool |
412 | at_class_scope_p (void) |
413 | { |
414 | tree cs = current_scope (); |
415 | return cs && TYPE_P (cs); |
416 | } |
417 | |
418 | /* Returns true if the innermost active scope is a namespace scope. */ |
419 | |
420 | bool |
421 | at_namespace_scope_p (void) |
422 | { |
423 | tree cs = current_scope (); |
424 | return cs && TREE_CODE (cs) == NAMESPACE_DECL; |
425 | } |
426 | |
427 | /* Return the scope of DECL, as appropriate when doing name-lookup. */ |
428 | |
429 | tree |
430 | context_for_name_lookup (tree decl) |
431 | { |
432 | /* [class.union] |
433 | |
434 | For the purposes of name lookup, after the anonymous union |
435 | definition, the members of the anonymous union are considered to |
436 | have been defined in the scope in which the anonymous union is |
437 | declared. */ |
438 | tree context = DECL_CONTEXT (decl); |
439 | |
440 | while (context && TYPE_P (context) |
441 | && (ANON_AGGR_TYPE_P (context) || UNSCOPED_ENUM_P (context))) |
442 | context = TYPE_CONTEXT (context); |
443 | if (!context) |
444 | context = global_namespace; |
445 | |
446 | return context; |
447 | } |
448 | |
449 | /* Returns true iff DECL is declared in TYPE. */ |
450 | |
451 | static bool |
452 | member_declared_in_type (tree decl, tree type) |
453 | { |
454 | /* A normal declaration obviously counts. */ |
455 | if (context_for_name_lookup (decl) == type) |
456 | return true; |
457 | /* So does a using or access declaration. */ |
458 | if (DECL_LANG_SPECIFIC (decl) && !DECL_DISCRIMINATOR_P (decl) |
459 | && purpose_member (type, DECL_ACCESS (decl))) |
460 | return true; |
461 | return false; |
462 | } |
463 | |
464 | /* The accessibility routines use BINFO_ACCESS for scratch space |
465 | during the computation of the accessibility of some declaration. */ |
466 | |
467 | /* Avoid walking up past a declaration of the member. */ |
468 | |
469 | static tree |
470 | dfs_access_in_type_pre (tree binfo, void *data) |
471 | { |
472 | tree decl = (tree) data; |
473 | tree type = BINFO_TYPE (binfo); |
474 | if (member_declared_in_type (decl, type)) |
475 | return dfs_skip_bases; |
476 | return NULL_TREE; |
477 | } |
478 | |
479 | #define BINFO_ACCESS(NODE) \ |
480 | ((access_kind) ((TREE_PUBLIC (NODE) << 1) | TREE_PRIVATE (NODE))) |
481 | |
482 | /* Set the access associated with NODE to ACCESS. */ |
483 | |
484 | #define SET_BINFO_ACCESS(NODE, ACCESS) \ |
485 | ((TREE_PUBLIC (NODE) = ((ACCESS) & 2) != 0), \ |
486 | (TREE_PRIVATE (NODE) = ((ACCESS) & 1) != 0)) |
487 | |
488 | /* Called from access_in_type via dfs_walk. Calculate the access to |
489 | DATA (which is really a DECL) in BINFO. */ |
490 | |
491 | static tree |
492 | dfs_access_in_type (tree binfo, void *data) |
493 | { |
494 | tree decl = (tree) data; |
495 | tree type = BINFO_TYPE (binfo); |
496 | access_kind access = ak_none; |
497 | |
498 | if (context_for_name_lookup (decl) == type) |
499 | { |
500 | /* If we have descended to the scope of DECL, just note the |
501 | appropriate access. */ |
502 | if (TREE_PRIVATE (decl)) |
503 | access = ak_private; |
504 | else if (TREE_PROTECTED (decl)) |
505 | access = ak_protected; |
506 | else |
507 | access = ak_public; |
508 | } |
509 | else |
510 | { |
511 | /* First, check for an access-declaration that gives us more |
512 | access to the DECL. */ |
513 | if (DECL_LANG_SPECIFIC (decl) && !DECL_DISCRIMINATOR_P (decl)) |
514 | { |
515 | tree decl_access = purpose_member (type, DECL_ACCESS (decl)); |
516 | |
517 | if (decl_access) |
518 | { |
519 | decl_access = TREE_VALUE (decl_access); |
520 | |
521 | if (decl_access == access_public_node) |
522 | access = ak_public; |
523 | else if (decl_access == access_protected_node) |
524 | access = ak_protected; |
525 | else if (decl_access == access_private_node) |
526 | access = ak_private; |
527 | else |
528 | gcc_unreachable (); |
529 | } |
530 | } |
531 | |
532 | if (!access) |
533 | { |
534 | int i; |
535 | tree base_binfo; |
536 | vec<tree, va_gc> *accesses; |
537 | |
538 | /* Otherwise, scan our baseclasses, and pick the most favorable |
539 | access. */ |
540 | accesses = BINFO_BASE_ACCESSES (binfo); |
541 | for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++) |
542 | { |
543 | tree base_access = (*accesses)[i]; |
544 | access_kind base_access_now = BINFO_ACCESS (base_binfo); |
545 | |
546 | if (base_access_now == ak_none || base_access_now == ak_private) |
547 | /* If it was not accessible in the base, or only |
548 | accessible as a private member, we can't access it |
549 | all. */ |
550 | base_access_now = ak_none; |
551 | else if (base_access == access_protected_node) |
552 | /* Public and protected members in the base become |
553 | protected here. */ |
554 | base_access_now = ak_protected; |
555 | else if (base_access == access_private_node) |
556 | /* Public and protected members in the base become |
557 | private here. */ |
558 | base_access_now = ak_private; |
559 | |
560 | /* See if the new access, via this base, gives more |
561 | access than our previous best access. */ |
562 | if (base_access_now != ak_none |
563 | && (access == ak_none || base_access_now < access)) |
564 | { |
565 | access = base_access_now; |
566 | |
567 | /* If the new access is public, we can't do better. */ |
568 | if (access == ak_public) |
569 | break; |
570 | } |
571 | } |
572 | } |
573 | } |
574 | |
575 | /* Note the access to DECL in TYPE. */ |
576 | SET_BINFO_ACCESS (binfo, access); |
577 | |
578 | return NULL_TREE; |
579 | } |
580 | |
581 | /* Return the access to DECL in TYPE. */ |
582 | |
583 | static access_kind |
584 | access_in_type (tree type, tree decl) |
585 | { |
586 | tree binfo = TYPE_BINFO (type); |
587 | |
588 | /* We must take into account |
589 | |
590 | [class.paths] |
591 | |
592 | If a name can be reached by several paths through a multiple |
593 | inheritance graph, the access is that of the path that gives |
594 | most access. |
595 | |
596 | The algorithm we use is to make a post-order depth-first traversal |
597 | of the base-class hierarchy. As we come up the tree, we annotate |
598 | each node with the most lenient access. */ |
599 | dfs_walk_once (binfo, dfs_access_in_type_pre, dfs_access_in_type, decl); |
600 | |
601 | return BINFO_ACCESS (binfo); |
602 | } |
603 | |
604 | /* Returns nonzero if it is OK to access DECL named in TYPE through an object |
605 | of OTYPE in the context of DERIVED. */ |
606 | |
607 | static int |
608 | protected_accessible_p (tree decl, tree derived, tree type, tree otype) |
609 | { |
610 | /* We're checking this clause from [class.access.base] |
611 | |
612 | m as a member of N is protected, and the reference occurs in a |
613 | member or friend of class N, or in a member or friend of a |
614 | class P derived from N, where m as a member of P is public, private |
615 | or protected. |
616 | |
617 | Here DERIVED is a possible P, DECL is m and TYPE is N. */ |
618 | |
619 | /* If DERIVED isn't derived from N, then it can't be a P. */ |
620 | if (!DERIVED_FROM_P (type, derived)) |
621 | return 0; |
622 | |
623 | /* [class.protected] |
624 | |
625 | When a friend or a member function of a derived class references |
626 | a protected nonstatic member of a base class, an access check |
627 | applies in addition to those described earlier in clause |
628 | _class.access_) Except when forming a pointer to member |
629 | (_expr.unary.op_), the access must be through a pointer to, |
630 | reference to, or object of the derived class itself (or any class |
631 | derived from that class) (_expr.ref_). If the access is to form |
632 | a pointer to member, the nested-name-specifier shall name the |
633 | derived class (or any class derived from that class). */ |
634 | if (DECL_NONSTATIC_MEMBER_P (decl) |
635 | && !DERIVED_FROM_P (derived, otype)) |
636 | return 0; |
637 | |
638 | return 1; |
639 | } |
640 | |
641 | /* Returns nonzero if SCOPE is a type or a friend of a type which would be able |
642 | to access DECL through TYPE. OTYPE is the type of the object. */ |
643 | |
644 | static int |
645 | friend_accessible_p (tree scope, tree decl, tree type, tree otype) |
646 | { |
647 | /* We're checking this clause from [class.access.base] |
648 | |
649 | m as a member of N is protected, and the reference occurs in a |
650 | member or friend of class N, or in a member or friend of a |
651 | class P derived from N, where m as a member of P is public, private |
652 | or protected. |
653 | |
654 | Here DECL is m and TYPE is N. SCOPE is the current context, |
655 | and we check all its possible Ps. */ |
656 | tree befriending_classes; |
657 | tree t; |
658 | |
659 | if (!scope) |
660 | return 0; |
661 | |
662 | if (is_global_friend (scope)) |
663 | return 1; |
664 | |
665 | /* Is SCOPE itself a suitable P? */ |
666 | if (TYPE_P (scope) && protected_accessible_p (decl, scope, type, otype)) |
667 | return 1; |
668 | |
669 | if (DECL_DECLARES_FUNCTION_P (scope)) |
670 | befriending_classes = DECL_BEFRIENDING_CLASSES (scope); |
671 | else if (TYPE_P (scope)) |
672 | befriending_classes = CLASSTYPE_BEFRIENDING_CLASSES (scope); |
673 | else |
674 | return 0; |
675 | |
676 | for (t = befriending_classes; t; t = TREE_CHAIN (t)) |
677 | if (protected_accessible_p (decl, TREE_VALUE (t), type, otype)) |
678 | return 1; |
679 | |
680 | /* Nested classes have the same access as their enclosing types, as |
681 | per DR 45 (this is a change from C++98). */ |
682 | if (TYPE_P (scope)) |
683 | if (friend_accessible_p (TYPE_CONTEXT (scope), decl, type, otype)) |
684 | return 1; |
685 | |
686 | if (DECL_DECLARES_FUNCTION_P (scope)) |
687 | { |
688 | /* Perhaps this SCOPE is a member of a class which is a |
689 | friend. */ |
690 | if (DECL_CLASS_SCOPE_P (scope) |
691 | && friend_accessible_p (DECL_CONTEXT (scope), decl, type, otype)) |
692 | return 1; |
693 | } |
694 | |
695 | /* Maybe scope's template is a friend. */ |
696 | if (tree tinfo = get_template_info (scope)) |
697 | { |
698 | tree tmpl = TI_TEMPLATE (tinfo); |
699 | if (DECL_CLASS_TEMPLATE_P (tmpl)) |
700 | tmpl = TREE_TYPE (tmpl); |
701 | else |
702 | tmpl = DECL_TEMPLATE_RESULT (tmpl); |
703 | if (tmpl != scope) |
704 | { |
705 | /* Increment processing_template_decl to make sure that |
706 | dependent_type_p works correctly. */ |
707 | ++processing_template_decl; |
708 | int ret = friend_accessible_p (tmpl, decl, type, otype); |
709 | --processing_template_decl; |
710 | if (ret) |
711 | return 1; |
712 | } |
713 | } |
714 | |
715 | /* If is_friend is true, we should have found a befriending class. */ |
716 | gcc_checking_assert (!is_friend (type, scope)); |
717 | |
718 | return 0; |
719 | } |
720 | |
721 | struct dfs_accessible_data |
722 | { |
723 | tree decl; |
724 | tree object_type; |
725 | }; |
726 | |
727 | /* Avoid walking up past a declaration of the member. */ |
728 | |
729 | static tree |
730 | dfs_accessible_pre (tree binfo, void *data) |
731 | { |
732 | dfs_accessible_data *d = (dfs_accessible_data *)data; |
733 | tree type = BINFO_TYPE (binfo); |
734 | if (member_declared_in_type (d->decl, type)) |
735 | return dfs_skip_bases; |
736 | return NULL_TREE; |
737 | } |
738 | |
739 | /* Called via dfs_walk_once_accessible from accessible_p */ |
740 | |
741 | static tree |
742 | dfs_accessible_post (tree binfo, void *data) |
743 | { |
744 | /* access_in_type already set BINFO_ACCESS for us. */ |
745 | access_kind access = BINFO_ACCESS (binfo); |
746 | tree N = BINFO_TYPE (binfo); |
747 | dfs_accessible_data *d = (dfs_accessible_data *)data; |
748 | tree decl = d->decl; |
749 | tree scope = current_nonlambda_scope (); |
750 | |
751 | /* A member m is accessible at the point R when named in class N if */ |
752 | switch (access) |
753 | { |
754 | case ak_none: |
755 | return NULL_TREE; |
756 | |
757 | case ak_public: |
758 | /* m as a member of N is public, or */ |
759 | return binfo; |
760 | |
761 | case ak_private: |
762 | { |
763 | /* m as a member of N is private, and R occurs in a member or friend of |
764 | class N, or */ |
765 | if (scope && TREE_CODE (scope) != NAMESPACE_DECL |
766 | && is_friend (N, scope)) |
767 | return binfo; |
768 | return NULL_TREE; |
769 | } |
770 | |
771 | case ak_protected: |
772 | { |
773 | /* m as a member of N is protected, and R occurs in a member or friend |
774 | of class N, or in a member or friend of a class P derived from N, |
775 | where m as a member of P is public, private, or protected */ |
776 | if (friend_accessible_p (scope, decl, N, d->object_type)) |
777 | return binfo; |
778 | return NULL_TREE; |
779 | } |
780 | |
781 | default: |
782 | gcc_unreachable (); |
783 | } |
784 | } |
785 | |
786 | /* Like accessible_p below, but within a template returns true iff DECL is |
787 | accessible in TYPE to all possible instantiations of the template. */ |
788 | |
789 | int |
790 | accessible_in_template_p (tree type, tree decl) |
791 | { |
792 | int save_ptd = processing_template_decl; |
793 | processing_template_decl = 0; |
794 | int val = accessible_p (type, decl, false); |
795 | processing_template_decl = save_ptd; |
796 | return val; |
797 | } |
798 | |
799 | /* DECL is a declaration from a base class of TYPE, which was the |
800 | class used to name DECL. Return nonzero if, in the current |
801 | context, DECL is accessible. If TYPE is actually a BINFO node, |
802 | then we can tell in what context the access is occurring by looking |
803 | at the most derived class along the path indicated by BINFO. If |
804 | CONSIDER_LOCAL is true, do consider special access the current |
805 | scope or friendship thereof we might have. */ |
806 | |
807 | int |
808 | accessible_p (tree type, tree decl, bool consider_local_p) |
809 | { |
810 | tree binfo; |
811 | access_kind access; |
812 | |
813 | /* If this declaration is in a block or namespace scope, there's no |
814 | access control. */ |
815 | if (!TYPE_P (context_for_name_lookup (decl))) |
816 | return 1; |
817 | |
818 | /* There is no need to perform access checks inside a thunk. */ |
819 | if (current_function_decl && DECL_THUNK_P (current_function_decl)) |
820 | return 1; |
821 | |
822 | /* In a template declaration, we cannot be sure whether the |
823 | particular specialization that is instantiated will be a friend |
824 | or not. Therefore, all access checks are deferred until |
825 | instantiation. However, PROCESSING_TEMPLATE_DECL is set in the |
826 | parameter list for a template (because we may see dependent types |
827 | in default arguments for template parameters), and access |
828 | checking should be performed in the outermost parameter list. */ |
829 | if (processing_template_decl |
830 | && !expanding_concept () |
831 | && (!processing_template_parmlist || processing_template_decl > 1)) |
832 | return 1; |
833 | |
834 | tree otype = NULL_TREE; |
835 | if (!TYPE_P (type)) |
836 | { |
837 | /* When accessing a non-static member, the most derived type in the |
838 | binfo chain is the type of the object; remember that type for |
839 | protected_accessible_p. */ |
840 | for (tree b = type; b; b = BINFO_INHERITANCE_CHAIN (b)) |
841 | otype = BINFO_TYPE (b); |
842 | type = BINFO_TYPE (type); |
843 | } |
844 | else |
845 | otype = type; |
846 | |
847 | /* [class.access.base] |
848 | |
849 | A member m is accessible when named in class N if |
850 | |
851 | --m as a member of N is public, or |
852 | |
853 | --m as a member of N is private, and the reference occurs in a |
854 | member or friend of class N, or |
855 | |
856 | --m as a member of N is protected, and the reference occurs in a |
857 | member or friend of class N, or in a member or friend of a |
858 | class P derived from N, where m as a member of P is public, private or |
859 | protected, or |
860 | |
861 | --there exists a base class B of N that is accessible at the point |
862 | of reference, and m is accessible when named in class B. |
863 | |
864 | We walk the base class hierarchy, checking these conditions. */ |
865 | |
866 | /* We walk using TYPE_BINFO (type) because access_in_type will set |
867 | BINFO_ACCESS on it and its bases. */ |
868 | binfo = TYPE_BINFO (type); |
869 | |
870 | /* Compute the accessibility of DECL in the class hierarchy |
871 | dominated by type. */ |
872 | access = access_in_type (type, decl); |
873 | if (access == ak_public) |
874 | return 1; |
875 | |
876 | /* If we aren't considering the point of reference, only the first bullet |
877 | applies. */ |
878 | if (!consider_local_p) |
879 | return 0; |
880 | |
881 | dfs_accessible_data d = { decl, otype }; |
882 | |
883 | /* Walk the hierarchy again, looking for a base class that allows |
884 | access. */ |
885 | return dfs_walk_once_accessible (binfo, /*friends=*/true, |
886 | dfs_accessible_pre, |
887 | dfs_accessible_post, &d) |
888 | != NULL_TREE; |
889 | } |
890 | |
891 | struct lookup_field_info { |
892 | /* The type in which we're looking. */ |
893 | tree type; |
894 | /* The name of the field for which we're looking. */ |
895 | tree name; |
896 | /* If non-NULL, the current result of the lookup. */ |
897 | tree rval; |
898 | /* The path to RVAL. */ |
899 | tree rval_binfo; |
900 | /* If non-NULL, the lookup was ambiguous, and this is a list of the |
901 | candidates. */ |
902 | tree ambiguous; |
903 | /* If nonzero, we are looking for types, not data members. */ |
904 | int want_type; |
905 | /* If something went wrong, a message indicating what. */ |
906 | const char *errstr; |
907 | }; |
908 | |
909 | /* Nonzero for a class member means that it is shared between all objects |
910 | of that class. |
911 | |
912 | [class.member.lookup]:If the resulting set of declarations are not all |
913 | from sub-objects of the same type, or the set has a nonstatic member |
914 | and includes members from distinct sub-objects, there is an ambiguity |
915 | and the program is ill-formed. |
916 | |
917 | This function checks that T contains no nonstatic members. */ |
918 | |
919 | int |
920 | shared_member_p (tree t) |
921 | { |
922 | if (VAR_P (t) || TREE_CODE (t) == TYPE_DECL \ |
923 | || TREE_CODE (t) == CONST_DECL) |
924 | return 1; |
925 | if (is_overloaded_fn (t)) |
926 | { |
927 | for (ovl_iterator iter (get_fns (t)); iter; ++iter) |
928 | if (DECL_NONSTATIC_MEMBER_FUNCTION_P (*iter)) |
929 | return 0; |
930 | return 1; |
931 | } |
932 | return 0; |
933 | } |
934 | |
935 | /* Routine to see if the sub-object denoted by the binfo PARENT can be |
936 | found as a base class and sub-object of the object denoted by |
937 | BINFO. */ |
938 | |
939 | static int |
940 | is_subobject_of_p (tree parent, tree binfo) |
941 | { |
942 | tree probe; |
943 | |
944 | for (probe = parent; probe; probe = BINFO_INHERITANCE_CHAIN (probe)) |
945 | { |
946 | if (probe == binfo) |
947 | return 1; |
948 | if (BINFO_VIRTUAL_P (probe)) |
949 | return (binfo_for_vbase (BINFO_TYPE (probe), BINFO_TYPE (binfo)) |
950 | != NULL_TREE); |
951 | } |
952 | return 0; |
953 | } |
954 | |
955 | /* DATA is really a struct lookup_field_info. Look for a field with |
956 | the name indicated there in BINFO. If this function returns a |
957 | non-NULL value it is the result of the lookup. Called from |
958 | lookup_field via breadth_first_search. */ |
959 | |
960 | static tree |
961 | lookup_field_r (tree binfo, void *data) |
962 | { |
963 | struct lookup_field_info *lfi = (struct lookup_field_info *) data; |
964 | tree type = BINFO_TYPE (binfo); |
965 | tree nval = NULL_TREE; |
966 | |
967 | /* If this is a dependent base, don't look in it. */ |
968 | if (BINFO_DEPENDENT_BASE_P (binfo)) |
969 | return NULL_TREE; |
970 | |
971 | /* If this base class is hidden by the best-known value so far, we |
972 | don't need to look. */ |
973 | if (lfi->rval_binfo && BINFO_INHERITANCE_CHAIN (binfo) == lfi->rval_binfo |
974 | && !BINFO_VIRTUAL_P (binfo)) |
975 | return dfs_skip_bases; |
976 | |
977 | nval = get_class_binding (type, lfi->name, lfi->want_type); |
978 | |
979 | /* If we're looking up a type (as with an elaborated type specifier) |
980 | we ignore all non-types we find. */ |
981 | if (lfi->want_type && nval && !DECL_DECLARES_TYPE_P (nval)) |
982 | { |
983 | nval = NULL_TREE; |
984 | if (CLASSTYPE_NESTED_UTDS (type)) |
985 | if (binding_entry e = binding_table_find (CLASSTYPE_NESTED_UTDS (type), |
986 | lfi->name)) |
987 | nval = TYPE_MAIN_DECL (e->type); |
988 | } |
989 | |
990 | /* If there is no declaration with the indicated name in this type, |
991 | then there's nothing to do. */ |
992 | if (!nval) |
993 | goto done; |
994 | |
995 | /* If the lookup already found a match, and the new value doesn't |
996 | hide the old one, we might have an ambiguity. */ |
997 | if (lfi->rval_binfo |
998 | && !is_subobject_of_p (lfi->rval_binfo, binfo)) |
999 | |
1000 | { |
1001 | if (nval == lfi->rval && shared_member_p (nval)) |
1002 | /* The two things are really the same. */ |
1003 | ; |
1004 | else if (is_subobject_of_p (binfo, lfi->rval_binfo)) |
1005 | /* The previous value hides the new one. */ |
1006 | ; |
1007 | else |
1008 | { |
1009 | /* We have a real ambiguity. We keep a chain of all the |
1010 | candidates. */ |
1011 | if (!lfi->ambiguous && lfi->rval) |
1012 | { |
1013 | /* This is the first time we noticed an ambiguity. Add |
1014 | what we previously thought was a reasonable candidate |
1015 | to the list. */ |
1016 | lfi->ambiguous = tree_cons (NULL_TREE, lfi->rval, NULL_TREE); |
1017 | TREE_TYPE (lfi->ambiguous) = error_mark_node; |
1018 | } |
1019 | |
1020 | /* Add the new value. */ |
1021 | lfi->ambiguous = tree_cons (NULL_TREE, nval, lfi->ambiguous); |
1022 | TREE_TYPE (lfi->ambiguous) = error_mark_node; |
1023 | lfi->errstr = G_("request for member %qD is ambiguous" ); |
1024 | } |
1025 | } |
1026 | else |
1027 | { |
1028 | lfi->rval = nval; |
1029 | lfi->rval_binfo = binfo; |
1030 | } |
1031 | |
1032 | done: |
1033 | /* Don't look for constructors or destructors in base classes. */ |
1034 | if (IDENTIFIER_CDTOR_P (lfi->name)) |
1035 | return dfs_skip_bases; |
1036 | return NULL_TREE; |
1037 | } |
1038 | |
1039 | /* Return a "baselink" with BASELINK_BINFO, BASELINK_ACCESS_BINFO, |
1040 | BASELINK_FUNCTIONS, and BASELINK_OPTYPE set to BINFO, ACCESS_BINFO, |
1041 | FUNCTIONS, and OPTYPE respectively. */ |
1042 | |
1043 | tree |
1044 | build_baselink (tree binfo, tree access_binfo, tree functions, tree optype) |
1045 | { |
1046 | tree baselink; |
1047 | |
1048 | gcc_assert (TREE_CODE (functions) == FUNCTION_DECL |
1049 | || TREE_CODE (functions) == TEMPLATE_DECL |
1050 | || TREE_CODE (functions) == TEMPLATE_ID_EXPR |
1051 | || TREE_CODE (functions) == OVERLOAD); |
1052 | gcc_assert (!optype || TYPE_P (optype)); |
1053 | gcc_assert (TREE_TYPE (functions)); |
1054 | |
1055 | baselink = make_node (BASELINK); |
1056 | TREE_TYPE (baselink) = TREE_TYPE (functions); |
1057 | BASELINK_BINFO (baselink) = binfo; |
1058 | BASELINK_ACCESS_BINFO (baselink) = access_binfo; |
1059 | BASELINK_FUNCTIONS (baselink) = functions; |
1060 | BASELINK_OPTYPE (baselink) = optype; |
1061 | |
1062 | return baselink; |
1063 | } |
1064 | |
1065 | /* Look for a member named NAME in an inheritance lattice dominated by |
1066 | XBASETYPE. If PROTECT is 0 or two, we do not check access. If it |
1067 | is 1, we enforce accessibility. If PROTECT is zero, then, for an |
1068 | ambiguous lookup, we return NULL. If PROTECT is 1, we issue error |
1069 | messages about inaccessible or ambiguous lookup. If PROTECT is 2, |
1070 | we return a TREE_LIST whose TREE_TYPE is error_mark_node and whose |
1071 | TREE_VALUEs are the list of ambiguous candidates. |
1072 | |
1073 | WANT_TYPE is 1 when we should only return TYPE_DECLs. |
1074 | |
1075 | If nothing can be found return NULL_TREE and do not issue an error. |
1076 | |
1077 | If non-NULL, failure information is written back to AFI. */ |
1078 | |
1079 | tree |
1080 | lookup_member (tree xbasetype, tree name, int protect, bool want_type, |
1081 | tsubst_flags_t complain, access_failure_info *afi) |
1082 | { |
1083 | tree rval, rval_binfo = NULL_TREE; |
1084 | tree type = NULL_TREE, basetype_path = NULL_TREE; |
1085 | struct lookup_field_info lfi; |
1086 | |
1087 | /* rval_binfo is the binfo associated with the found member, note, |
1088 | this can be set with useful information, even when rval is not |
1089 | set, because it must deal with ALL members, not just non-function |
1090 | members. It is used for ambiguity checking and the hidden |
1091 | checks. Whereas rval is only set if a proper (not hidden) |
1092 | non-function member is found. */ |
1093 | |
1094 | const char *errstr = 0; |
1095 | |
1096 | if (name == error_mark_node |
1097 | || xbasetype == NULL_TREE |
1098 | || xbasetype == error_mark_node) |
1099 | return NULL_TREE; |
1100 | |
1101 | gcc_assert (identifier_p (name)); |
1102 | |
1103 | if (TREE_CODE (xbasetype) == TREE_BINFO) |
1104 | { |
1105 | type = BINFO_TYPE (xbasetype); |
1106 | basetype_path = xbasetype; |
1107 | } |
1108 | else |
1109 | { |
1110 | if (!RECORD_OR_UNION_CODE_P (TREE_CODE (xbasetype))) |
1111 | return NULL_TREE; |
1112 | type = xbasetype; |
1113 | xbasetype = NULL_TREE; |
1114 | } |
1115 | |
1116 | type = complete_type (type); |
1117 | |
1118 | /* Make sure we're looking for a member of the current instantiation in the |
1119 | right partial specialization. */ |
1120 | if (flag_concepts && dependent_type_p (type)) |
1121 | if (tree t = currently_open_class (type)) |
1122 | type = t; |
1123 | |
1124 | if (!basetype_path) |
1125 | basetype_path = TYPE_BINFO (type); |
1126 | |
1127 | if (!basetype_path) |
1128 | return NULL_TREE; |
1129 | |
1130 | memset (&lfi, 0, sizeof (lfi)); |
1131 | lfi.type = type; |
1132 | lfi.name = name; |
1133 | lfi.want_type = want_type; |
1134 | dfs_walk_all (basetype_path, &lookup_field_r, NULL, &lfi); |
1135 | rval = lfi.rval; |
1136 | rval_binfo = lfi.rval_binfo; |
1137 | if (rval_binfo) |
1138 | type = BINFO_TYPE (rval_binfo); |
1139 | errstr = lfi.errstr; |
1140 | |
1141 | /* If we are not interested in ambiguities, don't report them; |
1142 | just return NULL_TREE. */ |
1143 | if (!protect && lfi.ambiguous) |
1144 | return NULL_TREE; |
1145 | |
1146 | if (protect == 2) |
1147 | { |
1148 | if (lfi.ambiguous) |
1149 | return lfi.ambiguous; |
1150 | else |
1151 | protect = 0; |
1152 | } |
1153 | |
1154 | /* [class.access] |
1155 | |
1156 | In the case of overloaded function names, access control is |
1157 | applied to the function selected by overloaded resolution. |
1158 | |
1159 | We cannot check here, even if RVAL is only a single non-static |
1160 | member function, since we do not know what the "this" pointer |
1161 | will be. For: |
1162 | |
1163 | class A { protected: void f(); }; |
1164 | class B : public A { |
1165 | void g(A *p) { |
1166 | f(); // OK |
1167 | p->f(); // Not OK. |
1168 | } |
1169 | }; |
1170 | |
1171 | only the first call to "f" is valid. However, if the function is |
1172 | static, we can check. */ |
1173 | if (rval && protect |
1174 | && !really_overloaded_fn (rval)) |
1175 | { |
1176 | tree decl = is_overloaded_fn (rval) ? get_first_fn (rval) : rval; |
1177 | if (!DECL_NONSTATIC_MEMBER_FUNCTION_P (decl) |
1178 | && !perform_or_defer_access_check (basetype_path, decl, decl, |
1179 | complain, afi)) |
1180 | rval = error_mark_node; |
1181 | } |
1182 | |
1183 | if (errstr && protect) |
1184 | { |
1185 | if (complain & tf_error) |
1186 | { |
1187 | error (errstr, name, type); |
1188 | if (lfi.ambiguous) |
1189 | print_candidates (lfi.ambiguous); |
1190 | } |
1191 | rval = error_mark_node; |
1192 | } |
1193 | |
1194 | if (rval && is_overloaded_fn (rval)) |
1195 | rval = build_baselink (rval_binfo, basetype_path, rval, |
1196 | (IDENTIFIER_CONV_OP_P (name) |
1197 | ? TREE_TYPE (name): NULL_TREE)); |
1198 | return rval; |
1199 | } |
1200 | |
1201 | /* Helper class for lookup_member_fuzzy. */ |
1202 | |
1203 | class lookup_field_fuzzy_info |
1204 | { |
1205 | public: |
1206 | lookup_field_fuzzy_info (bool want_type_p) : |
1207 | m_want_type_p (want_type_p), m_candidates () {} |
1208 | |
1209 | void fuzzy_lookup_field (tree type); |
1210 | |
1211 | /* If true, we are looking for types, not data members. */ |
1212 | bool m_want_type_p; |
1213 | /* The result: a vec of identifiers. */ |
1214 | auto_vec<tree> m_candidates; |
1215 | }; |
1216 | |
1217 | /* Locate all fields within TYPE, append them to m_candidates. */ |
1218 | |
1219 | void |
1220 | lookup_field_fuzzy_info::fuzzy_lookup_field (tree type) |
1221 | { |
1222 | if (!CLASS_TYPE_P (type)) |
1223 | return; |
1224 | |
1225 | for (tree field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field)) |
1226 | { |
1227 | if (!m_want_type_p || DECL_DECLARES_TYPE_P (field)) |
1228 | if (DECL_NAME (field)) |
1229 | m_candidates.safe_push (DECL_NAME (field)); |
1230 | } |
1231 | } |
1232 | |
1233 | |
1234 | /* Helper function for lookup_member_fuzzy, called via dfs_walk_all |
1235 | DATA is really a lookup_field_fuzzy_info. Look for a field with |
1236 | the name indicated there in BINFO. Gathers pertinent identifiers into |
1237 | m_candidates. */ |
1238 | |
1239 | static tree |
1240 | lookup_field_fuzzy_r (tree binfo, void *data) |
1241 | { |
1242 | lookup_field_fuzzy_info *lffi = (lookup_field_fuzzy_info *) data; |
1243 | tree type = BINFO_TYPE (binfo); |
1244 | |
1245 | lffi->fuzzy_lookup_field (type); |
1246 | |
1247 | return NULL_TREE; |
1248 | } |
1249 | |
1250 | /* Like lookup_member, but try to find the closest match for NAME, |
1251 | rather than an exact match, and return an identifier (or NULL_TREE). |
1252 | Do not complain. */ |
1253 | |
1254 | tree |
1255 | lookup_member_fuzzy (tree xbasetype, tree name, bool want_type_p) |
1256 | { |
1257 | tree type = NULL_TREE, basetype_path = NULL_TREE; |
1258 | struct lookup_field_fuzzy_info lffi (want_type_p); |
1259 | |
1260 | /* rval_binfo is the binfo associated with the found member, note, |
1261 | this can be set with useful information, even when rval is not |
1262 | set, because it must deal with ALL members, not just non-function |
1263 | members. It is used for ambiguity checking and the hidden |
1264 | checks. Whereas rval is only set if a proper (not hidden) |
1265 | non-function member is found. */ |
1266 | |
1267 | if (name == error_mark_node |
1268 | || xbasetype == NULL_TREE |
1269 | || xbasetype == error_mark_node) |
1270 | return NULL_TREE; |
1271 | |
1272 | gcc_assert (identifier_p (name)); |
1273 | |
1274 | if (TREE_CODE (xbasetype) == TREE_BINFO) |
1275 | { |
1276 | type = BINFO_TYPE (xbasetype); |
1277 | basetype_path = xbasetype; |
1278 | } |
1279 | else |
1280 | { |
1281 | if (!RECORD_OR_UNION_CODE_P (TREE_CODE (xbasetype))) |
1282 | return NULL_TREE; |
1283 | type = xbasetype; |
1284 | xbasetype = NULL_TREE; |
1285 | } |
1286 | |
1287 | type = complete_type (type); |
1288 | |
1289 | /* Make sure we're looking for a member of the current instantiation in the |
1290 | right partial specialization. */ |
1291 | if (flag_concepts && dependent_type_p (type)) |
1292 | type = currently_open_class (type); |
1293 | |
1294 | if (!basetype_path) |
1295 | basetype_path = TYPE_BINFO (type); |
1296 | |
1297 | if (!basetype_path) |
1298 | return NULL_TREE; |
1299 | |
1300 | /* Populate lffi.m_candidates. */ |
1301 | dfs_walk_all (basetype_path, &lookup_field_fuzzy_r, NULL, &lffi); |
1302 | |
1303 | return find_closest_identifier (name, &lffi.m_candidates); |
1304 | } |
1305 | |
1306 | /* Like lookup_member, except that if we find a function member we |
1307 | return NULL_TREE. */ |
1308 | |
1309 | tree |
1310 | lookup_field (tree xbasetype, tree name, int protect, bool want_type) |
1311 | { |
1312 | tree rval = lookup_member (xbasetype, name, protect, want_type, |
1313 | tf_warning_or_error); |
1314 | |
1315 | /* Ignore functions, but propagate the ambiguity list. */ |
1316 | if (!error_operand_p (rval) |
1317 | && (rval && BASELINK_P (rval))) |
1318 | return NULL_TREE; |
1319 | |
1320 | return rval; |
1321 | } |
1322 | |
1323 | /* Like lookup_member, except that if we find a non-function member we |
1324 | return NULL_TREE. */ |
1325 | |
1326 | tree |
1327 | lookup_fnfields (tree xbasetype, tree name, int protect) |
1328 | { |
1329 | tree rval = lookup_member (xbasetype, name, protect, /*want_type=*/false, |
1330 | tf_warning_or_error); |
1331 | |
1332 | /* Ignore non-functions, but propagate the ambiguity list. */ |
1333 | if (!error_operand_p (rval) |
1334 | && (rval && !BASELINK_P (rval))) |
1335 | return NULL_TREE; |
1336 | |
1337 | return rval; |
1338 | } |
1339 | |
1340 | /* DECL is the result of a qualified name lookup. QUALIFYING_SCOPE is |
1341 | the class or namespace used to qualify the name. CONTEXT_CLASS is |
1342 | the class corresponding to the object in which DECL will be used. |
1343 | Return a possibly modified version of DECL that takes into account |
1344 | the CONTEXT_CLASS. |
1345 | |
1346 | In particular, consider an expression like `B::m' in the context of |
1347 | a derived class `D'. If `B::m' has been resolved to a BASELINK, |
1348 | then the most derived class indicated by the BASELINK_BINFO will be |
1349 | `B', not `D'. This function makes that adjustment. */ |
1350 | |
1351 | tree |
1352 | adjust_result_of_qualified_name_lookup (tree decl, |
1353 | tree qualifying_scope, |
1354 | tree context_class) |
1355 | { |
1356 | if (context_class && context_class != error_mark_node |
1357 | && CLASS_TYPE_P (context_class) |
1358 | && CLASS_TYPE_P (qualifying_scope) |
1359 | && DERIVED_FROM_P (qualifying_scope, context_class) |
1360 | && BASELINK_P (decl)) |
1361 | { |
1362 | tree base; |
1363 | |
1364 | /* Look for the QUALIFYING_SCOPE as a base of the CONTEXT_CLASS. |
1365 | Because we do not yet know which function will be chosen by |
1366 | overload resolution, we cannot yet check either accessibility |
1367 | or ambiguity -- in either case, the choice of a static member |
1368 | function might make the usage valid. */ |
1369 | base = lookup_base (context_class, qualifying_scope, |
1370 | ba_unique, NULL, tf_none); |
1371 | if (base && base != error_mark_node) |
1372 | { |
1373 | BASELINK_ACCESS_BINFO (decl) = base; |
1374 | tree decl_binfo |
1375 | = lookup_base (base, BINFO_TYPE (BASELINK_BINFO (decl)), |
1376 | ba_unique, NULL, tf_none); |
1377 | if (decl_binfo && decl_binfo != error_mark_node) |
1378 | BASELINK_BINFO (decl) = decl_binfo; |
1379 | } |
1380 | } |
1381 | |
1382 | if (BASELINK_P (decl)) |
1383 | BASELINK_QUALIFIED_P (decl) = true; |
1384 | |
1385 | return decl; |
1386 | } |
1387 | |
1388 | |
1389 | /* Walk the class hierarchy within BINFO, in a depth-first traversal. |
1390 | PRE_FN is called in preorder, while POST_FN is called in postorder. |
1391 | If PRE_FN returns DFS_SKIP_BASES, child binfos will not be |
1392 | walked. If PRE_FN or POST_FN returns a different non-NULL value, |
1393 | that value is immediately returned and the walk is terminated. One |
1394 | of PRE_FN and POST_FN can be NULL. At each node, PRE_FN and |
1395 | POST_FN are passed the binfo to examine and the caller's DATA |
1396 | value. All paths are walked, thus virtual and morally virtual |
1397 | binfos can be multiply walked. */ |
1398 | |
1399 | tree |
1400 | dfs_walk_all (tree binfo, tree (*pre_fn) (tree, void *), |
1401 | tree (*post_fn) (tree, void *), void *data) |
1402 | { |
1403 | tree rval; |
1404 | unsigned ix; |
1405 | tree base_binfo; |
1406 | |
1407 | /* Call the pre-order walking function. */ |
1408 | if (pre_fn) |
1409 | { |
1410 | rval = pre_fn (binfo, data); |
1411 | if (rval) |
1412 | { |
1413 | if (rval == dfs_skip_bases) |
1414 | goto skip_bases; |
1415 | return rval; |
1416 | } |
1417 | } |
1418 | |
1419 | /* Find the next child binfo to walk. */ |
1420 | for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++) |
1421 | { |
1422 | rval = dfs_walk_all (base_binfo, pre_fn, post_fn, data); |
1423 | if (rval) |
1424 | return rval; |
1425 | } |
1426 | |
1427 | skip_bases: |
1428 | /* Call the post-order walking function. */ |
1429 | if (post_fn) |
1430 | { |
1431 | rval = post_fn (binfo, data); |
1432 | gcc_assert (rval != dfs_skip_bases); |
1433 | return rval; |
1434 | } |
1435 | |
1436 | return NULL_TREE; |
1437 | } |
1438 | |
1439 | /* Worker for dfs_walk_once. This behaves as dfs_walk_all, except |
1440 | that binfos are walked at most once. */ |
1441 | |
1442 | static tree |
1443 | dfs_walk_once_r (tree binfo, tree (*pre_fn) (tree, void *), |
1444 | tree (*post_fn) (tree, void *), hash_set<tree> *pset, |
1445 | void *data) |
1446 | { |
1447 | tree rval; |
1448 | unsigned ix; |
1449 | tree base_binfo; |
1450 | |
1451 | /* Call the pre-order walking function. */ |
1452 | if (pre_fn) |
1453 | { |
1454 | rval = pre_fn (binfo, data); |
1455 | if (rval) |
1456 | { |
1457 | if (rval == dfs_skip_bases) |
1458 | goto skip_bases; |
1459 | |
1460 | return rval; |
1461 | } |
1462 | } |
1463 | |
1464 | /* Find the next child binfo to walk. */ |
1465 | for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++) |
1466 | { |
1467 | if (BINFO_VIRTUAL_P (base_binfo)) |
1468 | if (pset->add (base_binfo)) |
1469 | continue; |
1470 | |
1471 | rval = dfs_walk_once_r (base_binfo, pre_fn, post_fn, pset, data); |
1472 | if (rval) |
1473 | return rval; |
1474 | } |
1475 | |
1476 | skip_bases: |
1477 | /* Call the post-order walking function. */ |
1478 | if (post_fn) |
1479 | { |
1480 | rval = post_fn (binfo, data); |
1481 | gcc_assert (rval != dfs_skip_bases); |
1482 | return rval; |
1483 | } |
1484 | |
1485 | return NULL_TREE; |
1486 | } |
1487 | |
1488 | /* Like dfs_walk_all, except that binfos are not multiply walked. For |
1489 | non-diamond shaped hierarchies this is the same as dfs_walk_all. |
1490 | For diamond shaped hierarchies we must mark the virtual bases, to |
1491 | avoid multiple walks. */ |
1492 | |
1493 | tree |
1494 | dfs_walk_once (tree binfo, tree (*pre_fn) (tree, void *), |
1495 | tree (*post_fn) (tree, void *), void *data) |
1496 | { |
1497 | static int active = 0; /* We must not be called recursively. */ |
1498 | tree rval; |
1499 | |
1500 | gcc_assert (pre_fn || post_fn); |
1501 | gcc_assert (!active); |
1502 | active++; |
1503 | |
1504 | if (!CLASSTYPE_DIAMOND_SHAPED_P (BINFO_TYPE (binfo))) |
1505 | /* We are not diamond shaped, and therefore cannot encounter the |
1506 | same binfo twice. */ |
1507 | rval = dfs_walk_all (binfo, pre_fn, post_fn, data); |
1508 | else |
1509 | { |
1510 | hash_set<tree> pset; |
1511 | rval = dfs_walk_once_r (binfo, pre_fn, post_fn, &pset, data); |
1512 | } |
1513 | |
1514 | active--; |
1515 | |
1516 | return rval; |
1517 | } |
1518 | |
1519 | /* Worker function for dfs_walk_once_accessible. Behaves like |
1520 | dfs_walk_once_r, except (a) FRIENDS_P is true if special |
1521 | access given by the current context should be considered, (b) ONCE |
1522 | indicates whether bases should be marked during traversal. */ |
1523 | |
1524 | static tree |
1525 | dfs_walk_once_accessible_r (tree binfo, bool friends_p, hash_set<tree> *pset, |
1526 | tree (*pre_fn) (tree, void *), |
1527 | tree (*post_fn) (tree, void *), void *data) |
1528 | { |
1529 | tree rval = NULL_TREE; |
1530 | unsigned ix; |
1531 | tree base_binfo; |
1532 | |
1533 | /* Call the pre-order walking function. */ |
1534 | if (pre_fn) |
1535 | { |
1536 | rval = pre_fn (binfo, data); |
1537 | if (rval) |
1538 | { |
1539 | if (rval == dfs_skip_bases) |
1540 | goto skip_bases; |
1541 | |
1542 | return rval; |
1543 | } |
1544 | } |
1545 | |
1546 | /* Find the next child binfo to walk. */ |
1547 | for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++) |
1548 | { |
1549 | bool mark = pset && BINFO_VIRTUAL_P (base_binfo); |
1550 | |
1551 | if (mark && pset->contains (base_binfo)) |
1552 | continue; |
1553 | |
1554 | /* If the base is inherited via private or protected |
1555 | inheritance, then we can't see it, unless we are a friend of |
1556 | the current binfo. */ |
1557 | if (BINFO_BASE_ACCESS (binfo, ix) != access_public_node) |
1558 | { |
1559 | tree scope; |
1560 | if (!friends_p) |
1561 | continue; |
1562 | scope = current_scope (); |
1563 | if (!scope |
1564 | || TREE_CODE (scope) == NAMESPACE_DECL |
1565 | || !is_friend (BINFO_TYPE (binfo), scope)) |
1566 | continue; |
1567 | } |
1568 | |
1569 | if (mark) |
1570 | pset->add (base_binfo); |
1571 | |
1572 | rval = dfs_walk_once_accessible_r (base_binfo, friends_p, pset, |
1573 | pre_fn, post_fn, data); |
1574 | if (rval) |
1575 | return rval; |
1576 | } |
1577 | |
1578 | skip_bases: |
1579 | /* Call the post-order walking function. */ |
1580 | if (post_fn) |
1581 | { |
1582 | rval = post_fn (binfo, data); |
1583 | gcc_assert (rval != dfs_skip_bases); |
1584 | return rval; |
1585 | } |
1586 | |
1587 | return NULL_TREE; |
1588 | } |
1589 | |
1590 | /* Like dfs_walk_once except that only accessible bases are walked. |
1591 | FRIENDS_P indicates whether friendship of the local context |
1592 | should be considered when determining accessibility. */ |
1593 | |
1594 | static tree |
1595 | dfs_walk_once_accessible (tree binfo, bool friends_p, |
1596 | tree (*pre_fn) (tree, void *), |
1597 | tree (*post_fn) (tree, void *), void *data) |
1598 | { |
1599 | hash_set<tree> *pset = NULL; |
1600 | if (CLASSTYPE_DIAMOND_SHAPED_P (BINFO_TYPE (binfo))) |
1601 | pset = new hash_set<tree>; |
1602 | tree rval = dfs_walk_once_accessible_r (binfo, friends_p, pset, |
1603 | pre_fn, post_fn, data); |
1604 | |
1605 | if (pset) |
1606 | delete pset; |
1607 | return rval; |
1608 | } |
1609 | |
1610 | /* Return true iff the code of T is CODE, and it has compatible |
1611 | type with TYPE. */ |
1612 | |
1613 | static bool |
1614 | matches_code_and_type_p (tree t, enum tree_code code, tree type) |
1615 | { |
1616 | if (TREE_CODE (t) != code) |
1617 | return false; |
1618 | if (!cxx_types_compatible_p (TREE_TYPE (t), type)) |
1619 | return false; |
1620 | return true; |
1621 | } |
1622 | |
1623 | /* Subroutine of direct_accessor_p and reference_accessor_p. |
1624 | Determine if COMPONENT_REF is a simple field lookup of this->FIELD_DECL. |
1625 | We expect a tree of the form: |
1626 | <component_ref: |
1627 | <indirect_ref:S> |
1628 | <nop_expr:P* |
1629 | <parm_decl (this)> |
1630 | <field_decl (FIELD_DECL)>>>. */ |
1631 | |
1632 | static bool |
1633 | field_access_p (tree component_ref, tree field_decl, tree field_type) |
1634 | { |
1635 | if (!matches_code_and_type_p (component_ref, COMPONENT_REF, field_type)) |
1636 | return false; |
1637 | |
1638 | tree indirect_ref = TREE_OPERAND (component_ref, 0); |
1639 | if (TREE_CODE (indirect_ref) != INDIRECT_REF) |
1640 | return false; |
1641 | |
1642 | tree ptr = STRIP_NOPS (TREE_OPERAND (indirect_ref, 0)); |
1643 | if (!is_this_parameter (ptr)) |
1644 | return false; |
1645 | |
1646 | /* Must access the correct field. */ |
1647 | if (TREE_OPERAND (component_ref, 1) != field_decl) |
1648 | return false; |
1649 | return true; |
1650 | } |
1651 | |
1652 | /* Subroutine of field_accessor_p. |
1653 | |
1654 | Assuming that INIT_EXPR has already had its code and type checked, |
1655 | determine if it is a simple accessor for FIELD_DECL |
1656 | (of type FIELD_TYPE). |
1657 | |
1658 | Specifically, a simple accessor within struct S of the form: |
1659 | T get_field () { return m_field; } |
1660 | should have a DECL_SAVED_TREE of the form: |
1661 | <return_expr |
1662 | <init_expr:T |
1663 | <result_decl:T |
1664 | <nop_expr:T |
1665 | <component_ref: |
1666 | <indirect_ref:S> |
1667 | <nop_expr:P* |
1668 | <parm_decl (this)> |
1669 | <field_decl (FIELD_DECL)>>>. */ |
1670 | |
1671 | static bool |
1672 | direct_accessor_p (tree init_expr, tree field_decl, tree field_type) |
1673 | { |
1674 | tree result_decl = TREE_OPERAND (init_expr, 0); |
1675 | if (!matches_code_and_type_p (result_decl, RESULT_DECL, field_type)) |
1676 | return false; |
1677 | |
1678 | tree component_ref = STRIP_NOPS (TREE_OPERAND (init_expr, 1)); |
1679 | if (!field_access_p (component_ref, field_decl, field_type)) |
1680 | return false; |
1681 | |
1682 | return true; |
1683 | } |
1684 | |
1685 | /* Subroutine of field_accessor_p. |
1686 | |
1687 | Assuming that INIT_EXPR has already had its code and type checked, |
1688 | determine if it is a "reference" accessor for FIELD_DECL |
1689 | (of type FIELD_REFERENCE_TYPE). |
1690 | |
1691 | Specifically, a simple accessor within struct S of the form: |
1692 | T& get_field () { return m_field; } |
1693 | should have a DECL_SAVED_TREE of the form: |
1694 | <return_expr |
1695 | <init_expr:T& |
1696 | <result_decl:T& |
1697 | <nop_expr: T& |
1698 | <addr_expr: T* |
1699 | <component_ref:T |
1700 | <indirect_ref:S |
1701 | <nop_expr |
1702 | <parm_decl (this)>> |
1703 | <field (FIELD_DECL)>>>>>>. */ |
1704 | static bool |
1705 | reference_accessor_p (tree init_expr, tree field_decl, tree field_type, |
1706 | tree field_reference_type) |
1707 | { |
1708 | tree result_decl = TREE_OPERAND (init_expr, 0); |
1709 | if (!matches_code_and_type_p (result_decl, RESULT_DECL, field_reference_type)) |
1710 | return false; |
1711 | |
1712 | tree field_pointer_type = build_pointer_type (field_type); |
1713 | tree addr_expr = STRIP_NOPS (TREE_OPERAND (init_expr, 1)); |
1714 | if (!matches_code_and_type_p (addr_expr, ADDR_EXPR, field_pointer_type)) |
1715 | return false; |
1716 | |
1717 | tree component_ref = STRIP_NOPS (TREE_OPERAND (addr_expr, 0)); |
1718 | |
1719 | if (!field_access_p (component_ref, field_decl, field_type)) |
1720 | return false; |
1721 | |
1722 | return true; |
1723 | } |
1724 | |
1725 | /* Return true if FN is an accessor method for FIELD_DECL. |
1726 | i.e. a method of the form { return FIELD; }, with no |
1727 | conversions. |
1728 | |
1729 | If CONST_P, then additionally require that FN be a const |
1730 | method. */ |
1731 | |
1732 | static bool |
1733 | field_accessor_p (tree fn, tree field_decl, bool const_p) |
1734 | { |
1735 | if (TREE_CODE (fn) != FUNCTION_DECL) |
1736 | return false; |
1737 | |
1738 | /* We don't yet support looking up static data, just fields. */ |
1739 | if (TREE_CODE (field_decl) != FIELD_DECL) |
1740 | return false; |
1741 | |
1742 | tree fntype = TREE_TYPE (fn); |
1743 | if (TREE_CODE (fntype) != METHOD_TYPE) |
1744 | return false; |
1745 | |
1746 | /* If the field is accessed via a const "this" argument, verify |
1747 | that the "this" parameter is const. */ |
1748 | if (const_p) |
1749 | { |
1750 | tree this_type = type_of_this_parm (fntype); |
1751 | if (!TYPE_READONLY (this_type)) |
1752 | return false; |
1753 | } |
1754 | |
1755 | tree saved_tree = DECL_SAVED_TREE (fn); |
1756 | |
1757 | if (saved_tree == NULL_TREE) |
1758 | return false; |
1759 | |
1760 | if (TREE_CODE (saved_tree) != RETURN_EXPR) |
1761 | return false; |
1762 | |
1763 | tree init_expr = TREE_OPERAND (saved_tree, 0); |
1764 | if (TREE_CODE (init_expr) != INIT_EXPR) |
1765 | return false; |
1766 | |
1767 | /* Determine if this is a simple accessor within struct S of the form: |
1768 | T get_field () { return m_field; }. */ |
1769 | tree field_type = TREE_TYPE (field_decl); |
1770 | if (cxx_types_compatible_p (TREE_TYPE (init_expr), field_type)) |
1771 | return direct_accessor_p (init_expr, field_decl, field_type); |
1772 | |
1773 | /* Failing that, determine if it is an accessor of the form: |
1774 | T& get_field () { return m_field; }. */ |
1775 | tree field_reference_type = cp_build_reference_type (field_type, false); |
1776 | if (cxx_types_compatible_p (TREE_TYPE (init_expr), field_reference_type)) |
1777 | return reference_accessor_p (init_expr, field_decl, field_type, |
1778 | field_reference_type); |
1779 | |
1780 | return false; |
1781 | } |
1782 | |
1783 | /* Callback data for dfs_locate_field_accessor_pre. */ |
1784 | |
1785 | struct locate_field_data |
1786 | { |
1787 | locate_field_data (tree field_decl_, bool const_p_) |
1788 | : field_decl (field_decl_), const_p (const_p_) {} |
1789 | |
1790 | tree field_decl; |
1791 | bool const_p; |
1792 | }; |
1793 | |
1794 | /* Return a FUNCTION_DECL that is an "accessor" method for DATA, a FIELD_DECL, |
1795 | callable via binfo, if one exists, otherwise return NULL_TREE. |
1796 | |
1797 | Callback for dfs_walk_once_accessible for use within |
1798 | locate_field_accessor. */ |
1799 | |
1800 | static tree |
1801 | dfs_locate_field_accessor_pre (tree binfo, void *data) |
1802 | { |
1803 | locate_field_data *lfd = (locate_field_data *)data; |
1804 | tree type = BINFO_TYPE (binfo); |
1805 | |
1806 | vec<tree, va_gc> *member_vec; |
1807 | tree fn; |
1808 | size_t i; |
1809 | |
1810 | if (!CLASS_TYPE_P (type)) |
1811 | return NULL_TREE; |
1812 | |
1813 | member_vec = CLASSTYPE_MEMBER_VEC (type); |
1814 | if (!member_vec) |
1815 | return NULL_TREE; |
1816 | |
1817 | for (i = 0; vec_safe_iterate (member_vec, i, &fn); ++i) |
1818 | if (fn) |
1819 | if (field_accessor_p (fn, lfd->field_decl, lfd->const_p)) |
1820 | return fn; |
1821 | |
1822 | return NULL_TREE; |
1823 | } |
1824 | |
1825 | /* Return a FUNCTION_DECL that is an "accessor" method for FIELD_DECL, |
1826 | callable via BASETYPE_PATH, if one exists, otherwise return NULL_TREE. */ |
1827 | |
1828 | tree |
1829 | locate_field_accessor (tree basetype_path, tree field_decl, bool const_p) |
1830 | { |
1831 | if (TREE_CODE (basetype_path) != TREE_BINFO) |
1832 | return NULL_TREE; |
1833 | |
1834 | /* Walk the hierarchy, looking for a method of some base class that allows |
1835 | access to the field. */ |
1836 | locate_field_data lfd (field_decl, const_p); |
1837 | return dfs_walk_once_accessible (basetype_path, /*friends=*/true, |
1838 | dfs_locate_field_accessor_pre, |
1839 | NULL, &lfd); |
1840 | } |
1841 | |
1842 | /* Check that virtual overrider OVERRIDER is acceptable for base function |
1843 | BASEFN. Issue diagnostic, and return zero, if unacceptable. */ |
1844 | |
1845 | static int |
1846 | check_final_overrider (tree overrider, tree basefn) |
1847 | { |
1848 | tree over_type = TREE_TYPE (overrider); |
1849 | tree base_type = TREE_TYPE (basefn); |
1850 | tree over_return = fndecl_declared_return_type (overrider); |
1851 | tree base_return = fndecl_declared_return_type (basefn); |
1852 | tree over_throw, base_throw; |
1853 | |
1854 | int fail = 0; |
1855 | |
1856 | if (DECL_INVALID_OVERRIDER_P (overrider)) |
1857 | return 0; |
1858 | |
1859 | if (same_type_p (base_return, over_return)) |
1860 | /* OK */; |
1861 | else if ((CLASS_TYPE_P (over_return) && CLASS_TYPE_P (base_return)) |
1862 | || (TREE_CODE (base_return) == TREE_CODE (over_return) |
1863 | && POINTER_TYPE_P (base_return))) |
1864 | { |
1865 | /* Potentially covariant. */ |
1866 | unsigned base_quals, over_quals; |
1867 | |
1868 | fail = !POINTER_TYPE_P (base_return); |
1869 | if (!fail) |
1870 | { |
1871 | fail = cp_type_quals (base_return) != cp_type_quals (over_return); |
1872 | |
1873 | base_return = TREE_TYPE (base_return); |
1874 | over_return = TREE_TYPE (over_return); |
1875 | } |
1876 | base_quals = cp_type_quals (base_return); |
1877 | over_quals = cp_type_quals (over_return); |
1878 | |
1879 | if ((base_quals & over_quals) != over_quals) |
1880 | fail = 1; |
1881 | |
1882 | if (CLASS_TYPE_P (base_return) && CLASS_TYPE_P (over_return)) |
1883 | { |
1884 | /* Strictly speaking, the standard requires the return type to be |
1885 | complete even if it only differs in cv-quals, but that seems |
1886 | like a bug in the wording. */ |
1887 | if (!same_type_ignoring_top_level_qualifiers_p (base_return, |
1888 | over_return)) |
1889 | { |
1890 | tree binfo = lookup_base (over_return, base_return, |
1891 | ba_check, NULL, tf_none); |
1892 | |
1893 | if (!binfo || binfo == error_mark_node) |
1894 | fail = 1; |
1895 | } |
1896 | } |
1897 | else if (can_convert_standard (TREE_TYPE (base_type), |
1898 | TREE_TYPE (over_type), |
1899 | tf_warning_or_error)) |
1900 | /* GNU extension, allow trivial pointer conversions such as |
1901 | converting to void *, or qualification conversion. */ |
1902 | { |
1903 | if (pedwarn (DECL_SOURCE_LOCATION (overrider), 0, |
1904 | "invalid covariant return type for %q#D" , overrider)) |
1905 | inform (DECL_SOURCE_LOCATION (basefn), |
1906 | " overriding %q#D" , basefn); |
1907 | } |
1908 | else |
1909 | fail = 2; |
1910 | } |
1911 | else |
1912 | fail = 2; |
1913 | if (!fail) |
1914 | /* OK */; |
1915 | else |
1916 | { |
1917 | if (fail == 1) |
1918 | { |
1919 | error ("invalid covariant return type for %q+#D" , overrider); |
1920 | error (" overriding %q+#D" , basefn); |
1921 | } |
1922 | else |
1923 | { |
1924 | error ("conflicting return type specified for %q+#D" , overrider); |
1925 | error (" overriding %q+#D" , basefn); |
1926 | } |
1927 | DECL_INVALID_OVERRIDER_P (overrider) = 1; |
1928 | return 0; |
1929 | } |
1930 | |
1931 | /* Check throw specifier is at least as strict. */ |
1932 | maybe_instantiate_noexcept (basefn); |
1933 | maybe_instantiate_noexcept (overrider); |
1934 | base_throw = TYPE_RAISES_EXCEPTIONS (TREE_TYPE (basefn)); |
1935 | over_throw = TYPE_RAISES_EXCEPTIONS (TREE_TYPE (overrider)); |
1936 | |
1937 | if (!comp_except_specs (base_throw, over_throw, ce_derived)) |
1938 | { |
1939 | error ("looser throw specifier for %q+#F" , overrider); |
1940 | error (" overriding %q+#F" , basefn); |
1941 | DECL_INVALID_OVERRIDER_P (overrider) = 1; |
1942 | return 0; |
1943 | } |
1944 | |
1945 | /* Check for conflicting type attributes. But leave transaction_safe for |
1946 | set_one_vmethod_tm_attributes. */ |
1947 | if (!comp_type_attributes (over_type, base_type) |
1948 | && !tx_safe_fn_type_p (base_type) |
1949 | && !tx_safe_fn_type_p (over_type)) |
1950 | { |
1951 | error ("conflicting type attributes specified for %q+#D" , overrider); |
1952 | error (" overriding %q+#D" , basefn); |
1953 | DECL_INVALID_OVERRIDER_P (overrider) = 1; |
1954 | return 0; |
1955 | } |
1956 | |
1957 | /* A function declared transaction_safe_dynamic that overrides a function |
1958 | declared transaction_safe (but not transaction_safe_dynamic) is |
1959 | ill-formed. */ |
1960 | if (tx_safe_fn_type_p (base_type) |
1961 | && lookup_attribute ("transaction_safe_dynamic" , |
1962 | DECL_ATTRIBUTES (overrider)) |
1963 | && !lookup_attribute ("transaction_safe_dynamic" , |
1964 | DECL_ATTRIBUTES (basefn))) |
1965 | { |
1966 | error_at (DECL_SOURCE_LOCATION (overrider), |
1967 | "%qD declared %<transaction_safe_dynamic%>" , overrider); |
1968 | inform (DECL_SOURCE_LOCATION (basefn), |
1969 | "overriding %qD declared %<transaction_safe%>" , basefn); |
1970 | } |
1971 | |
1972 | if (DECL_DELETED_FN (basefn) != DECL_DELETED_FN (overrider)) |
1973 | { |
1974 | if (DECL_DELETED_FN (overrider)) |
1975 | { |
1976 | error ("deleted function %q+D" , overrider); |
1977 | error ("overriding non-deleted function %q+D" , basefn); |
1978 | maybe_explain_implicit_delete (overrider); |
1979 | } |
1980 | else |
1981 | { |
1982 | error ("non-deleted function %q+D" , overrider); |
1983 | error ("overriding deleted function %q+D" , basefn); |
1984 | } |
1985 | return 0; |
1986 | } |
1987 | if (DECL_FINAL_P (basefn)) |
1988 | { |
1989 | error ("virtual function %q+D" , overrider); |
1990 | error ("overriding final function %q+D" , basefn); |
1991 | return 0; |
1992 | } |
1993 | return 1; |
1994 | } |
1995 | |
1996 | /* Given a class TYPE, and a function decl FNDECL, look for |
1997 | virtual functions in TYPE's hierarchy which FNDECL overrides. |
1998 | We do not look in TYPE itself, only its bases. |
1999 | |
2000 | Returns nonzero, if we find any. Set FNDECL's DECL_VIRTUAL_P, if we |
2001 | find that it overrides anything. |
2002 | |
2003 | We check that every function which is overridden, is correctly |
2004 | overridden. */ |
2005 | |
2006 | int |
2007 | look_for_overrides (tree type, tree fndecl) |
2008 | { |
2009 | tree binfo = TYPE_BINFO (type); |
2010 | tree base_binfo; |
2011 | int ix; |
2012 | int found = 0; |
2013 | |
2014 | /* A constructor for a class T does not override a function T |
2015 | in a base class. */ |
2016 | if (DECL_CONSTRUCTOR_P (fndecl)) |
2017 | return 0; |
2018 | |
2019 | for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++) |
2020 | { |
2021 | tree basetype = BINFO_TYPE (base_binfo); |
2022 | |
2023 | if (TYPE_POLYMORPHIC_P (basetype)) |
2024 | found += look_for_overrides_r (basetype, fndecl); |
2025 | } |
2026 | return found; |
2027 | } |
2028 | |
2029 | /* Look in TYPE for virtual functions with the same signature as |
2030 | FNDECL. */ |
2031 | |
2032 | tree |
2033 | look_for_overrides_here (tree type, tree fndecl) |
2034 | { |
2035 | tree ovl = get_class_binding (type, DECL_NAME (fndecl)); |
2036 | |
2037 | for (ovl_iterator iter (ovl); iter; ++iter) |
2038 | { |
2039 | tree fn = *iter; |
2040 | |
2041 | if (!DECL_VIRTUAL_P (fn)) |
2042 | /* Not a virtual. */; |
2043 | else if (DECL_CONTEXT (fn) != type) |
2044 | /* Introduced with a using declaration. */; |
2045 | else if (DECL_STATIC_FUNCTION_P (fndecl)) |
2046 | { |
2047 | tree btypes = TYPE_ARG_TYPES (TREE_TYPE (fn)); |
2048 | tree dtypes = TYPE_ARG_TYPES (TREE_TYPE (fndecl)); |
2049 | if (compparms (TREE_CHAIN (btypes), dtypes)) |
2050 | return fn; |
2051 | } |
2052 | else if (same_signature_p (fndecl, fn)) |
2053 | return fn; |
2054 | } |
2055 | |
2056 | return NULL_TREE; |
2057 | } |
2058 | |
2059 | /* Look in TYPE for virtual functions overridden by FNDECL. Check both |
2060 | TYPE itself and its bases. */ |
2061 | |
2062 | static int |
2063 | look_for_overrides_r (tree type, tree fndecl) |
2064 | { |
2065 | tree fn = look_for_overrides_here (type, fndecl); |
2066 | if (fn) |
2067 | { |
2068 | if (DECL_STATIC_FUNCTION_P (fndecl)) |
2069 | { |
2070 | /* A static member function cannot match an inherited |
2071 | virtual member function. */ |
2072 | error ("%q+#D cannot be declared" , fndecl); |
2073 | error (" since %q+#D declared in base class" , fn); |
2074 | } |
2075 | else |
2076 | { |
2077 | /* It's definitely virtual, even if not explicitly set. */ |
2078 | DECL_VIRTUAL_P (fndecl) = 1; |
2079 | check_final_overrider (fndecl, fn); |
2080 | } |
2081 | return 1; |
2082 | } |
2083 | |
2084 | /* We failed to find one declared in this class. Look in its bases. */ |
2085 | return look_for_overrides (type, fndecl); |
2086 | } |
2087 | |
2088 | /* Called via dfs_walk from dfs_get_pure_virtuals. */ |
2089 | |
2090 | static tree |
2091 | dfs_get_pure_virtuals (tree binfo, void *data) |
2092 | { |
2093 | tree type = (tree) data; |
2094 | |
2095 | /* We're not interested in primary base classes; the derived class |
2096 | of which they are a primary base will contain the information we |
2097 | need. */ |
2098 | if (!BINFO_PRIMARY_P (binfo)) |
2099 | { |
2100 | tree virtuals; |
2101 | |
2102 | for (virtuals = BINFO_VIRTUALS (binfo); |
2103 | virtuals; |
2104 | virtuals = TREE_CHAIN (virtuals)) |
2105 | if (DECL_PURE_VIRTUAL_P (BV_FN (virtuals))) |
2106 | vec_safe_push (CLASSTYPE_PURE_VIRTUALS (type), BV_FN (virtuals)); |
2107 | } |
2108 | |
2109 | return NULL_TREE; |
2110 | } |
2111 | |
2112 | /* Set CLASSTYPE_PURE_VIRTUALS for TYPE. */ |
2113 | |
2114 | void |
2115 | get_pure_virtuals (tree type) |
2116 | { |
2117 | /* Clear the CLASSTYPE_PURE_VIRTUALS list; whatever is already there |
2118 | is going to be overridden. */ |
2119 | CLASSTYPE_PURE_VIRTUALS (type) = NULL; |
2120 | /* Now, run through all the bases which are not primary bases, and |
2121 | collect the pure virtual functions. We look at the vtable in |
2122 | each class to determine what pure virtual functions are present. |
2123 | (A primary base is not interesting because the derived class of |
2124 | which it is a primary base will contain vtable entries for the |
2125 | pure virtuals in the base class. */ |
2126 | dfs_walk_once (TYPE_BINFO (type), NULL, dfs_get_pure_virtuals, type); |
2127 | } |
2128 | |
2129 | /* Debug info for C++ classes can get very large; try to avoid |
2130 | emitting it everywhere. |
2131 | |
2132 | Note that this optimization wins even when the target supports |
2133 | BINCL (if only slightly), and reduces the amount of work for the |
2134 | linker. */ |
2135 | |
2136 | void |
2137 | maybe_suppress_debug_info (tree t) |
2138 | { |
2139 | if (write_symbols == NO_DEBUG) |
2140 | return; |
2141 | |
2142 | /* We might have set this earlier in cp_finish_decl. */ |
2143 | TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t)) = 0; |
2144 | |
2145 | /* Always emit the information for each class every time. */ |
2146 | if (flag_emit_class_debug_always) |
2147 | return; |
2148 | |
2149 | /* If we already know how we're handling this class, handle debug info |
2150 | the same way. */ |
2151 | if (CLASSTYPE_INTERFACE_KNOWN (t)) |
2152 | { |
2153 | if (CLASSTYPE_INTERFACE_ONLY (t)) |
2154 | TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t)) = 1; |
2155 | /* else don't set it. */ |
2156 | } |
2157 | /* If the class has a vtable, write out the debug info along with |
2158 | the vtable. */ |
2159 | else if (TYPE_CONTAINS_VPTR_P (t)) |
2160 | TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t)) = 1; |
2161 | |
2162 | /* Otherwise, just emit the debug info normally. */ |
2163 | } |
2164 | |
2165 | /* Note that we want debugging information for a base class of a class |
2166 | whose vtable is being emitted. Normally, this would happen because |
2167 | calling the constructor for a derived class implies calling the |
2168 | constructors for all bases, which involve initializing the |
2169 | appropriate vptr with the vtable for the base class; but in the |
2170 | presence of optimization, this initialization may be optimized |
2171 | away, so we tell finish_vtable_vardecl that we want the debugging |
2172 | information anyway. */ |
2173 | |
2174 | static tree |
2175 | dfs_debug_mark (tree binfo, void * /*data*/) |
2176 | { |
2177 | tree t = BINFO_TYPE (binfo); |
2178 | |
2179 | if (CLASSTYPE_DEBUG_REQUESTED (t)) |
2180 | return dfs_skip_bases; |
2181 | |
2182 | CLASSTYPE_DEBUG_REQUESTED (t) = 1; |
2183 | |
2184 | return NULL_TREE; |
2185 | } |
2186 | |
2187 | /* Write out the debugging information for TYPE, whose vtable is being |
2188 | emitted. Also walk through our bases and note that we want to |
2189 | write out information for them. This avoids the problem of not |
2190 | writing any debug info for intermediate basetypes whose |
2191 | constructors, and thus the references to their vtables, and thus |
2192 | the vtables themselves, were optimized away. */ |
2193 | |
2194 | void |
2195 | note_debug_info_needed (tree type) |
2196 | { |
2197 | if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_NAME (type))) |
2198 | { |
2199 | TYPE_DECL_SUPPRESS_DEBUG (TYPE_NAME (type)) = 0; |
2200 | rest_of_type_compilation (type, namespace_bindings_p ()); |
2201 | } |
2202 | |
2203 | dfs_walk_all (TYPE_BINFO (type), dfs_debug_mark, NULL, 0); |
2204 | } |
2205 | |
2206 | /* Helper for lookup_conversions_r. TO_TYPE is the type converted to |
2207 | by a conversion op in base BINFO. VIRTUAL_DEPTH is nonzero if |
2208 | BINFO is morally virtual, and VIRTUALNESS is nonzero if virtual |
2209 | bases have been encountered already in the tree walk. PARENT_CONVS |
2210 | is the list of lists of conversion functions that could hide CONV |
2211 | and OTHER_CONVS is the list of lists of conversion functions that |
2212 | could hide or be hidden by CONV, should virtualness be involved in |
2213 | the hierarchy. Merely checking the conversion op's name is not |
2214 | enough because two conversion operators to the same type can have |
2215 | different names. Return nonzero if we are visible. */ |
2216 | |
2217 | static int |
2218 | check_hidden_convs (tree binfo, int virtual_depth, int virtualness, |
2219 | tree to_type, tree parent_convs, tree other_convs) |
2220 | { |
2221 | tree level, probe; |
2222 | |
2223 | /* See if we are hidden by a parent conversion. */ |
2224 | for (level = parent_convs; level; level = TREE_CHAIN (level)) |
2225 | for (probe = TREE_VALUE (level); probe; probe = TREE_CHAIN (probe)) |
2226 | if (same_type_p (to_type, TREE_TYPE (probe))) |
2227 | return 0; |
2228 | |
2229 | if (virtual_depth || virtualness) |
2230 | { |
2231 | /* In a virtual hierarchy, we could be hidden, or could hide a |
2232 | conversion function on the other_convs list. */ |
2233 | for (level = other_convs; level; level = TREE_CHAIN (level)) |
2234 | { |
2235 | int we_hide_them; |
2236 | int they_hide_us; |
2237 | tree *prev, other; |
2238 | |
2239 | if (!(virtual_depth || TREE_STATIC (level))) |
2240 | /* Neither is morally virtual, so cannot hide each other. */ |
2241 | continue; |
2242 | |
2243 | if (!TREE_VALUE (level)) |
2244 | /* They evaporated away already. */ |
2245 | continue; |
2246 | |
2247 | they_hide_us = (virtual_depth |
2248 | && original_binfo (binfo, TREE_PURPOSE (level))); |
2249 | we_hide_them = (!they_hide_us && TREE_STATIC (level) |
2250 | && original_binfo (TREE_PURPOSE (level), binfo)); |
2251 | |
2252 | if (!(we_hide_them || they_hide_us)) |
2253 | /* Neither is within the other, so no hiding can occur. */ |
2254 | continue; |
2255 | |
2256 | for (prev = &TREE_VALUE (level), other = *prev; other;) |
2257 | { |
2258 | if (same_type_p (to_type, TREE_TYPE (other))) |
2259 | { |
2260 | if (they_hide_us) |
2261 | /* We are hidden. */ |
2262 | return 0; |
2263 | |
2264 | if (we_hide_them) |
2265 | { |
2266 | /* We hide the other one. */ |
2267 | other = TREE_CHAIN (other); |
2268 | *prev = other; |
2269 | continue; |
2270 | } |
2271 | } |
2272 | prev = &TREE_CHAIN (other); |
2273 | other = *prev; |
2274 | } |
2275 | } |
2276 | } |
2277 | return 1; |
2278 | } |
2279 | |
2280 | /* Helper for lookup_conversions_r. PARENT_CONVS is a list of lists |
2281 | of conversion functions, the first slot will be for the current |
2282 | binfo, if MY_CONVS is non-NULL. CHILD_CONVS is the list of lists |
2283 | of conversion functions from children of the current binfo, |
2284 | concatenated with conversions from elsewhere in the hierarchy -- |
2285 | that list begins with OTHER_CONVS. Return a single list of lists |
2286 | containing only conversions from the current binfo and its |
2287 | children. */ |
2288 | |
2289 | static tree |
2290 | split_conversions (tree my_convs, tree parent_convs, |
2291 | tree child_convs, tree other_convs) |
2292 | { |
2293 | tree t; |
2294 | tree prev; |
2295 | |
2296 | /* Remove the original other_convs portion from child_convs. */ |
2297 | for (prev = NULL, t = child_convs; |
2298 | t != other_convs; prev = t, t = TREE_CHAIN (t)) |
2299 | continue; |
2300 | |
2301 | if (prev) |
2302 | TREE_CHAIN (prev) = NULL_TREE; |
2303 | else |
2304 | child_convs = NULL_TREE; |
2305 | |
2306 | /* Attach the child convs to any we had at this level. */ |
2307 | if (my_convs) |
2308 | { |
2309 | my_convs = parent_convs; |
2310 | TREE_CHAIN (my_convs) = child_convs; |
2311 | } |
2312 | else |
2313 | my_convs = child_convs; |
2314 | |
2315 | return my_convs; |
2316 | } |
2317 | |
2318 | /* Worker for lookup_conversions. Lookup conversion functions in |
2319 | BINFO and its children. VIRTUAL_DEPTH is nonzero, if BINFO is in a |
2320 | morally virtual base, and VIRTUALNESS is nonzero, if we've |
2321 | encountered virtual bases already in the tree walk. PARENT_CONVS |
2322 | is a list of conversions within parent binfos. OTHER_CONVS are |
2323 | conversions found elsewhere in the tree. Return the conversions |
2324 | found within this portion of the graph in CONVS. Return nonzero if |
2325 | we encountered virtualness. We keep template and non-template |
2326 | conversions separate, to avoid unnecessary type comparisons. |
2327 | |
2328 | The located conversion functions are held in lists of lists. The |
2329 | TREE_VALUE of the outer list is the list of conversion functions |
2330 | found in a particular binfo. The TREE_PURPOSE of both the outer |
2331 | and inner lists is the binfo at which those conversions were |
2332 | found. TREE_STATIC is set for those lists within of morally |
2333 | virtual binfos. The TREE_VALUE of the inner list is the conversion |
2334 | function or overload itself. The TREE_TYPE of each inner list node |
2335 | is the converted-to type. */ |
2336 | |
2337 | static int |
2338 | lookup_conversions_r (tree binfo, int virtual_depth, int virtualness, |
2339 | tree parent_convs, tree other_convs, tree *convs) |
2340 | { |
2341 | int my_virtualness = 0; |
2342 | tree my_convs = NULL_TREE; |
2343 | tree child_convs = NULL_TREE; |
2344 | |
2345 | /* If we have no conversion operators, then don't look. */ |
2346 | if (!TYPE_HAS_CONVERSION (BINFO_TYPE (binfo))) |
2347 | { |
2348 | *convs = NULL_TREE; |
2349 | |
2350 | return 0; |
2351 | } |
2352 | |
2353 | if (BINFO_VIRTUAL_P (binfo)) |
2354 | virtual_depth++; |
2355 | |
2356 | /* First, locate the unhidden ones at this level. */ |
2357 | if (tree conv = get_class_binding (BINFO_TYPE (binfo), conv_op_identifier)) |
2358 | for (ovl_iterator iter (conv); iter; ++iter) |
2359 | { |
2360 | tree fn = *iter; |
2361 | tree type = DECL_CONV_FN_TYPE (fn); |
2362 | |
2363 | if (TREE_CODE (fn) != TEMPLATE_DECL && type_uses_auto (type)) |
2364 | { |
2365 | mark_used (fn); |
2366 | type = DECL_CONV_FN_TYPE (fn); |
2367 | } |
2368 | |
2369 | if (check_hidden_convs (binfo, virtual_depth, virtualness, |
2370 | type, parent_convs, other_convs)) |
2371 | { |
2372 | my_convs = tree_cons (binfo, fn, my_convs); |
2373 | TREE_TYPE (my_convs) = type; |
2374 | if (virtual_depth) |
2375 | { |
2376 | TREE_STATIC (my_convs) = 1; |
2377 | my_virtualness = 1; |
2378 | } |
2379 | } |
2380 | } |
2381 | |
2382 | if (my_convs) |
2383 | { |
2384 | parent_convs = tree_cons (binfo, my_convs, parent_convs); |
2385 | if (virtual_depth) |
2386 | TREE_STATIC (parent_convs) = 1; |
2387 | } |
2388 | |
2389 | child_convs = other_convs; |
2390 | |
2391 | /* Now iterate over each base, looking for more conversions. */ |
2392 | unsigned i; |
2393 | tree base_binfo; |
2394 | for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++) |
2395 | { |
2396 | tree base_convs; |
2397 | unsigned base_virtualness; |
2398 | |
2399 | base_virtualness = lookup_conversions_r (base_binfo, |
2400 | virtual_depth, virtualness, |
2401 | parent_convs, child_convs, |
2402 | &base_convs); |
2403 | if (base_virtualness) |
2404 | my_virtualness = virtualness = 1; |
2405 | child_convs = chainon (base_convs, child_convs); |
2406 | } |
2407 | |
2408 | *convs = split_conversions (my_convs, parent_convs, |
2409 | child_convs, other_convs); |
2410 | |
2411 | return my_virtualness; |
2412 | } |
2413 | |
2414 | /* Return a TREE_LIST containing all the non-hidden user-defined |
2415 | conversion functions for TYPE (and its base-classes). The |
2416 | TREE_VALUE of each node is the FUNCTION_DECL of the conversion |
2417 | function. The TREE_PURPOSE is the BINFO from which the conversion |
2418 | functions in this node were selected. This function is effectively |
2419 | performing a set of member lookups as lookup_fnfield does, but |
2420 | using the type being converted to as the unique key, rather than the |
2421 | field name. */ |
2422 | |
2423 | tree |
2424 | lookup_conversions (tree type) |
2425 | { |
2426 | tree convs; |
2427 | |
2428 | complete_type (type); |
2429 | if (!CLASS_TYPE_P (type) || !TYPE_BINFO (type)) |
2430 | return NULL_TREE; |
2431 | |
2432 | lookup_conversions_r (TYPE_BINFO (type), 0, 0, NULL_TREE, NULL_TREE, &convs); |
2433 | |
2434 | tree list = NULL_TREE; |
2435 | |
2436 | /* Flatten the list-of-lists */ |
2437 | for (; convs; convs = TREE_CHAIN (convs)) |
2438 | { |
2439 | tree probe, next; |
2440 | |
2441 | for (probe = TREE_VALUE (convs); probe; probe = next) |
2442 | { |
2443 | next = TREE_CHAIN (probe); |
2444 | |
2445 | TREE_CHAIN (probe) = list; |
2446 | list = probe; |
2447 | } |
2448 | } |
2449 | |
2450 | return list; |
2451 | } |
2452 | |
2453 | /* Returns the binfo of the first direct or indirect virtual base derived |
2454 | from BINFO, or NULL if binfo is not via virtual. */ |
2455 | |
2456 | tree |
2457 | binfo_from_vbase (tree binfo) |
2458 | { |
2459 | for (; binfo; binfo = BINFO_INHERITANCE_CHAIN (binfo)) |
2460 | { |
2461 | if (BINFO_VIRTUAL_P (binfo)) |
2462 | return binfo; |
2463 | } |
2464 | return NULL_TREE; |
2465 | } |
2466 | |
2467 | /* Returns the binfo of the first direct or indirect virtual base derived |
2468 | from BINFO up to the TREE_TYPE, LIMIT, or NULL if binfo is not |
2469 | via virtual. */ |
2470 | |
2471 | tree |
2472 | binfo_via_virtual (tree binfo, tree limit) |
2473 | { |
2474 | if (limit && !CLASSTYPE_VBASECLASSES (limit)) |
2475 | /* LIMIT has no virtual bases, so BINFO cannot be via one. */ |
2476 | return NULL_TREE; |
2477 | |
2478 | for (; binfo && !SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), limit); |
2479 | binfo = BINFO_INHERITANCE_CHAIN (binfo)) |
2480 | { |
2481 | if (BINFO_VIRTUAL_P (binfo)) |
2482 | return binfo; |
2483 | } |
2484 | return NULL_TREE; |
2485 | } |
2486 | |
2487 | /* BINFO is for a base class in some hierarchy. Return true iff it is a |
2488 | direct base. */ |
2489 | |
2490 | bool |
2491 | binfo_direct_p (tree binfo) |
2492 | { |
2493 | tree d_binfo = BINFO_INHERITANCE_CHAIN (binfo); |
2494 | if (BINFO_INHERITANCE_CHAIN (d_binfo)) |
2495 | /* A second inheritance chain means indirect. */ |
2496 | return false; |
2497 | if (!BINFO_VIRTUAL_P (binfo)) |
2498 | /* Non-virtual, so only one inheritance chain means direct. */ |
2499 | return true; |
2500 | /* A virtual base looks like a direct base, so we need to look through the |
2501 | direct bases to see if it's there. */ |
2502 | tree b_binfo; |
2503 | for (int i = 0; BINFO_BASE_ITERATE (d_binfo, i, b_binfo); ++i) |
2504 | if (b_binfo == binfo) |
2505 | return true; |
2506 | return false; |
2507 | } |
2508 | |
2509 | /* BINFO is a base binfo in the complete type BINFO_TYPE (HERE). |
2510 | Find the equivalent binfo within whatever graph HERE is located. |
2511 | This is the inverse of original_binfo. */ |
2512 | |
2513 | tree |
2514 | copied_binfo (tree binfo, tree here) |
2515 | { |
2516 | tree result = NULL_TREE; |
2517 | |
2518 | if (BINFO_VIRTUAL_P (binfo)) |
2519 | { |
2520 | tree t; |
2521 | |
2522 | for (t = here; BINFO_INHERITANCE_CHAIN (t); |
2523 | t = BINFO_INHERITANCE_CHAIN (t)) |
2524 | continue; |
2525 | |
2526 | result = binfo_for_vbase (BINFO_TYPE (binfo), BINFO_TYPE (t)); |
2527 | } |
2528 | else if (BINFO_INHERITANCE_CHAIN (binfo)) |
2529 | { |
2530 | tree cbinfo; |
2531 | tree base_binfo; |
2532 | int ix; |
2533 | |
2534 | cbinfo = copied_binfo (BINFO_INHERITANCE_CHAIN (binfo), here); |
2535 | for (ix = 0; BINFO_BASE_ITERATE (cbinfo, ix, base_binfo); ix++) |
2536 | if (SAME_BINFO_TYPE_P (BINFO_TYPE (base_binfo), BINFO_TYPE (binfo))) |
2537 | { |
2538 | result = base_binfo; |
2539 | break; |
2540 | } |
2541 | } |
2542 | else |
2543 | { |
2544 | gcc_assert (SAME_BINFO_TYPE_P (BINFO_TYPE (here), BINFO_TYPE (binfo))); |
2545 | result = here; |
2546 | } |
2547 | |
2548 | gcc_assert (result); |
2549 | return result; |
2550 | } |
2551 | |
2552 | tree |
2553 | binfo_for_vbase (tree base, tree t) |
2554 | { |
2555 | unsigned ix; |
2556 | tree binfo; |
2557 | vec<tree, va_gc> *vbases; |
2558 | |
2559 | for (vbases = CLASSTYPE_VBASECLASSES (t), ix = 0; |
2560 | vec_safe_iterate (vbases, ix, &binfo); ix++) |
2561 | if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), base)) |
2562 | return binfo; |
2563 | return NULL; |
2564 | } |
2565 | |
2566 | /* BINFO is some base binfo of HERE, within some other |
2567 | hierarchy. Return the equivalent binfo, but in the hierarchy |
2568 | dominated by HERE. This is the inverse of copied_binfo. If BINFO |
2569 | is not a base binfo of HERE, returns NULL_TREE. */ |
2570 | |
2571 | tree |
2572 | original_binfo (tree binfo, tree here) |
2573 | { |
2574 | tree result = NULL; |
2575 | |
2576 | if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), BINFO_TYPE (here))) |
2577 | result = here; |
2578 | else if (BINFO_VIRTUAL_P (binfo)) |
2579 | result = (CLASSTYPE_VBASECLASSES (BINFO_TYPE (here)) |
2580 | ? binfo_for_vbase (BINFO_TYPE (binfo), BINFO_TYPE (here)) |
2581 | : NULL_TREE); |
2582 | else if (BINFO_INHERITANCE_CHAIN (binfo)) |
2583 | { |
2584 | tree base_binfos; |
2585 | |
2586 | base_binfos = original_binfo (BINFO_INHERITANCE_CHAIN (binfo), here); |
2587 | if (base_binfos) |
2588 | { |
2589 | int ix; |
2590 | tree base_binfo; |
2591 | |
2592 | for (ix = 0; (base_binfo = BINFO_BASE_BINFO (base_binfos, ix)); ix++) |
2593 | if (SAME_BINFO_TYPE_P (BINFO_TYPE (base_binfo), |
2594 | BINFO_TYPE (binfo))) |
2595 | { |
2596 | result = base_binfo; |
2597 | break; |
2598 | } |
2599 | } |
2600 | } |
2601 | |
2602 | return result; |
2603 | } |
2604 | |
2605 | /* True iff TYPE has any dependent bases (and therefore we can't say |
2606 | definitively that another class is not a base of an instantiation of |
2607 | TYPE). */ |
2608 | |
2609 | bool |
2610 | any_dependent_bases_p (tree type) |
2611 | { |
2612 | if (!type || !CLASS_TYPE_P (type) || !processing_template_decl) |
2613 | return false; |
2614 | |
2615 | unsigned i; |
2616 | tree base_binfo; |
2617 | FOR_EACH_VEC_SAFE_ELT (BINFO_BASE_BINFOS (TYPE_BINFO (type)), i, base_binfo) |
2618 | if (BINFO_DEPENDENT_BASE_P (base_binfo)) |
2619 | return true; |
2620 | |
2621 | return false; |
2622 | } |
2623 | |