1 | /* Definitions of floating-point access for GNU compiler. |
2 | Copyright (C) 1989-2017 Free Software Foundation, Inc. |
3 | |
4 | This file is part of GCC. |
5 | |
6 | GCC is free software; you can redistribute it and/or modify it under |
7 | the terms of the GNU General Public License as published by the Free |
8 | Software Foundation; either version 3, or (at your option) any later |
9 | version. |
10 | |
11 | GCC is distributed in the hope that it will be useful, but WITHOUT ANY |
12 | WARRANTY; without even the implied warranty of MERCHANTABILITY or |
13 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
14 | for more details. |
15 | |
16 | You should have received a copy of the GNU General Public License |
17 | along with GCC; see the file COPYING3. If not see |
18 | <http://www.gnu.org/licenses/>. */ |
19 | |
20 | #ifndef GCC_REAL_H |
21 | #define GCC_REAL_H |
22 | |
23 | /* An expanded form of the represented number. */ |
24 | |
25 | /* Enumerate the special cases of numbers that we encounter. */ |
26 | enum real_value_class { |
27 | rvc_zero, |
28 | rvc_normal, |
29 | rvc_inf, |
30 | rvc_nan |
31 | }; |
32 | |
33 | #define SIGNIFICAND_BITS (128 + HOST_BITS_PER_LONG) |
34 | #define EXP_BITS (32 - 6) |
35 | #define MAX_EXP ((1 << (EXP_BITS - 1)) - 1) |
36 | #define SIGSZ (SIGNIFICAND_BITS / HOST_BITS_PER_LONG) |
37 | #define SIG_MSB ((unsigned long)1 << (HOST_BITS_PER_LONG - 1)) |
38 | |
39 | struct GTY(()) real_value { |
40 | /* Use the same underlying type for all bit-fields, so as to make |
41 | sure they're packed together, otherwise REAL_VALUE_TYPE_SIZE will |
42 | be miscomputed. */ |
43 | unsigned int /* ENUM_BITFIELD (real_value_class) */ cl : 2; |
44 | unsigned int decimal : 1; |
45 | unsigned int sign : 1; |
46 | unsigned int signalling : 1; |
47 | unsigned int canonical : 1; |
48 | unsigned int uexp : EXP_BITS; |
49 | unsigned long sig[SIGSZ]; |
50 | }; |
51 | |
52 | #define REAL_EXP(REAL) \ |
53 | ((int)((REAL)->uexp ^ (unsigned int)(1 << (EXP_BITS - 1))) \ |
54 | - (1 << (EXP_BITS - 1))) |
55 | #define SET_REAL_EXP(REAL, EXP) \ |
56 | ((REAL)->uexp = ((unsigned int)(EXP) & (unsigned int)((1 << EXP_BITS) - 1))) |
57 | |
58 | /* Various headers condition prototypes on #ifdef REAL_VALUE_TYPE, so it |
59 | needs to be a macro. We do need to continue to have a structure tag |
60 | so that other headers can forward declare it. */ |
61 | #define REAL_VALUE_TYPE struct real_value |
62 | |
63 | /* We store a REAL_VALUE_TYPE into an rtx, and we do this by putting it in |
64 | consecutive "w" slots. Moreover, we've got to compute the number of "w" |
65 | slots at preprocessor time, which means we can't use sizeof. Guess. */ |
66 | |
67 | #define REAL_VALUE_TYPE_SIZE (SIGNIFICAND_BITS + 32) |
68 | #define REAL_WIDTH \ |
69 | (REAL_VALUE_TYPE_SIZE/HOST_BITS_PER_WIDE_INT \ |
70 | + (REAL_VALUE_TYPE_SIZE%HOST_BITS_PER_WIDE_INT ? 1 : 0)) /* round up */ |
71 | |
72 | /* Verify the guess. */ |
73 | extern char test_real_width |
74 | [sizeof (REAL_VALUE_TYPE) <= REAL_WIDTH * sizeof (HOST_WIDE_INT) ? 1 : -1]; |
75 | |
76 | /* Calculate the format for CONST_DOUBLE. We need as many slots as |
77 | are necessary to overlay a REAL_VALUE_TYPE on them. This could be |
78 | as many as four (32-bit HOST_WIDE_INT, 128-bit REAL_VALUE_TYPE). |
79 | |
80 | A number of places assume that there are always at least two 'w' |
81 | slots in a CONST_DOUBLE, so we provide them even if one would suffice. */ |
82 | |
83 | #if REAL_WIDTH == 1 |
84 | # define CONST_DOUBLE_FORMAT "ww" |
85 | #else |
86 | # if REAL_WIDTH == 2 |
87 | # define CONST_DOUBLE_FORMAT "ww" |
88 | # else |
89 | # if REAL_WIDTH == 3 |
90 | # define CONST_DOUBLE_FORMAT "www" |
91 | # else |
92 | # if REAL_WIDTH == 4 |
93 | # define CONST_DOUBLE_FORMAT "wwww" |
94 | # else |
95 | # if REAL_WIDTH == 5 |
96 | # define CONST_DOUBLE_FORMAT "wwwww" |
97 | # else |
98 | # if REAL_WIDTH == 6 |
99 | # define CONST_DOUBLE_FORMAT "wwwwww" |
100 | # else |
101 | #error "REAL_WIDTH > 6 not supported" |
102 | # endif |
103 | # endif |
104 | # endif |
105 | # endif |
106 | # endif |
107 | #endif |
108 | |
109 | |
110 | /* Describes the properties of the specific target format in use. */ |
111 | struct real_format |
112 | { |
113 | /* Move to and from the target bytes. */ |
114 | void (*encode) (const struct real_format *, long *, |
115 | const REAL_VALUE_TYPE *); |
116 | void (*decode) (const struct real_format *, REAL_VALUE_TYPE *, |
117 | const long *); |
118 | |
119 | /* The radix of the exponent and digits of the significand. */ |
120 | int b; |
121 | |
122 | /* Size of the significand in digits of radix B. */ |
123 | int p; |
124 | |
125 | /* Size of the significant of a NaN, in digits of radix B. */ |
126 | int pnan; |
127 | |
128 | /* The minimum negative integer, x, such that b**(x-1) is normalized. */ |
129 | int emin; |
130 | |
131 | /* The maximum integer, x, such that b**(x-1) is representable. */ |
132 | int emax; |
133 | |
134 | /* The bit position of the sign bit, for determining whether a value |
135 | is positive/negative, or -1 for a complex encoding. */ |
136 | int signbit_ro; |
137 | |
138 | /* The bit position of the sign bit, for changing the sign of a number, |
139 | or -1 for a complex encoding. */ |
140 | int signbit_rw; |
141 | |
142 | /* If this is an IEEE interchange format, the number of bits in the |
143 | format; otherwise, if it is an IEEE extended format, one more |
144 | than the greatest number of bits in an interchange format it |
145 | extends; otherwise 0. Formats need not follow the IEEE 754-2008 |
146 | recommended practice regarding how signaling NaNs are identified, |
147 | and may vary in the choice of default NaN, but must follow other |
148 | IEEE practice regarding having NaNs, infinities and subnormal |
149 | values, and the relation of minimum and maximum exponents, and, |
150 | for interchange formats, the details of the encoding. */ |
151 | int ieee_bits; |
152 | |
153 | /* Default rounding mode for operations on this format. */ |
154 | bool round_towards_zero; |
155 | bool has_sign_dependent_rounding; |
156 | |
157 | /* Properties of the format. */ |
158 | bool has_nans; |
159 | bool has_inf; |
160 | bool has_denorm; |
161 | bool has_signed_zero; |
162 | bool qnan_msb_set; |
163 | bool canonical_nan_lsbs_set; |
164 | const char *name; |
165 | }; |
166 | |
167 | |
168 | /* The target format used for each floating point mode. |
169 | Float modes are followed by decimal float modes, with entries for |
170 | float modes indexed by (MODE - first float mode), and entries for |
171 | decimal float modes indexed by (MODE - first decimal float mode) + |
172 | the number of float modes. */ |
173 | extern const struct real_format * |
174 | real_format_for_mode[MAX_MODE_FLOAT - MIN_MODE_FLOAT + 1 |
175 | + MAX_MODE_DECIMAL_FLOAT - MIN_MODE_DECIMAL_FLOAT + 1]; |
176 | |
177 | #define REAL_MODE_FORMAT(MODE) \ |
178 | (real_format_for_mode[DECIMAL_FLOAT_MODE_P (MODE) \ |
179 | ? (((MODE) - MIN_MODE_DECIMAL_FLOAT) \ |
180 | + (MAX_MODE_FLOAT - MIN_MODE_FLOAT + 1)) \ |
181 | : GET_MODE_CLASS (MODE) == MODE_FLOAT \ |
182 | ? ((MODE) - MIN_MODE_FLOAT) \ |
183 | : (gcc_unreachable (), 0)]) |
184 | |
185 | #define FLOAT_MODE_FORMAT(MODE) \ |
186 | (REAL_MODE_FORMAT (as_a <scalar_float_mode> (GET_MODE_INNER (MODE)))) |
187 | |
188 | /* The following macro determines whether the floating point format is |
189 | composite, i.e. may contain non-consecutive mantissa bits, in which |
190 | case compile-time FP overflow may not model run-time overflow. */ |
191 | #define MODE_COMPOSITE_P(MODE) \ |
192 | (FLOAT_MODE_P (MODE) \ |
193 | && FLOAT_MODE_FORMAT (MODE)->pnan < FLOAT_MODE_FORMAT (MODE)->p) |
194 | |
195 | /* Accessor macros for format properties. */ |
196 | #define MODE_HAS_NANS(MODE) \ |
197 | (FLOAT_MODE_P (MODE) && FLOAT_MODE_FORMAT (MODE)->has_nans) |
198 | #define MODE_HAS_INFINITIES(MODE) \ |
199 | (FLOAT_MODE_P (MODE) && FLOAT_MODE_FORMAT (MODE)->has_inf) |
200 | #define MODE_HAS_SIGNED_ZEROS(MODE) \ |
201 | (FLOAT_MODE_P (MODE) && FLOAT_MODE_FORMAT (MODE)->has_signed_zero) |
202 | #define MODE_HAS_SIGN_DEPENDENT_ROUNDING(MODE) \ |
203 | (FLOAT_MODE_P (MODE) \ |
204 | && FLOAT_MODE_FORMAT (MODE)->has_sign_dependent_rounding) |
205 | |
206 | /* This class allows functions in this file to accept a floating-point |
207 | format as either a mode or an explicit real_format pointer. In the |
208 | former case the mode must be VOIDmode (which means "no particular |
209 | format") or must satisfy SCALAR_FLOAT_MODE_P. */ |
210 | class format_helper |
211 | { |
212 | public: |
213 | format_helper (const real_format *format) : m_format (format) {} |
214 | template<typename T> format_helper (const T &); |
215 | const real_format *operator-> () const { return m_format; } |
216 | operator const real_format *() const { return m_format; } |
217 | |
218 | bool decimal_p () const { return m_format && m_format->b == 10; } |
219 | |
220 | private: |
221 | const real_format *m_format; |
222 | }; |
223 | |
224 | template<typename T> |
225 | inline format_helper::format_helper (const T &m) |
226 | : m_format (m == VOIDmode ? 0 : REAL_MODE_FORMAT (m)) |
227 | {} |
228 | |
229 | /* Declare functions in real.c. */ |
230 | |
231 | /* True if the given mode has a NaN representation and the treatment of |
232 | NaN operands is important. Certain optimizations, such as folding |
233 | x * 0 into 0, are not correct for NaN operands, and are normally |
234 | disabled for modes with NaNs. The user can ask for them to be |
235 | done anyway using the -funsafe-math-optimizations switch. */ |
236 | extern bool HONOR_NANS (machine_mode); |
237 | extern bool HONOR_NANS (const_tree); |
238 | extern bool HONOR_NANS (const_rtx); |
239 | |
240 | /* Like HONOR_NANs, but true if we honor signaling NaNs (or sNaNs). */ |
241 | extern bool HONOR_SNANS (machine_mode); |
242 | extern bool HONOR_SNANS (const_tree); |
243 | extern bool HONOR_SNANS (const_rtx); |
244 | |
245 | /* As for HONOR_NANS, but true if the mode can represent infinity and |
246 | the treatment of infinite values is important. */ |
247 | extern bool HONOR_INFINITIES (machine_mode); |
248 | extern bool HONOR_INFINITIES (const_tree); |
249 | extern bool HONOR_INFINITIES (const_rtx); |
250 | |
251 | /* Like HONOR_NANS, but true if the given mode distinguishes between |
252 | positive and negative zero, and the sign of zero is important. */ |
253 | extern bool HONOR_SIGNED_ZEROS (machine_mode); |
254 | extern bool HONOR_SIGNED_ZEROS (const_tree); |
255 | extern bool HONOR_SIGNED_ZEROS (const_rtx); |
256 | |
257 | /* Like HONOR_NANS, but true if given mode supports sign-dependent rounding, |
258 | and the rounding mode is important. */ |
259 | extern bool HONOR_SIGN_DEPENDENT_ROUNDING (machine_mode); |
260 | extern bool HONOR_SIGN_DEPENDENT_ROUNDING (const_tree); |
261 | extern bool HONOR_SIGN_DEPENDENT_ROUNDING (const_rtx); |
262 | |
263 | /* Binary or unary arithmetic on tree_code. */ |
264 | extern bool real_arithmetic (REAL_VALUE_TYPE *, int, const REAL_VALUE_TYPE *, |
265 | const REAL_VALUE_TYPE *); |
266 | |
267 | /* Compare reals by tree_code. */ |
268 | extern bool real_compare (int, const REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *); |
269 | |
270 | /* Determine whether a floating-point value X is infinite. */ |
271 | extern bool real_isinf (const REAL_VALUE_TYPE *); |
272 | |
273 | /* Determine whether a floating-point value X is a NaN. */ |
274 | extern bool real_isnan (const REAL_VALUE_TYPE *); |
275 | |
276 | /* Determine whether a floating-point value X is a signaling NaN. */ |
277 | extern bool real_issignaling_nan (const REAL_VALUE_TYPE *); |
278 | |
279 | /* Determine whether a floating-point value X is finite. */ |
280 | extern bool real_isfinite (const REAL_VALUE_TYPE *); |
281 | |
282 | /* Determine whether a floating-point value X is negative. */ |
283 | extern bool real_isneg (const REAL_VALUE_TYPE *); |
284 | |
285 | /* Determine whether a floating-point value X is minus zero. */ |
286 | extern bool real_isnegzero (const REAL_VALUE_TYPE *); |
287 | |
288 | /* Test relationships between reals. */ |
289 | extern bool real_identical (const REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *); |
290 | extern bool real_equal (const REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *); |
291 | extern bool real_less (const REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *); |
292 | |
293 | /* Extend or truncate to a new format. */ |
294 | extern void real_convert (REAL_VALUE_TYPE *, format_helper, |
295 | const REAL_VALUE_TYPE *); |
296 | |
297 | /* Return true if truncating to NEW is exact. */ |
298 | extern bool exact_real_truncate (format_helper, const REAL_VALUE_TYPE *); |
299 | |
300 | /* Render R as a decimal floating point constant. */ |
301 | extern void real_to_decimal (char *, const REAL_VALUE_TYPE *, size_t, |
302 | size_t, int); |
303 | |
304 | /* Render R as a decimal floating point constant, rounded so as to be |
305 | parsed back to the same value when interpreted in mode MODE. */ |
306 | extern void real_to_decimal_for_mode (char *, const REAL_VALUE_TYPE *, size_t, |
307 | size_t, int, machine_mode); |
308 | |
309 | /* Render R as a hexadecimal floating point constant. */ |
310 | extern void real_to_hexadecimal (char *, const REAL_VALUE_TYPE *, |
311 | size_t, size_t, int); |
312 | |
313 | /* Render R as an integer. */ |
314 | extern HOST_WIDE_INT real_to_integer (const REAL_VALUE_TYPE *); |
315 | |
316 | /* Initialize R from a decimal or hexadecimal string. Return -1 if |
317 | the value underflows, +1 if overflows, and 0 otherwise. */ |
318 | extern int real_from_string (REAL_VALUE_TYPE *, const char *); |
319 | /* Wrapper to allow different internal representation for decimal floats. */ |
320 | extern void real_from_string3 (REAL_VALUE_TYPE *, const char *, format_helper); |
321 | |
322 | extern long real_to_target (long *, const REAL_VALUE_TYPE *, format_helper); |
323 | |
324 | extern void real_from_target (REAL_VALUE_TYPE *, const long *, |
325 | format_helper); |
326 | |
327 | extern void real_inf (REAL_VALUE_TYPE *); |
328 | |
329 | extern bool real_nan (REAL_VALUE_TYPE *, const char *, int, format_helper); |
330 | |
331 | extern void real_maxval (REAL_VALUE_TYPE *, int, machine_mode); |
332 | |
333 | extern void real_2expN (REAL_VALUE_TYPE *, int, format_helper); |
334 | |
335 | extern unsigned int real_hash (const REAL_VALUE_TYPE *); |
336 | |
337 | |
338 | /* Target formats defined in real.c. */ |
339 | extern const struct real_format ieee_single_format; |
340 | extern const struct real_format mips_single_format; |
341 | extern const struct real_format motorola_single_format; |
342 | extern const struct real_format spu_single_format; |
343 | extern const struct real_format ieee_double_format; |
344 | extern const struct real_format mips_double_format; |
345 | extern const struct real_format motorola_double_format; |
346 | extern const struct real_format ieee_extended_motorola_format; |
347 | extern const struct real_format ieee_extended_intel_96_format; |
348 | extern const struct real_format ieee_extended_intel_96_round_53_format; |
349 | extern const struct real_format ieee_extended_intel_128_format; |
350 | extern const struct real_format ibm_extended_format; |
351 | extern const struct real_format mips_extended_format; |
352 | extern const struct real_format ieee_quad_format; |
353 | extern const struct real_format mips_quad_format; |
354 | extern const struct real_format vax_f_format; |
355 | extern const struct real_format vax_d_format; |
356 | extern const struct real_format vax_g_format; |
357 | extern const struct real_format real_internal_format; |
358 | extern const struct real_format decimal_single_format; |
359 | extern const struct real_format decimal_double_format; |
360 | extern const struct real_format decimal_quad_format; |
361 | extern const struct real_format ieee_half_format; |
362 | extern const struct real_format arm_half_format; |
363 | |
364 | |
365 | /* ====================================================================== */ |
366 | /* Crap. */ |
367 | |
368 | /* Determine whether a floating-point value X is infinite. */ |
369 | #define REAL_VALUE_ISINF(x) real_isinf (&(x)) |
370 | |
371 | /* Determine whether a floating-point value X is a NaN. */ |
372 | #define REAL_VALUE_ISNAN(x) real_isnan (&(x)) |
373 | |
374 | /* Determine whether a floating-point value X is a signaling NaN. */ |
375 | #define REAL_VALUE_ISSIGNALING_NAN(x) real_issignaling_nan (&(x)) |
376 | |
377 | /* Determine whether a floating-point value X is negative. */ |
378 | #define REAL_VALUE_NEGATIVE(x) real_isneg (&(x)) |
379 | |
380 | /* Determine whether a floating-point value X is minus zero. */ |
381 | #define REAL_VALUE_MINUS_ZERO(x) real_isnegzero (&(x)) |
382 | |
383 | /* IN is a REAL_VALUE_TYPE. OUT is an array of longs. */ |
384 | #define REAL_VALUE_TO_TARGET_LONG_DOUBLE(IN, OUT) \ |
385 | real_to_target (OUT, &(IN), \ |
386 | float_mode_for_size (LONG_DOUBLE_TYPE_SIZE).require ()) |
387 | |
388 | #define REAL_VALUE_TO_TARGET_DOUBLE(IN, OUT) \ |
389 | real_to_target (OUT, &(IN), float_mode_for_size (64).require ()) |
390 | |
391 | /* IN is a REAL_VALUE_TYPE. OUT is a long. */ |
392 | #define REAL_VALUE_TO_TARGET_SINGLE(IN, OUT) \ |
393 | ((OUT) = real_to_target (NULL, &(IN), float_mode_for_size (32).require ())) |
394 | |
395 | /* Real values to IEEE 754 decimal floats. */ |
396 | |
397 | /* IN is a REAL_VALUE_TYPE. OUT is an array of longs. */ |
398 | #define REAL_VALUE_TO_TARGET_DECIMAL128(IN, OUT) \ |
399 | real_to_target (OUT, &(IN), decimal_float_mode_for_size (128).require ()) |
400 | |
401 | #define REAL_VALUE_TO_TARGET_DECIMAL64(IN, OUT) \ |
402 | real_to_target (OUT, &(IN), decimal_float_mode_for_size (64).require ()) |
403 | |
404 | /* IN is a REAL_VALUE_TYPE. OUT is a long. */ |
405 | #define REAL_VALUE_TO_TARGET_DECIMAL32(IN, OUT) \ |
406 | ((OUT) = real_to_target (NULL, &(IN), \ |
407 | decimal_float_mode_for_size (32).require ())) |
408 | |
409 | extern REAL_VALUE_TYPE real_value_truncate (format_helper, REAL_VALUE_TYPE); |
410 | |
411 | extern REAL_VALUE_TYPE real_value_negate (const REAL_VALUE_TYPE *); |
412 | extern REAL_VALUE_TYPE real_value_abs (const REAL_VALUE_TYPE *); |
413 | |
414 | extern int significand_size (format_helper); |
415 | |
416 | extern REAL_VALUE_TYPE real_from_string2 (const char *, format_helper); |
417 | |
418 | #define REAL_VALUE_ATOF(s, m) \ |
419 | real_from_string2 (s, m) |
420 | |
421 | #define CONST_DOUBLE_ATOF(s, m) \ |
422 | const_double_from_real_value (real_from_string2 (s, m), m) |
423 | |
424 | #define REAL_VALUE_FIX(r) \ |
425 | real_to_integer (&(r)) |
426 | |
427 | /* ??? Not quite right. */ |
428 | #define REAL_VALUE_UNSIGNED_FIX(r) \ |
429 | real_to_integer (&(r)) |
430 | |
431 | /* ??? These were added for Paranoia support. */ |
432 | |
433 | /* Return floor log2(R). */ |
434 | extern int real_exponent (const REAL_VALUE_TYPE *); |
435 | |
436 | /* R = A * 2**EXP. */ |
437 | extern void real_ldexp (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *, int); |
438 | |
439 | /* **** End of software floating point emulator interface macros **** */ |
440 | |
441 | /* Constant real values 0, 1, 2, -1 and 0.5. */ |
442 | |
443 | extern REAL_VALUE_TYPE dconst0; |
444 | extern REAL_VALUE_TYPE dconst1; |
445 | extern REAL_VALUE_TYPE dconst2; |
446 | extern REAL_VALUE_TYPE dconstm1; |
447 | extern REAL_VALUE_TYPE dconsthalf; |
448 | |
449 | #define dconst_e() (*dconst_e_ptr ()) |
450 | #define dconst_third() (*dconst_third_ptr ()) |
451 | #define dconst_quarter() (*dconst_quarter_ptr ()) |
452 | #define dconst_sixth() (*dconst_sixth_ptr ()) |
453 | #define dconst_ninth() (*dconst_ninth_ptr ()) |
454 | #define dconst_sqrt2() (*dconst_sqrt2_ptr ()) |
455 | |
456 | /* Function to return the real value special constant 'e'. */ |
457 | extern const REAL_VALUE_TYPE * dconst_e_ptr (void); |
458 | |
459 | /* Returns a cached REAL_VALUE_TYPE corresponding to 1/n, for various n. */ |
460 | extern const REAL_VALUE_TYPE *dconst_third_ptr (void); |
461 | extern const REAL_VALUE_TYPE *dconst_quarter_ptr (void); |
462 | extern const REAL_VALUE_TYPE *dconst_sixth_ptr (void); |
463 | extern const REAL_VALUE_TYPE *dconst_ninth_ptr (void); |
464 | |
465 | /* Returns the special REAL_VALUE_TYPE corresponding to sqrt(2). */ |
466 | extern const REAL_VALUE_TYPE * dconst_sqrt2_ptr (void); |
467 | |
468 | /* Function to return a real value (not a tree node) |
469 | from a given integer constant. */ |
470 | REAL_VALUE_TYPE real_value_from_int_cst (const_tree, const_tree); |
471 | |
472 | /* Return a CONST_DOUBLE with value R and mode M. */ |
473 | extern rtx const_double_from_real_value (REAL_VALUE_TYPE, machine_mode); |
474 | |
475 | /* Replace R by 1/R in the given format, if the result is exact. */ |
476 | extern bool exact_real_inverse (format_helper, REAL_VALUE_TYPE *); |
477 | |
478 | /* Return true if arithmetic on values in IMODE that were promoted |
479 | from values in TMODE is equivalent to direct arithmetic on values |
480 | in TMODE. */ |
481 | bool real_can_shorten_arithmetic (machine_mode, machine_mode); |
482 | |
483 | /* In tree.c: wrap up a REAL_VALUE_TYPE in a tree node. */ |
484 | extern tree build_real (tree, REAL_VALUE_TYPE); |
485 | |
486 | /* Likewise, but first truncate the value to the type. */ |
487 | extern tree build_real_truncate (tree, REAL_VALUE_TYPE); |
488 | |
489 | /* Calculate R as X raised to the integer exponent N in format FMT. */ |
490 | extern bool real_powi (REAL_VALUE_TYPE *, format_helper, |
491 | const REAL_VALUE_TYPE *, HOST_WIDE_INT); |
492 | |
493 | /* Standard round to integer value functions. */ |
494 | extern void real_trunc (REAL_VALUE_TYPE *, format_helper, |
495 | const REAL_VALUE_TYPE *); |
496 | extern void real_floor (REAL_VALUE_TYPE *, format_helper, |
497 | const REAL_VALUE_TYPE *); |
498 | extern void real_ceil (REAL_VALUE_TYPE *, format_helper, |
499 | const REAL_VALUE_TYPE *); |
500 | extern void real_round (REAL_VALUE_TYPE *, format_helper, |
501 | const REAL_VALUE_TYPE *); |
502 | |
503 | /* Set the sign of R to the sign of X. */ |
504 | extern void real_copysign (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *); |
505 | |
506 | /* Check whether the real constant value given is an integer. */ |
507 | extern bool real_isinteger (const REAL_VALUE_TYPE *, format_helper); |
508 | extern bool real_isinteger (const REAL_VALUE_TYPE *, HOST_WIDE_INT *); |
509 | |
510 | /* Write into BUF the maximum representable finite floating-point |
511 | number, (1 - b**-p) * b**emax for a given FP format FMT as a hex |
512 | float string. BUF must be large enough to contain the result. */ |
513 | extern void get_max_float (const struct real_format *, char *, size_t); |
514 | |
515 | #ifndef GENERATOR_FILE |
516 | /* real related routines. */ |
517 | extern wide_int real_to_integer (const REAL_VALUE_TYPE *, bool *, int); |
518 | extern void real_from_integer (REAL_VALUE_TYPE *, format_helper, |
519 | const wide_int_ref &, signop); |
520 | #endif |
521 | |
522 | #endif /* ! GCC_REAL_H */ |
523 | |