1/* Register Transfer Language (RTL) definitions for GCC
2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
3
4This file is part of GCC.
5
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
8Software Foundation; either version 3, or (at your option) any later
9version.
10
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
15
16You should have received a copy of the GNU General Public License
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
19
20#ifndef GCC_RTL_H
21#define GCC_RTL_H
22
23/* This file is occasionally included by generator files which expect
24 machmode.h and other files to exist and would not normally have been
25 included by coretypes.h. */
26#ifdef GENERATOR_FILE
27#include "real.h"
28#include "fixed-value.h"
29#include "statistics.h"
30#include "vec.h"
31#include "hash-table.h"
32#include "hash-set.h"
33#include "input.h"
34#include "is-a.h"
35#endif /* GENERATOR_FILE */
36
37#include "hard-reg-set.h"
38
39/* Value used by some passes to "recognize" noop moves as valid
40 instructions. */
41#define NOOP_MOVE_INSN_CODE INT_MAX
42
43/* Register Transfer Language EXPRESSIONS CODES */
44
45#define RTX_CODE enum rtx_code
46enum rtx_code {
47
48#define DEF_RTL_EXPR(ENUM, NAME, FORMAT, CLASS) ENUM ,
49#include "rtl.def" /* rtl expressions are documented here */
50#undef DEF_RTL_EXPR
51
52 LAST_AND_UNUSED_RTX_CODE}; /* A convenient way to get a value for
53 NUM_RTX_CODE.
54 Assumes default enum value assignment. */
55
56/* The cast here, saves many elsewhere. */
57#define NUM_RTX_CODE ((int) LAST_AND_UNUSED_RTX_CODE)
58
59/* Similar, but since generator files get more entries... */
60#ifdef GENERATOR_FILE
61# define NON_GENERATOR_NUM_RTX_CODE ((int) MATCH_OPERAND)
62#endif
63
64/* Register Transfer Language EXPRESSIONS CODE CLASSES */
65
66enum rtx_class {
67 /* We check bit 0-1 of some rtx class codes in the predicates below. */
68
69 /* Bit 0 = comparison if 0, arithmetic is 1
70 Bit 1 = 1 if commutative. */
71 RTX_COMPARE, /* 0 */
72 RTX_COMM_COMPARE,
73 RTX_BIN_ARITH,
74 RTX_COMM_ARITH,
75
76 /* Must follow the four preceding values. */
77 RTX_UNARY, /* 4 */
78
79 RTX_EXTRA,
80 RTX_MATCH,
81 RTX_INSN,
82
83 /* Bit 0 = 1 if constant. */
84 RTX_OBJ, /* 8 */
85 RTX_CONST_OBJ,
86
87 RTX_TERNARY,
88 RTX_BITFIELD_OPS,
89 RTX_AUTOINC
90};
91
92#define RTX_OBJ_MASK (~1)
93#define RTX_OBJ_RESULT (RTX_OBJ & RTX_OBJ_MASK)
94#define RTX_COMPARE_MASK (~1)
95#define RTX_COMPARE_RESULT (RTX_COMPARE & RTX_COMPARE_MASK)
96#define RTX_ARITHMETIC_MASK (~1)
97#define RTX_ARITHMETIC_RESULT (RTX_COMM_ARITH & RTX_ARITHMETIC_MASK)
98#define RTX_BINARY_MASK (~3)
99#define RTX_BINARY_RESULT (RTX_COMPARE & RTX_BINARY_MASK)
100#define RTX_COMMUTATIVE_MASK (~2)
101#define RTX_COMMUTATIVE_RESULT (RTX_COMM_COMPARE & RTX_COMMUTATIVE_MASK)
102#define RTX_NON_COMMUTATIVE_RESULT (RTX_COMPARE & RTX_COMMUTATIVE_MASK)
103
104extern const unsigned char rtx_length[NUM_RTX_CODE];
105#define GET_RTX_LENGTH(CODE) (rtx_length[(int) (CODE)])
106
107extern const char * const rtx_name[NUM_RTX_CODE];
108#define GET_RTX_NAME(CODE) (rtx_name[(int) (CODE)])
109
110extern const char * const rtx_format[NUM_RTX_CODE];
111#define GET_RTX_FORMAT(CODE) (rtx_format[(int) (CODE)])
112
113extern const enum rtx_class rtx_class[NUM_RTX_CODE];
114#define GET_RTX_CLASS(CODE) (rtx_class[(int) (CODE)])
115
116/* True if CODE is part of the insn chain (i.e. has INSN_UID, PREV_INSN
117 and NEXT_INSN fields). */
118#define INSN_CHAIN_CODE_P(CODE) IN_RANGE (CODE, DEBUG_INSN, NOTE)
119
120extern const unsigned char rtx_code_size[NUM_RTX_CODE];
121extern const unsigned char rtx_next[NUM_RTX_CODE];
122
123/* The flags and bitfields of an ADDR_DIFF_VEC. BASE is the base label
124 relative to which the offsets are calculated, as explained in rtl.def. */
125struct addr_diff_vec_flags
126{
127 /* Set at the start of shorten_branches - ONLY WHEN OPTIMIZING - : */
128 unsigned min_align: 8;
129 /* Flags: */
130 unsigned base_after_vec: 1; /* BASE is after the ADDR_DIFF_VEC. */
131 unsigned min_after_vec: 1; /* minimum address target label is
132 after the ADDR_DIFF_VEC. */
133 unsigned max_after_vec: 1; /* maximum address target label is
134 after the ADDR_DIFF_VEC. */
135 unsigned min_after_base: 1; /* minimum address target label is
136 after BASE. */
137 unsigned max_after_base: 1; /* maximum address target label is
138 after BASE. */
139 /* Set by the actual branch shortening process - ONLY WHEN OPTIMIZING - : */
140 unsigned offset_unsigned: 1; /* offsets have to be treated as unsigned. */
141 unsigned : 2;
142 unsigned scale : 8;
143};
144
145/* Structure used to describe the attributes of a MEM. These are hashed
146 so MEMs that the same attributes share a data structure. This means
147 they cannot be modified in place. */
148struct GTY(()) mem_attrs
149{
150 /* The expression that the MEM accesses, or null if not known.
151 This expression might be larger than the memory reference itself.
152 (In other words, the MEM might access only part of the object.) */
153 tree expr;
154
155 /* The offset of the memory reference from the start of EXPR.
156 Only valid if OFFSET_KNOWN_P. */
157 HOST_WIDE_INT offset;
158
159 /* The size of the memory reference in bytes. Only valid if
160 SIZE_KNOWN_P. */
161 HOST_WIDE_INT size;
162
163 /* The alias set of the memory reference. */
164 alias_set_type alias;
165
166 /* The alignment of the reference in bits. Always a multiple of
167 BITS_PER_UNIT. Note that EXPR may have a stricter alignment
168 than the memory reference itself. */
169 unsigned int align;
170
171 /* The address space that the memory reference uses. */
172 unsigned char addrspace;
173
174 /* True if OFFSET is known. */
175 bool offset_known_p;
176
177 /* True if SIZE is known. */
178 bool size_known_p;
179};
180
181/* Structure used to describe the attributes of a REG in similar way as
182 mem_attrs does for MEM above. Note that the OFFSET field is calculated
183 in the same way as for mem_attrs, rather than in the same way as a
184 SUBREG_BYTE. For example, if a big-endian target stores a byte
185 object in the low part of a 4-byte register, the OFFSET field
186 will be -3 rather than 0. */
187
188struct GTY((for_user)) reg_attrs {
189 tree decl; /* decl corresponding to REG. */
190 HOST_WIDE_INT offset; /* Offset from start of DECL. */
191};
192
193/* Common union for an element of an rtx. */
194
195union rtunion
196{
197 int rt_int;
198 unsigned int rt_uint;
199 const char *rt_str;
200 rtx rt_rtx;
201 rtvec rt_rtvec;
202 machine_mode rt_type;
203 addr_diff_vec_flags rt_addr_diff_vec_flags;
204 struct cselib_val *rt_cselib;
205 tree rt_tree;
206 basic_block rt_bb;
207 mem_attrs *rt_mem;
208 struct constant_descriptor_rtx *rt_constant;
209 struct dw_cfi_node *rt_cfi;
210};
211
212/* Describes the properties of a REG. */
213struct GTY(()) reg_info {
214 /* The value of REGNO. */
215 unsigned int regno;
216
217 /* The value of REG_NREGS. */
218 unsigned int nregs : 8;
219 unsigned int unused : 24;
220
221 /* The value of REG_ATTRS. */
222 reg_attrs *attrs;
223};
224
225/* This structure remembers the position of a SYMBOL_REF within an
226 object_block structure. A SYMBOL_REF only provides this information
227 if SYMBOL_REF_HAS_BLOCK_INFO_P is true. */
228struct GTY(()) block_symbol {
229 /* The usual SYMBOL_REF fields. */
230 rtunion GTY ((skip)) fld[2];
231
232 /* The block that contains this object. */
233 struct object_block *block;
234
235 /* The offset of this object from the start of its block. It is negative
236 if the symbol has not yet been assigned an offset. */
237 HOST_WIDE_INT offset;
238};
239
240/* Describes a group of objects that are to be placed together in such
241 a way that their relative positions are known. */
242struct GTY((for_user)) object_block {
243 /* The section in which these objects should be placed. */
244 section *sect;
245
246 /* The alignment of the first object, measured in bits. */
247 unsigned int alignment;
248
249 /* The total size of the objects, measured in bytes. */
250 HOST_WIDE_INT size;
251
252 /* The SYMBOL_REFs for each object. The vector is sorted in
253 order of increasing offset and the following conditions will
254 hold for each element X:
255
256 SYMBOL_REF_HAS_BLOCK_INFO_P (X)
257 !SYMBOL_REF_ANCHOR_P (X)
258 SYMBOL_REF_BLOCK (X) == [address of this structure]
259 SYMBOL_REF_BLOCK_OFFSET (X) >= 0. */
260 vec<rtx, va_gc> *objects;
261
262 /* All the anchor SYMBOL_REFs used to address these objects, sorted
263 in order of increasing offset, and then increasing TLS model.
264 The following conditions will hold for each element X in this vector:
265
266 SYMBOL_REF_HAS_BLOCK_INFO_P (X)
267 SYMBOL_REF_ANCHOR_P (X)
268 SYMBOL_REF_BLOCK (X) == [address of this structure]
269 SYMBOL_REF_BLOCK_OFFSET (X) >= 0. */
270 vec<rtx, va_gc> *anchors;
271};
272
273struct GTY((variable_size)) hwivec_def {
274 HOST_WIDE_INT elem[1];
275};
276
277/* Number of elements of the HWIVEC if RTX is a CONST_WIDE_INT. */
278#define CWI_GET_NUM_ELEM(RTX) \
279 ((int)RTL_FLAG_CHECK1("CWI_GET_NUM_ELEM", (RTX), CONST_WIDE_INT)->u2.num_elem)
280#define CWI_PUT_NUM_ELEM(RTX, NUM) \
281 (RTL_FLAG_CHECK1("CWI_PUT_NUM_ELEM", (RTX), CONST_WIDE_INT)->u2.num_elem = (NUM))
282
283/* RTL expression ("rtx"). */
284
285/* The GTY "desc" and "tag" options below are a kludge: we need a desc
286 field for gengtype to recognize that inheritance is occurring,
287 so that all subclasses are redirected to the traversal hook for the
288 base class.
289 However, all of the fields are in the base class, and special-casing
290 is at work. Hence we use desc and tag of 0, generating a switch
291 statement of the form:
292 switch (0)
293 {
294 case 0: // all the work happens here
295 }
296 in order to work with the existing special-casing in gengtype. */
297
298struct GTY((desc("0"), tag("0"),
299 chain_next ("RTX_NEXT (&%h)"),
300 chain_prev ("RTX_PREV (&%h)"))) rtx_def {
301 /* The kind of expression this is. */
302 ENUM_BITFIELD(rtx_code) code: 16;
303
304 /* The kind of value the expression has. */
305 ENUM_BITFIELD(machine_mode) mode : 8;
306
307 /* 1 in a MEM if we should keep the alias set for this mem unchanged
308 when we access a component.
309 1 in a JUMP_INSN if it is a crossing jump.
310 1 in a CALL_INSN if it is a sibling call.
311 1 in a SET that is for a return.
312 In a CODE_LABEL, part of the two-bit alternate entry field.
313 1 in a CONCAT is VAL_EXPR_IS_COPIED in var-tracking.c.
314 1 in a VALUE is SP_BASED_VALUE_P in cselib.c.
315 1 in a SUBREG generated by LRA for reload insns.
316 1 in a REG if this is a static chain register.
317 1 in a CALL for calls instrumented by Pointer Bounds Checker.
318 Dumped as "/j" in RTL dumps. */
319 unsigned int jump : 1;
320 /* In a CODE_LABEL, part of the two-bit alternate entry field.
321 1 in a MEM if it cannot trap.
322 1 in a CALL_INSN logically equivalent to
323 ECF_LOOPING_CONST_OR_PURE and DECL_LOOPING_CONST_OR_PURE_P.
324 Dumped as "/c" in RTL dumps. */
325 unsigned int call : 1;
326 /* 1 in a REG, MEM, or CONCAT if the value is set at most once, anywhere.
327 1 in a SUBREG used for SUBREG_PROMOTED_UNSIGNED_P.
328 1 in a SYMBOL_REF if it addresses something in the per-function
329 constants pool.
330 1 in a CALL_INSN logically equivalent to ECF_CONST and TREE_READONLY.
331 1 in a NOTE, or EXPR_LIST for a const call.
332 1 in a JUMP_INSN of an annulling branch.
333 1 in a CONCAT is VAL_EXPR_IS_CLOBBERED in var-tracking.c.
334 1 in a preserved VALUE is PRESERVED_VALUE_P in cselib.c.
335 1 in a clobber temporarily created for LRA.
336 Dumped as "/u" in RTL dumps. */
337 unsigned int unchanging : 1;
338 /* 1 in a MEM or ASM_OPERANDS expression if the memory reference is volatile.
339 1 in an INSN, CALL_INSN, JUMP_INSN, CODE_LABEL, BARRIER, or NOTE
340 if it has been deleted.
341 1 in a REG expression if corresponds to a variable declared by the user,
342 0 for an internally generated temporary.
343 1 in a SUBREG used for SUBREG_PROMOTED_UNSIGNED_P.
344 1 in a LABEL_REF, REG_LABEL_TARGET or REG_LABEL_OPERAND note for a
345 non-local label.
346 In a SYMBOL_REF, this flag is used for machine-specific purposes.
347 In a PREFETCH, this flag indicates that it should be considered a
348 scheduling barrier.
349 1 in a CONCAT is VAL_NEEDS_RESOLUTION in var-tracking.c.
350 Dumped as "/v" in RTL dumps. */
351 unsigned int volatil : 1;
352 /* 1 in a REG if the register is used only in exit code a loop.
353 1 in a SUBREG expression if was generated from a variable with a
354 promoted mode.
355 1 in a CODE_LABEL if the label is used for nonlocal gotos
356 and must not be deleted even if its count is zero.
357 1 in an INSN, JUMP_INSN or CALL_INSN if this insn must be scheduled
358 together with the preceding insn. Valid only within sched.
359 1 in an INSN, JUMP_INSN, or CALL_INSN if insn is in a delay slot and
360 from the target of a branch. Valid from reorg until end of compilation;
361 cleared before used.
362
363 The name of the field is historical. It used to be used in MEMs
364 to record whether the MEM accessed part of a structure.
365 Dumped as "/s" in RTL dumps. */
366 unsigned int in_struct : 1;
367 /* At the end of RTL generation, 1 if this rtx is used. This is used for
368 copying shared structure. See `unshare_all_rtl'.
369 In a REG, this is not needed for that purpose, and used instead
370 in `leaf_renumber_regs_insn'.
371 1 in a SYMBOL_REF, means that emit_library_call
372 has used it as the function.
373 1 in a CONCAT is VAL_HOLDS_TRACK_EXPR in var-tracking.c.
374 1 in a VALUE or DEBUG_EXPR is VALUE_RECURSED_INTO in var-tracking.c. */
375 unsigned int used : 1;
376 /* 1 in an INSN or a SET if this rtx is related to the call frame,
377 either changing how we compute the frame address or saving and
378 restoring registers in the prologue and epilogue.
379 1 in a REG or MEM if it is a pointer.
380 1 in a SYMBOL_REF if it addresses something in the per-function
381 constant string pool.
382 1 in a VALUE is VALUE_CHANGED in var-tracking.c.
383 Dumped as "/f" in RTL dumps. */
384 unsigned frame_related : 1;
385 /* 1 in a REG or PARALLEL that is the current function's return value.
386 1 in a SYMBOL_REF for a weak symbol.
387 1 in a CALL_INSN logically equivalent to ECF_PURE and DECL_PURE_P.
388 1 in a CONCAT is VAL_EXPR_HAS_REVERSE in var-tracking.c.
389 1 in a VALUE or DEBUG_EXPR is NO_LOC_P in var-tracking.c.
390 Dumped as "/i" in RTL dumps. */
391 unsigned return_val : 1;
392
393 union {
394 /* The final union field is aligned to 64 bits on LP64 hosts,
395 giving a 32-bit gap after the fields above. We optimize the
396 layout for that case and use the gap for extra code-specific
397 information. */
398
399 /* The ORIGINAL_REGNO of a REG. */
400 unsigned int original_regno;
401
402 /* The INSN_UID of an RTX_INSN-class code. */
403 int insn_uid;
404
405 /* The SYMBOL_REF_FLAGS of a SYMBOL_REF. */
406 unsigned int symbol_ref_flags;
407
408 /* The PAT_VAR_LOCATION_STATUS of a VAR_LOCATION. */
409 enum var_init_status var_location_status;
410
411 /* In a CONST_WIDE_INT (aka hwivec_def), this is the number of
412 HOST_WIDE_INTs in the hwivec_def. */
413 unsigned int num_elem;
414 } GTY ((skip)) u2;
415
416 /* The first element of the operands of this rtx.
417 The number of operands and their types are controlled
418 by the `code' field, according to rtl.def. */
419 union u {
420 rtunion fld[1];
421 HOST_WIDE_INT hwint[1];
422 struct reg_info reg;
423 struct block_symbol block_sym;
424 struct real_value rv;
425 struct fixed_value fv;
426 struct hwivec_def hwiv;
427 } GTY ((special ("rtx_def"), desc ("GET_CODE (&%0)"))) u;
428};
429
430/* A node for constructing singly-linked lists of rtx. */
431
432class GTY(()) rtx_expr_list : public rtx_def
433{
434 /* No extra fields, but adds invariant: (GET_CODE (X) == EXPR_LIST). */
435
436public:
437 /* Get next in list. */
438 rtx_expr_list *next () const;
439
440 /* Get at the underlying rtx. */
441 rtx element () const;
442};
443
444template <>
445template <>
446inline bool
447is_a_helper <rtx_expr_list *>::test (rtx rt)
448{
449 return rt->code == EXPR_LIST;
450}
451
452class GTY(()) rtx_insn_list : public rtx_def
453{
454 /* No extra fields, but adds invariant: (GET_CODE (X) == INSN_LIST).
455
456 This is an instance of:
457
458 DEF_RTL_EXPR(INSN_LIST, "insn_list", "ue", RTX_EXTRA)
459
460 i.e. a node for constructing singly-linked lists of rtx_insn *, where
461 the list is "external" to the insn (as opposed to the doubly-linked
462 list embedded within rtx_insn itself). */
463
464public:
465 /* Get next in list. */
466 rtx_insn_list *next () const;
467
468 /* Get at the underlying instruction. */
469 rtx_insn *insn () const;
470
471};
472
473template <>
474template <>
475inline bool
476is_a_helper <rtx_insn_list *>::test (rtx rt)
477{
478 return rt->code == INSN_LIST;
479}
480
481/* A node with invariant GET_CODE (X) == SEQUENCE i.e. a vector of rtx,
482 typically (but not always) of rtx_insn *, used in the late passes. */
483
484class GTY(()) rtx_sequence : public rtx_def
485{
486 /* No extra fields, but adds invariant: (GET_CODE (X) == SEQUENCE). */
487
488public:
489 /* Get number of elements in sequence. */
490 int len () const;
491
492 /* Get i-th element of the sequence. */
493 rtx element (int index) const;
494
495 /* Get i-th element of the sequence, with a checked cast to
496 rtx_insn *. */
497 rtx_insn *insn (int index) const;
498};
499
500template <>
501template <>
502inline bool
503is_a_helper <rtx_sequence *>::test (rtx rt)
504{
505 return rt->code == SEQUENCE;
506}
507
508template <>
509template <>
510inline bool
511is_a_helper <const rtx_sequence *>::test (const_rtx rt)
512{
513 return rt->code == SEQUENCE;
514}
515
516class GTY(()) rtx_insn : public rtx_def
517{
518public:
519 /* No extra fields, but adds the invariant:
520
521 (INSN_P (X)
522 || NOTE_P (X)
523 || JUMP_TABLE_DATA_P (X)
524 || BARRIER_P (X)
525 || LABEL_P (X))
526
527 i.e. that we must be able to use the following:
528 INSN_UID ()
529 NEXT_INSN ()
530 PREV_INSN ()
531 i.e. we have an rtx that has an INSN_UID field and can be part of
532 a linked list of insns.
533 */
534
535 /* Returns true if this insn has been deleted. */
536
537 bool deleted () const { return volatil; }
538
539 /* Mark this insn as deleted. */
540
541 void set_deleted () { volatil = true; }
542
543 /* Mark this insn as not deleted. */
544
545 void set_undeleted () { volatil = false; }
546};
547
548/* Subclasses of rtx_insn. */
549
550class GTY(()) rtx_debug_insn : public rtx_insn
551{
552 /* No extra fields, but adds the invariant:
553 DEBUG_INSN_P (X) aka (GET_CODE (X) == DEBUG_INSN)
554 i.e. an annotation for tracking variable assignments.
555
556 This is an instance of:
557 DEF_RTL_EXPR(DEBUG_INSN, "debug_insn", "uuBeiie", RTX_INSN)
558 from rtl.def. */
559};
560
561class GTY(()) rtx_nonjump_insn : public rtx_insn
562{
563 /* No extra fields, but adds the invariant:
564 NONJUMP_INSN_P (X) aka (GET_CODE (X) == INSN)
565 i.e an instruction that cannot jump.
566
567 This is an instance of:
568 DEF_RTL_EXPR(INSN, "insn", "uuBeiie", RTX_INSN)
569 from rtl.def. */
570};
571
572class GTY(()) rtx_jump_insn : public rtx_insn
573{
574public:
575 /* No extra fields, but adds the invariant:
576 JUMP_P (X) aka (GET_CODE (X) == JUMP_INSN)
577 i.e. an instruction that can possibly jump.
578
579 This is an instance of:
580 DEF_RTL_EXPR(JUMP_INSN, "jump_insn", "uuBeiie0", RTX_INSN)
581 from rtl.def. */
582
583 /* Returns jump target of this instruction. The returned value is not
584 necessarily a code label: it may also be a RETURN or SIMPLE_RETURN
585 expression. Also, when the code label is marked "deleted", it is
586 replaced by a NOTE. In some cases the value is NULL_RTX. */
587
588 inline rtx jump_label () const;
589
590 /* Returns jump target cast to rtx_code_label *. */
591
592 inline rtx_code_label *jump_target () const;
593
594 /* Set jump target. */
595
596 inline void set_jump_target (rtx_code_label *);
597};
598
599class GTY(()) rtx_call_insn : public rtx_insn
600{
601 /* No extra fields, but adds the invariant:
602 CALL_P (X) aka (GET_CODE (X) == CALL_INSN)
603 i.e. an instruction that can possibly call a subroutine
604 but which will not change which instruction comes next
605 in the current function.
606
607 This is an instance of:
608 DEF_RTL_EXPR(CALL_INSN, "call_insn", "uuBeiiee", RTX_INSN)
609 from rtl.def. */
610};
611
612class GTY(()) rtx_jump_table_data : public rtx_insn
613{
614 /* No extra fields, but adds the invariant:
615 JUMP_TABLE_DATA_P (X) aka (GET_CODE (INSN) == JUMP_TABLE_DATA)
616 i.e. a data for a jump table, considered an instruction for
617 historical reasons.
618
619 This is an instance of:
620 DEF_RTL_EXPR(JUMP_TABLE_DATA, "jump_table_data", "uuBe0000", RTX_INSN)
621 from rtl.def. */
622
623public:
624
625 /* This can be either:
626
627 (a) a table of absolute jumps, in which case PATTERN (this) is an
628 ADDR_VEC with arg 0 a vector of labels, or
629
630 (b) a table of relative jumps (e.g. for -fPIC), in which case
631 PATTERN (this) is an ADDR_DIFF_VEC, with arg 0 a LABEL_REF and
632 arg 1 the vector of labels.
633
634 This method gets the underlying vec. */
635
636 inline rtvec get_labels () const;
637 inline scalar_int_mode get_data_mode () const;
638};
639
640class GTY(()) rtx_barrier : public rtx_insn
641{
642 /* No extra fields, but adds the invariant:
643 BARRIER_P (X) aka (GET_CODE (X) == BARRIER)
644 i.e. a marker that indicates that control will not flow through.
645
646 This is an instance of:
647 DEF_RTL_EXPR(BARRIER, "barrier", "uu00000", RTX_EXTRA)
648 from rtl.def. */
649};
650
651class GTY(()) rtx_code_label : public rtx_insn
652{
653 /* No extra fields, but adds the invariant:
654 LABEL_P (X) aka (GET_CODE (X) == CODE_LABEL)
655 i.e. a label in the assembler.
656
657 This is an instance of:
658 DEF_RTL_EXPR(CODE_LABEL, "code_label", "uuB00is", RTX_EXTRA)
659 from rtl.def. */
660};
661
662class GTY(()) rtx_note : public rtx_insn
663{
664 /* No extra fields, but adds the invariant:
665 NOTE_P(X) aka (GET_CODE (X) == NOTE)
666 i.e. a note about the corresponding source code.
667
668 This is an instance of:
669 DEF_RTL_EXPR(NOTE, "note", "uuB0ni", RTX_EXTRA)
670 from rtl.def. */
671};
672
673/* The size in bytes of an rtx header (code, mode and flags). */
674#define RTX_HDR_SIZE offsetof (struct rtx_def, u)
675
676/* The size in bytes of an rtx with code CODE. */
677#define RTX_CODE_SIZE(CODE) rtx_code_size[CODE]
678
679#define NULL_RTX (rtx) 0
680
681/* The "next" and "previous" RTX, relative to this one. */
682
683#define RTX_NEXT(X) (rtx_next[GET_CODE (X)] == 0 ? NULL \
684 : *(rtx *)(((char *)X) + rtx_next[GET_CODE (X)]))
685
686/* FIXME: the "NEXT_INSN (PREV_INSN (X)) == X" condition shouldn't be needed.
687 */
688#define RTX_PREV(X) ((INSN_P (X) \
689 || NOTE_P (X) \
690 || JUMP_TABLE_DATA_P (X) \
691 || BARRIER_P (X) \
692 || LABEL_P (X)) \
693 && PREV_INSN (as_a <rtx_insn *> (X)) != NULL \
694 && NEXT_INSN (PREV_INSN (as_a <rtx_insn *> (X))) == X \
695 ? PREV_INSN (as_a <rtx_insn *> (X)) : NULL)
696
697/* Define macros to access the `code' field of the rtx. */
698
699#define GET_CODE(RTX) ((enum rtx_code) (RTX)->code)
700#define PUT_CODE(RTX, CODE) ((RTX)->code = (CODE))
701
702#define GET_MODE(RTX) ((machine_mode) (RTX)->mode)
703#define PUT_MODE_RAW(RTX, MODE) ((RTX)->mode = (MODE))
704
705/* RTL vector. These appear inside RTX's when there is a need
706 for a variable number of things. The principle use is inside
707 PARALLEL expressions. */
708
709struct GTY(()) rtvec_def {
710 int num_elem; /* number of elements */
711 rtx GTY ((length ("%h.num_elem"))) elem[1];
712};
713
714#define NULL_RTVEC (rtvec) 0
715
716#define GET_NUM_ELEM(RTVEC) ((RTVEC)->num_elem)
717#define PUT_NUM_ELEM(RTVEC, NUM) ((RTVEC)->num_elem = (NUM))
718
719/* Predicate yielding nonzero iff X is an rtx for a register. */
720#define REG_P(X) (GET_CODE (X) == REG)
721
722/* Predicate yielding nonzero iff X is an rtx for a memory location. */
723#define MEM_P(X) (GET_CODE (X) == MEM)
724
725#if TARGET_SUPPORTS_WIDE_INT
726
727/* Match CONST_*s that can represent compile-time constant integers. */
728#define CASE_CONST_SCALAR_INT \
729 case CONST_INT: \
730 case CONST_WIDE_INT
731
732/* Match CONST_*s for which pointer equality corresponds to value
733 equality. */
734#define CASE_CONST_UNIQUE \
735 case CONST_INT: \
736 case CONST_WIDE_INT: \
737 case CONST_DOUBLE: \
738 case CONST_FIXED
739
740/* Match all CONST_* rtxes. */
741#define CASE_CONST_ANY \
742 case CONST_INT: \
743 case CONST_WIDE_INT: \
744 case CONST_DOUBLE: \
745 case CONST_FIXED: \
746 case CONST_VECTOR
747
748#else
749
750/* Match CONST_*s that can represent compile-time constant integers. */
751#define CASE_CONST_SCALAR_INT \
752 case CONST_INT: \
753 case CONST_DOUBLE
754
755/* Match CONST_*s for which pointer equality corresponds to value
756 equality. */
757#define CASE_CONST_UNIQUE \
758 case CONST_INT: \
759 case CONST_DOUBLE: \
760 case CONST_FIXED
761
762/* Match all CONST_* rtxes. */
763#define CASE_CONST_ANY \
764 case CONST_INT: \
765 case CONST_DOUBLE: \
766 case CONST_FIXED: \
767 case CONST_VECTOR
768#endif
769
770/* Predicate yielding nonzero iff X is an rtx for a constant integer. */
771#define CONST_INT_P(X) (GET_CODE (X) == CONST_INT)
772
773/* Predicate yielding nonzero iff X is an rtx for a constant integer. */
774#define CONST_WIDE_INT_P(X) (GET_CODE (X) == CONST_WIDE_INT)
775
776/* Predicate yielding nonzero iff X is an rtx for a constant fixed-point. */
777#define CONST_FIXED_P(X) (GET_CODE (X) == CONST_FIXED)
778
779/* Predicate yielding true iff X is an rtx for a double-int
780 or floating point constant. */
781#define CONST_DOUBLE_P(X) (GET_CODE (X) == CONST_DOUBLE)
782
783/* Predicate yielding true iff X is an rtx for a double-int. */
784#define CONST_DOUBLE_AS_INT_P(X) \
785 (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) == VOIDmode)
786
787/* Predicate yielding true iff X is an rtx for a integer const. */
788#if TARGET_SUPPORTS_WIDE_INT
789#define CONST_SCALAR_INT_P(X) \
790 (CONST_INT_P (X) || CONST_WIDE_INT_P (X))
791#else
792#define CONST_SCALAR_INT_P(X) \
793 (CONST_INT_P (X) || CONST_DOUBLE_AS_INT_P (X))
794#endif
795
796/* Predicate yielding true iff X is an rtx for a double-int. */
797#define CONST_DOUBLE_AS_FLOAT_P(X) \
798 (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) != VOIDmode)
799
800/* Predicate yielding nonzero iff X is a label insn. */
801#define LABEL_P(X) (GET_CODE (X) == CODE_LABEL)
802
803/* Predicate yielding nonzero iff X is a jump insn. */
804#define JUMP_P(X) (GET_CODE (X) == JUMP_INSN)
805
806/* Predicate yielding nonzero iff X is a call insn. */
807#define CALL_P(X) (GET_CODE (X) == CALL_INSN)
808
809/* Predicate yielding nonzero iff X is an insn that cannot jump. */
810#define NONJUMP_INSN_P(X) (GET_CODE (X) == INSN)
811
812/* Predicate yielding nonzero iff X is a debug note/insn. */
813#define DEBUG_INSN_P(X) (GET_CODE (X) == DEBUG_INSN)
814
815/* Predicate yielding nonzero iff X is an insn that is not a debug insn. */
816#define NONDEBUG_INSN_P(X) (INSN_P (X) && !DEBUG_INSN_P (X))
817
818/* Nonzero if DEBUG_MARKER_INSN_P may possibly hold. */
819#define MAY_HAVE_DEBUG_MARKER_INSNS debug_nonbind_markers_p
820/* Nonzero if DEBUG_BIND_INSN_P may possibly hold. */
821#define MAY_HAVE_DEBUG_BIND_INSNS flag_var_tracking_assignments
822/* Nonzero if DEBUG_INSN_P may possibly hold. */
823#define MAY_HAVE_DEBUG_INSNS \
824 (MAY_HAVE_DEBUG_MARKER_INSNS || MAY_HAVE_DEBUG_BIND_INSNS)
825
826/* Predicate yielding nonzero iff X is a real insn. */
827#define INSN_P(X) \
828 (NONJUMP_INSN_P (X) || DEBUG_INSN_P (X) || JUMP_P (X) || CALL_P (X))
829
830/* Predicate yielding nonzero iff X is a note insn. */
831#define NOTE_P(X) (GET_CODE (X) == NOTE)
832
833/* Predicate yielding nonzero iff X is a barrier insn. */
834#define BARRIER_P(X) (GET_CODE (X) == BARRIER)
835
836/* Predicate yielding nonzero iff X is a data for a jump table. */
837#define JUMP_TABLE_DATA_P(INSN) (GET_CODE (INSN) == JUMP_TABLE_DATA)
838
839/* Predicate yielding nonzero iff RTX is a subreg. */
840#define SUBREG_P(RTX) (GET_CODE (RTX) == SUBREG)
841
842/* Predicate yielding true iff RTX is a symbol ref. */
843#define SYMBOL_REF_P(RTX) (GET_CODE (RTX) == SYMBOL_REF)
844
845template <>
846template <>
847inline bool
848is_a_helper <rtx_insn *>::test (rtx rt)
849{
850 return (INSN_P (rt)
851 || NOTE_P (rt)
852 || JUMP_TABLE_DATA_P (rt)
853 || BARRIER_P (rt)
854 || LABEL_P (rt));
855}
856
857template <>
858template <>
859inline bool
860is_a_helper <const rtx_insn *>::test (const_rtx rt)
861{
862 return (INSN_P (rt)
863 || NOTE_P (rt)
864 || JUMP_TABLE_DATA_P (rt)
865 || BARRIER_P (rt)
866 || LABEL_P (rt));
867}
868
869template <>
870template <>
871inline bool
872is_a_helper <rtx_debug_insn *>::test (rtx rt)
873{
874 return DEBUG_INSN_P (rt);
875}
876
877template <>
878template <>
879inline bool
880is_a_helper <rtx_nonjump_insn *>::test (rtx rt)
881{
882 return NONJUMP_INSN_P (rt);
883}
884
885template <>
886template <>
887inline bool
888is_a_helper <rtx_jump_insn *>::test (rtx rt)
889{
890 return JUMP_P (rt);
891}
892
893template <>
894template <>
895inline bool
896is_a_helper <rtx_jump_insn *>::test (rtx_insn *insn)
897{
898 return JUMP_P (insn);
899}
900
901template <>
902template <>
903inline bool
904is_a_helper <rtx_call_insn *>::test (rtx rt)
905{
906 return CALL_P (rt);
907}
908
909template <>
910template <>
911inline bool
912is_a_helper <rtx_call_insn *>::test (rtx_insn *insn)
913{
914 return CALL_P (insn);
915}
916
917template <>
918template <>
919inline bool
920is_a_helper <rtx_jump_table_data *>::test (rtx rt)
921{
922 return JUMP_TABLE_DATA_P (rt);
923}
924
925template <>
926template <>
927inline bool
928is_a_helper <rtx_jump_table_data *>::test (rtx_insn *insn)
929{
930 return JUMP_TABLE_DATA_P (insn);
931}
932
933template <>
934template <>
935inline bool
936is_a_helper <rtx_barrier *>::test (rtx rt)
937{
938 return BARRIER_P (rt);
939}
940
941template <>
942template <>
943inline bool
944is_a_helper <rtx_code_label *>::test (rtx rt)
945{
946 return LABEL_P (rt);
947}
948
949template <>
950template <>
951inline bool
952is_a_helper <rtx_code_label *>::test (rtx_insn *insn)
953{
954 return LABEL_P (insn);
955}
956
957template <>
958template <>
959inline bool
960is_a_helper <rtx_note *>::test (rtx rt)
961{
962 return NOTE_P (rt);
963}
964
965template <>
966template <>
967inline bool
968is_a_helper <rtx_note *>::test (rtx_insn *insn)
969{
970 return NOTE_P (insn);
971}
972
973/* Predicate yielding nonzero iff X is a return or simple_return. */
974#define ANY_RETURN_P(X) \
975 (GET_CODE (X) == RETURN || GET_CODE (X) == SIMPLE_RETURN)
976
977/* 1 if X is a unary operator. */
978
979#define UNARY_P(X) \
980 (GET_RTX_CLASS (GET_CODE (X)) == RTX_UNARY)
981
982/* 1 if X is a binary operator. */
983
984#define BINARY_P(X) \
985 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_BINARY_MASK) == RTX_BINARY_RESULT)
986
987/* 1 if X is an arithmetic operator. */
988
989#define ARITHMETIC_P(X) \
990 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_ARITHMETIC_MASK) \
991 == RTX_ARITHMETIC_RESULT)
992
993/* 1 if X is an arithmetic operator. */
994
995#define COMMUTATIVE_ARITH_P(X) \
996 (GET_RTX_CLASS (GET_CODE (X)) == RTX_COMM_ARITH)
997
998/* 1 if X is a commutative arithmetic operator or a comparison operator.
999 These two are sometimes selected together because it is possible to
1000 swap the two operands. */
1001
1002#define SWAPPABLE_OPERANDS_P(X) \
1003 ((1 << GET_RTX_CLASS (GET_CODE (X))) \
1004 & ((1 << RTX_COMM_ARITH) | (1 << RTX_COMM_COMPARE) \
1005 | (1 << RTX_COMPARE)))
1006
1007/* 1 if X is a non-commutative operator. */
1008
1009#define NON_COMMUTATIVE_P(X) \
1010 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMMUTATIVE_MASK) \
1011 == RTX_NON_COMMUTATIVE_RESULT)
1012
1013/* 1 if X is a commutative operator on integers. */
1014
1015#define COMMUTATIVE_P(X) \
1016 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMMUTATIVE_MASK) \
1017 == RTX_COMMUTATIVE_RESULT)
1018
1019/* 1 if X is a relational operator. */
1020
1021#define COMPARISON_P(X) \
1022 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMPARE_MASK) == RTX_COMPARE_RESULT)
1023
1024/* 1 if X is a constant value that is an integer. */
1025
1026#define CONSTANT_P(X) \
1027 (GET_RTX_CLASS (GET_CODE (X)) == RTX_CONST_OBJ)
1028
1029/* 1 if X can be used to represent an object. */
1030#define OBJECT_P(X) \
1031 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_OBJ_MASK) == RTX_OBJ_RESULT)
1032
1033/* General accessor macros for accessing the fields of an rtx. */
1034
1035#if defined ENABLE_RTL_CHECKING && (GCC_VERSION >= 2007)
1036/* The bit with a star outside the statement expr and an & inside is
1037 so that N can be evaluated only once. */
1038#define RTL_CHECK1(RTX, N, C1) __extension__ \
1039(*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1040 const enum rtx_code _code = GET_CODE (_rtx); \
1041 if (_n < 0 || _n >= GET_RTX_LENGTH (_code)) \
1042 rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__, \
1043 __FUNCTION__); \
1044 if (GET_RTX_FORMAT (_code)[_n] != C1) \
1045 rtl_check_failed_type1 (_rtx, _n, C1, __FILE__, __LINE__, \
1046 __FUNCTION__); \
1047 &_rtx->u.fld[_n]; }))
1048
1049#define RTL_CHECK2(RTX, N, C1, C2) __extension__ \
1050(*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1051 const enum rtx_code _code = GET_CODE (_rtx); \
1052 if (_n < 0 || _n >= GET_RTX_LENGTH (_code)) \
1053 rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__, \
1054 __FUNCTION__); \
1055 if (GET_RTX_FORMAT (_code)[_n] != C1 \
1056 && GET_RTX_FORMAT (_code)[_n] != C2) \
1057 rtl_check_failed_type2 (_rtx, _n, C1, C2, __FILE__, __LINE__, \
1058 __FUNCTION__); \
1059 &_rtx->u.fld[_n]; }))
1060
1061#define RTL_CHECKC1(RTX, N, C) __extension__ \
1062(*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1063 if (GET_CODE (_rtx) != (C)) \
1064 rtl_check_failed_code1 (_rtx, (C), __FILE__, __LINE__, \
1065 __FUNCTION__); \
1066 &_rtx->u.fld[_n]; }))
1067
1068#define RTL_CHECKC2(RTX, N, C1, C2) __extension__ \
1069(*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1070 const enum rtx_code _code = GET_CODE (_rtx); \
1071 if (_code != (C1) && _code != (C2)) \
1072 rtl_check_failed_code2 (_rtx, (C1), (C2), __FILE__, __LINE__, \
1073 __FUNCTION__); \
1074 &_rtx->u.fld[_n]; }))
1075
1076#define RTVEC_ELT(RTVEC, I) __extension__ \
1077(*({ __typeof (RTVEC) const _rtvec = (RTVEC); const int _i = (I); \
1078 if (_i < 0 || _i >= GET_NUM_ELEM (_rtvec)) \
1079 rtvec_check_failed_bounds (_rtvec, _i, __FILE__, __LINE__, \
1080 __FUNCTION__); \
1081 &_rtvec->elem[_i]; }))
1082
1083#define XWINT(RTX, N) __extension__ \
1084(*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1085 const enum rtx_code _code = GET_CODE (_rtx); \
1086 if (_n < 0 || _n >= GET_RTX_LENGTH (_code)) \
1087 rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__, \
1088 __FUNCTION__); \
1089 if (GET_RTX_FORMAT (_code)[_n] != 'w') \
1090 rtl_check_failed_type1 (_rtx, _n, 'w', __FILE__, __LINE__, \
1091 __FUNCTION__); \
1092 &_rtx->u.hwint[_n]; }))
1093
1094#define CWI_ELT(RTX, I) __extension__ \
1095(*({ __typeof (RTX) const _cwi = (RTX); \
1096 int _max = CWI_GET_NUM_ELEM (_cwi); \
1097 const int _i = (I); \
1098 if (_i < 0 || _i >= _max) \
1099 cwi_check_failed_bounds (_cwi, _i, __FILE__, __LINE__, \
1100 __FUNCTION__); \
1101 &_cwi->u.hwiv.elem[_i]; }))
1102
1103#define XCWINT(RTX, N, C) __extension__ \
1104(*({ __typeof (RTX) const _rtx = (RTX); \
1105 if (GET_CODE (_rtx) != (C)) \
1106 rtl_check_failed_code1 (_rtx, (C), __FILE__, __LINE__, \
1107 __FUNCTION__); \
1108 &_rtx->u.hwint[N]; }))
1109
1110#define XCMWINT(RTX, N, C, M) __extension__ \
1111(*({ __typeof (RTX) const _rtx = (RTX); \
1112 if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) != (M)) \
1113 rtl_check_failed_code_mode (_rtx, (C), (M), false, __FILE__, \
1114 __LINE__, __FUNCTION__); \
1115 &_rtx->u.hwint[N]; }))
1116
1117#define XCNMPRV(RTX, C, M) __extension__ \
1118({ __typeof (RTX) const _rtx = (RTX); \
1119 if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) == (M)) \
1120 rtl_check_failed_code_mode (_rtx, (C), (M), true, __FILE__, \
1121 __LINE__, __FUNCTION__); \
1122 &_rtx->u.rv; })
1123
1124#define XCNMPFV(RTX, C, M) __extension__ \
1125({ __typeof (RTX) const _rtx = (RTX); \
1126 if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) == (M)) \
1127 rtl_check_failed_code_mode (_rtx, (C), (M), true, __FILE__, \
1128 __LINE__, __FUNCTION__); \
1129 &_rtx->u.fv; })
1130
1131#define REG_CHECK(RTX) __extension__ \
1132({ __typeof (RTX) const _rtx = (RTX); \
1133 if (GET_CODE (_rtx) != REG) \
1134 rtl_check_failed_code1 (_rtx, REG, __FILE__, __LINE__, \
1135 __FUNCTION__); \
1136 &_rtx->u.reg; })
1137
1138#define BLOCK_SYMBOL_CHECK(RTX) __extension__ \
1139({ __typeof (RTX) const _symbol = (RTX); \
1140 const unsigned int flags = SYMBOL_REF_FLAGS (_symbol); \
1141 if ((flags & SYMBOL_FLAG_HAS_BLOCK_INFO) == 0) \
1142 rtl_check_failed_block_symbol (__FILE__, __LINE__, \
1143 __FUNCTION__); \
1144 &_symbol->u.block_sym; })
1145
1146#define HWIVEC_CHECK(RTX,C) __extension__ \
1147({ __typeof (RTX) const _symbol = (RTX); \
1148 RTL_CHECKC1 (_symbol, 0, C); \
1149 &_symbol->u.hwiv; })
1150
1151extern void rtl_check_failed_bounds (const_rtx, int, const char *, int,
1152 const char *)
1153 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1154extern void rtl_check_failed_type1 (const_rtx, int, int, const char *, int,
1155 const char *)
1156 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1157extern void rtl_check_failed_type2 (const_rtx, int, int, int, const char *,
1158 int, const char *)
1159 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1160extern void rtl_check_failed_code1 (const_rtx, enum rtx_code, const char *,
1161 int, const char *)
1162 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1163extern void rtl_check_failed_code2 (const_rtx, enum rtx_code, enum rtx_code,
1164 const char *, int, const char *)
1165 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1166extern void rtl_check_failed_code_mode (const_rtx, enum rtx_code, machine_mode,
1167 bool, const char *, int, const char *)
1168 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1169extern void rtl_check_failed_block_symbol (const char *, int, const char *)
1170 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1171extern void cwi_check_failed_bounds (const_rtx, int, const char *, int,
1172 const char *)
1173 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1174extern void rtvec_check_failed_bounds (const_rtvec, int, const char *, int,
1175 const char *)
1176 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1177
1178#else /* not ENABLE_RTL_CHECKING */
1179
1180#define RTL_CHECK1(RTX, N, C1) ((RTX)->u.fld[N])
1181#define RTL_CHECK2(RTX, N, C1, C2) ((RTX)->u.fld[N])
1182#define RTL_CHECKC1(RTX, N, C) ((RTX)->u.fld[N])
1183#define RTL_CHECKC2(RTX, N, C1, C2) ((RTX)->u.fld[N])
1184#define RTVEC_ELT(RTVEC, I) ((RTVEC)->elem[I])
1185#define XWINT(RTX, N) ((RTX)->u.hwint[N])
1186#define CWI_ELT(RTX, I) ((RTX)->u.hwiv.elem[I])
1187#define XCWINT(RTX, N, C) ((RTX)->u.hwint[N])
1188#define XCMWINT(RTX, N, C, M) ((RTX)->u.hwint[N])
1189#define XCNMWINT(RTX, N, C, M) ((RTX)->u.hwint[N])
1190#define XCNMPRV(RTX, C, M) (&(RTX)->u.rv)
1191#define XCNMPFV(RTX, C, M) (&(RTX)->u.fv)
1192#define REG_CHECK(RTX) (&(RTX)->u.reg)
1193#define BLOCK_SYMBOL_CHECK(RTX) (&(RTX)->u.block_sym)
1194#define HWIVEC_CHECK(RTX,C) (&(RTX)->u.hwiv)
1195
1196#endif
1197
1198/* General accessor macros for accessing the flags of an rtx. */
1199
1200/* Access an individual rtx flag, with no checking of any kind. */
1201#define RTX_FLAG(RTX, FLAG) ((RTX)->FLAG)
1202
1203#if defined ENABLE_RTL_FLAG_CHECKING && (GCC_VERSION >= 2007)
1204#define RTL_FLAG_CHECK1(NAME, RTX, C1) __extension__ \
1205({ __typeof (RTX) const _rtx = (RTX); \
1206 if (GET_CODE (_rtx) != C1) \
1207 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1208 __FUNCTION__); \
1209 _rtx; })
1210
1211#define RTL_FLAG_CHECK2(NAME, RTX, C1, C2) __extension__ \
1212({ __typeof (RTX) const _rtx = (RTX); \
1213 if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2) \
1214 rtl_check_failed_flag (NAME,_rtx, __FILE__, __LINE__, \
1215 __FUNCTION__); \
1216 _rtx; })
1217
1218#define RTL_FLAG_CHECK3(NAME, RTX, C1, C2, C3) __extension__ \
1219({ __typeof (RTX) const _rtx = (RTX); \
1220 if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2 \
1221 && GET_CODE (_rtx) != C3) \
1222 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1223 __FUNCTION__); \
1224 _rtx; })
1225
1226#define RTL_FLAG_CHECK4(NAME, RTX, C1, C2, C3, C4) __extension__ \
1227({ __typeof (RTX) const _rtx = (RTX); \
1228 if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2 \
1229 && GET_CODE (_rtx) != C3 && GET_CODE(_rtx) != C4) \
1230 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1231 __FUNCTION__); \
1232 _rtx; })
1233
1234#define RTL_FLAG_CHECK5(NAME, RTX, C1, C2, C3, C4, C5) __extension__ \
1235({ __typeof (RTX) const _rtx = (RTX); \
1236 if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2 \
1237 && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4 \
1238 && GET_CODE (_rtx) != C5) \
1239 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1240 __FUNCTION__); \
1241 _rtx; })
1242
1243#define RTL_FLAG_CHECK6(NAME, RTX, C1, C2, C3, C4, C5, C6) \
1244 __extension__ \
1245({ __typeof (RTX) const _rtx = (RTX); \
1246 if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2 \
1247 && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4 \
1248 && GET_CODE (_rtx) != C5 && GET_CODE (_rtx) != C6) \
1249 rtl_check_failed_flag (NAME,_rtx, __FILE__, __LINE__, \
1250 __FUNCTION__); \
1251 _rtx; })
1252
1253#define RTL_FLAG_CHECK7(NAME, RTX, C1, C2, C3, C4, C5, C6, C7) \
1254 __extension__ \
1255({ __typeof (RTX) const _rtx = (RTX); \
1256 if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2 \
1257 && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4 \
1258 && GET_CODE (_rtx) != C5 && GET_CODE (_rtx) != C6 \
1259 && GET_CODE (_rtx) != C7) \
1260 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1261 __FUNCTION__); \
1262 _rtx; })
1263
1264#define RTL_INSN_CHAIN_FLAG_CHECK(NAME, RTX) \
1265 __extension__ \
1266({ __typeof (RTX) const _rtx = (RTX); \
1267 if (!INSN_CHAIN_CODE_P (GET_CODE (_rtx))) \
1268 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1269 __FUNCTION__); \
1270 _rtx; })
1271
1272extern void rtl_check_failed_flag (const char *, const_rtx, const char *,
1273 int, const char *)
1274 ATTRIBUTE_NORETURN ATTRIBUTE_COLD
1275 ;
1276
1277#else /* not ENABLE_RTL_FLAG_CHECKING */
1278
1279#define RTL_FLAG_CHECK1(NAME, RTX, C1) (RTX)
1280#define RTL_FLAG_CHECK2(NAME, RTX, C1, C2) (RTX)
1281#define RTL_FLAG_CHECK3(NAME, RTX, C1, C2, C3) (RTX)
1282#define RTL_FLAG_CHECK4(NAME, RTX, C1, C2, C3, C4) (RTX)
1283#define RTL_FLAG_CHECK5(NAME, RTX, C1, C2, C3, C4, C5) (RTX)
1284#define RTL_FLAG_CHECK6(NAME, RTX, C1, C2, C3, C4, C5, C6) (RTX)
1285#define RTL_FLAG_CHECK7(NAME, RTX, C1, C2, C3, C4, C5, C6, C7) (RTX)
1286#define RTL_INSN_CHAIN_FLAG_CHECK(NAME, RTX) (RTX)
1287#endif
1288
1289#define XINT(RTX, N) (RTL_CHECK2 (RTX, N, 'i', 'n').rt_int)
1290#define XUINT(RTX, N) (RTL_CHECK2 (RTX, N, 'i', 'n').rt_uint)
1291#define XSTR(RTX, N) (RTL_CHECK2 (RTX, N, 's', 'S').rt_str)
1292#define XEXP(RTX, N) (RTL_CHECK2 (RTX, N, 'e', 'u').rt_rtx)
1293#define XVEC(RTX, N) (RTL_CHECK2 (RTX, N, 'E', 'V').rt_rtvec)
1294#define XMODE(RTX, N) (RTL_CHECK1 (RTX, N, 'M').rt_type)
1295#define XTREE(RTX, N) (RTL_CHECK1 (RTX, N, 't').rt_tree)
1296#define XBBDEF(RTX, N) (RTL_CHECK1 (RTX, N, 'B').rt_bb)
1297#define XTMPL(RTX, N) (RTL_CHECK1 (RTX, N, 'T').rt_str)
1298#define XCFI(RTX, N) (RTL_CHECK1 (RTX, N, 'C').rt_cfi)
1299
1300#define XVECEXP(RTX, N, M) RTVEC_ELT (XVEC (RTX, N), M)
1301#define XVECLEN(RTX, N) GET_NUM_ELEM (XVEC (RTX, N))
1302
1303/* These are like XINT, etc. except that they expect a '0' field instead
1304 of the normal type code. */
1305
1306#define X0INT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_int)
1307#define X0UINT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_uint)
1308#define X0STR(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_str)
1309#define X0EXP(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_rtx)
1310#define X0VEC(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_rtvec)
1311#define X0MODE(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_type)
1312#define X0TREE(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_tree)
1313#define X0BBDEF(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_bb)
1314#define X0ADVFLAGS(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_addr_diff_vec_flags)
1315#define X0CSELIB(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_cselib)
1316#define X0MEMATTR(RTX, N) (RTL_CHECKC1 (RTX, N, MEM).rt_mem)
1317#define X0CONSTANT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_constant)
1318
1319/* Access a '0' field with any type. */
1320#define X0ANY(RTX, N) RTL_CHECK1 (RTX, N, '0')
1321
1322#define XCINT(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_int)
1323#define XCUINT(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_uint)
1324#define XCSTR(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_str)
1325#define XCEXP(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_rtx)
1326#define XCVEC(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_rtvec)
1327#define XCMODE(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_type)
1328#define XCTREE(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_tree)
1329#define XCBBDEF(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_bb)
1330#define XCCFI(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_cfi)
1331#define XCCSELIB(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_cselib)
1332
1333#define XCVECEXP(RTX, N, M, C) RTVEC_ELT (XCVEC (RTX, N, C), M)
1334#define XCVECLEN(RTX, N, C) GET_NUM_ELEM (XCVEC (RTX, N, C))
1335
1336#define XC2EXP(RTX, N, C1, C2) (RTL_CHECKC2 (RTX, N, C1, C2).rt_rtx)
1337
1338
1339/* Methods of rtx_expr_list. */
1340
1341inline rtx_expr_list *rtx_expr_list::next () const
1342{
1343 rtx tmp = XEXP (this, 1);
1344 return safe_as_a <rtx_expr_list *> (tmp);
1345}
1346
1347inline rtx rtx_expr_list::element () const
1348{
1349 return XEXP (this, 0);
1350}
1351
1352/* Methods of rtx_insn_list. */
1353
1354inline rtx_insn_list *rtx_insn_list::next () const
1355{
1356 rtx tmp = XEXP (this, 1);
1357 return safe_as_a <rtx_insn_list *> (tmp);
1358}
1359
1360inline rtx_insn *rtx_insn_list::insn () const
1361{
1362 rtx tmp = XEXP (this, 0);
1363 return safe_as_a <rtx_insn *> (tmp);
1364}
1365
1366/* Methods of rtx_sequence. */
1367
1368inline int rtx_sequence::len () const
1369{
1370 return XVECLEN (this, 0);
1371}
1372
1373inline rtx rtx_sequence::element (int index) const
1374{
1375 return XVECEXP (this, 0, index);
1376}
1377
1378inline rtx_insn *rtx_sequence::insn (int index) const
1379{
1380 return as_a <rtx_insn *> (XVECEXP (this, 0, index));
1381}
1382
1383/* ACCESS MACROS for particular fields of insns. */
1384
1385/* Holds a unique number for each insn.
1386 These are not necessarily sequentially increasing. */
1387inline int INSN_UID (const_rtx insn)
1388{
1389 return RTL_INSN_CHAIN_FLAG_CHECK ("INSN_UID",
1390 (insn))->u2.insn_uid;
1391}
1392inline int& INSN_UID (rtx insn)
1393{
1394 return RTL_INSN_CHAIN_FLAG_CHECK ("INSN_UID",
1395 (insn))->u2.insn_uid;
1396}
1397
1398/* Chain insns together in sequence. */
1399
1400/* For now these are split in two: an rvalue form:
1401 PREV_INSN/NEXT_INSN
1402 and an lvalue form:
1403 SET_NEXT_INSN/SET_PREV_INSN. */
1404
1405inline rtx_insn *PREV_INSN (const rtx_insn *insn)
1406{
1407 rtx prev = XEXP (insn, 0);
1408 return safe_as_a <rtx_insn *> (prev);
1409}
1410
1411inline rtx& SET_PREV_INSN (rtx_insn *insn)
1412{
1413 return XEXP (insn, 0);
1414}
1415
1416inline rtx_insn *NEXT_INSN (const rtx_insn *insn)
1417{
1418 rtx next = XEXP (insn, 1);
1419 return safe_as_a <rtx_insn *> (next);
1420}
1421
1422inline rtx& SET_NEXT_INSN (rtx_insn *insn)
1423{
1424 return XEXP (insn, 1);
1425}
1426
1427inline basic_block BLOCK_FOR_INSN (const_rtx insn)
1428{
1429 return XBBDEF (insn, 2);
1430}
1431
1432inline basic_block& BLOCK_FOR_INSN (rtx insn)
1433{
1434 return XBBDEF (insn, 2);
1435}
1436
1437inline void set_block_for_insn (rtx_insn *insn, basic_block bb)
1438{
1439 BLOCK_FOR_INSN (insn) = bb;
1440}
1441
1442/* The body of an insn. */
1443inline rtx PATTERN (const_rtx insn)
1444{
1445 return XEXP (insn, 3);
1446}
1447
1448inline rtx& PATTERN (rtx insn)
1449{
1450 return XEXP (insn, 3);
1451}
1452
1453inline unsigned int INSN_LOCATION (const rtx_insn *insn)
1454{
1455 return XUINT (insn, 4);
1456}
1457
1458inline unsigned int& INSN_LOCATION (rtx_insn *insn)
1459{
1460 return XUINT (insn, 4);
1461}
1462
1463inline bool INSN_HAS_LOCATION (const rtx_insn *insn)
1464{
1465 return LOCATION_LOCUS (INSN_LOCATION (insn)) != UNKNOWN_LOCATION;
1466}
1467
1468/* LOCATION of an RTX if relevant. */
1469#define RTL_LOCATION(X) (INSN_P (X) ? \
1470 INSN_LOCATION (as_a <rtx_insn *> (X)) \
1471 : UNKNOWN_LOCATION)
1472
1473/* Code number of instruction, from when it was recognized.
1474 -1 means this instruction has not been recognized yet. */
1475#define INSN_CODE(INSN) XINT (INSN, 5)
1476
1477inline rtvec rtx_jump_table_data::get_labels () const
1478{
1479 rtx pat = PATTERN (this);
1480 if (GET_CODE (pat) == ADDR_VEC)
1481 return XVEC (pat, 0);
1482 else
1483 return XVEC (pat, 1); /* presumably an ADDR_DIFF_VEC */
1484}
1485
1486/* Return the mode of the data in the table, which is always a scalar
1487 integer. */
1488
1489inline scalar_int_mode
1490rtx_jump_table_data::get_data_mode () const
1491{
1492 return as_a <scalar_int_mode> (GET_MODE (PATTERN (this)));
1493}
1494
1495/* If LABEL is followed by a jump table, return the table, otherwise
1496 return null. */
1497
1498inline rtx_jump_table_data *
1499jump_table_for_label (const rtx_code_label *label)
1500{
1501 return safe_dyn_cast <rtx_jump_table_data *> (NEXT_INSN (label));
1502}
1503
1504#define RTX_FRAME_RELATED_P(RTX) \
1505 (RTL_FLAG_CHECK6 ("RTX_FRAME_RELATED_P", (RTX), DEBUG_INSN, INSN, \
1506 CALL_INSN, JUMP_INSN, BARRIER, SET)->frame_related)
1507
1508/* 1 if JUMP RTX is a crossing jump. */
1509#define CROSSING_JUMP_P(RTX) \
1510 (RTL_FLAG_CHECK1 ("CROSSING_JUMP_P", (RTX), JUMP_INSN)->jump)
1511
1512/* 1 if RTX is a call to a const function. Built from ECF_CONST and
1513 TREE_READONLY. */
1514#define RTL_CONST_CALL_P(RTX) \
1515 (RTL_FLAG_CHECK1 ("RTL_CONST_CALL_P", (RTX), CALL_INSN)->unchanging)
1516
1517/* 1 if RTX is a call to a pure function. Built from ECF_PURE and
1518 DECL_PURE_P. */
1519#define RTL_PURE_CALL_P(RTX) \
1520 (RTL_FLAG_CHECK1 ("RTL_PURE_CALL_P", (RTX), CALL_INSN)->return_val)
1521
1522/* 1 if RTX is a call to a const or pure function. */
1523#define RTL_CONST_OR_PURE_CALL_P(RTX) \
1524 (RTL_CONST_CALL_P (RTX) || RTL_PURE_CALL_P (RTX))
1525
1526/* 1 if RTX is a call to a looping const or pure function. Built from
1527 ECF_LOOPING_CONST_OR_PURE and DECL_LOOPING_CONST_OR_PURE_P. */
1528#define RTL_LOOPING_CONST_OR_PURE_CALL_P(RTX) \
1529 (RTL_FLAG_CHECK1 ("CONST_OR_PURE_CALL_P", (RTX), CALL_INSN)->call)
1530
1531/* 1 if RTX is a call_insn for a sibling call. */
1532#define SIBLING_CALL_P(RTX) \
1533 (RTL_FLAG_CHECK1 ("SIBLING_CALL_P", (RTX), CALL_INSN)->jump)
1534
1535/* 1 if RTX is a jump_insn, call_insn, or insn that is an annulling branch. */
1536#define INSN_ANNULLED_BRANCH_P(RTX) \
1537 (RTL_FLAG_CHECK1 ("INSN_ANNULLED_BRANCH_P", (RTX), JUMP_INSN)->unchanging)
1538
1539/* 1 if RTX is an insn in a delay slot and is from the target of the branch.
1540 If the branch insn has INSN_ANNULLED_BRANCH_P set, this insn should only be
1541 executed if the branch is taken. For annulled branches with this bit
1542 clear, the insn should be executed only if the branch is not taken. */
1543#define INSN_FROM_TARGET_P(RTX) \
1544 (RTL_FLAG_CHECK3 ("INSN_FROM_TARGET_P", (RTX), INSN, JUMP_INSN, \
1545 CALL_INSN)->in_struct)
1546
1547/* In an ADDR_DIFF_VEC, the flags for RTX for use by branch shortening.
1548 See the comments for ADDR_DIFF_VEC in rtl.def. */
1549#define ADDR_DIFF_VEC_FLAGS(RTX) X0ADVFLAGS (RTX, 4)
1550
1551/* In a VALUE, the value cselib has assigned to RTX.
1552 This is a "struct cselib_val", see cselib.h. */
1553#define CSELIB_VAL_PTR(RTX) X0CSELIB (RTX, 0)
1554
1555/* Holds a list of notes on what this insn does to various REGs.
1556 It is a chain of EXPR_LIST rtx's, where the second operand is the
1557 chain pointer and the first operand is the REG being described.
1558 The mode field of the EXPR_LIST contains not a real machine mode
1559 but a value from enum reg_note. */
1560#define REG_NOTES(INSN) XEXP(INSN, 6)
1561
1562/* In an ENTRY_VALUE this is the DECL_INCOMING_RTL of the argument in
1563 question. */
1564#define ENTRY_VALUE_EXP(RTX) (RTL_CHECKC1 (RTX, 0, ENTRY_VALUE).rt_rtx)
1565
1566enum reg_note
1567{
1568#define DEF_REG_NOTE(NAME) NAME,
1569#include "reg-notes.def"
1570#undef DEF_REG_NOTE
1571 REG_NOTE_MAX
1572};
1573
1574/* Define macros to extract and insert the reg-note kind in an EXPR_LIST. */
1575#define REG_NOTE_KIND(LINK) ((enum reg_note) GET_MODE (LINK))
1576#define PUT_REG_NOTE_KIND(LINK, KIND) \
1577 PUT_MODE_RAW (LINK, (machine_mode) (KIND))
1578
1579/* Names for REG_NOTE's in EXPR_LIST insn's. */
1580
1581extern const char * const reg_note_name[];
1582#define GET_REG_NOTE_NAME(MODE) (reg_note_name[(int) (MODE)])
1583
1584/* This field is only present on CALL_INSNs. It holds a chain of EXPR_LIST of
1585 USE and CLOBBER expressions.
1586 USE expressions list the registers filled with arguments that
1587 are passed to the function.
1588 CLOBBER expressions document the registers explicitly clobbered
1589 by this CALL_INSN.
1590 Pseudo registers can not be mentioned in this list. */
1591#define CALL_INSN_FUNCTION_USAGE(INSN) XEXP(INSN, 7)
1592
1593/* The label-number of a code-label. The assembler label
1594 is made from `L' and the label-number printed in decimal.
1595 Label numbers are unique in a compilation. */
1596#define CODE_LABEL_NUMBER(INSN) XINT (INSN, 5)
1597
1598/* In a NOTE that is a line number, this is a string for the file name that the
1599 line is in. We use the same field to record block numbers temporarily in
1600 NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes. (We avoid lots of casts
1601 between ints and pointers if we use a different macro for the block number.)
1602 */
1603
1604/* Opaque data. */
1605#define NOTE_DATA(INSN) RTL_CHECKC1 (INSN, 3, NOTE)
1606#define NOTE_DELETED_LABEL_NAME(INSN) XCSTR (INSN, 3, NOTE)
1607#define SET_INSN_DELETED(INSN) set_insn_deleted (INSN);
1608#define NOTE_BLOCK(INSN) XCTREE (INSN, 3, NOTE)
1609#define NOTE_EH_HANDLER(INSN) XCINT (INSN, 3, NOTE)
1610#define NOTE_BASIC_BLOCK(INSN) XCBBDEF (INSN, 3, NOTE)
1611#define NOTE_VAR_LOCATION(INSN) XCEXP (INSN, 3, NOTE)
1612#define NOTE_MARKER_LOCATION(INSN) XCUINT (INSN, 3, NOTE)
1613#define NOTE_CFI(INSN) XCCFI (INSN, 3, NOTE)
1614#define NOTE_LABEL_NUMBER(INSN) XCINT (INSN, 3, NOTE)
1615
1616/* In a NOTE that is a line number, this is the line number.
1617 Other kinds of NOTEs are identified by negative numbers here. */
1618#define NOTE_KIND(INSN) XCINT (INSN, 4, NOTE)
1619
1620/* Nonzero if INSN is a note marking the beginning of a basic block. */
1621#define NOTE_INSN_BASIC_BLOCK_P(INSN) \
1622 (NOTE_P (INSN) && NOTE_KIND (INSN) == NOTE_INSN_BASIC_BLOCK)
1623
1624/* Nonzero if INSN is a debug nonbind marker note,
1625 for which NOTE_MARKER_LOCATION can be used. */
1626#define NOTE_MARKER_P(INSN) \
1627 (NOTE_P (INSN) && \
1628 (NOTE_KIND (INSN) == NOTE_INSN_BEGIN_STMT))
1629
1630/* Variable declaration and the location of a variable. */
1631#define PAT_VAR_LOCATION_DECL(PAT) (XCTREE ((PAT), 0, VAR_LOCATION))
1632#define PAT_VAR_LOCATION_LOC(PAT) (XCEXP ((PAT), 1, VAR_LOCATION))
1633
1634/* Initialization status of the variable in the location. Status
1635 can be unknown, uninitialized or initialized. See enumeration
1636 type below. */
1637#define PAT_VAR_LOCATION_STATUS(PAT) \
1638 (RTL_FLAG_CHECK1 ("PAT_VAR_LOCATION_STATUS", PAT, VAR_LOCATION) \
1639 ->u2.var_location_status)
1640
1641/* Accessors for a NOTE_INSN_VAR_LOCATION. */
1642#define NOTE_VAR_LOCATION_DECL(NOTE) \
1643 PAT_VAR_LOCATION_DECL (NOTE_VAR_LOCATION (NOTE))
1644#define NOTE_VAR_LOCATION_LOC(NOTE) \
1645 PAT_VAR_LOCATION_LOC (NOTE_VAR_LOCATION (NOTE))
1646#define NOTE_VAR_LOCATION_STATUS(NOTE) \
1647 PAT_VAR_LOCATION_STATUS (NOTE_VAR_LOCATION (NOTE))
1648
1649/* Evaluate to TRUE if INSN is a debug insn that denotes a variable
1650 location/value tracking annotation. */
1651#define DEBUG_BIND_INSN_P(INSN) \
1652 (DEBUG_INSN_P (INSN) \
1653 && (GET_CODE (PATTERN (INSN)) \
1654 == VAR_LOCATION))
1655/* Evaluate to TRUE if INSN is a debug insn that denotes a program
1656 source location marker. */
1657#define DEBUG_MARKER_INSN_P(INSN) \
1658 (DEBUG_INSN_P (INSN) \
1659 && (GET_CODE (PATTERN (INSN)) \
1660 != VAR_LOCATION))
1661/* Evaluate to the marker kind. */
1662#define INSN_DEBUG_MARKER_KIND(INSN) \
1663 (GET_CODE (PATTERN (INSN)) == DEBUG_MARKER \
1664 ? (GET_MODE (PATTERN (INSN)) == VOIDmode \
1665 ? NOTE_INSN_BEGIN_STMT \
1666 : (enum insn_note)-1) \
1667 : (enum insn_note)-1)
1668/* Create patterns for debug markers. These and the above abstract
1669 the representation, so that it's easier to get rid of the abuse of
1670 the mode to hold the marker kind. Other marker types are
1671 envisioned, so a single bit flag won't do; maybe separate RTL codes
1672 wouldn't be a problem. */
1673#define GEN_RTX_DEBUG_MARKER_BEGIN_STMT_PAT() \
1674 gen_rtx_DEBUG_MARKER (VOIDmode)
1675
1676/* The VAR_LOCATION rtx in a DEBUG_INSN. */
1677#define INSN_VAR_LOCATION(INSN) \
1678 (RTL_FLAG_CHECK1 ("INSN_VAR_LOCATION", PATTERN (INSN), VAR_LOCATION))
1679/* A pointer to the VAR_LOCATION rtx in a DEBUG_INSN. */
1680#define INSN_VAR_LOCATION_PTR(INSN) \
1681 (&PATTERN (INSN))
1682
1683/* Accessors for a tree-expanded var location debug insn. */
1684#define INSN_VAR_LOCATION_DECL(INSN) \
1685 PAT_VAR_LOCATION_DECL (INSN_VAR_LOCATION (INSN))
1686#define INSN_VAR_LOCATION_LOC(INSN) \
1687 PAT_VAR_LOCATION_LOC (INSN_VAR_LOCATION (INSN))
1688#define INSN_VAR_LOCATION_STATUS(INSN) \
1689 PAT_VAR_LOCATION_STATUS (INSN_VAR_LOCATION (INSN))
1690
1691/* Expand to the RTL that denotes an unknown variable location in a
1692 DEBUG_INSN. */
1693#define gen_rtx_UNKNOWN_VAR_LOC() (gen_rtx_CLOBBER (VOIDmode, const0_rtx))
1694
1695/* Determine whether X is such an unknown location. */
1696#define VAR_LOC_UNKNOWN_P(X) \
1697 (GET_CODE (X) == CLOBBER && XEXP ((X), 0) == const0_rtx)
1698
1699/* 1 if RTX is emitted after a call, but it should take effect before
1700 the call returns. */
1701#define NOTE_DURING_CALL_P(RTX) \
1702 (RTL_FLAG_CHECK1 ("NOTE_VAR_LOCATION_DURING_CALL_P", (RTX), NOTE)->call)
1703
1704/* DEBUG_EXPR_DECL corresponding to a DEBUG_EXPR RTX. */
1705#define DEBUG_EXPR_TREE_DECL(RTX) XCTREE (RTX, 0, DEBUG_EXPR)
1706
1707/* VAR_DECL/PARM_DECL DEBUG_IMPLICIT_PTR takes address of. */
1708#define DEBUG_IMPLICIT_PTR_DECL(RTX) XCTREE (RTX, 0, DEBUG_IMPLICIT_PTR)
1709
1710/* PARM_DECL DEBUG_PARAMETER_REF references. */
1711#define DEBUG_PARAMETER_REF_DECL(RTX) XCTREE (RTX, 0, DEBUG_PARAMETER_REF)
1712
1713/* Codes that appear in the NOTE_KIND field for kinds of notes
1714 that are not line numbers. These codes are all negative.
1715
1716 Notice that we do not try to use zero here for any of
1717 the special note codes because sometimes the source line
1718 actually can be zero! This happens (for example) when we
1719 are generating code for the per-translation-unit constructor
1720 and destructor routines for some C++ translation unit. */
1721
1722enum insn_note
1723{
1724#define DEF_INSN_NOTE(NAME) NAME,
1725#include "insn-notes.def"
1726#undef DEF_INSN_NOTE
1727
1728 NOTE_INSN_MAX
1729};
1730
1731/* Names for NOTE insn's other than line numbers. */
1732
1733extern const char * const note_insn_name[NOTE_INSN_MAX];
1734#define GET_NOTE_INSN_NAME(NOTE_CODE) \
1735 (note_insn_name[(NOTE_CODE)])
1736
1737/* The name of a label, in case it corresponds to an explicit label
1738 in the input source code. */
1739#define LABEL_NAME(RTX) XCSTR (RTX, 6, CODE_LABEL)
1740
1741/* In jump.c, each label contains a count of the number
1742 of LABEL_REFs that point at it, so unused labels can be deleted. */
1743#define LABEL_NUSES(RTX) XCINT (RTX, 4, CODE_LABEL)
1744
1745/* Labels carry a two-bit field composed of the ->jump and ->call
1746 bits. This field indicates whether the label is an alternate
1747 entry point, and if so, what kind. */
1748enum label_kind
1749{
1750 LABEL_NORMAL = 0, /* ordinary label */
1751 LABEL_STATIC_ENTRY, /* alternate entry point, not exported */
1752 LABEL_GLOBAL_ENTRY, /* alternate entry point, exported */
1753 LABEL_WEAK_ENTRY /* alternate entry point, exported as weak symbol */
1754};
1755
1756#if defined ENABLE_RTL_FLAG_CHECKING && (GCC_VERSION > 2007)
1757
1758/* Retrieve the kind of LABEL. */
1759#define LABEL_KIND(LABEL) __extension__ \
1760({ __typeof (LABEL) const _label = (LABEL); \
1761 if (! LABEL_P (_label)) \
1762 rtl_check_failed_flag ("LABEL_KIND", _label, __FILE__, __LINE__, \
1763 __FUNCTION__); \
1764 (enum label_kind) ((_label->jump << 1) | _label->call); })
1765
1766/* Set the kind of LABEL. */
1767#define SET_LABEL_KIND(LABEL, KIND) do { \
1768 __typeof (LABEL) const _label = (LABEL); \
1769 const unsigned int _kind = (KIND); \
1770 if (! LABEL_P (_label)) \
1771 rtl_check_failed_flag ("SET_LABEL_KIND", _label, __FILE__, __LINE__, \
1772 __FUNCTION__); \
1773 _label->jump = ((_kind >> 1) & 1); \
1774 _label->call = (_kind & 1); \
1775} while (0)
1776
1777#else
1778
1779/* Retrieve the kind of LABEL. */
1780#define LABEL_KIND(LABEL) \
1781 ((enum label_kind) (((LABEL)->jump << 1) | (LABEL)->call))
1782
1783/* Set the kind of LABEL. */
1784#define SET_LABEL_KIND(LABEL, KIND) do { \
1785 rtx const _label = (LABEL); \
1786 const unsigned int _kind = (KIND); \
1787 _label->jump = ((_kind >> 1) & 1); \
1788 _label->call = (_kind & 1); \
1789} while (0)
1790
1791#endif /* rtl flag checking */
1792
1793#define LABEL_ALT_ENTRY_P(LABEL) (LABEL_KIND (LABEL) != LABEL_NORMAL)
1794
1795/* In jump.c, each JUMP_INSN can point to a label that it can jump to,
1796 so that if the JUMP_INSN is deleted, the label's LABEL_NUSES can
1797 be decremented and possibly the label can be deleted. */
1798#define JUMP_LABEL(INSN) XCEXP (INSN, 7, JUMP_INSN)
1799
1800inline rtx_insn *JUMP_LABEL_AS_INSN (const rtx_insn *insn)
1801{
1802 return safe_as_a <rtx_insn *> (JUMP_LABEL (insn));
1803}
1804
1805/* Methods of rtx_jump_insn. */
1806
1807inline rtx rtx_jump_insn::jump_label () const
1808{
1809 return JUMP_LABEL (this);
1810}
1811
1812inline rtx_code_label *rtx_jump_insn::jump_target () const
1813{
1814 return safe_as_a <rtx_code_label *> (JUMP_LABEL (this));
1815}
1816
1817inline void rtx_jump_insn::set_jump_target (rtx_code_label *target)
1818{
1819 JUMP_LABEL (this) = target;
1820}
1821
1822/* Once basic blocks are found, each CODE_LABEL starts a chain that
1823 goes through all the LABEL_REFs that jump to that label. The chain
1824 eventually winds up at the CODE_LABEL: it is circular. */
1825#define LABEL_REFS(LABEL) XCEXP (LABEL, 3, CODE_LABEL)
1826
1827/* Get the label that a LABEL_REF references. */
1828static inline rtx_insn *
1829label_ref_label (const_rtx ref)
1830{
1831 return as_a<rtx_insn *> (XCEXP (ref, 0, LABEL_REF));
1832}
1833
1834/* Set the label that LABEL_REF ref refers to. */
1835
1836static inline void
1837set_label_ref_label (rtx ref, rtx_insn *label)
1838{
1839 XCEXP (ref, 0, LABEL_REF) = label;
1840}
1841
1842/* For a REG rtx, REGNO extracts the register number. REGNO can only
1843 be used on RHS. Use SET_REGNO to change the value. */
1844#define REGNO(RTX) (rhs_regno(RTX))
1845#define SET_REGNO(RTX, N) (df_ref_change_reg_with_loc (RTX, N))
1846
1847/* Return the number of consecutive registers in a REG. This is always
1848 1 for pseudo registers and is determined by TARGET_HARD_REGNO_NREGS for
1849 hard registers. */
1850#define REG_NREGS(RTX) (REG_CHECK (RTX)->nregs)
1851
1852/* ORIGINAL_REGNO holds the number the register originally had; for a
1853 pseudo register turned into a hard reg this will hold the old pseudo
1854 register number. */
1855#define ORIGINAL_REGNO(RTX) \
1856 (RTL_FLAG_CHECK1 ("ORIGINAL_REGNO", (RTX), REG)->u2.original_regno)
1857
1858/* Force the REGNO macro to only be used on the lhs. */
1859static inline unsigned int
1860rhs_regno (const_rtx x)
1861{
1862 return REG_CHECK (x)->regno;
1863}
1864
1865/* Return the final register in REG X plus one. */
1866static inline unsigned int
1867END_REGNO (const_rtx x)
1868{
1869 return REGNO (x) + REG_NREGS (x);
1870}
1871
1872/* Change the REGNO and REG_NREGS of REG X to the specified values,
1873 bypassing the df machinery. */
1874static inline void
1875set_regno_raw (rtx x, unsigned int regno, unsigned int nregs)
1876{
1877 reg_info *reg = REG_CHECK (x);
1878 reg->regno = regno;
1879 reg->nregs = nregs;
1880}
1881
1882/* 1 if RTX is a reg or parallel that is the current function's return
1883 value. */
1884#define REG_FUNCTION_VALUE_P(RTX) \
1885 (RTL_FLAG_CHECK2 ("REG_FUNCTION_VALUE_P", (RTX), REG, PARALLEL)->return_val)
1886
1887/* 1 if RTX is a reg that corresponds to a variable declared by the user. */
1888#define REG_USERVAR_P(RTX) \
1889 (RTL_FLAG_CHECK1 ("REG_USERVAR_P", (RTX), REG)->volatil)
1890
1891/* 1 if RTX is a reg that holds a pointer value. */
1892#define REG_POINTER(RTX) \
1893 (RTL_FLAG_CHECK1 ("REG_POINTER", (RTX), REG)->frame_related)
1894
1895/* 1 if RTX is a mem that holds a pointer value. */
1896#define MEM_POINTER(RTX) \
1897 (RTL_FLAG_CHECK1 ("MEM_POINTER", (RTX), MEM)->frame_related)
1898
1899/* 1 if the given register REG corresponds to a hard register. */
1900#define HARD_REGISTER_P(REG) (HARD_REGISTER_NUM_P (REGNO (REG)))
1901
1902/* 1 if the given register number REG_NO corresponds to a hard register. */
1903#define HARD_REGISTER_NUM_P(REG_NO) ((REG_NO) < FIRST_PSEUDO_REGISTER)
1904
1905/* For a CONST_INT rtx, INTVAL extracts the integer. */
1906#define INTVAL(RTX) XCWINT (RTX, 0, CONST_INT)
1907#define UINTVAL(RTX) ((unsigned HOST_WIDE_INT) INTVAL (RTX))
1908
1909/* For a CONST_WIDE_INT, CONST_WIDE_INT_NUNITS is the number of
1910 elements actually needed to represent the constant.
1911 CONST_WIDE_INT_ELT gets one of the elements. 0 is the least
1912 significant HOST_WIDE_INT. */
1913#define CONST_WIDE_INT_VEC(RTX) HWIVEC_CHECK (RTX, CONST_WIDE_INT)
1914#define CONST_WIDE_INT_NUNITS(RTX) CWI_GET_NUM_ELEM (RTX)
1915#define CONST_WIDE_INT_ELT(RTX, N) CWI_ELT (RTX, N)
1916
1917/* For a CONST_DOUBLE:
1918#if TARGET_SUPPORTS_WIDE_INT == 0
1919 For a VOIDmode, there are two integers CONST_DOUBLE_LOW is the
1920 low-order word and ..._HIGH the high-order.
1921#endif
1922 For a float, there is a REAL_VALUE_TYPE structure, and
1923 CONST_DOUBLE_REAL_VALUE(r) is a pointer to it. */
1924#define CONST_DOUBLE_LOW(r) XCMWINT (r, 0, CONST_DOUBLE, VOIDmode)
1925#define CONST_DOUBLE_HIGH(r) XCMWINT (r, 1, CONST_DOUBLE, VOIDmode)
1926#define CONST_DOUBLE_REAL_VALUE(r) \
1927 ((const struct real_value *) XCNMPRV (r, CONST_DOUBLE, VOIDmode))
1928
1929#define CONST_FIXED_VALUE(r) \
1930 ((const struct fixed_value *) XCNMPFV (r, CONST_FIXED, VOIDmode))
1931#define CONST_FIXED_VALUE_HIGH(r) \
1932 ((HOST_WIDE_INT) (CONST_FIXED_VALUE (r)->data.high))
1933#define CONST_FIXED_VALUE_LOW(r) \
1934 ((HOST_WIDE_INT) (CONST_FIXED_VALUE (r)->data.low))
1935
1936/* For a CONST_VECTOR, return element #n. */
1937#define CONST_VECTOR_ELT(RTX, N) XCVECEXP (RTX, 0, N, CONST_VECTOR)
1938
1939/* For a CONST_VECTOR, return the number of elements in a vector. */
1940#define CONST_VECTOR_NUNITS(RTX) XCVECLEN (RTX, 0, CONST_VECTOR)
1941
1942/* For a SUBREG rtx, SUBREG_REG extracts the value we want a subreg of.
1943 SUBREG_BYTE extracts the byte-number. */
1944
1945#define SUBREG_REG(RTX) XCEXP (RTX, 0, SUBREG)
1946#define SUBREG_BYTE(RTX) XCUINT (RTX, 1, SUBREG)
1947
1948/* in rtlanal.c */
1949/* Return the right cost to give to an operation
1950 to make the cost of the corresponding register-to-register instruction
1951 N times that of a fast register-to-register instruction. */
1952#define COSTS_N_INSNS(N) ((N) * 4)
1953
1954/* Maximum cost of an rtl expression. This value has the special meaning
1955 not to use an rtx with this cost under any circumstances. */
1956#define MAX_COST INT_MAX
1957
1958/* Return true if CODE always has VOIDmode. */
1959
1960static inline bool
1961always_void_p (enum rtx_code code)
1962{
1963 return code == SET;
1964}
1965
1966/* A structure to hold all available cost information about an rtl
1967 expression. */
1968struct full_rtx_costs
1969{
1970 int speed;
1971 int size;
1972};
1973
1974/* Initialize a full_rtx_costs structure C to the maximum cost. */
1975static inline void
1976init_costs_to_max (struct full_rtx_costs *c)
1977{
1978 c->speed = MAX_COST;
1979 c->size = MAX_COST;
1980}
1981
1982/* Initialize a full_rtx_costs structure C to zero cost. */
1983static inline void
1984init_costs_to_zero (struct full_rtx_costs *c)
1985{
1986 c->speed = 0;
1987 c->size = 0;
1988}
1989
1990/* Compare two full_rtx_costs structures A and B, returning true
1991 if A < B when optimizing for speed. */
1992static inline bool
1993costs_lt_p (struct full_rtx_costs *a, struct full_rtx_costs *b,
1994 bool speed)
1995{
1996 if (speed)
1997 return (a->speed < b->speed
1998 || (a->speed == b->speed && a->size < b->size));
1999 else
2000 return (a->size < b->size
2001 || (a->size == b->size && a->speed < b->speed));
2002}
2003
2004/* Increase both members of the full_rtx_costs structure C by the
2005 cost of N insns. */
2006static inline void
2007costs_add_n_insns (struct full_rtx_costs *c, int n)
2008{
2009 c->speed += COSTS_N_INSNS (n);
2010 c->size += COSTS_N_INSNS (n);
2011}
2012
2013/* Describes the shape of a subreg:
2014
2015 inner_mode == the mode of the SUBREG_REG
2016 offset == the SUBREG_BYTE
2017 outer_mode == the mode of the SUBREG itself. */
2018struct subreg_shape {
2019 subreg_shape (machine_mode, unsigned int, machine_mode);
2020 bool operator == (const subreg_shape &) const;
2021 bool operator != (const subreg_shape &) const;
2022 unsigned int unique_id () const;
2023
2024 machine_mode inner_mode;
2025 unsigned int offset;
2026 machine_mode outer_mode;
2027};
2028
2029inline
2030subreg_shape::subreg_shape (machine_mode inner_mode_in,
2031 unsigned int offset_in,
2032 machine_mode outer_mode_in)
2033 : inner_mode (inner_mode_in), offset (offset_in), outer_mode (outer_mode_in)
2034{}
2035
2036inline bool
2037subreg_shape::operator == (const subreg_shape &other) const
2038{
2039 return (inner_mode == other.inner_mode
2040 && offset == other.offset
2041 && outer_mode == other.outer_mode);
2042}
2043
2044inline bool
2045subreg_shape::operator != (const subreg_shape &other) const
2046{
2047 return !operator == (other);
2048}
2049
2050/* Return an integer that uniquely identifies this shape. Structures
2051 like rtx_def assume that a mode can fit in an 8-bit bitfield and no
2052 current mode is anywhere near being 65536 bytes in size, so the
2053 id comfortably fits in an int. */
2054
2055inline unsigned int
2056subreg_shape::unique_id () const
2057{
2058 STATIC_ASSERT (MAX_MACHINE_MODE <= 256);
2059 return (int) inner_mode + ((int) outer_mode << 8) + (offset << 16);
2060}
2061
2062/* Return the shape of a SUBREG rtx. */
2063
2064static inline subreg_shape
2065shape_of_subreg (const_rtx x)
2066{
2067 return subreg_shape (GET_MODE (SUBREG_REG (x)),
2068 SUBREG_BYTE (x), GET_MODE (x));
2069}
2070
2071/* Information about an address. This structure is supposed to be able
2072 to represent all supported target addresses. Please extend it if it
2073 is not yet general enough. */
2074struct address_info {
2075 /* The mode of the value being addressed, or VOIDmode if this is
2076 a load-address operation with no known address mode. */
2077 machine_mode mode;
2078
2079 /* The address space. */
2080 addr_space_t as;
2081
2082 /* True if this is an RTX_AUTOINC address. */
2083 bool autoinc_p;
2084
2085 /* A pointer to the top-level address. */
2086 rtx *outer;
2087
2088 /* A pointer to the inner address, after all address mutations
2089 have been stripped from the top-level address. It can be one
2090 of the following:
2091
2092 - A {PRE,POST}_{INC,DEC} of *BASE. SEGMENT, INDEX and DISP are null.
2093
2094 - A {PRE,POST}_MODIFY of *BASE. In this case either INDEX or DISP
2095 points to the step value, depending on whether the step is variable
2096 or constant respectively. SEGMENT is null.
2097
2098 - A plain sum of the form SEGMENT + BASE + INDEX + DISP,
2099 with null fields evaluating to 0. */
2100 rtx *inner;
2101
2102 /* Components that make up *INNER. Each one may be null or nonnull.
2103 When nonnull, their meanings are as follows:
2104
2105 - *SEGMENT is the "segment" of memory to which the address refers.
2106 This value is entirely target-specific and is only called a "segment"
2107 because that's its most typical use. It contains exactly one UNSPEC,
2108 pointed to by SEGMENT_TERM. The contents of *SEGMENT do not need
2109 reloading.
2110
2111 - *BASE is a variable expression representing a base address.
2112 It contains exactly one REG, SUBREG or MEM, pointed to by BASE_TERM.
2113
2114 - *INDEX is a variable expression representing an index value.
2115 It may be a scaled expression, such as a MULT. It has exactly
2116 one REG, SUBREG or MEM, pointed to by INDEX_TERM.
2117
2118 - *DISP is a constant, possibly mutated. DISP_TERM points to the
2119 unmutated RTX_CONST_OBJ. */
2120 rtx *segment;
2121 rtx *base;
2122 rtx *index;
2123 rtx *disp;
2124
2125 rtx *segment_term;
2126 rtx *base_term;
2127 rtx *index_term;
2128 rtx *disp_term;
2129
2130 /* In a {PRE,POST}_MODIFY address, this points to a second copy
2131 of BASE_TERM, otherwise it is null. */
2132 rtx *base_term2;
2133
2134 /* ADDRESS if this structure describes an address operand, MEM if
2135 it describes a MEM address. */
2136 enum rtx_code addr_outer_code;
2137
2138 /* If BASE is nonnull, this is the code of the rtx that contains it. */
2139 enum rtx_code base_outer_code;
2140};
2141
2142/* This is used to bundle an rtx and a mode together so that the pair
2143 can be used with the wi:: routines. If we ever put modes into rtx
2144 integer constants, this should go away and then just pass an rtx in. */
2145typedef std::pair <rtx, machine_mode> rtx_mode_t;
2146
2147namespace wi
2148{
2149 template <>
2150 struct int_traits <rtx_mode_t>
2151 {
2152 static const enum precision_type precision_type = VAR_PRECISION;
2153 static const bool host_dependent_precision = false;
2154 /* This ought to be true, except for the special case that BImode
2155 is canonicalized to STORE_FLAG_VALUE, which might be 1. */
2156 static const bool is_sign_extended = false;
2157 static unsigned int get_precision (const rtx_mode_t &);
2158 static wi::storage_ref decompose (HOST_WIDE_INT *, unsigned int,
2159 const rtx_mode_t &);
2160 };
2161}
2162
2163inline unsigned int
2164wi::int_traits <rtx_mode_t>::get_precision (const rtx_mode_t &x)
2165{
2166 return GET_MODE_PRECISION (as_a <scalar_mode> (x.second));
2167}
2168
2169inline wi::storage_ref
2170wi::int_traits <rtx_mode_t>::decompose (HOST_WIDE_INT *,
2171 unsigned int precision,
2172 const rtx_mode_t &x)
2173{
2174 gcc_checking_assert (precision == get_precision (x));
2175 switch (GET_CODE (x.first))
2176 {
2177 case CONST_INT:
2178 if (precision < HOST_BITS_PER_WIDE_INT)
2179 /* Nonzero BImodes are stored as STORE_FLAG_VALUE, which on many
2180 targets is 1 rather than -1. */
2181 gcc_checking_assert (INTVAL (x.first)
2182 == sext_hwi (INTVAL (x.first), precision)
2183 || (x.second == BImode && INTVAL (x.first) == 1));
2184
2185 return wi::storage_ref (&INTVAL (x.first), 1, precision);
2186
2187 case CONST_WIDE_INT:
2188 return wi::storage_ref (&CONST_WIDE_INT_ELT (x.first, 0),
2189 CONST_WIDE_INT_NUNITS (x.first), precision);
2190
2191#if TARGET_SUPPORTS_WIDE_INT == 0
2192 case CONST_DOUBLE:
2193 return wi::storage_ref (&CONST_DOUBLE_LOW (x.first), 2, precision);
2194#endif
2195
2196 default:
2197 gcc_unreachable ();
2198 }
2199}
2200
2201namespace wi
2202{
2203 hwi_with_prec shwi (HOST_WIDE_INT, machine_mode mode);
2204 wide_int min_value (machine_mode, signop);
2205 wide_int max_value (machine_mode, signop);
2206}
2207
2208inline wi::hwi_with_prec
2209wi::shwi (HOST_WIDE_INT val, machine_mode mode)
2210{
2211 return shwi (val, GET_MODE_PRECISION (as_a <scalar_mode> (mode)));
2212}
2213
2214/* Produce the smallest number that is represented in MODE. The precision
2215 is taken from MODE and the sign from SGN. */
2216inline wide_int
2217wi::min_value (machine_mode mode, signop sgn)
2218{
2219 return min_value (GET_MODE_PRECISION (as_a <scalar_mode> (mode)), sgn);
2220}
2221
2222/* Produce the largest number that is represented in MODE. The precision
2223 is taken from MODE and the sign from SGN. */
2224inline wide_int
2225wi::max_value (machine_mode mode, signop sgn)
2226{
2227 return max_value (GET_MODE_PRECISION (as_a <scalar_mode> (mode)), sgn);
2228}
2229
2230extern void init_rtlanal (void);
2231extern int rtx_cost (rtx, machine_mode, enum rtx_code, int, bool);
2232extern int address_cost (rtx, machine_mode, addr_space_t, bool);
2233extern void get_full_rtx_cost (rtx, machine_mode, enum rtx_code, int,
2234 struct full_rtx_costs *);
2235extern unsigned int subreg_lsb (const_rtx);
2236extern unsigned int subreg_lsb_1 (machine_mode, machine_mode,
2237 unsigned int);
2238extern unsigned int subreg_size_offset_from_lsb (unsigned int, unsigned int,
2239 unsigned int);
2240extern bool read_modify_subreg_p (const_rtx);
2241
2242/* Return the subreg byte offset for a subreg whose outer mode is
2243 OUTER_MODE, whose inner mode is INNER_MODE, and where there are
2244 LSB_SHIFT *bits* between the lsb of the outer value and the lsb of
2245 the inner value. This is the inverse of subreg_lsb_1 (which converts
2246 byte offsets to bit shifts). */
2247
2248inline unsigned int
2249subreg_offset_from_lsb (machine_mode outer_mode,
2250 machine_mode inner_mode,
2251 unsigned int lsb_shift)
2252{
2253 return subreg_size_offset_from_lsb (GET_MODE_SIZE (outer_mode),
2254 GET_MODE_SIZE (inner_mode), lsb_shift);
2255}
2256
2257extern unsigned int subreg_regno_offset (unsigned int, machine_mode,
2258 unsigned int, machine_mode);
2259extern bool subreg_offset_representable_p (unsigned int, machine_mode,
2260 unsigned int, machine_mode);
2261extern unsigned int subreg_regno (const_rtx);
2262extern int simplify_subreg_regno (unsigned int, machine_mode,
2263 unsigned int, machine_mode);
2264extern unsigned int subreg_nregs (const_rtx);
2265extern unsigned int subreg_nregs_with_regno (unsigned int, const_rtx);
2266extern unsigned HOST_WIDE_INT nonzero_bits (const_rtx, machine_mode);
2267extern unsigned int num_sign_bit_copies (const_rtx, machine_mode);
2268extern bool constant_pool_constant_p (rtx);
2269extern bool truncated_to_mode (machine_mode, const_rtx);
2270extern int low_bitmask_len (machine_mode, unsigned HOST_WIDE_INT);
2271extern void split_double (rtx, rtx *, rtx *);
2272extern rtx *strip_address_mutations (rtx *, enum rtx_code * = 0);
2273extern void decompose_address (struct address_info *, rtx *,
2274 machine_mode, addr_space_t, enum rtx_code);
2275extern void decompose_lea_address (struct address_info *, rtx *);
2276extern void decompose_mem_address (struct address_info *, rtx);
2277extern void update_address (struct address_info *);
2278extern HOST_WIDE_INT get_index_scale (const struct address_info *);
2279extern enum rtx_code get_index_code (const struct address_info *);
2280
2281/* 1 if RTX is a subreg containing a reg that is already known to be
2282 sign- or zero-extended from the mode of the subreg to the mode of
2283 the reg. SUBREG_PROMOTED_UNSIGNED_P gives the signedness of the
2284 extension.
2285
2286 When used as a LHS, is means that this extension must be done
2287 when assigning to SUBREG_REG. */
2288
2289#define SUBREG_PROMOTED_VAR_P(RTX) \
2290 (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED", (RTX), SUBREG)->in_struct)
2291
2292/* Valid for subregs which are SUBREG_PROMOTED_VAR_P(). In that case
2293 this gives the necessary extensions:
2294 0 - signed (SPR_SIGNED)
2295 1 - normal unsigned (SPR_UNSIGNED)
2296 2 - value is both sign and unsign extended for mode
2297 (SPR_SIGNED_AND_UNSIGNED).
2298 -1 - pointer unsigned, which most often can be handled like unsigned
2299 extension, except for generating instructions where we need to
2300 emit special code (ptr_extend insns) on some architectures
2301 (SPR_POINTER). */
2302
2303const int SRP_POINTER = -1;
2304const int SRP_SIGNED = 0;
2305const int SRP_UNSIGNED = 1;
2306const int SRP_SIGNED_AND_UNSIGNED = 2;
2307
2308/* Sets promoted mode for SUBREG_PROMOTED_VAR_P(). */
2309#define SUBREG_PROMOTED_SET(RTX, VAL) \
2310do { \
2311 rtx const _rtx = RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SET", \
2312 (RTX), SUBREG); \
2313 switch (VAL) \
2314 { \
2315 case SRP_POINTER: \
2316 _rtx->volatil = 0; \
2317 _rtx->unchanging = 0; \
2318 break; \
2319 case SRP_SIGNED: \
2320 _rtx->volatil = 0; \
2321 _rtx->unchanging = 1; \
2322 break; \
2323 case SRP_UNSIGNED: \
2324 _rtx->volatil = 1; \
2325 _rtx->unchanging = 0; \
2326 break; \
2327 case SRP_SIGNED_AND_UNSIGNED: \
2328 _rtx->volatil = 1; \
2329 _rtx->unchanging = 1; \
2330 break; \
2331 } \
2332} while (0)
2333
2334/* Gets the value stored in promoted mode for SUBREG_PROMOTED_VAR_P(),
2335 including SRP_SIGNED_AND_UNSIGNED if promoted for
2336 both signed and unsigned. */
2337#define SUBREG_PROMOTED_GET(RTX) \
2338 (2 * (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_GET", (RTX), SUBREG)->volatil)\
2339 + (RTX)->unchanging - 1)
2340
2341/* Returns sign of promoted mode for SUBREG_PROMOTED_VAR_P(). */
2342#define SUBREG_PROMOTED_SIGN(RTX) \
2343 ((RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SIGN", (RTX), SUBREG)->volatil) ? 1\
2344 : (RTX)->unchanging - 1)
2345
2346/* Predicate to check if RTX of SUBREG_PROMOTED_VAR_P() is promoted
2347 for SIGNED type. */
2348#define SUBREG_PROMOTED_SIGNED_P(RTX) \
2349 (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SIGNED_P", (RTX), SUBREG)->unchanging)
2350
2351/* Predicate to check if RTX of SUBREG_PROMOTED_VAR_P() is promoted
2352 for UNSIGNED type. */
2353#define SUBREG_PROMOTED_UNSIGNED_P(RTX) \
2354 (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_UNSIGNED_P", (RTX), SUBREG)->volatil)
2355
2356/* Checks if RTX of SUBREG_PROMOTED_VAR_P() is promoted for given SIGN. */
2357#define SUBREG_CHECK_PROMOTED_SIGN(RTX, SIGN) \
2358((SIGN) == SRP_POINTER ? SUBREG_PROMOTED_GET (RTX) == SRP_POINTER \
2359 : (SIGN) == SRP_SIGNED ? SUBREG_PROMOTED_SIGNED_P (RTX) \
2360 : SUBREG_PROMOTED_UNSIGNED_P (RTX))
2361
2362/* True if the REG is the static chain register for some CALL_INSN. */
2363#define STATIC_CHAIN_REG_P(RTX) \
2364 (RTL_FLAG_CHECK1 ("STATIC_CHAIN_REG_P", (RTX), REG)->jump)
2365
2366/* True if the subreg was generated by LRA for reload insns. Such
2367 subregs are valid only during LRA. */
2368#define LRA_SUBREG_P(RTX) \
2369 (RTL_FLAG_CHECK1 ("LRA_SUBREG_P", (RTX), SUBREG)->jump)
2370
2371/* True if call is instrumented by Pointer Bounds Checker. */
2372#define CALL_EXPR_WITH_BOUNDS_P(RTX) \
2373 (RTL_FLAG_CHECK1 ("CALL_EXPR_WITH_BOUNDS_P", (RTX), CALL)->jump)
2374
2375/* Access various components of an ASM_OPERANDS rtx. */
2376
2377#define ASM_OPERANDS_TEMPLATE(RTX) XCSTR (RTX, 0, ASM_OPERANDS)
2378#define ASM_OPERANDS_OUTPUT_CONSTRAINT(RTX) XCSTR (RTX, 1, ASM_OPERANDS)
2379#define ASM_OPERANDS_OUTPUT_IDX(RTX) XCINT (RTX, 2, ASM_OPERANDS)
2380#define ASM_OPERANDS_INPUT_VEC(RTX) XCVEC (RTX, 3, ASM_OPERANDS)
2381#define ASM_OPERANDS_INPUT_CONSTRAINT_VEC(RTX) XCVEC (RTX, 4, ASM_OPERANDS)
2382#define ASM_OPERANDS_INPUT(RTX, N) XCVECEXP (RTX, 3, N, ASM_OPERANDS)
2383#define ASM_OPERANDS_INPUT_LENGTH(RTX) XCVECLEN (RTX, 3, ASM_OPERANDS)
2384#define ASM_OPERANDS_INPUT_CONSTRAINT_EXP(RTX, N) \
2385 XCVECEXP (RTX, 4, N, ASM_OPERANDS)
2386#define ASM_OPERANDS_INPUT_CONSTRAINT(RTX, N) \
2387 XSTR (XCVECEXP (RTX, 4, N, ASM_OPERANDS), 0)
2388#define ASM_OPERANDS_INPUT_MODE(RTX, N) \
2389 GET_MODE (XCVECEXP (RTX, 4, N, ASM_OPERANDS))
2390#define ASM_OPERANDS_LABEL_VEC(RTX) XCVEC (RTX, 5, ASM_OPERANDS)
2391#define ASM_OPERANDS_LABEL_LENGTH(RTX) XCVECLEN (RTX, 5, ASM_OPERANDS)
2392#define ASM_OPERANDS_LABEL(RTX, N) XCVECEXP (RTX, 5, N, ASM_OPERANDS)
2393#define ASM_OPERANDS_SOURCE_LOCATION(RTX) XCUINT (RTX, 6, ASM_OPERANDS)
2394#define ASM_INPUT_SOURCE_LOCATION(RTX) XCUINT (RTX, 1, ASM_INPUT)
2395
2396/* 1 if RTX is a mem that is statically allocated in read-only memory. */
2397#define MEM_READONLY_P(RTX) \
2398 (RTL_FLAG_CHECK1 ("MEM_READONLY_P", (RTX), MEM)->unchanging)
2399
2400/* 1 if RTX is a mem and we should keep the alias set for this mem
2401 unchanged when we access a component. Set to 1, or example, when we
2402 are already in a non-addressable component of an aggregate. */
2403#define MEM_KEEP_ALIAS_SET_P(RTX) \
2404 (RTL_FLAG_CHECK1 ("MEM_KEEP_ALIAS_SET_P", (RTX), MEM)->jump)
2405
2406/* 1 if RTX is a mem or asm_operand for a volatile reference. */
2407#define MEM_VOLATILE_P(RTX) \
2408 (RTL_FLAG_CHECK3 ("MEM_VOLATILE_P", (RTX), MEM, ASM_OPERANDS, \
2409 ASM_INPUT)->volatil)
2410
2411/* 1 if RTX is a mem that cannot trap. */
2412#define MEM_NOTRAP_P(RTX) \
2413 (RTL_FLAG_CHECK1 ("MEM_NOTRAP_P", (RTX), MEM)->call)
2414
2415/* The memory attribute block. We provide access macros for each value
2416 in the block and provide defaults if none specified. */
2417#define MEM_ATTRS(RTX) X0MEMATTR (RTX, 1)
2418
2419/* The register attribute block. We provide access macros for each value
2420 in the block and provide defaults if none specified. */
2421#define REG_ATTRS(RTX) (REG_CHECK (RTX)->attrs)
2422
2423#ifndef GENERATOR_FILE
2424/* For a MEM rtx, the alias set. If 0, this MEM is not in any alias
2425 set, and may alias anything. Otherwise, the MEM can only alias
2426 MEMs in a conflicting alias set. This value is set in a
2427 language-dependent manner in the front-end, and should not be
2428 altered in the back-end. These set numbers are tested with
2429 alias_sets_conflict_p. */
2430#define MEM_ALIAS_SET(RTX) (get_mem_attrs (RTX)->alias)
2431
2432/* For a MEM rtx, the decl it is known to refer to, if it is known to
2433 refer to part of a DECL. It may also be a COMPONENT_REF. */
2434#define MEM_EXPR(RTX) (get_mem_attrs (RTX)->expr)
2435
2436/* For a MEM rtx, true if its MEM_OFFSET is known. */
2437#define MEM_OFFSET_KNOWN_P(RTX) (get_mem_attrs (RTX)->offset_known_p)
2438
2439/* For a MEM rtx, the offset from the start of MEM_EXPR. */
2440#define MEM_OFFSET(RTX) (get_mem_attrs (RTX)->offset)
2441
2442/* For a MEM rtx, the address space. */
2443#define MEM_ADDR_SPACE(RTX) (get_mem_attrs (RTX)->addrspace)
2444
2445/* For a MEM rtx, true if its MEM_SIZE is known. */
2446#define MEM_SIZE_KNOWN_P(RTX) (get_mem_attrs (RTX)->size_known_p)
2447
2448/* For a MEM rtx, the size in bytes of the MEM. */
2449#define MEM_SIZE(RTX) (get_mem_attrs (RTX)->size)
2450
2451/* For a MEM rtx, the alignment in bits. We can use the alignment of the
2452 mode as a default when STRICT_ALIGNMENT, but not if not. */
2453#define MEM_ALIGN(RTX) (get_mem_attrs (RTX)->align)
2454#else
2455#define MEM_ADDR_SPACE(RTX) ADDR_SPACE_GENERIC
2456#endif
2457
2458/* For a REG rtx, the decl it is known to refer to, if it is known to
2459 refer to part of a DECL. */
2460#define REG_EXPR(RTX) (REG_ATTRS (RTX) == 0 ? 0 : REG_ATTRS (RTX)->decl)
2461
2462/* For a REG rtx, the offset from the start of REG_EXPR, if known, as an
2463 HOST_WIDE_INT. */
2464#define REG_OFFSET(RTX) (REG_ATTRS (RTX) == 0 ? 0 : REG_ATTRS (RTX)->offset)
2465
2466/* Copy the attributes that apply to memory locations from RHS to LHS. */
2467#define MEM_COPY_ATTRIBUTES(LHS, RHS) \
2468 (MEM_VOLATILE_P (LHS) = MEM_VOLATILE_P (RHS), \
2469 MEM_NOTRAP_P (LHS) = MEM_NOTRAP_P (RHS), \
2470 MEM_READONLY_P (LHS) = MEM_READONLY_P (RHS), \
2471 MEM_KEEP_ALIAS_SET_P (LHS) = MEM_KEEP_ALIAS_SET_P (RHS), \
2472 MEM_POINTER (LHS) = MEM_POINTER (RHS), \
2473 MEM_ATTRS (LHS) = MEM_ATTRS (RHS))
2474
2475/* 1 if RTX is a label_ref for a nonlocal label. */
2476/* Likewise in an expr_list for a REG_LABEL_OPERAND or
2477 REG_LABEL_TARGET note. */
2478#define LABEL_REF_NONLOCAL_P(RTX) \
2479 (RTL_FLAG_CHECK1 ("LABEL_REF_NONLOCAL_P", (RTX), LABEL_REF)->volatil)
2480
2481/* 1 if RTX is a code_label that should always be considered to be needed. */
2482#define LABEL_PRESERVE_P(RTX) \
2483 (RTL_FLAG_CHECK2 ("LABEL_PRESERVE_P", (RTX), CODE_LABEL, NOTE)->in_struct)
2484
2485/* During sched, 1 if RTX is an insn that must be scheduled together
2486 with the preceding insn. */
2487#define SCHED_GROUP_P(RTX) \
2488 (RTL_FLAG_CHECK4 ("SCHED_GROUP_P", (RTX), DEBUG_INSN, INSN, \
2489 JUMP_INSN, CALL_INSN)->in_struct)
2490
2491/* For a SET rtx, SET_DEST is the place that is set
2492 and SET_SRC is the value it is set to. */
2493#define SET_DEST(RTX) XC2EXP (RTX, 0, SET, CLOBBER)
2494#define SET_SRC(RTX) XCEXP (RTX, 1, SET)
2495#define SET_IS_RETURN_P(RTX) \
2496 (RTL_FLAG_CHECK1 ("SET_IS_RETURN_P", (RTX), SET)->jump)
2497
2498/* For a TRAP_IF rtx, TRAP_CONDITION is an expression. */
2499#define TRAP_CONDITION(RTX) XCEXP (RTX, 0, TRAP_IF)
2500#define TRAP_CODE(RTX) XCEXP (RTX, 1, TRAP_IF)
2501
2502/* For a COND_EXEC rtx, COND_EXEC_TEST is the condition to base
2503 conditionally executing the code on, COND_EXEC_CODE is the code
2504 to execute if the condition is true. */
2505#define COND_EXEC_TEST(RTX) XCEXP (RTX, 0, COND_EXEC)
2506#define COND_EXEC_CODE(RTX) XCEXP (RTX, 1, COND_EXEC)
2507
2508/* 1 if RTX is a symbol_ref that addresses this function's rtl
2509 constants pool. */
2510#define CONSTANT_POOL_ADDRESS_P(RTX) \
2511 (RTL_FLAG_CHECK1 ("CONSTANT_POOL_ADDRESS_P", (RTX), SYMBOL_REF)->unchanging)
2512
2513/* 1 if RTX is a symbol_ref that addresses a value in the file's
2514 tree constant pool. This information is private to varasm.c. */
2515#define TREE_CONSTANT_POOL_ADDRESS_P(RTX) \
2516 (RTL_FLAG_CHECK1 ("TREE_CONSTANT_POOL_ADDRESS_P", \
2517 (RTX), SYMBOL_REF)->frame_related)
2518
2519/* Used if RTX is a symbol_ref, for machine-specific purposes. */
2520#define SYMBOL_REF_FLAG(RTX) \
2521 (RTL_FLAG_CHECK1 ("SYMBOL_REF_FLAG", (RTX), SYMBOL_REF)->volatil)
2522
2523/* 1 if RTX is a symbol_ref that has been the library function in
2524 emit_library_call. */
2525#define SYMBOL_REF_USED(RTX) \
2526 (RTL_FLAG_CHECK1 ("SYMBOL_REF_USED", (RTX), SYMBOL_REF)->used)
2527
2528/* 1 if RTX is a symbol_ref for a weak symbol. */
2529#define SYMBOL_REF_WEAK(RTX) \
2530 (RTL_FLAG_CHECK1 ("SYMBOL_REF_WEAK", (RTX), SYMBOL_REF)->return_val)
2531
2532/* A pointer attached to the SYMBOL_REF; either SYMBOL_REF_DECL or
2533 SYMBOL_REF_CONSTANT. */
2534#define SYMBOL_REF_DATA(RTX) X0ANY ((RTX), 1)
2535
2536/* Set RTX's SYMBOL_REF_DECL to DECL. RTX must not be a constant
2537 pool symbol. */
2538#define SET_SYMBOL_REF_DECL(RTX, DECL) \
2539 (gcc_assert (!CONSTANT_POOL_ADDRESS_P (RTX)), X0TREE ((RTX), 1) = (DECL))
2540
2541/* The tree (decl or constant) associated with the symbol, or null. */
2542#define SYMBOL_REF_DECL(RTX) \
2543 (CONSTANT_POOL_ADDRESS_P (RTX) ? NULL : X0TREE ((RTX), 1))
2544
2545/* Set RTX's SYMBOL_REF_CONSTANT to C. RTX must be a constant pool symbol. */
2546#define SET_SYMBOL_REF_CONSTANT(RTX, C) \
2547 (gcc_assert (CONSTANT_POOL_ADDRESS_P (RTX)), X0CONSTANT ((RTX), 1) = (C))
2548
2549/* The rtx constant pool entry for a symbol, or null. */
2550#define SYMBOL_REF_CONSTANT(RTX) \
2551 (CONSTANT_POOL_ADDRESS_P (RTX) ? X0CONSTANT ((RTX), 1) : NULL)
2552
2553/* A set of flags on a symbol_ref that are, in some respects, redundant with
2554 information derivable from the tree decl associated with this symbol.
2555 Except that we build a *lot* of SYMBOL_REFs that aren't associated with a
2556 decl. In some cases this is a bug. But beyond that, it's nice to cache
2557 this information to avoid recomputing it. Finally, this allows space for
2558 the target to store more than one bit of information, as with
2559 SYMBOL_REF_FLAG. */
2560#define SYMBOL_REF_FLAGS(RTX) \
2561 (RTL_FLAG_CHECK1 ("SYMBOL_REF_FLAGS", (RTX), SYMBOL_REF) \
2562 ->u2.symbol_ref_flags)
2563
2564/* These flags are common enough to be defined for all targets. They
2565 are computed by the default version of targetm.encode_section_info. */
2566
2567/* Set if this symbol is a function. */
2568#define SYMBOL_FLAG_FUNCTION (1 << 0)
2569#define SYMBOL_REF_FUNCTION_P(RTX) \
2570 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_FUNCTION) != 0)
2571/* Set if targetm.binds_local_p is true. */
2572#define SYMBOL_FLAG_LOCAL (1 << 1)
2573#define SYMBOL_REF_LOCAL_P(RTX) \
2574 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_LOCAL) != 0)
2575/* Set if targetm.in_small_data_p is true. */
2576#define SYMBOL_FLAG_SMALL (1 << 2)
2577#define SYMBOL_REF_SMALL_P(RTX) \
2578 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_SMALL) != 0)
2579/* The three-bit field at [5:3] is true for TLS variables; use
2580 SYMBOL_REF_TLS_MODEL to extract the field as an enum tls_model. */
2581#define SYMBOL_FLAG_TLS_SHIFT 3
2582#define SYMBOL_REF_TLS_MODEL(RTX) \
2583 ((enum tls_model) ((SYMBOL_REF_FLAGS (RTX) >> SYMBOL_FLAG_TLS_SHIFT) & 7))
2584/* Set if this symbol is not defined in this translation unit. */
2585#define SYMBOL_FLAG_EXTERNAL (1 << 6)
2586#define SYMBOL_REF_EXTERNAL_P(RTX) \
2587 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_EXTERNAL) != 0)
2588/* Set if this symbol has a block_symbol structure associated with it. */
2589#define SYMBOL_FLAG_HAS_BLOCK_INFO (1 << 7)
2590#define SYMBOL_REF_HAS_BLOCK_INFO_P(RTX) \
2591 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_HAS_BLOCK_INFO) != 0)
2592/* Set if this symbol is a section anchor. SYMBOL_REF_ANCHOR_P implies
2593 SYMBOL_REF_HAS_BLOCK_INFO_P. */
2594#define SYMBOL_FLAG_ANCHOR (1 << 8)
2595#define SYMBOL_REF_ANCHOR_P(RTX) \
2596 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_ANCHOR) != 0)
2597
2598/* Subsequent bits are available for the target to use. */
2599#define SYMBOL_FLAG_MACH_DEP_SHIFT 9
2600#define SYMBOL_FLAG_MACH_DEP (1 << SYMBOL_FLAG_MACH_DEP_SHIFT)
2601
2602/* If SYMBOL_REF_HAS_BLOCK_INFO_P (RTX), this is the object_block
2603 structure to which the symbol belongs, or NULL if it has not been
2604 assigned a block. */
2605#define SYMBOL_REF_BLOCK(RTX) (BLOCK_SYMBOL_CHECK (RTX)->block)
2606
2607/* If SYMBOL_REF_HAS_BLOCK_INFO_P (RTX), this is the offset of RTX from
2608 the first object in SYMBOL_REF_BLOCK (RTX). The value is negative if
2609 RTX has not yet been assigned to a block, or it has not been given an
2610 offset within that block. */
2611#define SYMBOL_REF_BLOCK_OFFSET(RTX) (BLOCK_SYMBOL_CHECK (RTX)->offset)
2612
2613/* True if RTX is flagged to be a scheduling barrier. */
2614#define PREFETCH_SCHEDULE_BARRIER_P(RTX) \
2615 (RTL_FLAG_CHECK1 ("PREFETCH_SCHEDULE_BARRIER_P", (RTX), PREFETCH)->volatil)
2616
2617/* Indicate whether the machine has any sort of auto increment addressing.
2618 If not, we can avoid checking for REG_INC notes. */
2619
2620#if (defined (HAVE_PRE_INCREMENT) || defined (HAVE_PRE_DECREMENT) \
2621 || defined (HAVE_POST_INCREMENT) || defined (HAVE_POST_DECREMENT) \
2622 || defined (HAVE_PRE_MODIFY_DISP) || defined (HAVE_POST_MODIFY_DISP) \
2623 || defined (HAVE_PRE_MODIFY_REG) || defined (HAVE_POST_MODIFY_REG))
2624#define AUTO_INC_DEC 1
2625#else
2626#define AUTO_INC_DEC 0
2627#endif
2628
2629/* Define a macro to look for REG_INC notes,
2630 but save time on machines where they never exist. */
2631
2632#if AUTO_INC_DEC
2633#define FIND_REG_INC_NOTE(INSN, REG) \
2634 ((REG) != NULL_RTX && REG_P ((REG)) \
2635 ? find_regno_note ((INSN), REG_INC, REGNO (REG)) \
2636 : find_reg_note ((INSN), REG_INC, (REG)))
2637#else
2638#define FIND_REG_INC_NOTE(INSN, REG) 0
2639#endif
2640
2641#ifndef HAVE_PRE_INCREMENT
2642#define HAVE_PRE_INCREMENT 0
2643#endif
2644
2645#ifndef HAVE_PRE_DECREMENT
2646#define HAVE_PRE_DECREMENT 0
2647#endif
2648
2649#ifndef HAVE_POST_INCREMENT
2650#define HAVE_POST_INCREMENT 0
2651#endif
2652
2653#ifndef HAVE_POST_DECREMENT
2654#define HAVE_POST_DECREMENT 0
2655#endif
2656
2657#ifndef HAVE_POST_MODIFY_DISP
2658#define HAVE_POST_MODIFY_DISP 0
2659#endif
2660
2661#ifndef HAVE_POST_MODIFY_REG
2662#define HAVE_POST_MODIFY_REG 0
2663#endif
2664
2665#ifndef HAVE_PRE_MODIFY_DISP
2666#define HAVE_PRE_MODIFY_DISP 0
2667#endif
2668
2669#ifndef HAVE_PRE_MODIFY_REG
2670#define HAVE_PRE_MODIFY_REG 0
2671#endif
2672
2673
2674/* Some architectures do not have complete pre/post increment/decrement
2675 instruction sets, or only move some modes efficiently. These macros
2676 allow us to tune autoincrement generation. */
2677
2678#ifndef USE_LOAD_POST_INCREMENT
2679#define USE_LOAD_POST_INCREMENT(MODE) HAVE_POST_INCREMENT
2680#endif
2681
2682#ifndef USE_LOAD_POST_DECREMENT
2683#define USE_LOAD_POST_DECREMENT(MODE) HAVE_POST_DECREMENT
2684#endif
2685
2686#ifndef USE_LOAD_PRE_INCREMENT
2687#define USE_LOAD_PRE_INCREMENT(MODE) HAVE_PRE_INCREMENT
2688#endif
2689
2690#ifndef USE_LOAD_PRE_DECREMENT
2691#define USE_LOAD_PRE_DECREMENT(MODE) HAVE_PRE_DECREMENT
2692#endif
2693
2694#ifndef USE_STORE_POST_INCREMENT
2695#define USE_STORE_POST_INCREMENT(MODE) HAVE_POST_INCREMENT
2696#endif
2697
2698#ifndef USE_STORE_POST_DECREMENT
2699#define USE_STORE_POST_DECREMENT(MODE) HAVE_POST_DECREMENT
2700#endif
2701
2702#ifndef USE_STORE_PRE_INCREMENT
2703#define USE_STORE_PRE_INCREMENT(MODE) HAVE_PRE_INCREMENT
2704#endif
2705
2706#ifndef USE_STORE_PRE_DECREMENT
2707#define USE_STORE_PRE_DECREMENT(MODE) HAVE_PRE_DECREMENT
2708#endif
2709
2710/* Nonzero when we are generating CONCATs. */
2711extern int generating_concat_p;
2712
2713/* Nonzero when we are expanding trees to RTL. */
2714extern int currently_expanding_to_rtl;
2715
2716/* Generally useful functions. */
2717
2718#ifndef GENERATOR_FILE
2719/* Return the cost of SET X. SPEED_P is true if optimizing for speed
2720 rather than size. */
2721
2722static inline int
2723set_rtx_cost (rtx x, bool speed_p)
2724{
2725 return rtx_cost (x, VOIDmode, INSN, 4, speed_p);
2726}
2727
2728/* Like set_rtx_cost, but return both the speed and size costs in C. */
2729
2730static inline void
2731get_full_set_rtx_cost (rtx x, struct full_rtx_costs *c)
2732{
2733 get_full_rtx_cost (x, VOIDmode, INSN, 4, c);
2734}
2735
2736/* Return the cost of moving X into a register, relative to the cost
2737 of a register move. SPEED_P is true if optimizing for speed rather
2738 than size. */
2739
2740static inline int
2741set_src_cost (rtx x, machine_mode mode, bool speed_p)
2742{
2743 return rtx_cost (x, mode, SET, 1, speed_p);
2744}
2745
2746/* Like set_src_cost, but return both the speed and size costs in C. */
2747
2748static inline void
2749get_full_set_src_cost (rtx x, machine_mode mode, struct full_rtx_costs *c)
2750{
2751 get_full_rtx_cost (x, mode, SET, 1, c);
2752}
2753#endif
2754
2755/* A convenience macro to validate the arguments of a zero_extract
2756 expression. It determines whether SIZE lies inclusively within
2757 [1, RANGE], POS lies inclusively within between [0, RANGE - 1]
2758 and the sum lies inclusively within [1, RANGE]. RANGE must be
2759 >= 1, but SIZE and POS may be negative. */
2760#define EXTRACT_ARGS_IN_RANGE(SIZE, POS, RANGE) \
2761 (IN_RANGE ((POS), 0, (unsigned HOST_WIDE_INT) (RANGE) - 1) \
2762 && IN_RANGE ((SIZE), 1, (unsigned HOST_WIDE_INT) (RANGE) \
2763 - (unsigned HOST_WIDE_INT)(POS)))
2764
2765/* In explow.c */
2766extern HOST_WIDE_INT trunc_int_for_mode (HOST_WIDE_INT, machine_mode);
2767extern rtx plus_constant (machine_mode, rtx, HOST_WIDE_INT, bool = false);
2768extern HOST_WIDE_INT get_stack_check_protect (void);
2769
2770/* In rtl.c */
2771extern rtx rtx_alloc (RTX_CODE CXX_MEM_STAT_INFO);
2772extern rtx rtx_alloc_stat_v (RTX_CODE MEM_STAT_DECL, int);
2773#define rtx_alloc_v(c, SZ) rtx_alloc_stat_v (c MEM_STAT_INFO, SZ)
2774#define const_wide_int_alloc(NWORDS) \
2775 rtx_alloc_v (CONST_WIDE_INT, \
2776 (sizeof (struct hwivec_def) \
2777 + ((NWORDS)-1) * sizeof (HOST_WIDE_INT))) \
2778
2779extern rtvec rtvec_alloc (int);
2780extern rtvec shallow_copy_rtvec (rtvec);
2781extern bool shared_const_p (const_rtx);
2782extern rtx copy_rtx (rtx);
2783extern enum rtx_code classify_insn (rtx);
2784extern void dump_rtx_statistics (void);
2785
2786/* In emit-rtl.c */
2787extern rtx copy_rtx_if_shared (rtx);
2788
2789/* In rtl.c */
2790extern unsigned int rtx_size (const_rtx);
2791extern rtx shallow_copy_rtx (const_rtx CXX_MEM_STAT_INFO);
2792extern int rtx_equal_p (const_rtx, const_rtx);
2793extern bool rtvec_all_equal_p (const_rtvec);
2794
2795/* Return true if X is some form of vector constant. */
2796
2797inline bool
2798const_vec_p (const_rtx x)
2799{
2800 return VECTOR_MODE_P (GET_MODE (x)) && CONSTANT_P (x);
2801}
2802
2803/* Return true if X is a vector constant with a duplicated element value. */
2804
2805inline bool
2806const_vec_duplicate_p (const_rtx x)
2807{
2808 return ((GET_CODE (x) == CONST_VECTOR && rtvec_all_equal_p (XVEC (x, 0)))
2809 || (GET_CODE (x) == CONST
2810 && GET_CODE (XEXP (x, 0)) == VEC_DUPLICATE));
2811}
2812
2813/* Return true if X is a vector constant with a duplicated element value.
2814 Store the duplicated element in *ELT if so. */
2815
2816template <typename T>
2817inline bool
2818const_vec_duplicate_p (T x, T *elt)
2819{
2820 if (GET_CODE (x) == CONST_VECTOR && rtvec_all_equal_p (XVEC (x, 0)))
2821 {
2822 *elt = CONST_VECTOR_ELT (x, 0);
2823 return true;
2824 }
2825 if (GET_CODE (x) == CONST && GET_CODE (XEXP (x, 0)) == VEC_DUPLICATE)
2826 {
2827 *elt = XEXP (XEXP (x, 0), 0);
2828 return true;
2829 }
2830 return false;
2831}
2832
2833/* Return true if X is a vector with a duplicated element value, either
2834 constant or nonconstant. Store the duplicated element in *ELT if so. */
2835
2836template <typename T>
2837inline bool
2838vec_duplicate_p (T x, T *elt)
2839{
2840 if (GET_CODE (x) == VEC_DUPLICATE)
2841 {
2842 *elt = XEXP (x, 0);
2843 return true;
2844 }
2845 return const_vec_duplicate_p (x, elt);
2846}
2847
2848/* If X is a vector constant with a duplicated element value, return that
2849 element value, otherwise return X. */
2850
2851template <typename T>
2852inline T
2853unwrap_const_vec_duplicate (T x)
2854{
2855 if (GET_CODE (x) == CONST_VECTOR && rtvec_all_equal_p (XVEC (x, 0)))
2856 return CONST_VECTOR_ELT (x, 0);
2857 if (GET_CODE (x) == CONST && GET_CODE (XEXP (x, 0)) == VEC_DUPLICATE)
2858 return XEXP (XEXP (x, 0), 0);
2859 return x;
2860}
2861
2862/* In emit-rtl.c. */
2863extern bool const_vec_series_p_1 (const_rtx, rtx *, rtx *);
2864
2865/* Return true if X is a constant vector that contains a linear series
2866 of the form:
2867
2868 { B, B + S, B + 2 * S, B + 3 * S, ... }
2869
2870 for a nonzero S. Store B and S in *BASE_OUT and *STEP_OUT on sucess. */
2871
2872inline bool
2873const_vec_series_p (const_rtx x, rtx *base_out, rtx *step_out)
2874{
2875 if (GET_CODE (x) == CONST_VECTOR
2876 && GET_MODE_CLASS (GET_MODE (x)) == MODE_VECTOR_INT)
2877 return const_vec_series_p_1 (x, base_out, step_out);
2878 if (GET_CODE (x) == CONST && GET_CODE (XEXP (x, 0)) == VEC_SERIES)
2879 {
2880 *base_out = XEXP (XEXP (x, 0), 0);
2881 *step_out = XEXP (XEXP (x, 0), 1);
2882 return true;
2883 }
2884 return false;
2885}
2886
2887/* Return true if X is a vector that contains a linear series of the
2888 form:
2889
2890 { B, B + S, B + 2 * S, B + 3 * S, ... }
2891
2892 where B and S are constant or nonconstant. Store B and S in
2893 *BASE_OUT and *STEP_OUT on sucess. */
2894
2895inline bool
2896vec_series_p (const_rtx x, rtx *base_out, rtx *step_out)
2897{
2898 if (GET_CODE (x) == VEC_SERIES)
2899 {
2900 *base_out = XEXP (x, 0);
2901 *step_out = XEXP (x, 1);
2902 return true;
2903 }
2904 return const_vec_series_p (x, base_out, step_out);
2905}
2906
2907/* Return the unpromoted (outer) mode of SUBREG_PROMOTED_VAR_P subreg X. */
2908
2909inline scalar_int_mode
2910subreg_unpromoted_mode (rtx x)
2911{
2912 gcc_checking_assert (SUBREG_PROMOTED_VAR_P (x));
2913 return as_a <scalar_int_mode> (GET_MODE (x));
2914}
2915
2916/* Return the promoted (inner) mode of SUBREG_PROMOTED_VAR_P subreg X. */
2917
2918inline scalar_int_mode
2919subreg_promoted_mode (rtx x)
2920{
2921 gcc_checking_assert (SUBREG_PROMOTED_VAR_P (x));
2922 return as_a <scalar_int_mode> (GET_MODE (SUBREG_REG (x)));
2923}
2924
2925/* In emit-rtl.c */
2926extern rtvec gen_rtvec_v (int, rtx *);
2927extern rtvec gen_rtvec_v (int, rtx_insn **);
2928extern rtx gen_reg_rtx (machine_mode);
2929extern rtx gen_rtx_REG_offset (rtx, machine_mode, unsigned int, int);
2930extern rtx gen_reg_rtx_offset (rtx, machine_mode, int);
2931extern rtx gen_reg_rtx_and_attrs (rtx);
2932extern rtx_code_label *gen_label_rtx (void);
2933extern rtx gen_lowpart_common (machine_mode, rtx);
2934
2935/* In cse.c */
2936extern rtx gen_lowpart_if_possible (machine_mode, rtx);
2937
2938/* In emit-rtl.c */
2939extern rtx gen_highpart (machine_mode, rtx);
2940extern rtx gen_highpart_mode (machine_mode, machine_mode, rtx);
2941extern rtx operand_subword (rtx, unsigned int, int, machine_mode);
2942
2943/* In emit-rtl.c */
2944extern rtx operand_subword_force (rtx, unsigned int, machine_mode);
2945extern int subreg_lowpart_p (const_rtx);
2946extern unsigned int subreg_size_lowpart_offset (unsigned int, unsigned int);
2947
2948/* Return true if a subreg of mode OUTERMODE would only access part of
2949 an inner register with mode INNERMODE. The other bits of the inner
2950 register would then be "don't care" on read. The behavior for writes
2951 depends on REGMODE_NATURAL_SIZE; bits in the same REGMODE_NATURAL_SIZE-d
2952 chunk would be clobbered but other bits would be preserved. */
2953
2954inline bool
2955partial_subreg_p (machine_mode outermode, machine_mode innermode)
2956{
2957 return GET_MODE_PRECISION (outermode) < GET_MODE_PRECISION (innermode);
2958}
2959
2960/* Likewise return true if X is a subreg that is smaller than the inner
2961 register. Use read_modify_subreg_p to test whether writing to such
2962 a subreg preserves any part of the inner register. */
2963
2964inline bool
2965partial_subreg_p (const_rtx x)
2966{
2967 if (GET_CODE (x) != SUBREG)
2968 return false;
2969 return partial_subreg_p (GET_MODE (x), GET_MODE (SUBREG_REG (x)));
2970}
2971
2972/* Return true if a subreg with the given outer and inner modes is
2973 paradoxical. */
2974
2975inline bool
2976paradoxical_subreg_p (machine_mode outermode, machine_mode innermode)
2977{
2978 return GET_MODE_PRECISION (outermode) > GET_MODE_PRECISION (innermode);
2979}
2980
2981/* Return true if X is a paradoxical subreg, false otherwise. */
2982
2983inline bool
2984paradoxical_subreg_p (const_rtx x)
2985{
2986 if (GET_CODE (x) != SUBREG)
2987 return false;
2988 return paradoxical_subreg_p (GET_MODE (x), GET_MODE (SUBREG_REG (x)));
2989}
2990
2991/* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */
2992
2993inline unsigned int
2994subreg_lowpart_offset (machine_mode outermode, machine_mode innermode)
2995{
2996 return subreg_size_lowpart_offset (GET_MODE_SIZE (outermode),
2997 GET_MODE_SIZE (innermode));
2998}
2999
3000/* Given that a subreg has outer mode OUTERMODE and inner mode INNERMODE,
3001 return the smaller of the two modes if they are different sizes,
3002 otherwise return the outer mode. */
3003
3004inline machine_mode
3005narrower_subreg_mode (machine_mode outermode, machine_mode innermode)
3006{
3007 return paradoxical_subreg_p (outermode, innermode) ? innermode : outermode;
3008}
3009
3010/* Given that a subreg has outer mode OUTERMODE and inner mode INNERMODE,
3011 return the mode that is big enough to hold both the outer and inner
3012 values. Prefer the outer mode in the event of a tie. */
3013
3014inline machine_mode
3015wider_subreg_mode (machine_mode outermode, machine_mode innermode)
3016{
3017 return partial_subreg_p (outermode, innermode) ? innermode : outermode;
3018}
3019
3020/* Likewise for subreg X. */
3021
3022inline machine_mode
3023wider_subreg_mode (const_rtx x)
3024{
3025 return wider_subreg_mode (GET_MODE (x), GET_MODE (SUBREG_REG (x)));
3026}
3027
3028extern unsigned int subreg_size_highpart_offset (unsigned int, unsigned int);
3029
3030/* Return the SUBREG_BYTE for an OUTERMODE highpart of an INNERMODE value. */
3031
3032inline unsigned int
3033subreg_highpart_offset (machine_mode outermode, machine_mode innermode)
3034{
3035 return subreg_size_highpart_offset (GET_MODE_SIZE (outermode),
3036 GET_MODE_SIZE (innermode));
3037}
3038
3039extern int byte_lowpart_offset (machine_mode, machine_mode);
3040extern int subreg_memory_offset (machine_mode, machine_mode, unsigned int);
3041extern int subreg_memory_offset (const_rtx);
3042extern rtx make_safe_from (rtx, rtx);
3043extern rtx convert_memory_address_addr_space_1 (scalar_int_mode, rtx,
3044 addr_space_t, bool, bool);
3045extern rtx convert_memory_address_addr_space (scalar_int_mode, rtx,
3046 addr_space_t);
3047#define convert_memory_address(to_mode,x) \
3048 convert_memory_address_addr_space ((to_mode), (x), ADDR_SPACE_GENERIC)
3049extern const char *get_insn_name (int);
3050extern rtx_insn *get_last_insn_anywhere (void);
3051extern rtx_insn *get_first_nonnote_insn (void);
3052extern rtx_insn *get_last_nonnote_insn (void);
3053extern void start_sequence (void);
3054extern void push_to_sequence (rtx_insn *);
3055extern void push_to_sequence2 (rtx_insn *, rtx_insn *);
3056extern void end_sequence (void);
3057#if TARGET_SUPPORTS_WIDE_INT == 0
3058extern double_int rtx_to_double_int (const_rtx);
3059#endif
3060extern void cwi_output_hex (FILE *, const_rtx);
3061#ifndef GENERATOR_FILE
3062extern rtx immed_wide_int_const (const wide_int_ref &, machine_mode);
3063#endif
3064#if TARGET_SUPPORTS_WIDE_INT == 0
3065extern rtx immed_double_const (HOST_WIDE_INT, HOST_WIDE_INT,
3066 machine_mode);
3067#endif
3068
3069/* In varasm.c */
3070extern rtx force_const_mem (machine_mode, rtx);
3071
3072/* In varasm.c */
3073
3074struct function;
3075extern rtx get_pool_constant (const_rtx);
3076extern rtx get_pool_constant_mark (rtx, bool *);
3077extern fixed_size_mode get_pool_mode (const_rtx);
3078extern rtx simplify_subtraction (rtx);
3079extern void decide_function_section (tree);
3080
3081/* In emit-rtl.c */
3082extern rtx_insn *emit_insn_before (rtx, rtx);
3083extern rtx_insn *emit_insn_before_noloc (rtx, rtx_insn *, basic_block);
3084extern rtx_insn *emit_insn_before_setloc (rtx, rtx_insn *, int);
3085extern rtx_jump_insn *emit_jump_insn_before (rtx, rtx);
3086extern rtx_jump_insn *emit_jump_insn_before_noloc (rtx, rtx_insn *);
3087extern rtx_jump_insn *emit_jump_insn_before_setloc (rtx, rtx_insn *, int);
3088extern rtx_insn *emit_call_insn_before (rtx, rtx_insn *);
3089extern rtx_insn *emit_call_insn_before_noloc (rtx, rtx_insn *);
3090extern rtx_insn *emit_call_insn_before_setloc (rtx, rtx_insn *, int);
3091extern rtx_insn *emit_debug_insn_before (rtx, rtx_insn *);
3092extern rtx_insn *emit_debug_insn_before_noloc (rtx, rtx);
3093extern rtx_insn *emit_debug_insn_before_setloc (rtx, rtx, int);
3094extern rtx_barrier *emit_barrier_before (rtx);
3095extern rtx_code_label *emit_label_before (rtx, rtx_insn *);
3096extern rtx_note *emit_note_before (enum insn_note, rtx_insn *);
3097extern rtx_insn *emit_insn_after (rtx, rtx);
3098extern rtx_insn *emit_insn_after_noloc (rtx, rtx, basic_block);
3099extern rtx_insn *emit_insn_after_setloc (rtx, rtx, int);
3100extern rtx_jump_insn *emit_jump_insn_after (rtx, rtx);
3101extern rtx_jump_insn *emit_jump_insn_after_noloc (rtx, rtx);
3102extern rtx_jump_insn *emit_jump_insn_after_setloc (rtx, rtx, int);
3103extern rtx_insn *emit_call_insn_after (rtx, rtx);
3104extern rtx_insn *emit_call_insn_after_noloc (rtx, rtx);
3105extern rtx_insn *emit_call_insn_after_setloc (rtx, rtx, int);
3106extern rtx_insn *emit_debug_insn_after (rtx, rtx);
3107extern rtx_insn *emit_debug_insn_after_noloc (rtx, rtx);
3108extern rtx_insn *emit_debug_insn_after_setloc (rtx, rtx, int);
3109extern rtx_barrier *emit_barrier_after (rtx);
3110extern rtx_insn *emit_label_after (rtx, rtx_insn *);
3111extern rtx_note *emit_note_after (enum insn_note, rtx_insn *);
3112extern rtx_insn *emit_insn (rtx);
3113extern rtx_insn *emit_debug_insn (rtx);
3114extern rtx_insn *emit_jump_insn (rtx);
3115extern rtx_insn *emit_call_insn (rtx);
3116extern rtx_code_label *emit_label (rtx);
3117extern rtx_jump_table_data *emit_jump_table_data (rtx);
3118extern rtx_barrier *emit_barrier (void);
3119extern rtx_note *emit_note (enum insn_note);
3120extern rtx_note *emit_note_copy (rtx_note *);
3121extern rtx_insn *gen_clobber (rtx);
3122extern rtx_insn *emit_clobber (rtx);
3123extern rtx_insn *gen_use (rtx);
3124extern rtx_insn *emit_use (rtx);
3125extern rtx_insn *make_insn_raw (rtx);
3126extern void add_function_usage_to (rtx, rtx);
3127extern rtx_call_insn *last_call_insn (void);
3128extern rtx_insn *previous_insn (rtx_insn *);
3129extern rtx_insn *next_insn (rtx_insn *);
3130extern rtx_insn *prev_nonnote_insn (rtx_insn *);
3131extern rtx_insn *next_nonnote_insn (rtx_insn *);
3132extern rtx_insn *prev_nondebug_insn (rtx_insn *);
3133extern rtx_insn *next_nondebug_insn (rtx_insn *);
3134extern rtx_insn *prev_nonnote_nondebug_insn (rtx_insn *);
3135extern rtx_insn *prev_nonnote_nondebug_insn_bb (rtx_insn *);
3136extern rtx_insn *next_nonnote_nondebug_insn (rtx_insn *);
3137extern rtx_insn *next_nonnote_nondebug_insn_bb (rtx_insn *);
3138extern rtx_insn *prev_real_insn (rtx_insn *);
3139extern rtx_insn *next_real_insn (rtx);
3140extern rtx_insn *prev_active_insn (rtx_insn *);
3141extern rtx_insn *next_active_insn (rtx_insn *);
3142extern int active_insn_p (const rtx_insn *);
3143extern rtx_insn *next_cc0_user (rtx_insn *);
3144extern rtx_insn *prev_cc0_setter (rtx_insn *);
3145
3146/* In emit-rtl.c */
3147extern int insn_line (const rtx_insn *);
3148extern const char * insn_file (const rtx_insn *);
3149extern tree insn_scope (const rtx_insn *);
3150extern expanded_location insn_location (const rtx_insn *);
3151extern location_t prologue_location, epilogue_location;
3152
3153/* In jump.c */
3154extern enum rtx_code reverse_condition (enum rtx_code);
3155extern enum rtx_code reverse_condition_maybe_unordered (enum rtx_code);
3156extern enum rtx_code swap_condition (enum rtx_code);
3157extern enum rtx_code unsigned_condition (enum rtx_code);
3158extern enum rtx_code signed_condition (enum rtx_code);
3159extern void mark_jump_label (rtx, rtx_insn *, int);
3160
3161/* In jump.c */
3162extern rtx_insn *delete_related_insns (rtx);
3163
3164/* In recog.c */
3165extern rtx *find_constant_term_loc (rtx *);
3166
3167/* In emit-rtl.c */
3168extern rtx_insn *try_split (rtx, rtx_insn *, int);
3169
3170/* In insn-recog.c (generated by genrecog). */
3171extern rtx_insn *split_insns (rtx, rtx_insn *);
3172
3173/* In simplify-rtx.c */
3174extern rtx simplify_const_unary_operation (enum rtx_code, machine_mode,
3175 rtx, machine_mode);
3176extern rtx simplify_unary_operation (enum rtx_code, machine_mode, rtx,
3177 machine_mode);
3178extern rtx simplify_const_binary_operation (enum rtx_code, machine_mode,
3179 rtx, rtx);
3180extern rtx simplify_binary_operation (enum rtx_code, machine_mode, rtx,
3181 rtx);
3182extern rtx simplify_ternary_operation (enum rtx_code, machine_mode,
3183 machine_mode, rtx, rtx, rtx);
3184extern rtx simplify_const_relational_operation (enum rtx_code,
3185 machine_mode, rtx, rtx);
3186extern rtx simplify_relational_operation (enum rtx_code, machine_mode,
3187 machine_mode, rtx, rtx);
3188extern rtx simplify_gen_binary (enum rtx_code, machine_mode, rtx, rtx);
3189extern rtx simplify_gen_unary (enum rtx_code, machine_mode, rtx,
3190 machine_mode);
3191extern rtx simplify_gen_ternary (enum rtx_code, machine_mode,
3192 machine_mode, rtx, rtx, rtx);
3193extern rtx simplify_gen_relational (enum rtx_code, machine_mode,
3194 machine_mode, rtx, rtx);
3195extern rtx simplify_subreg (machine_mode, rtx, machine_mode,
3196 unsigned int);
3197extern rtx simplify_gen_subreg (machine_mode, rtx, machine_mode,
3198 unsigned int);
3199extern rtx lowpart_subreg (machine_mode, rtx, machine_mode);
3200extern rtx simplify_replace_fn_rtx (rtx, const_rtx,
3201 rtx (*fn) (rtx, const_rtx, void *), void *);
3202extern rtx simplify_replace_rtx (rtx, const_rtx, rtx);
3203extern rtx simplify_rtx (const_rtx);
3204extern rtx avoid_constant_pool_reference (rtx);
3205extern rtx delegitimize_mem_from_attrs (rtx);
3206extern bool mode_signbit_p (machine_mode, const_rtx);
3207extern bool val_signbit_p (machine_mode, unsigned HOST_WIDE_INT);
3208extern bool val_signbit_known_set_p (machine_mode,
3209 unsigned HOST_WIDE_INT);
3210extern bool val_signbit_known_clear_p (machine_mode,
3211 unsigned HOST_WIDE_INT);
3212
3213/* In reginfo.c */
3214extern machine_mode choose_hard_reg_mode (unsigned int, unsigned int,
3215 bool);
3216extern const HARD_REG_SET &simplifiable_subregs (const subreg_shape &);
3217
3218/* In emit-rtl.c */
3219extern rtx set_for_reg_notes (rtx);
3220extern rtx set_unique_reg_note (rtx, enum reg_note, rtx);
3221extern rtx set_dst_reg_note (rtx, enum reg_note, rtx, rtx);
3222extern void set_insn_deleted (rtx);
3223
3224/* Functions in rtlanal.c */
3225
3226extern rtx single_set_2 (const rtx_insn *, const_rtx);
3227extern bool contains_symbol_ref_p (const_rtx);
3228extern bool contains_symbolic_reference_p (const_rtx);
3229
3230/* Handle the cheap and common cases inline for performance. */
3231
3232inline rtx single_set (const rtx_insn *insn)
3233{
3234 if (!INSN_P (insn))
3235 return NULL_RTX;
3236
3237 if (GET_CODE (PATTERN (insn)) == SET)
3238 return PATTERN (insn);
3239
3240 /* Defer to the more expensive case. */
3241 return single_set_2 (insn, PATTERN (insn));
3242}
3243
3244extern scalar_int_mode get_address_mode (rtx mem);
3245extern int rtx_addr_can_trap_p (const_rtx);
3246extern bool nonzero_address_p (const_rtx);
3247extern int rtx_unstable_p (const_rtx);
3248extern bool rtx_varies_p (const_rtx, bool);
3249extern bool rtx_addr_varies_p (const_rtx, bool);
3250extern rtx get_call_rtx_from (rtx);
3251extern HOST_WIDE_INT get_integer_term (const_rtx);
3252extern rtx get_related_value (const_rtx);
3253extern bool offset_within_block_p (const_rtx, HOST_WIDE_INT);
3254extern void split_const (rtx, rtx *, rtx *);
3255extern bool unsigned_reg_p (rtx);
3256extern int reg_mentioned_p (const_rtx, const_rtx);
3257extern int count_occurrences (const_rtx, const_rtx, int);
3258extern int reg_referenced_p (const_rtx, const_rtx);
3259extern int reg_used_between_p (const_rtx, const rtx_insn *, const rtx_insn *);
3260extern int reg_set_between_p (const_rtx, const rtx_insn *, const rtx_insn *);
3261extern int commutative_operand_precedence (rtx);
3262extern bool swap_commutative_operands_p (rtx, rtx);
3263extern int modified_between_p (const_rtx, const rtx_insn *, const rtx_insn *);
3264extern int no_labels_between_p (const rtx_insn *, const rtx_insn *);
3265extern int modified_in_p (const_rtx, const_rtx);
3266extern int reg_set_p (const_rtx, const_rtx);
3267extern int multiple_sets (const_rtx);
3268extern int set_noop_p (const_rtx);
3269extern int noop_move_p (const rtx_insn *);
3270extern bool refers_to_regno_p (unsigned int, unsigned int, const_rtx, rtx *);
3271extern int reg_overlap_mentioned_p (const_rtx, const_rtx);
3272extern const_rtx set_of (const_rtx, const_rtx);
3273extern void record_hard_reg_sets (rtx, const_rtx, void *);
3274extern void record_hard_reg_uses (rtx *, void *);
3275extern void find_all_hard_regs (const_rtx, HARD_REG_SET *);
3276extern void find_all_hard_reg_sets (const rtx_insn *, HARD_REG_SET *, bool);
3277extern void note_stores (const_rtx, void (*) (rtx, const_rtx, void *), void *);
3278extern void note_uses (rtx *, void (*) (rtx *, void *), void *);
3279extern int dead_or_set_p (const rtx_insn *, const_rtx);
3280extern int dead_or_set_regno_p (const rtx_insn *, unsigned int);
3281extern rtx find_reg_note (const_rtx, enum reg_note, const_rtx);
3282extern rtx find_regno_note (const_rtx, enum reg_note, unsigned int);
3283extern rtx find_reg_equal_equiv_note (const_rtx);
3284extern rtx find_constant_src (const rtx_insn *);
3285extern int find_reg_fusage (const_rtx, enum rtx_code, const_rtx);
3286extern int find_regno_fusage (const_rtx, enum rtx_code, unsigned int);
3287extern rtx alloc_reg_note (enum reg_note, rtx, rtx);
3288extern void add_reg_note (rtx, enum reg_note, rtx);
3289extern void add_int_reg_note (rtx_insn *, enum reg_note, int);
3290extern void add_shallow_copy_of_reg_note (rtx_insn *, rtx);
3291extern rtx duplicate_reg_note (rtx);
3292extern void remove_note (rtx_insn *, const_rtx);
3293extern bool remove_reg_equal_equiv_notes (rtx_insn *);
3294extern void remove_reg_equal_equiv_notes_for_regno (unsigned int);
3295extern int side_effects_p (const_rtx);
3296extern int volatile_refs_p (const_rtx);
3297extern int volatile_insn_p (const_rtx);
3298extern int may_trap_p_1 (const_rtx, unsigned);
3299extern int may_trap_p (const_rtx);
3300extern int may_trap_or_fault_p (const_rtx);
3301extern bool can_throw_internal (const_rtx);
3302extern bool can_throw_external (const_rtx);
3303extern bool insn_could_throw_p (const_rtx);
3304extern bool insn_nothrow_p (const_rtx);
3305extern bool can_nonlocal_goto (const rtx_insn *);
3306extern void copy_reg_eh_region_note_forward (rtx, rtx_insn *, rtx);
3307extern void copy_reg_eh_region_note_backward (rtx, rtx_insn *, rtx);
3308extern int inequality_comparisons_p (const_rtx);
3309extern rtx replace_rtx (rtx, rtx, rtx, bool = false);
3310extern void replace_label (rtx *, rtx, rtx, bool);
3311extern void replace_label_in_insn (rtx_insn *, rtx_insn *, rtx_insn *, bool);
3312extern bool rtx_referenced_p (const_rtx, const_rtx);
3313extern bool tablejump_p (const rtx_insn *, rtx_insn **, rtx_jump_table_data **);
3314extern int computed_jump_p (const rtx_insn *);
3315extern bool tls_referenced_p (const_rtx);
3316extern bool contains_mem_rtx_p (rtx x);
3317
3318/* Overload for refers_to_regno_p for checking a single register. */
3319inline bool
3320refers_to_regno_p (unsigned int regnum, const_rtx x, rtx* loc = NULL)
3321{
3322 return refers_to_regno_p (regnum, regnum + 1, x, loc);
3323}
3324
3325/* Callback for for_each_inc_dec, to process the autoinc operation OP
3326 within MEM that sets DEST to SRC + SRCOFF, or SRC if SRCOFF is
3327 NULL. The callback is passed the same opaque ARG passed to
3328 for_each_inc_dec. Return zero to continue looking for other
3329 autoinc operations or any other value to interrupt the traversal and
3330 return that value to the caller of for_each_inc_dec. */
3331typedef int (*for_each_inc_dec_fn) (rtx mem, rtx op, rtx dest, rtx src,
3332 rtx srcoff, void *arg);
3333extern int for_each_inc_dec (rtx, for_each_inc_dec_fn, void *arg);
3334
3335typedef int (*rtx_equal_p_callback_function) (const_rtx *, const_rtx *,
3336 rtx *, rtx *);
3337extern int rtx_equal_p_cb (const_rtx, const_rtx,
3338 rtx_equal_p_callback_function);
3339
3340typedef int (*hash_rtx_callback_function) (const_rtx, machine_mode, rtx *,
3341 machine_mode *);
3342extern unsigned hash_rtx_cb (const_rtx, machine_mode, int *, int *,
3343 bool, hash_rtx_callback_function);
3344
3345extern rtx regno_use_in (unsigned int, rtx);
3346extern int auto_inc_p (const_rtx);
3347extern bool in_insn_list_p (const rtx_insn_list *, const rtx_insn *);
3348extern void remove_node_from_expr_list (const_rtx, rtx_expr_list **);
3349extern void remove_node_from_insn_list (const rtx_insn *, rtx_insn_list **);
3350extern int loc_mentioned_in_p (rtx *, const_rtx);
3351extern rtx_insn *find_first_parameter_load (rtx_insn *, rtx_insn *);
3352extern bool keep_with_call_p (const rtx_insn *);
3353extern bool label_is_jump_target_p (const_rtx, const rtx_insn *);
3354extern int pattern_cost (rtx, bool);
3355extern int insn_cost (rtx_insn *, bool);
3356extern unsigned seq_cost (const rtx_insn *, bool);
3357
3358/* Given an insn and condition, return a canonical description of
3359 the test being made. */
3360extern rtx canonicalize_condition (rtx_insn *, rtx, int, rtx_insn **, rtx,
3361 int, int);
3362
3363/* Given a JUMP_INSN, return a canonical description of the test
3364 being made. */
3365extern rtx get_condition (rtx_insn *, rtx_insn **, int, int);
3366
3367/* Information about a subreg of a hard register. */
3368struct subreg_info
3369{
3370 /* Offset of first hard register involved in the subreg. */
3371 int offset;
3372 /* Number of hard registers involved in the subreg. In the case of
3373 a paradoxical subreg, this is the number of registers that would
3374 be modified by writing to the subreg; some of them may be don't-care
3375 when reading from the subreg. */
3376 int nregs;
3377 /* Whether this subreg can be represented as a hard reg with the new
3378 mode (by adding OFFSET to the original hard register). */
3379 bool representable_p;
3380};
3381
3382extern void subreg_get_info (unsigned int, machine_mode,
3383 unsigned int, machine_mode,
3384 struct subreg_info *);
3385
3386/* lists.c */
3387
3388extern void free_EXPR_LIST_list (rtx_expr_list **);
3389extern void free_INSN_LIST_list (rtx_insn_list **);
3390extern void free_EXPR_LIST_node (rtx);
3391extern void free_INSN_LIST_node (rtx);
3392extern rtx_insn_list *alloc_INSN_LIST (rtx, rtx);
3393extern rtx_insn_list *copy_INSN_LIST (rtx_insn_list *);
3394extern rtx_insn_list *concat_INSN_LIST (rtx_insn_list *, rtx_insn_list *);
3395extern rtx_expr_list *alloc_EXPR_LIST (int, rtx, rtx);
3396extern void remove_free_INSN_LIST_elem (rtx_insn *, rtx_insn_list **);
3397extern rtx remove_list_elem (rtx, rtx *);
3398extern rtx_insn *remove_free_INSN_LIST_node (rtx_insn_list **);
3399extern rtx remove_free_EXPR_LIST_node (rtx_expr_list **);
3400
3401
3402/* reginfo.c */
3403
3404/* Resize reg info. */
3405extern bool resize_reg_info (void);
3406/* Free up register info memory. */
3407extern void free_reg_info (void);
3408extern void init_subregs_of_mode (void);
3409extern void finish_subregs_of_mode (void);
3410
3411/* recog.c */
3412extern rtx extract_asm_operands (rtx);
3413extern int asm_noperands (const_rtx);
3414extern const char *decode_asm_operands (rtx, rtx *, rtx **, const char **,
3415 machine_mode *, location_t *);
3416extern void get_referenced_operands (const char *, bool *, unsigned int);
3417
3418extern enum reg_class reg_preferred_class (int);
3419extern enum reg_class reg_alternate_class (int);
3420extern enum reg_class reg_allocno_class (int);
3421extern void setup_reg_classes (int, enum reg_class, enum reg_class,
3422 enum reg_class);
3423
3424extern void split_all_insns (void);
3425extern unsigned int split_all_insns_noflow (void);
3426
3427#define MAX_SAVED_CONST_INT 64
3428extern GTY(()) rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
3429
3430#define const0_rtx (const_int_rtx[MAX_SAVED_CONST_INT])
3431#define const1_rtx (const_int_rtx[MAX_SAVED_CONST_INT+1])
3432#define const2_rtx (const_int_rtx[MAX_SAVED_CONST_INT+2])
3433#define constm1_rtx (const_int_rtx[MAX_SAVED_CONST_INT-1])
3434extern GTY(()) rtx const_true_rtx;
3435
3436extern GTY(()) rtx const_tiny_rtx[4][(int) MAX_MACHINE_MODE];
3437
3438/* Returns a constant 0 rtx in mode MODE. Integer modes are treated the
3439 same as VOIDmode. */
3440
3441#define CONST0_RTX(MODE) (const_tiny_rtx[0][(int) (MODE)])
3442
3443/* Likewise, for the constants 1 and 2 and -1. */
3444
3445#define CONST1_RTX(MODE) (const_tiny_rtx[1][(int) (MODE)])
3446#define CONST2_RTX(MODE) (const_tiny_rtx[2][(int) (MODE)])
3447#define CONSTM1_RTX(MODE) (const_tiny_rtx[3][(int) (MODE)])
3448
3449extern GTY(()) rtx pc_rtx;
3450extern GTY(()) rtx cc0_rtx;
3451extern GTY(()) rtx ret_rtx;
3452extern GTY(()) rtx simple_return_rtx;
3453extern GTY(()) rtx_insn *invalid_insn_rtx;
3454
3455/* If HARD_FRAME_POINTER_REGNUM is defined, then a special dummy reg
3456 is used to represent the frame pointer. This is because the
3457 hard frame pointer and the automatic variables are separated by an amount
3458 that cannot be determined until after register allocation. We can assume
3459 that in this case ELIMINABLE_REGS will be defined, one action of which
3460 will be to eliminate FRAME_POINTER_REGNUM into HARD_FRAME_POINTER_REGNUM. */
3461#ifndef HARD_FRAME_POINTER_REGNUM
3462#define HARD_FRAME_POINTER_REGNUM FRAME_POINTER_REGNUM
3463#endif
3464
3465#ifndef HARD_FRAME_POINTER_IS_FRAME_POINTER
3466#define HARD_FRAME_POINTER_IS_FRAME_POINTER \
3467 (HARD_FRAME_POINTER_REGNUM == FRAME_POINTER_REGNUM)
3468#endif
3469
3470#ifndef HARD_FRAME_POINTER_IS_ARG_POINTER
3471#define HARD_FRAME_POINTER_IS_ARG_POINTER \
3472 (HARD_FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM)
3473#endif
3474
3475/* Index labels for global_rtl. */
3476enum global_rtl_index
3477{
3478 GR_STACK_POINTER,
3479 GR_FRAME_POINTER,
3480/* For register elimination to work properly these hard_frame_pointer_rtx,
3481 frame_pointer_rtx, and arg_pointer_rtx must be the same if they refer to
3482 the same register. */
3483#if FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM
3484 GR_ARG_POINTER = GR_FRAME_POINTER,
3485#endif
3486#if HARD_FRAME_POINTER_IS_FRAME_POINTER
3487 GR_HARD_FRAME_POINTER = GR_FRAME_POINTER,
3488#else
3489 GR_HARD_FRAME_POINTER,
3490#endif
3491#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3492#if HARD_FRAME_POINTER_IS_ARG_POINTER
3493 GR_ARG_POINTER = GR_HARD_FRAME_POINTER,
3494#else
3495 GR_ARG_POINTER,
3496#endif
3497#endif
3498 GR_VIRTUAL_INCOMING_ARGS,
3499 GR_VIRTUAL_STACK_ARGS,
3500 GR_VIRTUAL_STACK_DYNAMIC,
3501 GR_VIRTUAL_OUTGOING_ARGS,
3502 GR_VIRTUAL_CFA,
3503 GR_VIRTUAL_PREFERRED_STACK_BOUNDARY,
3504
3505 GR_MAX
3506};
3507
3508/* Target-dependent globals. */
3509struct GTY(()) target_rtl {
3510 /* All references to the hard registers in global_rtl_index go through
3511 these unique rtl objects. On machines where the frame-pointer and
3512 arg-pointer are the same register, they use the same unique object.
3513
3514 After register allocation, other rtl objects which used to be pseudo-regs
3515 may be clobbered to refer to the frame-pointer register.
3516 But references that were originally to the frame-pointer can be
3517 distinguished from the others because they contain frame_pointer_rtx.
3518
3519 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
3520 tricky: until register elimination has taken place hard_frame_pointer_rtx
3521 should be used if it is being set, and frame_pointer_rtx otherwise. After
3522 register elimination hard_frame_pointer_rtx should always be used.
3523 On machines where the two registers are same (most) then these are the
3524 same. */
3525 rtx x_global_rtl[GR_MAX];
3526
3527 /* A unique representation of (REG:Pmode PIC_OFFSET_TABLE_REGNUM). */
3528 rtx x_pic_offset_table_rtx;
3529
3530 /* A unique representation of (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM).
3531 This is used to implement __builtin_return_address for some machines;
3532 see for instance the MIPS port. */
3533 rtx x_return_address_pointer_rtx;
3534
3535 /* Commonly used RTL for hard registers. These objects are not
3536 necessarily unique, so we allocate them separately from global_rtl.
3537 They are initialized once per compilation unit, then copied into
3538 regno_reg_rtx at the beginning of each function. */
3539 rtx x_initial_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
3540
3541 /* A sample (mem:M stack_pointer_rtx) rtx for each mode M. */
3542 rtx x_top_of_stack[MAX_MACHINE_MODE];
3543
3544 /* Static hunks of RTL used by the aliasing code; these are treated
3545 as persistent to avoid unnecessary RTL allocations. */
3546 rtx x_static_reg_base_value[FIRST_PSEUDO_REGISTER];
3547
3548 /* The default memory attributes for each mode. */
3549 struct mem_attrs *x_mode_mem_attrs[(int) MAX_MACHINE_MODE];
3550
3551 /* Track if RTL has been initialized. */
3552 bool target_specific_initialized;
3553};
3554
3555extern GTY(()) struct target_rtl default_target_rtl;
3556#if SWITCHABLE_TARGET
3557extern struct target_rtl *this_target_rtl;
3558#else
3559#define this_target_rtl (&default_target_rtl)
3560#endif
3561
3562#define global_rtl \
3563 (this_target_rtl->x_global_rtl)
3564#define pic_offset_table_rtx \
3565 (this_target_rtl->x_pic_offset_table_rtx)
3566#define return_address_pointer_rtx \
3567 (this_target_rtl->x_return_address_pointer_rtx)
3568#define top_of_stack \
3569 (this_target_rtl->x_top_of_stack)
3570#define mode_mem_attrs \
3571 (this_target_rtl->x_mode_mem_attrs)
3572
3573/* All references to certain hard regs, except those created
3574 by allocating pseudo regs into them (when that's possible),
3575 go through these unique rtx objects. */
3576#define stack_pointer_rtx (global_rtl[GR_STACK_POINTER])
3577#define frame_pointer_rtx (global_rtl[GR_FRAME_POINTER])
3578#define hard_frame_pointer_rtx (global_rtl[GR_HARD_FRAME_POINTER])
3579#define arg_pointer_rtx (global_rtl[GR_ARG_POINTER])
3580
3581#ifndef GENERATOR_FILE
3582/* Return the attributes of a MEM rtx. */
3583static inline const struct mem_attrs *
3584get_mem_attrs (const_rtx x)
3585{
3586 struct mem_attrs *attrs;
3587
3588 attrs = MEM_ATTRS (x);
3589 if (!attrs)
3590 attrs = mode_mem_attrs[(int) GET_MODE (x)];
3591 return attrs;
3592}
3593#endif
3594
3595/* Include the RTL generation functions. */
3596
3597#ifndef GENERATOR_FILE
3598#include "genrtl.h"
3599#undef gen_rtx_ASM_INPUT
3600#define gen_rtx_ASM_INPUT(MODE, ARG0) \
3601 gen_rtx_fmt_si (ASM_INPUT, (MODE), (ARG0), 0)
3602#define gen_rtx_ASM_INPUT_loc(MODE, ARG0, LOC) \
3603 gen_rtx_fmt_si (ASM_INPUT, (MODE), (ARG0), (LOC))
3604#endif
3605
3606/* There are some RTL codes that require special attention; the
3607 generation functions included above do the raw handling. If you
3608 add to this list, modify special_rtx in gengenrtl.c as well. */
3609
3610extern rtx_expr_list *gen_rtx_EXPR_LIST (machine_mode, rtx, rtx);
3611extern rtx_insn_list *gen_rtx_INSN_LIST (machine_mode, rtx, rtx);
3612extern rtx_insn *
3613gen_rtx_INSN (machine_mode mode, rtx_insn *prev_insn, rtx_insn *next_insn,
3614 basic_block bb, rtx pattern, int location, int code,
3615 rtx reg_notes);
3616extern rtx gen_rtx_CONST_INT (machine_mode, HOST_WIDE_INT);
3617extern rtx gen_rtx_CONST_VECTOR (machine_mode, rtvec);
3618extern void set_mode_and_regno (rtx, machine_mode, unsigned int);
3619extern rtx gen_raw_REG (machine_mode, unsigned int);
3620extern rtx gen_rtx_REG (machine_mode, unsigned int);
3621extern rtx gen_rtx_SUBREG (machine_mode, rtx, int);
3622extern rtx gen_rtx_MEM (machine_mode, rtx);
3623extern rtx gen_rtx_VAR_LOCATION (machine_mode, tree, rtx,
3624 enum var_init_status);
3625
3626#ifdef GENERATOR_FILE
3627#define PUT_MODE(RTX, MODE) PUT_MODE_RAW (RTX, MODE)
3628#else
3629static inline void
3630PUT_MODE (rtx x, machine_mode mode)
3631{
3632 if (REG_P (x))
3633 set_mode_and_regno (x, mode, REGNO (x));
3634 else
3635 PUT_MODE_RAW (x, mode);
3636}
3637#endif
3638
3639#define GEN_INT(N) gen_rtx_CONST_INT (VOIDmode, (N))
3640
3641/* Virtual registers are used during RTL generation to refer to locations into
3642 the stack frame when the actual location isn't known until RTL generation
3643 is complete. The routine instantiate_virtual_regs replaces these with
3644 the proper value, which is normally {frame,arg,stack}_pointer_rtx plus
3645 a constant. */
3646
3647#define FIRST_VIRTUAL_REGISTER (FIRST_PSEUDO_REGISTER)
3648
3649/* This points to the first word of the incoming arguments passed on the stack,
3650 either by the caller or by the callee when pretending it was passed by the
3651 caller. */
3652
3653#define virtual_incoming_args_rtx (global_rtl[GR_VIRTUAL_INCOMING_ARGS])
3654
3655#define VIRTUAL_INCOMING_ARGS_REGNUM (FIRST_VIRTUAL_REGISTER)
3656
3657/* If FRAME_GROWS_DOWNWARD, this points to immediately above the first
3658 variable on the stack. Otherwise, it points to the first variable on
3659 the stack. */
3660
3661#define virtual_stack_vars_rtx (global_rtl[GR_VIRTUAL_STACK_ARGS])
3662
3663#define VIRTUAL_STACK_VARS_REGNUM ((FIRST_VIRTUAL_REGISTER) + 1)
3664
3665/* This points to the location of dynamically-allocated memory on the stack
3666 immediately after the stack pointer has been adjusted by the amount
3667 desired. */
3668
3669#define virtual_stack_dynamic_rtx (global_rtl[GR_VIRTUAL_STACK_DYNAMIC])
3670
3671#define VIRTUAL_STACK_DYNAMIC_REGNUM ((FIRST_VIRTUAL_REGISTER) + 2)
3672
3673/* This points to the location in the stack at which outgoing arguments should
3674 be written when the stack is pre-pushed (arguments pushed using push
3675 insns always use sp). */
3676
3677#define virtual_outgoing_args_rtx (global_rtl[GR_VIRTUAL_OUTGOING_ARGS])
3678
3679#define VIRTUAL_OUTGOING_ARGS_REGNUM ((FIRST_VIRTUAL_REGISTER) + 3)
3680
3681/* This points to the Canonical Frame Address of the function. This
3682 should correspond to the CFA produced by INCOMING_FRAME_SP_OFFSET,
3683 but is calculated relative to the arg pointer for simplicity; the
3684 frame pointer nor stack pointer are necessarily fixed relative to
3685 the CFA until after reload. */
3686
3687#define virtual_cfa_rtx (global_rtl[GR_VIRTUAL_CFA])
3688
3689#define VIRTUAL_CFA_REGNUM ((FIRST_VIRTUAL_REGISTER) + 4)
3690
3691#define LAST_VIRTUAL_POINTER_REGISTER ((FIRST_VIRTUAL_REGISTER) + 4)
3692
3693/* This is replaced by crtl->preferred_stack_boundary / BITS_PER_UNIT
3694 when finalized. */
3695
3696#define virtual_preferred_stack_boundary_rtx \
3697 (global_rtl[GR_VIRTUAL_PREFERRED_STACK_BOUNDARY])
3698
3699#define VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM \
3700 ((FIRST_VIRTUAL_REGISTER) + 5)
3701
3702#define LAST_VIRTUAL_REGISTER ((FIRST_VIRTUAL_REGISTER) + 5)
3703
3704/* Nonzero if REGNUM is a pointer into the stack frame. */
3705#define REGNO_PTR_FRAME_P(REGNUM) \
3706 ((REGNUM) == STACK_POINTER_REGNUM \
3707 || (REGNUM) == FRAME_POINTER_REGNUM \
3708 || (REGNUM) == HARD_FRAME_POINTER_REGNUM \
3709 || (REGNUM) == ARG_POINTER_REGNUM \
3710 || ((REGNUM) >= FIRST_VIRTUAL_REGISTER \
3711 && (REGNUM) <= LAST_VIRTUAL_POINTER_REGISTER))
3712
3713/* REGNUM never really appearing in the INSN stream. */
3714#define INVALID_REGNUM (~(unsigned int) 0)
3715
3716/* REGNUM for which no debug information can be generated. */
3717#define IGNORED_DWARF_REGNUM (INVALID_REGNUM - 1)
3718
3719extern rtx output_constant_def (tree, int);
3720extern rtx lookup_constant_def (tree);
3721
3722/* Nonzero after end of reload pass.
3723 Set to 1 or 0 by reload1.c. */
3724
3725extern int reload_completed;
3726
3727/* Nonzero after thread_prologue_and_epilogue_insns has run. */
3728extern int epilogue_completed;
3729
3730/* Set to 1 while reload_as_needed is operating.
3731 Required by some machines to handle any generated moves differently. */
3732
3733extern int reload_in_progress;
3734
3735/* Set to 1 while in lra. */
3736extern int lra_in_progress;
3737
3738/* This macro indicates whether you may create a new
3739 pseudo-register. */
3740
3741#define can_create_pseudo_p() (!reload_in_progress && !reload_completed)
3742
3743#ifdef STACK_REGS
3744/* Nonzero after end of regstack pass.
3745 Set to 1 or 0 by reg-stack.c. */
3746extern int regstack_completed;
3747#endif
3748
3749/* If this is nonzero, we do not bother generating VOLATILE
3750 around volatile memory references, and we are willing to
3751 output indirect addresses. If cse is to follow, we reject
3752 indirect addresses so a useful potential cse is generated;
3753 if it is used only once, instruction combination will produce
3754 the same indirect address eventually. */
3755extern int cse_not_expected;
3756
3757/* Translates rtx code to tree code, for those codes needed by
3758 real_arithmetic. The function returns an int because the caller may not
3759 know what `enum tree_code' means. */
3760
3761extern int rtx_to_tree_code (enum rtx_code);
3762
3763/* In cse.c */
3764extern int delete_trivially_dead_insns (rtx_insn *, int);
3765extern int exp_equiv_p (const_rtx, const_rtx, int, bool);
3766extern unsigned hash_rtx (const_rtx x, machine_mode, int *, int *, bool);
3767
3768/* In dse.c */
3769extern bool check_for_inc_dec (rtx_insn *insn);
3770
3771/* In jump.c */
3772extern int comparison_dominates_p (enum rtx_code, enum rtx_code);
3773extern bool jump_to_label_p (const rtx_insn *);
3774extern int condjump_p (const rtx_insn *);
3775extern int any_condjump_p (const rtx_insn *);
3776extern int any_uncondjump_p (const rtx_insn *);
3777extern rtx pc_set (const rtx_insn *);
3778extern rtx condjump_label (const rtx_insn *);
3779extern int simplejump_p (const rtx_insn *);
3780extern int returnjump_p (const rtx_insn *);
3781extern int eh_returnjump_p (rtx_insn *);
3782extern int onlyjump_p (const rtx_insn *);
3783extern int only_sets_cc0_p (const_rtx);
3784extern int sets_cc0_p (const_rtx);
3785extern int invert_jump_1 (rtx_jump_insn *, rtx);
3786extern int invert_jump (rtx_jump_insn *, rtx, int);
3787extern int rtx_renumbered_equal_p (const_rtx, const_rtx);
3788extern int true_regnum (const_rtx);
3789extern unsigned int reg_or_subregno (const_rtx);
3790extern int redirect_jump_1 (rtx_insn *, rtx);
3791extern void redirect_jump_2 (rtx_jump_insn *, rtx, rtx, int, int);
3792extern int redirect_jump (rtx_jump_insn *, rtx, int);
3793extern void rebuild_jump_labels (rtx_insn *);
3794extern void rebuild_jump_labels_chain (rtx_insn *);
3795extern rtx reversed_comparison (const_rtx, machine_mode);
3796extern enum rtx_code reversed_comparison_code (const_rtx, const rtx_insn *);
3797extern enum rtx_code reversed_comparison_code_parts (enum rtx_code, const_rtx,
3798 const_rtx, const rtx_insn *);
3799extern void delete_for_peephole (rtx_insn *, rtx_insn *);
3800extern int condjump_in_parallel_p (const rtx_insn *);
3801
3802/* In emit-rtl.c. */
3803extern int max_reg_num (void);
3804extern int max_label_num (void);
3805extern int get_first_label_num (void);
3806extern void maybe_set_first_label_num (rtx_code_label *);
3807extern void delete_insns_since (rtx_insn *);
3808extern void mark_reg_pointer (rtx, int);
3809extern void mark_user_reg (rtx);
3810extern void reset_used_flags (rtx);
3811extern void set_used_flags (rtx);
3812extern void reorder_insns (rtx_insn *, rtx_insn *, rtx_insn *);
3813extern void reorder_insns_nobb (rtx_insn *, rtx_insn *, rtx_insn *);
3814extern int get_max_insn_count (void);
3815extern int in_sequence_p (void);
3816extern void init_emit (void);
3817extern void init_emit_regs (void);
3818extern void init_derived_machine_modes (void);
3819extern void init_emit_once (void);
3820extern void push_topmost_sequence (void);
3821extern void pop_topmost_sequence (void);
3822extern void set_new_first_and_last_insn (rtx_insn *, rtx_insn *);
3823extern unsigned int unshare_all_rtl (void);
3824extern void unshare_all_rtl_again (rtx_insn *);
3825extern void unshare_all_rtl_in_chain (rtx_insn *);
3826extern void verify_rtl_sharing (void);
3827extern void add_insn (rtx_insn *);
3828extern void add_insn_before (rtx, rtx, basic_block);
3829extern void add_insn_after (rtx, rtx, basic_block);
3830extern void remove_insn (rtx);
3831extern rtx_insn *emit (rtx, bool = true);
3832extern void emit_insn_at_entry (rtx);
3833extern rtx gen_lowpart_SUBREG (machine_mode, rtx);
3834extern rtx gen_const_mem (machine_mode, rtx);
3835extern rtx gen_frame_mem (machine_mode, rtx);
3836extern rtx gen_tmp_stack_mem (machine_mode, rtx);
3837extern bool validate_subreg (machine_mode, machine_mode,
3838 const_rtx, unsigned int);
3839
3840/* In combine.c */
3841extern unsigned int extended_count (const_rtx, machine_mode, int);
3842extern rtx remove_death (unsigned int, rtx_insn *);
3843extern void dump_combine_stats (FILE *);
3844extern void dump_combine_total_stats (FILE *);
3845extern rtx make_compound_operation (rtx, enum rtx_code);
3846
3847/* In sched-rgn.c. */
3848extern void schedule_insns (void);
3849
3850/* In sched-ebb.c. */
3851extern void schedule_ebbs (void);
3852
3853/* In sel-sched-dump.c. */
3854extern void sel_sched_fix_param (const char *param, const char *val);
3855
3856/* In print-rtl.c */
3857extern const char *print_rtx_head;
3858extern void debug (const rtx_def &ref);
3859extern void debug (const rtx_def *ptr);
3860extern void debug_rtx (const_rtx);
3861extern void debug_rtx_list (const rtx_insn *, int);
3862extern void debug_rtx_range (const rtx_insn *, const rtx_insn *);
3863extern const rtx_insn *debug_rtx_find (const rtx_insn *, int);
3864extern void print_mem_expr (FILE *, const_tree);
3865extern void print_rtl (FILE *, const_rtx);
3866extern void print_simple_rtl (FILE *, const_rtx);
3867extern int print_rtl_single (FILE *, const_rtx);
3868extern int print_rtl_single_with_indent (FILE *, const_rtx, int);
3869extern void print_inline_rtx (FILE *, const_rtx, int);
3870
3871/* In stmt.c */
3872extern void expand_null_return (void);
3873extern void expand_naked_return (void);
3874extern void emit_jump (rtx);
3875
3876/* In expr.c */
3877extern rtx move_by_pieces (rtx, rtx, unsigned HOST_WIDE_INT,
3878 unsigned int, int);
3879extern HOST_WIDE_INT find_args_size_adjust (rtx_insn *);
3880extern int fixup_args_size_notes (rtx_insn *, rtx_insn *, int);
3881
3882/* In expmed.c */
3883extern void init_expmed (void);
3884extern void expand_inc (rtx, rtx);
3885extern void expand_dec (rtx, rtx);
3886
3887/* In lower-subreg.c */
3888extern void init_lower_subreg (void);
3889
3890/* In gcse.c */
3891extern bool can_copy_p (machine_mode);
3892extern bool can_assign_to_reg_without_clobbers_p (rtx, machine_mode);
3893extern rtx fis_get_condition (rtx_insn *);
3894
3895/* In ira.c */
3896extern HARD_REG_SET eliminable_regset;
3897extern void mark_elimination (int, int);
3898
3899/* In reginfo.c */
3900extern int reg_classes_intersect_p (reg_class_t, reg_class_t);
3901extern int reg_class_subset_p (reg_class_t, reg_class_t);
3902extern void globalize_reg (tree, int);
3903extern void init_reg_modes_target (void);
3904extern void init_regs (void);
3905extern void reinit_regs (void);
3906extern void init_fake_stack_mems (void);
3907extern void save_register_info (void);
3908extern void init_reg_sets (void);
3909extern void regclass (rtx, int);
3910extern void reg_scan (rtx_insn *, unsigned int);
3911extern void fix_register (const char *, int, int);
3912extern const HARD_REG_SET *valid_mode_changes_for_regno (unsigned int);
3913
3914/* In reload1.c */
3915extern int function_invariant_p (const_rtx);
3916
3917/* In calls.c */
3918enum libcall_type
3919{
3920 LCT_NORMAL = 0,
3921 LCT_CONST = 1,
3922 LCT_PURE = 2,
3923 LCT_NORETURN = 3,
3924 LCT_THROW = 4,
3925 LCT_RETURNS_TWICE = 5
3926};
3927
3928extern rtx emit_library_call_value_1 (int, rtx, rtx, enum libcall_type,
3929 machine_mode, int, rtx_mode_t *);
3930
3931/* Output a library call and discard the returned value. FUN is the
3932 address of the function, as a SYMBOL_REF rtx, and OUTMODE is the mode
3933 of the (discarded) return value. FN_TYPE is LCT_NORMAL for `normal'
3934 calls, LCT_CONST for `const' calls, LCT_PURE for `pure' calls, or
3935 another LCT_ value for other types of library calls.
3936
3937 There are different overloads of this function for different numbers
3938 of arguments. In each case the argument value is followed by its mode. */
3939
3940inline void
3941emit_library_call (rtx fun, libcall_type fn_type, machine_mode outmode)
3942{
3943 emit_library_call_value_1 (0, fun, NULL_RTX, fn_type, outmode, 0, NULL);
3944}
3945
3946inline void
3947emit_library_call (rtx fun, libcall_type fn_type, machine_mode outmode,
3948 rtx arg1, machine_mode arg1_mode)
3949{
3950 rtx_mode_t args[] = { rtx_mode_t (arg1, arg1_mode) };
3951 emit_library_call_value_1 (0, fun, NULL_RTX, fn_type, outmode, 1, args);
3952}
3953
3954inline void
3955emit_library_call (rtx fun, libcall_type fn_type, machine_mode outmode,
3956 rtx arg1, machine_mode arg1_mode,
3957 rtx arg2, machine_mode arg2_mode)
3958{
3959 rtx_mode_t args[] = {
3960 rtx_mode_t (arg1, arg1_mode),
3961 rtx_mode_t (arg2, arg2_mode)
3962 };
3963 emit_library_call_value_1 (0, fun, NULL_RTX, fn_type, outmode, 2, args);
3964}
3965
3966inline void
3967emit_library_call (rtx fun, libcall_type fn_type, machine_mode outmode,
3968 rtx arg1, machine_mode arg1_mode,
3969 rtx arg2, machine_mode arg2_mode,
3970 rtx arg3, machine_mode arg3_mode)
3971{
3972 rtx_mode_t args[] = {
3973 rtx_mode_t (arg1, arg1_mode),
3974 rtx_mode_t (arg2, arg2_mode),
3975 rtx_mode_t (arg3, arg3_mode)
3976 };
3977 emit_library_call_value_1 (0, fun, NULL_RTX, fn_type, outmode, 3, args);
3978}
3979
3980inline void
3981emit_library_call (rtx fun, libcall_type fn_type, machine_mode outmode,
3982 rtx arg1, machine_mode arg1_mode,
3983 rtx arg2, machine_mode arg2_mode,
3984 rtx arg3, machine_mode arg3_mode,
3985 rtx arg4, machine_mode arg4_mode)
3986{
3987 rtx_mode_t args[] = {
3988 rtx_mode_t (arg1, arg1_mode),
3989 rtx_mode_t (arg2, arg2_mode),
3990 rtx_mode_t (arg3, arg3_mode),
3991 rtx_mode_t (arg4, arg4_mode)
3992 };
3993 emit_library_call_value_1 (0, fun, NULL_RTX, fn_type, outmode, 4, args);
3994}
3995
3996/* Like emit_library_call, but return the value produced by the call.
3997 Use VALUE to store the result if it is nonnull, otherwise pick a
3998 convenient location. */
3999
4000inline rtx
4001emit_library_call_value (rtx fun, rtx value, libcall_type fn_type,
4002 machine_mode outmode)
4003{
4004 return emit_library_call_value_1 (1, fun, value, fn_type, outmode, 0, NULL);
4005}
4006
4007inline rtx
4008emit_library_call_value (rtx fun, rtx value, libcall_type fn_type,
4009 machine_mode outmode,
4010 rtx arg1, machine_mode arg1_mode)
4011{
4012 rtx_mode_t args[] = { rtx_mode_t (arg1, arg1_mode) };
4013 return emit_library_call_value_1 (1, fun, value, fn_type, outmode, 1, args);
4014}
4015
4016inline rtx
4017emit_library_call_value (rtx fun, rtx value, libcall_type fn_type,
4018 machine_mode outmode,
4019 rtx arg1, machine_mode arg1_mode,
4020 rtx arg2, machine_mode arg2_mode)
4021{
4022 rtx_mode_t args[] = {
4023 rtx_mode_t (arg1, arg1_mode),
4024 rtx_mode_t (arg2, arg2_mode)
4025 };
4026 return emit_library_call_value_1 (1, fun, value, fn_type, outmode, 2, args);
4027}
4028
4029inline rtx
4030emit_library_call_value (rtx fun, rtx value, libcall_type fn_type,
4031 machine_mode outmode,
4032 rtx arg1, machine_mode arg1_mode,
4033 rtx arg2, machine_mode arg2_mode,
4034 rtx arg3, machine_mode arg3_mode)
4035{
4036 rtx_mode_t args[] = {
4037 rtx_mode_t (arg1, arg1_mode),
4038 rtx_mode_t (arg2, arg2_mode),
4039 rtx_mode_t (arg3, arg3_mode)
4040 };
4041 return emit_library_call_value_1 (1, fun, value, fn_type, outmode, 3, args);
4042}
4043
4044inline rtx
4045emit_library_call_value (rtx fun, rtx value, libcall_type fn_type,
4046 machine_mode outmode,
4047 rtx arg1, machine_mode arg1_mode,
4048 rtx arg2, machine_mode arg2_mode,
4049 rtx arg3, machine_mode arg3_mode,
4050 rtx arg4, machine_mode arg4_mode)
4051{
4052 rtx_mode_t args[] = {
4053 rtx_mode_t (arg1, arg1_mode),
4054 rtx_mode_t (arg2, arg2_mode),
4055 rtx_mode_t (arg3, arg3_mode),
4056 rtx_mode_t (arg4, arg4_mode)
4057 };
4058 return emit_library_call_value_1 (1, fun, value, fn_type, outmode, 4, args);
4059}
4060
4061/* In varasm.c */
4062extern void init_varasm_once (void);
4063
4064extern rtx make_debug_expr_from_rtl (const_rtx);
4065
4066/* In read-rtl.c */
4067#ifdef GENERATOR_FILE
4068extern bool read_rtx (const char *, vec<rtx> *);
4069#endif
4070
4071/* In alias.c */
4072extern rtx canon_rtx (rtx);
4073extern int true_dependence (const_rtx, machine_mode, const_rtx);
4074extern rtx get_addr (rtx);
4075extern int canon_true_dependence (const_rtx, machine_mode, rtx,
4076 const_rtx, rtx);
4077extern int read_dependence (const_rtx, const_rtx);
4078extern int anti_dependence (const_rtx, const_rtx);
4079extern int canon_anti_dependence (const_rtx, bool,
4080 const_rtx, machine_mode, rtx);
4081extern int output_dependence (const_rtx, const_rtx);
4082extern int canon_output_dependence (const_rtx, bool,
4083 const_rtx, machine_mode, rtx);
4084extern int may_alias_p (const_rtx, const_rtx);
4085extern void init_alias_target (void);
4086extern void init_alias_analysis (void);
4087extern void end_alias_analysis (void);
4088extern void vt_equate_reg_base_value (const_rtx, const_rtx);
4089extern bool memory_modified_in_insn_p (const_rtx, const_rtx);
4090extern bool may_be_sp_based_p (rtx);
4091extern rtx gen_hard_reg_clobber (machine_mode, unsigned int);
4092extern rtx get_reg_known_value (unsigned int);
4093extern bool get_reg_known_equiv_p (unsigned int);
4094extern rtx get_reg_base_value (unsigned int);
4095
4096#ifdef STACK_REGS
4097extern int stack_regs_mentioned (const_rtx insn);
4098#endif
4099
4100/* In toplev.c */
4101extern GTY(()) rtx stack_limit_rtx;
4102
4103/* In var-tracking.c */
4104extern unsigned int variable_tracking_main (void);
4105
4106/* In stor-layout.c. */
4107extern void get_mode_bounds (scalar_int_mode, int,
4108 scalar_int_mode, rtx *, rtx *);
4109
4110/* In loop-iv.c */
4111extern rtx canon_condition (rtx);
4112extern void simplify_using_condition (rtx, rtx *, bitmap);
4113
4114/* In final.c */
4115extern unsigned int compute_alignments (void);
4116extern void update_alignments (vec<rtx> &);
4117extern int asm_str_count (const char *templ);
4118
4119struct rtl_hooks
4120{
4121 rtx (*gen_lowpart) (machine_mode, rtx);
4122 rtx (*gen_lowpart_no_emit) (machine_mode, rtx);
4123 rtx (*reg_nonzero_bits) (const_rtx, scalar_int_mode, scalar_int_mode,
4124 unsigned HOST_WIDE_INT *);
4125 rtx (*reg_num_sign_bit_copies) (const_rtx, scalar_int_mode, scalar_int_mode,
4126 unsigned int *);
4127 bool (*reg_truncated_to_mode) (machine_mode, const_rtx);
4128
4129 /* Whenever you add entries here, make sure you adjust rtlhooks-def.h. */
4130};
4131
4132/* Each pass can provide its own. */
4133extern struct rtl_hooks rtl_hooks;
4134
4135/* ... but then it has to restore these. */
4136extern const struct rtl_hooks general_rtl_hooks;
4137
4138/* Keep this for the nonce. */
4139#define gen_lowpart rtl_hooks.gen_lowpart
4140
4141extern void insn_locations_init (void);
4142extern void insn_locations_finalize (void);
4143extern void set_curr_insn_location (location_t);
4144extern location_t curr_insn_location (void);
4145
4146/* rtl-error.c */
4147extern void _fatal_insn_not_found (const_rtx, const char *, int, const char *)
4148 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
4149extern void _fatal_insn (const char *, const_rtx, const char *, int, const char *)
4150 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
4151
4152#define fatal_insn(msgid, insn) \
4153 _fatal_insn (msgid, insn, __FILE__, __LINE__, __FUNCTION__)
4154#define fatal_insn_not_found(insn) \
4155 _fatal_insn_not_found (insn, __FILE__, __LINE__, __FUNCTION__)
4156
4157/* reginfo.c */
4158extern tree GTY(()) global_regs_decl[FIRST_PSEUDO_REGISTER];
4159
4160/* Information about the function that is propagated by the RTL backend.
4161 Available only for functions that has been already assembled. */
4162
4163struct GTY(()) cgraph_rtl_info {
4164 unsigned int preferred_incoming_stack_boundary;
4165
4166 /* Call unsaved hard registers really used by the corresponding
4167 function (including ones used by functions called by the
4168 function). */
4169 HARD_REG_SET function_used_regs;
4170 /* Set if function_used_regs is valid. */
4171 unsigned function_used_regs_valid: 1;
4172};
4173
4174/* If loads from memories of mode MODE always sign or zero extend,
4175 return SIGN_EXTEND or ZERO_EXTEND as appropriate. Return UNKNOWN
4176 otherwise. */
4177
4178inline rtx_code
4179load_extend_op (machine_mode mode)
4180{
4181 scalar_int_mode int_mode;
4182 if (is_a <scalar_int_mode> (mode, &int_mode)
4183 && GET_MODE_PRECISION (int_mode) < BITS_PER_WORD)
4184 return LOAD_EXTEND_OP (int_mode);
4185 return UNKNOWN;
4186}
4187
4188/* gtype-desc.c. */
4189extern void gt_ggc_mx (rtx &);
4190extern void gt_pch_nx (rtx &);
4191extern void gt_pch_nx (rtx &, gt_pointer_operator, void *);
4192
4193#endif /* ! GCC_RTL_H */
4194