1/* Instruction scheduling pass. This file contains definitions used
2 internally in the scheduler.
3 Copyright (C) 2006-2017 Free Software Foundation, Inc.
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 3, or (at your option) any later
10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING3. If not see
19<http://www.gnu.org/licenses/>. */
20
21#ifndef GCC_SEL_SCHED_IR_H
22#define GCC_SEL_SCHED_IR_H
23
24/* For state_t. */
25/* For reg_note. */
26
27/* tc_t is a short for target context. This is a state of the target
28 backend. */
29typedef void *tc_t;
30
31/* List data types used for av sets, fences, paths, and boundaries. */
32
33/* Forward declarations for types that are part of some list nodes. */
34struct _list_node;
35
36/* List backend. */
37typedef struct _list_node *_list_t;
38#define _LIST_NEXT(L) ((L)->next)
39
40/* Instruction data that is part of vinsn type. */
41struct idata_def;
42typedef struct idata_def *idata_t;
43
44/* A virtual instruction, i.e. an instruction as seen by the scheduler. */
45struct vinsn_def;
46typedef struct vinsn_def *vinsn_t;
47
48/* RTX list.
49 This type is the backend for ilist. */
50typedef _list_t _xlist_t;
51#define _XLIST_X(L) ((L)->u.x)
52#define _XLIST_NEXT(L) (_LIST_NEXT (L))
53
54/* Instruction. */
55typedef rtx_insn *insn_t;
56
57/* List of insns. */
58typedef _list_t ilist_t;
59#define ILIST_INSN(L) ((L)->u.insn)
60#define ILIST_NEXT(L) (_LIST_NEXT (L))
61
62/* This lists possible transformations that done locally, i.e. in
63 moveup_expr. */
64enum local_trans_type
65 {
66 TRANS_SUBSTITUTION,
67 TRANS_SPECULATION
68 };
69
70/* This struct is used to record the history of expression's
71 transformations. */
72struct expr_history_def_1
73{
74 /* UID of the insn. */
75 unsigned uid;
76
77 /* How the expression looked like. */
78 vinsn_t old_expr_vinsn;
79
80 /* How the expression looks after the transformation. */
81 vinsn_t new_expr_vinsn;
82
83 /* And its speculative status. */
84 ds_t spec_ds;
85
86 /* Type of the transformation. */
87 enum local_trans_type type;
88};
89
90typedef struct expr_history_def_1 expr_history_def;
91
92
93/* Expression information. */
94struct _expr
95{
96 /* Insn description. */
97 vinsn_t vinsn;
98
99 /* SPEC is the degree of speculativeness.
100 FIXME: now spec is increased when an rhs is moved through a
101 conditional, thus showing only control speculativeness. In the
102 future we'd like to count data spec separately to allow a better
103 control on scheduling. */
104 int spec;
105
106 /* Degree of speculativeness measured as probability of executing
107 instruction's original basic block given relative to
108 the current scheduling point. */
109 int usefulness;
110
111 /* A priority of this expression. */
112 int priority;
113
114 /* A priority adjustment of this expression. */
115 int priority_adj;
116
117 /* Number of times the insn was scheduled. */
118 int sched_times;
119
120 /* A basic block index this was originated from. Zero when there is
121 more than one originator. */
122 int orig_bb_index;
123
124 /* Instruction should be of SPEC_DONE_DS type in order to be moved to this
125 point. */
126 ds_t spec_done_ds;
127
128 /* SPEC_TO_CHECK_DS hold speculation types that should be checked
129 (used only during move_op ()). */
130 ds_t spec_to_check_ds;
131
132 /* Cycle on which original insn was scheduled. Zero when it has not yet
133 been scheduled or more than one originator. */
134 int orig_sched_cycle;
135
136 /* This vector contains the history of insn's transformations. */
137 vec<expr_history_def> history_of_changes;
138
139 /* True (1) when original target (register or memory) of this instruction
140 is available for scheduling, false otherwise. -1 means we're not sure;
141 please run find_used_regs to clarify. */
142 signed char target_available;
143
144 /* True when this expression needs a speculation check to be scheduled.
145 This is used during find_used_regs. */
146 BOOL_BITFIELD needs_spec_check_p : 1;
147
148 /* True when the expression was substituted. Used for statistical
149 purposes. */
150 BOOL_BITFIELD was_substituted : 1;
151
152 /* True when the expression was renamed. */
153 BOOL_BITFIELD was_renamed : 1;
154
155 /* True when expression can't be moved. */
156 BOOL_BITFIELD cant_move : 1;
157};
158
159typedef struct _expr expr_def;
160typedef expr_def *expr_t;
161
162#define EXPR_VINSN(EXPR) ((EXPR)->vinsn)
163#define EXPR_INSN_RTX(EXPR) (VINSN_INSN_RTX (EXPR_VINSN (EXPR)))
164#define EXPR_PATTERN(EXPR) (VINSN_PATTERN (EXPR_VINSN (EXPR)))
165#define EXPR_LHS(EXPR) (VINSN_LHS (EXPR_VINSN (EXPR)))
166#define EXPR_RHS(EXPR) (VINSN_RHS (EXPR_VINSN (EXPR)))
167#define EXPR_TYPE(EXPR) (VINSN_TYPE (EXPR_VINSN (EXPR)))
168#define EXPR_SEPARABLE_P(EXPR) (VINSN_SEPARABLE_P (EXPR_VINSN (EXPR)))
169
170#define EXPR_SPEC(EXPR) ((EXPR)->spec)
171#define EXPR_USEFULNESS(EXPR) ((EXPR)->usefulness)
172#define EXPR_PRIORITY(EXPR) ((EXPR)->priority)
173#define EXPR_PRIORITY_ADJ(EXPR) ((EXPR)->priority_adj)
174#define EXPR_SCHED_TIMES(EXPR) ((EXPR)->sched_times)
175#define EXPR_ORIG_BB_INDEX(EXPR) ((EXPR)->orig_bb_index)
176#define EXPR_ORIG_SCHED_CYCLE(EXPR) ((EXPR)->orig_sched_cycle)
177#define EXPR_SPEC_DONE_DS(EXPR) ((EXPR)->spec_done_ds)
178#define EXPR_SPEC_TO_CHECK_DS(EXPR) ((EXPR)->spec_to_check_ds)
179#define EXPR_HISTORY_OF_CHANGES(EXPR) ((EXPR)->history_of_changes)
180#define EXPR_TARGET_AVAILABLE(EXPR) ((EXPR)->target_available)
181#define EXPR_NEEDS_SPEC_CHECK_P(EXPR) ((EXPR)->needs_spec_check_p)
182#define EXPR_WAS_SUBSTITUTED(EXPR) ((EXPR)->was_substituted)
183#define EXPR_WAS_RENAMED(EXPR) ((EXPR)->was_renamed)
184#define EXPR_CANT_MOVE(EXPR) ((EXPR)->cant_move)
185
186/* Insn definition for list of original insns in find_used_regs. */
187struct _def
188{
189 insn_t orig_insn;
190
191 /* FIXME: Get rid of CROSSES_CALL in each def, since if we're moving up
192 rhs from two different places, but only one of the code motion paths
193 crosses a call, we can't use any of the call_used_regs, no matter which
194 path or whether all paths crosses a call. Thus we should move CROSSES_CALL
195 to static params. */
196 bool crosses_call;
197};
198typedef struct _def *def_t;
199
200
201/* Availability sets are sets of expressions we're scheduling. */
202typedef _list_t av_set_t;
203#define _AV_SET_EXPR(L) (&(L)->u.expr)
204#define _AV_SET_NEXT(L) (_LIST_NEXT (L))
205
206
207/* Boundary of the current fence group. */
208struct _bnd
209{
210 /* The actual boundary instruction. */
211 insn_t to;
212
213 /* Its path to the fence. */
214 ilist_t ptr;
215
216 /* Availability set at the boundary. */
217 av_set_t av;
218
219 /* This set moved to the fence. */
220 av_set_t av1;
221
222 /* Deps context at this boundary. As long as we have one boundary per fence,
223 this is just a pointer to the same deps context as in the corresponding
224 fence. */
225 deps_t dc;
226};
227typedef struct _bnd *bnd_t;
228#define BND_TO(B) ((B)->to)
229
230/* PTR stands not for pointer as you might think, but as a Path To Root of the
231 current instruction group from boundary B. */
232#define BND_PTR(B) ((B)->ptr)
233#define BND_AV(B) ((B)->av)
234#define BND_AV1(B) ((B)->av1)
235#define BND_DC(B) ((B)->dc)
236
237/* List of boundaries. */
238typedef _list_t blist_t;
239#define BLIST_BND(L) (&(L)->u.bnd)
240#define BLIST_NEXT(L) (_LIST_NEXT (L))
241
242
243/* Fence information. A fence represents current scheduling point and also
244 blocks code motion through it when pipelining. */
245struct _fence
246{
247 /* Insn before which we gather an instruction group.*/
248 insn_t insn;
249
250 /* Modeled state of the processor pipeline. */
251 state_t state;
252
253 /* Current cycle that is being scheduled on this fence. */
254 int cycle;
255
256 /* Number of insns that were scheduled on the current cycle.
257 This information has to be local to a fence. */
258 int cycle_issued_insns;
259
260 /* At the end of fill_insns () this field holds the list of the instructions
261 that are inner boundaries of the scheduled parallel group. */
262 ilist_t bnds;
263
264 /* Deps context at this fence. It is used to model dependencies at the
265 fence so that insn ticks can be properly evaluated. */
266 deps_t dc;
267
268 /* Target context at this fence. Used to save and load any local target
269 scheduling information when changing fences. */
270 tc_t tc;
271
272 /* A vector of insns that are scheduled but not yet completed. */
273 vec<rtx_insn *, va_gc> *executing_insns;
274
275 /* A vector indexed by UIDs that caches the earliest cycle on which
276 an insn can be scheduled on this fence. */
277 int *ready_ticks;
278
279 /* Its size. */
280 int ready_ticks_size;
281
282 /* Insn, which has been scheduled last on this fence. */
283 rtx_insn *last_scheduled_insn;
284
285 /* The last value of can_issue_more variable on this fence. */
286 int issue_more;
287
288 /* If non-NULL force the next scheduled insn to be SCHED_NEXT. */
289 rtx_insn *sched_next;
290
291 /* True if fill_insns processed this fence. */
292 BOOL_BITFIELD processed_p : 1;
293
294 /* True if fill_insns actually scheduled something on this fence. */
295 BOOL_BITFIELD scheduled_p : 1;
296
297 /* True when the next insn scheduled here would start a cycle. */
298 BOOL_BITFIELD starts_cycle_p : 1;
299
300 /* True when the next insn scheduled here would be scheduled after a stall. */
301 BOOL_BITFIELD after_stall_p : 1;
302};
303typedef struct _fence *fence_t;
304
305#define FENCE_INSN(F) ((F)->insn)
306#define FENCE_STATE(F) ((F)->state)
307#define FENCE_BNDS(F) ((F)->bnds)
308#define FENCE_PROCESSED_P(F) ((F)->processed_p)
309#define FENCE_SCHEDULED_P(F) ((F)->scheduled_p)
310#define FENCE_ISSUED_INSNS(F) ((F)->cycle_issued_insns)
311#define FENCE_CYCLE(F) ((F)->cycle)
312#define FENCE_STARTS_CYCLE_P(F) ((F)->starts_cycle_p)
313#define FENCE_AFTER_STALL_P(F) ((F)->after_stall_p)
314#define FENCE_DC(F) ((F)->dc)
315#define FENCE_TC(F) ((F)->tc)
316#define FENCE_LAST_SCHEDULED_INSN(F) ((F)->last_scheduled_insn)
317#define FENCE_ISSUE_MORE(F) ((F)->issue_more)
318#define FENCE_EXECUTING_INSNS(F) ((F)->executing_insns)
319#define FENCE_READY_TICKS(F) ((F)->ready_ticks)
320#define FENCE_READY_TICKS_SIZE(F) ((F)->ready_ticks_size)
321#define FENCE_SCHED_NEXT(F) ((F)->sched_next)
322
323/* List of fences. */
324typedef _list_t flist_t;
325#define FLIST_FENCE(L) (&(L)->u.fence)
326#define FLIST_NEXT(L) (_LIST_NEXT (L))
327
328/* List of fences with pointer to the tail node. */
329struct flist_tail_def
330{
331 flist_t head;
332 flist_t *tailp;
333};
334
335typedef struct flist_tail_def *flist_tail_t;
336#define FLIST_TAIL_HEAD(L) ((L)->head)
337#define FLIST_TAIL_TAILP(L) ((L)->tailp)
338
339/* List node information. A list node can be any of the types above. */
340struct _list_node
341{
342 _list_t next;
343
344 union
345 {
346 rtx x;
347 insn_t insn;
348 struct _bnd bnd;
349 expr_def expr;
350 struct _fence fence;
351 struct _def def;
352 void *data;
353 } u;
354};
355
356
357/* _list_t functions.
358 All of _*list_* functions are used through accessor macros, thus
359 we can't move them in sel-sched-ir.c. */
360extern object_allocator<_list_node> sched_lists_pool;
361
362static inline _list_t
363_list_alloc (void)
364{
365 return sched_lists_pool.allocate ();
366}
367
368static inline void
369_list_add (_list_t *lp)
370{
371 _list_t l = _list_alloc ();
372
373 _LIST_NEXT (l) = *lp;
374 *lp = l;
375}
376
377static inline void
378_list_remove_nofree (_list_t *lp)
379{
380 _list_t n = *lp;
381
382 *lp = _LIST_NEXT (n);
383}
384
385static inline void
386_list_remove (_list_t *lp)
387{
388 _list_t n = *lp;
389
390 *lp = _LIST_NEXT (n);
391 sched_lists_pool.remove (n);
392}
393
394static inline void
395_list_clear (_list_t *l)
396{
397 while (*l)
398 _list_remove (l);
399}
400
401
402/* List iterator backend. */
403struct _list_iterator
404{
405 /* The list we're iterating. */
406 _list_t *lp;
407
408 /* True when this iterator supprts removing. */
409 bool can_remove_p;
410
411 /* True when we've actually removed something. */
412 bool removed_p;
413};
414
415static inline void
416_list_iter_start (_list_iterator *ip, _list_t *lp, bool can_remove_p)
417{
418 ip->lp = lp;
419 ip->can_remove_p = can_remove_p;
420 ip->removed_p = false;
421}
422
423static inline void
424_list_iter_next (_list_iterator *ip)
425{
426 if (!ip->removed_p)
427 ip->lp = &_LIST_NEXT (*ip->lp);
428 else
429 ip->removed_p = false;
430}
431
432static inline void
433_list_iter_remove (_list_iterator *ip)
434{
435 gcc_assert (!ip->removed_p && ip->can_remove_p);
436 _list_remove (ip->lp);
437 ip->removed_p = true;
438}
439
440static inline void
441_list_iter_remove_nofree (_list_iterator *ip)
442{
443 gcc_assert (!ip->removed_p && ip->can_remove_p);
444 _list_remove_nofree (ip->lp);
445 ip->removed_p = true;
446}
447
448/* General macros to traverse a list. FOR_EACH_* interfaces are
449 implemented using these. */
450#define _FOR_EACH(TYPE, ELEM, I, L) \
451 for (_list_iter_start (&(I), &(L), false); \
452 _list_iter_cond_##TYPE (*(I).lp, &(ELEM)); \
453 _list_iter_next (&(I)))
454
455#define _FOR_EACH_1(TYPE, ELEM, I, LP) \
456 for (_list_iter_start (&(I), (LP), true); \
457 _list_iter_cond_##TYPE (*(I).lp, &(ELEM)); \
458 _list_iter_next (&(I)))
459
460
461/* _xlist_t functions. */
462
463static inline void
464_xlist_add (_xlist_t *lp, rtx x)
465{
466 _list_add (lp);
467 _XLIST_X (*lp) = x;
468}
469
470#define _xlist_remove(LP) (_list_remove (LP))
471#define _xlist_clear(LP) (_list_clear (LP))
472
473static inline bool
474_xlist_is_in_p (_xlist_t l, rtx x)
475{
476 while (l)
477 {
478 if (_XLIST_X (l) == x)
479 return true;
480 l = _XLIST_NEXT (l);
481 }
482
483 return false;
484}
485
486/* Used through _FOR_EACH. */
487static inline bool
488_list_iter_cond_x (_xlist_t l, rtx *xp)
489{
490 if (l)
491 {
492 *xp = _XLIST_X (l);
493 return true;
494 }
495
496 return false;
497}
498
499#define _xlist_iter_remove(IP) (_list_iter_remove (IP))
500
501typedef _list_iterator _xlist_iterator;
502#define _FOR_EACH_X(X, I, L) _FOR_EACH (x, (X), (I), (L))
503#define _FOR_EACH_X_1(X, I, LP) _FOR_EACH_1 (x, (X), (I), (LP))
504
505
506/* ilist_t functions. */
507
508static inline void
509ilist_add (ilist_t *lp, insn_t insn)
510{
511 _list_add (lp);
512 ILIST_INSN (*lp) = insn;
513}
514#define ilist_remove(LP) (_list_remove (LP))
515#define ilist_clear(LP) (_list_clear (LP))
516
517static inline bool
518ilist_is_in_p (ilist_t l, insn_t insn)
519{
520 while (l)
521 {
522 if (ILIST_INSN (l) == insn)
523 return true;
524 l = ILIST_NEXT (l);
525 }
526
527 return false;
528}
529
530/* Used through _FOR_EACH. */
531static inline bool
532_list_iter_cond_insn (ilist_t l, insn_t *ip)
533{
534 if (l)
535 {
536 *ip = ILIST_INSN (l);
537 return true;
538 }
539
540 return false;
541}
542
543#define ilist_iter_remove(IP) (_list_iter_remove (IP))
544
545typedef _list_iterator ilist_iterator;
546#define FOR_EACH_INSN(INSN, I, L) _FOR_EACH (insn, (INSN), (I), (L))
547#define FOR_EACH_INSN_1(INSN, I, LP) _FOR_EACH_1 (insn, (INSN), (I), (LP))
548
549
550/* Av set iterators. */
551typedef _list_iterator av_set_iterator;
552#define FOR_EACH_EXPR(EXPR, I, AV) _FOR_EACH (expr, (EXPR), (I), (AV))
553#define FOR_EACH_EXPR_1(EXPR, I, AV) _FOR_EACH_1 (expr, (EXPR), (I), (AV))
554
555inline bool
556_list_iter_cond_expr (av_set_t av, expr_t *exprp)
557{
558 if (av)
559 {
560 *exprp = _AV_SET_EXPR (av);
561 return true;
562 }
563
564 return false;
565}
566
567
568/* Def list iterators. */
569typedef _list_t def_list_t;
570typedef _list_iterator def_list_iterator;
571
572#define DEF_LIST_NEXT(L) (_LIST_NEXT (L))
573#define DEF_LIST_DEF(L) (&(L)->u.def)
574
575#define FOR_EACH_DEF(DEF, I, DEF_LIST) _FOR_EACH (def, (DEF), (I), (DEF_LIST))
576
577static inline bool
578_list_iter_cond_def (def_list_t def_list, def_t *def)
579{
580 if (def_list)
581 {
582 *def = DEF_LIST_DEF (def_list);
583 return true;
584 }
585
586 return false;
587}
588
589
590/* InstructionData. Contains information about insn pattern. */
591struct idata_def
592{
593 /* Type of the insn.
594 o CALL_INSN - Call insn
595 o JUMP_INSN - Jump insn
596 o INSN - INSN that cannot be cloned
597 o USE - INSN that can be cloned
598 o SET - INSN that can be cloned and separable into lhs and rhs
599 o PC - simplejump. Insns that simply redirect control flow should not
600 have any dependencies. Sched-deps.c, though, might consider them as
601 producers or consumers of certain registers. To avoid that we handle
602 dependency for simple jumps ourselves. */
603 int type;
604
605 /* If insn is a SET, this is its left hand side. */
606 rtx lhs;
607
608 /* If insn is a SET, this is its right hand side. */
609 rtx rhs;
610
611 /* Registers that are set/used by this insn. This info is now gathered
612 via sched-deps.c. The downside of this is that we also use live info
613 from flow that is accumulated in the basic blocks. These two infos
614 can be slightly inconsistent, hence in the beginning we make a pass
615 through CFG and calculating the conservative solution for the info in
616 basic blocks. When this scheduler will be switched to use dataflow,
617 this can be unified as df gives us both per basic block and per
618 instruction info. Actually, we don't do that pass and just hope
619 for the best. */
620 regset reg_sets;
621
622 regset reg_clobbers;
623
624 regset reg_uses;
625};
626
627#define IDATA_TYPE(ID) ((ID)->type)
628#define IDATA_LHS(ID) ((ID)->lhs)
629#define IDATA_RHS(ID) ((ID)->rhs)
630#define IDATA_REG_SETS(ID) ((ID)->reg_sets)
631#define IDATA_REG_USES(ID) ((ID)->reg_uses)
632#define IDATA_REG_CLOBBERS(ID) ((ID)->reg_clobbers)
633
634/* Type to represent all needed info to emit an insn.
635 This is a virtual equivalent of the insn.
636 Every insn in the stream has an associated vinsn. This is used
637 to reduce memory consumption basing on the fact that many insns
638 don't change through the scheduler.
639
640 vinsn can be either normal or unique.
641 * Normal vinsn is the one, that can be cloned multiple times and typically
642 corresponds to normal instruction.
643
644 * Unique vinsn derivates from CALL, ASM, JUMP (for a while) and other
645 unusual stuff. Such a vinsn is described by its INSN field, which is a
646 reference to the original instruction. */
647struct vinsn_def
648{
649 /* Associated insn. */
650 rtx_insn *insn_rtx;
651
652 /* Its description. */
653 struct idata_def id;
654
655 /* Hash of vinsn. It is computed either from pattern or from rhs using
656 hash_rtx. It is not placed in ID for faster compares. */
657 unsigned hash;
658
659 /* Hash of the insn_rtx pattern. */
660 unsigned hash_rtx;
661
662 /* Smart pointer counter. */
663 int count;
664
665 /* Cached cost of the vinsn. To access it please use vinsn_cost (). */
666 int cost;
667
668 /* Mark insns that may trap so we don't move them through jumps. */
669 bool may_trap_p;
670};
671
672#define VINSN_INSN_RTX(VI) ((VI)->insn_rtx)
673#define VINSN_PATTERN(VI) (PATTERN (VINSN_INSN_RTX (VI)))
674
675#define VINSN_ID(VI) (&((VI)->id))
676#define VINSN_HASH(VI) ((VI)->hash)
677#define VINSN_HASH_RTX(VI) ((VI)->hash_rtx)
678#define VINSN_TYPE(VI) (IDATA_TYPE (VINSN_ID (VI)))
679#define VINSN_SEPARABLE_P(VI) (VINSN_TYPE (VI) == SET)
680#define VINSN_CLONABLE_P(VI) (VINSN_SEPARABLE_P (VI) || VINSN_TYPE (VI) == USE)
681#define VINSN_UNIQUE_P(VI) (!VINSN_CLONABLE_P (VI))
682#define VINSN_LHS(VI) (IDATA_LHS (VINSN_ID (VI)))
683#define VINSN_RHS(VI) (IDATA_RHS (VINSN_ID (VI)))
684#define VINSN_REG_SETS(VI) (IDATA_REG_SETS (VINSN_ID (VI)))
685#define VINSN_REG_USES(VI) (IDATA_REG_USES (VINSN_ID (VI)))
686#define VINSN_REG_CLOBBERS(VI) (IDATA_REG_CLOBBERS (VINSN_ID (VI)))
687#define VINSN_COUNT(VI) ((VI)->count)
688#define VINSN_MAY_TRAP_P(VI) ((VI)->may_trap_p)
689
690
691/* An entry of the hashtable describing transformations happened when
692 moving up through an insn. */
693struct transformed_insns
694{
695 /* Previous vinsn. Used to find the proper element. */
696 vinsn_t vinsn_old;
697
698 /* A new vinsn. */
699 vinsn_t vinsn_new;
700
701 /* Speculative status. */
702 ds_t ds;
703
704 /* Type of transformation happened. */
705 enum local_trans_type type;
706
707 /* Whether a conflict on the target register happened. */
708 BOOL_BITFIELD was_target_conflict : 1;
709
710 /* Whether a check was needed. */
711 BOOL_BITFIELD needs_check : 1;
712};
713
714/* Indexed by INSN_LUID, the collection of all data associated with
715 a single instruction that is in the stream. */
716struct _sel_insn_data
717{
718 /* The expression that contains vinsn for this insn and some
719 flow-sensitive data like priority. */
720 expr_def expr;
721
722 /* If (WS_LEVEL == GLOBAL_LEVEL) then AV is empty. */
723 int ws_level;
724
725 /* A number that helps in defining a traversing order for a region. */
726 int seqno;
727
728 /* A liveness data computed above this insn. */
729 regset live;
730
731 /* An INSN_UID bit is set when deps analysis result is already known. */
732 bitmap analyzed_deps;
733
734 /* An INSN_UID bit is set when a hard dep was found, not set when
735 no dependence is found. This is meaningful only when the analyzed_deps
736 bitmap has its bit set. */
737 bitmap found_deps;
738
739 /* An INSN_UID bit is set when this is a bookkeeping insn generated from
740 a parent with this uid. If a parent is a bookkeeping copy, all its
741 originators are transitively included in this set. */
742 bitmap originators;
743
744 /* A hashtable caching the result of insn transformations through this one. */
745 htab_t transformed_insns;
746
747 /* A context incapsulating this insn. */
748 struct deps_desc deps_context;
749
750 /* This field is initialized at the beginning of scheduling and is used
751 to handle sched group instructions. If it is non-null, then it points
752 to the instruction, which should be forced to schedule next. Such
753 instructions are unique. */
754 insn_t sched_next;
755
756 /* Cycle at which insn was scheduled. It is greater than zero if insn was
757 scheduled. This is used for bundling. */
758 int sched_cycle;
759
760 /* Cycle at which insn's data will be fully ready. */
761 int ready_cycle;
762
763 /* Speculations that are being checked by this insn. */
764 ds_t spec_checked_ds;
765
766 /* Whether the live set valid or not. */
767 BOOL_BITFIELD live_valid_p : 1;
768 /* Insn is an ASM. */
769 BOOL_BITFIELD asm_p : 1;
770
771 /* True when an insn is scheduled after we've determined that a stall is
772 required.
773 This is used when emulating the Haifa scheduler for bundling. */
774 BOOL_BITFIELD after_stall_p : 1;
775};
776
777typedef struct _sel_insn_data sel_insn_data_def;
778typedef sel_insn_data_def *sel_insn_data_t;
779
780extern vec<sel_insn_data_def> s_i_d;
781
782/* Accessor macros for s_i_d. */
783#define SID(INSN) (&s_i_d[INSN_LUID (INSN)])
784#define SID_BY_UID(UID) (&s_i_d[LUID_BY_UID (UID)])
785
786extern sel_insn_data_def insn_sid (insn_t);
787
788#define INSN_ASM_P(INSN) (SID (INSN)->asm_p)
789#define INSN_SCHED_NEXT(INSN) (SID (INSN)->sched_next)
790#define INSN_ANALYZED_DEPS(INSN) (SID (INSN)->analyzed_deps)
791#define INSN_FOUND_DEPS(INSN) (SID (INSN)->found_deps)
792#define INSN_DEPS_CONTEXT(INSN) (SID (INSN)->deps_context)
793#define INSN_ORIGINATORS(INSN) (SID (INSN)->originators)
794#define INSN_ORIGINATORS_BY_UID(UID) (SID_BY_UID (UID)->originators)
795#define INSN_TRANSFORMED_INSNS(INSN) (SID (INSN)->transformed_insns)
796
797#define INSN_EXPR(INSN) (&SID (INSN)->expr)
798#define INSN_LIVE(INSN) (SID (INSN)->live)
799#define INSN_LIVE_VALID_P(INSN) (SID (INSN)->live_valid_p)
800#define INSN_VINSN(INSN) (EXPR_VINSN (INSN_EXPR (INSN)))
801#define INSN_TYPE(INSN) (VINSN_TYPE (INSN_VINSN (INSN)))
802#define INSN_SIMPLEJUMP_P(INSN) (INSN_TYPE (INSN) == PC)
803#define INSN_LHS(INSN) (VINSN_LHS (INSN_VINSN (INSN)))
804#define INSN_RHS(INSN) (VINSN_RHS (INSN_VINSN (INSN)))
805#define INSN_REG_SETS(INSN) (VINSN_REG_SETS (INSN_VINSN (INSN)))
806#define INSN_REG_CLOBBERS(INSN) (VINSN_REG_CLOBBERS (INSN_VINSN (INSN)))
807#define INSN_REG_USES(INSN) (VINSN_REG_USES (INSN_VINSN (INSN)))
808#define INSN_SCHED_TIMES(INSN) (EXPR_SCHED_TIMES (INSN_EXPR (INSN)))
809#define INSN_SEQNO(INSN) (SID (INSN)->seqno)
810#define INSN_AFTER_STALL_P(INSN) (SID (INSN)->after_stall_p)
811#define INSN_SCHED_CYCLE(INSN) (SID (INSN)->sched_cycle)
812#define INSN_READY_CYCLE(INSN) (SID (INSN)->ready_cycle)
813#define INSN_SPEC_CHECKED_DS(INSN) (SID (INSN)->spec_checked_ds)
814
815/* A global level shows whether an insn is valid or not. */
816extern int global_level;
817
818#define INSN_WS_LEVEL(INSN) (SID (INSN)->ws_level)
819
820extern av_set_t get_av_set (insn_t);
821extern int get_av_level (insn_t);
822
823#define AV_SET(INSN) (get_av_set (INSN))
824#define AV_LEVEL(INSN) (get_av_level (INSN))
825#define AV_SET_VALID_P(INSN) (AV_LEVEL (INSN) == global_level)
826
827/* A list of fences currently in the works. */
828extern flist_t fences;
829
830/* A NOP pattern used as a placeholder for real insns. */
831extern rtx nop_pattern;
832
833/* An insn that 'contained' in EXIT block. */
834extern rtx_insn *exit_insn;
835
836/* Provide a separate luid for the insn. */
837#define INSN_INIT_TODO_LUID (1)
838
839/* Initialize s_s_i_d. */
840#define INSN_INIT_TODO_SSID (2)
841
842/* Initialize data for simplejump. */
843#define INSN_INIT_TODO_SIMPLEJUMP (4)
844
845/* Return true if INSN is a local NOP. The nop is local in the sense that
846 it was emitted by the scheduler as a temporary insn and will soon be
847 deleted. These nops are identified by their pattern. */
848#define INSN_NOP_P(INSN) (PATTERN (INSN) == nop_pattern)
849
850/* Return true if INSN is linked into instruction stream.
851 NB: It is impossible for INSN to have one field null and the other not
852 null: gcc_assert ((PREV_INSN (INSN) == NULL_RTX)
853 == (NEXT_INSN (INSN) == NULL_RTX)) is valid. */
854#define INSN_IN_STREAM_P(INSN) (PREV_INSN (INSN) && NEXT_INSN (INSN))
855
856/* Return true if INSN is in current fence. */
857#define IN_CURRENT_FENCE_P(INSN) (flist_lookup (fences, INSN) != NULL)
858
859/* Marks loop as being considered for pipelining. */
860#define MARK_LOOP_FOR_PIPELINING(LOOP) ((LOOP)->aux = (void *)(size_t)(1))
861#define LOOP_MARKED_FOR_PIPELINING_P(LOOP) ((size_t)((LOOP)->aux))
862
863/* Saved loop preheader to transfer when scheduling the loop. */
864#define LOOP_PREHEADER_BLOCKS(LOOP) ((size_t)((LOOP)->aux) == 1 \
865 ? NULL \
866 : ((vec<basic_block> *) (LOOP)->aux))
867#define SET_LOOP_PREHEADER_BLOCKS(LOOP,BLOCKS) ((LOOP)->aux \
868 = (BLOCKS != NULL \
869 ? BLOCKS \
870 : (LOOP)->aux))
871
872extern bitmap blocks_to_reschedule;
873
874
875/* A variable to track which part of rtx we are scanning in
876 sched-deps.c: sched_analyze_insn (). */
877enum deps_where_t
878{
879 DEPS_IN_INSN,
880 DEPS_IN_LHS,
881 DEPS_IN_RHS,
882 DEPS_IN_NOWHERE
883};
884
885
886/* Per basic block data for the whole CFG. */
887struct sel_global_bb_info_def
888{
889 /* For each bb header this field contains a set of live registers.
890 For all other insns this field has a NULL.
891 We also need to know LV sets for the instructions, that are immediately
892 after the border of the region. */
893 regset lv_set;
894
895 /* Status of LV_SET.
896 true - block has usable LV_SET.
897 false - block's LV_SET should be recomputed. */
898 bool lv_set_valid_p;
899};
900
901typedef sel_global_bb_info_def *sel_global_bb_info_t;
902
903
904/* Per basic block data. This array is indexed by basic block index. */
905extern vec<sel_global_bb_info_def> sel_global_bb_info;
906
907extern void sel_extend_global_bb_info (void);
908extern void sel_finish_global_bb_info (void);
909
910/* Get data for BB. */
911#define SEL_GLOBAL_BB_INFO(BB) \
912 (&sel_global_bb_info[(BB)->index])
913
914/* Access macros. */
915#define BB_LV_SET(BB) (SEL_GLOBAL_BB_INFO (BB)->lv_set)
916#define BB_LV_SET_VALID_P(BB) (SEL_GLOBAL_BB_INFO (BB)->lv_set_valid_p)
917
918/* Per basic block data for the region. */
919struct sel_region_bb_info_def
920{
921 /* This insn stream is constructed in such a way that it should be
922 traversed by PREV_INSN field - (*not* NEXT_INSN). */
923 rtx_insn *note_list;
924
925 /* Cached availability set at the beginning of a block.
926 See also AV_LEVEL () for conditions when this av_set can be used. */
927 av_set_t av_set;
928
929 /* If (AV_LEVEL == GLOBAL_LEVEL) then AV is valid. */
930 int av_level;
931};
932
933typedef sel_region_bb_info_def *sel_region_bb_info_t;
934
935
936/* Per basic block data. This array is indexed by basic block index. */
937extern vec<sel_region_bb_info_def> sel_region_bb_info;
938
939/* Get data for BB. */
940#define SEL_REGION_BB_INFO(BB) (&sel_region_bb_info[(BB)->index])
941
942/* Get BB's note_list.
943 A note_list is a list of various notes that was scattered across BB
944 before scheduling, and will be appended at the beginning of BB after
945 scheduling is finished. */
946#define BB_NOTE_LIST(BB) (SEL_REGION_BB_INFO (BB)->note_list)
947
948#define BB_AV_SET(BB) (SEL_REGION_BB_INFO (BB)->av_set)
949#define BB_AV_LEVEL(BB) (SEL_REGION_BB_INFO (BB)->av_level)
950#define BB_AV_SET_VALID_P(BB) (BB_AV_LEVEL (BB) == global_level)
951
952/* Used in bb_in_ebb_p. */
953extern bitmap_head *forced_ebb_heads;
954
955/* The loop nest being pipelined. */
956extern struct loop *current_loop_nest;
957
958/* Saves pipelined blocks. Bitmap is indexed by bb->index. */
959extern sbitmap bbs_pipelined;
960
961/* Various flags. */
962extern bool enable_moveup_set_path_p;
963extern bool pipelining_p;
964extern bool bookkeeping_p;
965extern int max_insns_to_rename;
966extern bool preheader_removed;
967
968/* Software lookahead window size.
969 According to the results in Nakatani and Ebcioglu [1993], window size of 16
970 is enough to extract most ILP in integer code. */
971#define MAX_WS (PARAM_VALUE (PARAM_SELSCHED_MAX_LOOKAHEAD))
972
973extern regset sel_all_regs;
974
975
976/* Successor iterator backend. */
977struct succ_iterator
978{
979 /* True if we're at BB end. */
980 bool bb_end;
981
982 /* An edge on which we're iterating. */
983 edge e1;
984
985 /* The previous edge saved after skipping empty blocks. */
986 edge e2;
987
988 /* Edge iterator used when there are successors in other basic blocks. */
989 edge_iterator ei;
990
991 /* Successor block we're traversing. */
992 basic_block bb;
993
994 /* Flags that are passed to the iterator. We return only successors
995 that comply to these flags. */
996 short flags;
997
998 /* When flags include SUCCS_ALL, this will be set to the exact type
999 of the successor we're traversing now. */
1000 short current_flags;
1001
1002 /* If skip to loop exits, save here information about loop exits. */
1003 int current_exit;
1004 vec<edge> loop_exits;
1005};
1006
1007/* A structure returning all successor's information. */
1008struct succs_info
1009{
1010 /* Flags that these succcessors were computed with. */
1011 short flags;
1012
1013 /* Successors that correspond to the flags. */
1014 insn_vec_t succs_ok;
1015
1016 /* Their probabilities. As of now, we don't need this for other
1017 successors. */
1018 vec<int> probs_ok;
1019
1020 /* Other successors. */
1021 insn_vec_t succs_other;
1022
1023 /* Probability of all successors. */
1024 int all_prob;
1025
1026 /* The number of all successors. */
1027 int all_succs_n;
1028
1029 /* The number of good successors. */
1030 int succs_ok_n;
1031};
1032
1033/* Some needed definitions. */
1034extern basic_block after_recovery;
1035
1036extern rtx_insn *sel_bb_head (basic_block);
1037extern rtx_insn *sel_bb_end (basic_block);
1038extern bool sel_bb_empty_p (basic_block);
1039extern bool in_current_region_p (basic_block);
1040
1041/* True when BB is a header of the inner loop. */
1042static inline bool
1043inner_loop_header_p (basic_block bb)
1044{
1045 struct loop *inner_loop;
1046
1047 if (!current_loop_nest)
1048 return false;
1049
1050 if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
1051 return false;
1052
1053 inner_loop = bb->loop_father;
1054 if (inner_loop == current_loop_nest)
1055 return false;
1056
1057 /* If successor belongs to another loop. */
1058 if (bb == inner_loop->header
1059 && flow_bb_inside_loop_p (current_loop_nest, bb))
1060 {
1061 /* Could be '=' here because of wrong loop depths. */
1062 gcc_assert (loop_depth (inner_loop) >= loop_depth (current_loop_nest));
1063 return true;
1064 }
1065
1066 return false;
1067}
1068
1069/* Return exit edges of LOOP, filtering out edges with the same dest bb. */
1070static inline vec<edge>
1071get_loop_exit_edges_unique_dests (const struct loop *loop)
1072{
1073 vec<edge> edges = vNULL;
1074 struct loop_exit *exit;
1075
1076 gcc_assert (loop->latch != EXIT_BLOCK_PTR_FOR_FN (cfun)
1077 && current_loops->state & LOOPS_HAVE_RECORDED_EXITS);
1078
1079 for (exit = loop->exits->next; exit->e; exit = exit->next)
1080 {
1081 int i;
1082 edge e;
1083 bool was_dest = false;
1084
1085 for (i = 0; edges.iterate (i, &e); i++)
1086 if (e->dest == exit->e->dest)
1087 {
1088 was_dest = true;
1089 break;
1090 }
1091
1092 if (!was_dest)
1093 edges.safe_push (exit->e);
1094 }
1095 return edges;
1096}
1097
1098static bool
1099sel_bb_empty_or_nop_p (basic_block bb)
1100{
1101 insn_t first = sel_bb_head (bb), last;
1102
1103 if (first == NULL_RTX)
1104 return true;
1105
1106 if (!INSN_NOP_P (first))
1107 return false;
1108
1109 if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
1110 return false;
1111
1112 last = sel_bb_end (bb);
1113 if (first != last)
1114 return false;
1115
1116 return true;
1117}
1118
1119/* Collect all loop exits recursively, skipping empty BBs between them.
1120 E.g. if BB is a loop header which has several loop exits,
1121 traverse all of them and if any of them turns out to be another loop header
1122 (after skipping empty BBs), add its loop exits to the resulting vector
1123 as well. */
1124static inline vec<edge>
1125get_all_loop_exits (basic_block bb)
1126{
1127 vec<edge> exits = vNULL;
1128
1129 /* If bb is empty, and we're skipping to loop exits, then
1130 consider bb as a possible gate to the inner loop now. */
1131 while (sel_bb_empty_or_nop_p (bb)
1132 && in_current_region_p (bb)
1133 && EDGE_COUNT (bb->succs) > 0)
1134 {
1135 bb = single_succ (bb);
1136
1137 /* This empty block could only lead outside the region. */
1138 gcc_assert (! in_current_region_p (bb));
1139 }
1140
1141 /* And now check whether we should skip over inner loop. */
1142 if (inner_loop_header_p (bb))
1143 {
1144 struct loop *this_loop;
1145 struct loop *pred_loop = NULL;
1146 int i;
1147 edge e;
1148
1149 for (this_loop = bb->loop_father;
1150 this_loop && this_loop != current_loop_nest;
1151 this_loop = loop_outer (this_loop))
1152 pred_loop = this_loop;
1153
1154 this_loop = pred_loop;
1155 gcc_assert (this_loop != NULL);
1156
1157 exits = get_loop_exit_edges_unique_dests (this_loop);
1158
1159 /* Traverse all loop headers. */
1160 for (i = 0; exits.iterate (i, &e); i++)
1161 if (in_current_region_p (e->dest)
1162 || inner_loop_header_p (e->dest))
1163 {
1164 vec<edge> next_exits = get_all_loop_exits (e->dest);
1165
1166 if (next_exits.exists ())
1167 {
1168 int j;
1169 edge ne;
1170
1171 /* Add all loop exits for the current edge into the
1172 resulting vector. */
1173 for (j = 0; next_exits.iterate (j, &ne); j++)
1174 exits.safe_push (ne);
1175
1176 /* Remove the original edge. */
1177 exits.ordered_remove (i);
1178
1179 /* Decrease the loop counter so we won't skip anything. */
1180 i--;
1181 continue;
1182 }
1183 }
1184 }
1185
1186 return exits;
1187}
1188
1189/* Flags to pass to compute_succs_info and FOR_EACH_SUCC.
1190 Any successor will fall into exactly one category. */
1191
1192/* Include normal successors. */
1193#define SUCCS_NORMAL (1)
1194
1195/* Include back-edge successors. */
1196#define SUCCS_BACK (2)
1197
1198/* Include successors that are outside of the current region. */
1199#define SUCCS_OUT (4)
1200
1201/* When pipelining of the outer loops is enabled, skip innermost loops
1202 to their exits. */
1203#define SUCCS_SKIP_TO_LOOP_EXITS (8)
1204
1205/* Include all successors. */
1206#define SUCCS_ALL (SUCCS_NORMAL | SUCCS_BACK | SUCCS_OUT)
1207
1208/* We need to return a succ_iterator to avoid 'unitialized' warning
1209 during bootstrap. */
1210static inline succ_iterator
1211_succ_iter_start (insn_t *succp, insn_t insn, int flags)
1212{
1213 succ_iterator i;
1214
1215 basic_block bb = BLOCK_FOR_INSN (insn);
1216
1217 gcc_assert (INSN_P (insn) || NOTE_INSN_BASIC_BLOCK_P (insn));
1218
1219 i.flags = flags;
1220
1221 /* Avoid 'uninitialized' warning. */
1222 *succp = NULL;
1223 i.e1 = NULL;
1224 i.e2 = NULL;
1225 i.bb = bb;
1226 i.current_flags = 0;
1227 i.current_exit = -1;
1228 i.loop_exits.create (0);
1229
1230 if (bb != EXIT_BLOCK_PTR_FOR_FN (cfun) && BB_END (bb) != insn)
1231 {
1232 i.bb_end = false;
1233
1234 /* Avoid 'uninitialized' warning. */
1235 i.ei.index = 0;
1236 i.ei.container = 0;
1237 }
1238 else
1239 {
1240 i.ei = ei_start (bb->succs);
1241 i.bb_end = true;
1242 }
1243
1244 return i;
1245}
1246
1247static inline bool
1248_succ_iter_cond (succ_iterator *ip, insn_t *succp, insn_t insn,
1249 bool check (edge, succ_iterator *))
1250{
1251 if (!ip->bb_end)
1252 {
1253 /* When we're in a middle of a basic block, return
1254 the next insn immediately, but only when SUCCS_NORMAL is set. */
1255 if (*succp != NULL || (ip->flags & SUCCS_NORMAL) == 0)
1256 return false;
1257
1258 *succp = NEXT_INSN (insn);
1259 ip->current_flags = SUCCS_NORMAL;
1260 return true;
1261 }
1262 else
1263 {
1264 while (1)
1265 {
1266 edge e_tmp = NULL;
1267
1268 /* First, try loop exits, if we have them. */
1269 if (ip->loop_exits.exists ())
1270 {
1271 do
1272 {
1273 ip->loop_exits.iterate (ip->current_exit, &e_tmp);
1274 ip->current_exit++;
1275 }
1276 while (e_tmp && !check (e_tmp, ip));
1277
1278 if (!e_tmp)
1279 ip->loop_exits.release ();
1280 }
1281
1282 /* If we have found a successor, then great. */
1283 if (e_tmp)
1284 {
1285 ip->e1 = e_tmp;
1286 break;
1287 }
1288
1289 /* If not, then try the next edge. */
1290 while (ei_cond (ip->ei, &(ip->e1)))
1291 {
1292 basic_block bb = ip->e1->dest;
1293
1294 /* Consider bb as a possible loop header. */
1295 if ((ip->flags & SUCCS_SKIP_TO_LOOP_EXITS)
1296 && flag_sel_sched_pipelining_outer_loops
1297 && (!in_current_region_p (bb)
1298 || BLOCK_TO_BB (ip->bb->index)
1299 < BLOCK_TO_BB (bb->index)))
1300 {
1301 /* Get all loop exits recursively. */
1302 ip->loop_exits = get_all_loop_exits (bb);
1303
1304 if (ip->loop_exits.exists ())
1305 {
1306 ip->current_exit = 0;
1307 /* Move the iterator now, because we won't do
1308 succ_iter_next until loop exits will end. */
1309 ei_next (&(ip->ei));
1310 break;
1311 }
1312 }
1313
1314 /* bb is not a loop header, check as usual. */
1315 if (check (ip->e1, ip))
1316 break;
1317
1318 ei_next (&(ip->ei));
1319 }
1320
1321 /* If loop_exits are non null, we have found an inner loop;
1322 do one more iteration to fetch an edge from these exits. */
1323 if (ip->loop_exits.exists ())
1324 continue;
1325
1326 /* Otherwise, we've found an edge in a usual way. Break now. */
1327 break;
1328 }
1329
1330 if (ip->e1)
1331 {
1332 basic_block bb = ip->e2->dest;
1333
1334 if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun) || bb == after_recovery)
1335 *succp = exit_insn;
1336 else
1337 {
1338 *succp = sel_bb_head (bb);
1339
1340 gcc_assert (ip->flags != SUCCS_NORMAL
1341 || *succp == NEXT_INSN (bb_note (bb)));
1342 gcc_assert (BLOCK_FOR_INSN (*succp) == bb);
1343 }
1344
1345 return true;
1346 }
1347 else
1348 return false;
1349 }
1350}
1351
1352static inline void
1353_succ_iter_next (succ_iterator *ip)
1354{
1355 gcc_assert (!ip->e2 || ip->e1);
1356
1357 if (ip->bb_end && ip->e1 && !ip->loop_exits.exists ())
1358 ei_next (&(ip->ei));
1359}
1360
1361/* Returns true when E1 is an eligible successor edge, possibly skipping
1362 empty blocks. When E2P is not null, the resulting edge is written there.
1363 FLAGS are used to specify whether back edges and out-of-region edges
1364 should be considered. */
1365static inline bool
1366_eligible_successor_edge_p (edge e1, succ_iterator *ip)
1367{
1368 edge e2 = e1;
1369 basic_block bb;
1370 int flags = ip->flags;
1371 bool src_outside_rgn = !in_current_region_p (e1->src);
1372
1373 gcc_assert (flags != 0);
1374
1375 if (src_outside_rgn)
1376 {
1377 /* Any successor of the block that is outside current region is
1378 ineligible, except when we're skipping to loop exits. */
1379 gcc_assert (flags & (SUCCS_OUT | SUCCS_SKIP_TO_LOOP_EXITS));
1380
1381 if (flags & SUCCS_OUT)
1382 return false;
1383 }
1384
1385 bb = e2->dest;
1386
1387 /* Skip empty blocks, but be careful not to leave the region. */
1388 while (1)
1389 {
1390 if (!sel_bb_empty_p (bb))
1391 {
1392 edge ne;
1393 basic_block nbb;
1394
1395 if (!sel_bb_empty_or_nop_p (bb))
1396 break;
1397
1398 ne = EDGE_SUCC (bb, 0);
1399 nbb = ne->dest;
1400
1401 if (!in_current_region_p (nbb)
1402 && !(flags & SUCCS_OUT))
1403 break;
1404
1405 e2 = ne;
1406 bb = nbb;
1407 continue;
1408 }
1409
1410 if (!in_current_region_p (bb)
1411 && !(flags & SUCCS_OUT))
1412 return false;
1413
1414 if (EDGE_COUNT (bb->succs) == 0)
1415 return false;
1416
1417 e2 = EDGE_SUCC (bb, 0);
1418 bb = e2->dest;
1419 }
1420
1421 /* Save the second edge for later checks. */
1422 ip->e2 = e2;
1423
1424 if (in_current_region_p (bb))
1425 {
1426 /* BLOCK_TO_BB sets topological order of the region here.
1427 It is important to use real predecessor here, which is ip->bb,
1428 as we may well have e1->src outside current region,
1429 when skipping to loop exits. */
1430 bool succeeds_in_top_order = (BLOCK_TO_BB (ip->bb->index)
1431 < BLOCK_TO_BB (bb->index));
1432
1433 /* This is true for the all cases except the last one. */
1434 ip->current_flags = SUCCS_NORMAL;
1435
1436 /* We are advancing forward in the region, as usual. */
1437 if (succeeds_in_top_order)
1438 {
1439 /* We are skipping to loop exits here. */
1440 gcc_assert (!src_outside_rgn
1441 || flag_sel_sched_pipelining_outer_loops);
1442 return !!(flags & SUCCS_NORMAL);
1443 }
1444
1445 /* This is a back edge. During pipelining we ignore back edges,
1446 but only when it leads to the same loop. It can lead to the header
1447 of the outer loop, which will also be the preheader of
1448 the current loop. */
1449 if (pipelining_p
1450 && e1->src->loop_father == bb->loop_father)
1451 return !!(flags & SUCCS_NORMAL);
1452
1453 /* A back edge should be requested explicitly. */
1454 ip->current_flags = SUCCS_BACK;
1455 return !!(flags & SUCCS_BACK);
1456 }
1457
1458 ip->current_flags = SUCCS_OUT;
1459 return !!(flags & SUCCS_OUT);
1460}
1461
1462#define FOR_EACH_SUCC_1(SUCC, ITER, INSN, FLAGS) \
1463 for ((ITER) = _succ_iter_start (&(SUCC), (INSN), (FLAGS)); \
1464 _succ_iter_cond (&(ITER), &(SUCC), (INSN), _eligible_successor_edge_p); \
1465 _succ_iter_next (&(ITER)))
1466
1467#define FOR_EACH_SUCC(SUCC, ITER, INSN) \
1468 FOR_EACH_SUCC_1 (SUCC, ITER, INSN, SUCCS_NORMAL)
1469
1470/* Return the current edge along which a successor was built. */
1471#define SUCC_ITER_EDGE(ITER) ((ITER)->e1)
1472
1473/* Return the next block of BB not running into inconsistencies. */
1474static inline basic_block
1475bb_next_bb (basic_block bb)
1476{
1477 switch (EDGE_COUNT (bb->succs))
1478 {
1479 case 0:
1480 return bb->next_bb;
1481
1482 case 1:
1483 return single_succ (bb);
1484
1485 case 2:
1486 return FALLTHRU_EDGE (bb)->dest;
1487
1488 default:
1489 return bb->next_bb;
1490 }
1491
1492 gcc_unreachable ();
1493}
1494
1495
1496
1497/* Functions that are used in sel-sched.c. */
1498
1499/* List functions. */
1500extern ilist_t ilist_copy (ilist_t);
1501extern ilist_t ilist_invert (ilist_t);
1502extern void blist_add (blist_t *, insn_t, ilist_t, deps_t);
1503extern void blist_remove (blist_t *);
1504extern void flist_tail_init (flist_tail_t);
1505
1506extern fence_t flist_lookup (flist_t, insn_t);
1507extern void flist_clear (flist_t *);
1508extern void def_list_add (def_list_t *, insn_t, bool);
1509
1510/* Target context functions. */
1511extern tc_t create_target_context (bool);
1512extern void set_target_context (tc_t);
1513extern void reset_target_context (tc_t, bool);
1514
1515/* Deps context functions. */
1516extern void advance_deps_context (deps_t, insn_t);
1517
1518/* Fences functions. */
1519extern void init_fences (insn_t);
1520extern void add_clean_fence_to_fences (flist_tail_t, insn_t, fence_t);
1521extern void add_dirty_fence_to_fences (flist_tail_t, insn_t, fence_t);
1522extern void move_fence_to_fences (flist_t, flist_tail_t);
1523
1524/* Pool functions. */
1525extern regset get_regset_from_pool (void);
1526extern regset get_clear_regset_from_pool (void);
1527extern void return_regset_to_pool (regset);
1528extern void free_regset_pool (void);
1529
1530extern insn_t get_nop_from_pool (insn_t);
1531extern void return_nop_to_pool (insn_t, bool);
1532extern void free_nop_pool (void);
1533
1534/* Vinsns functions. */
1535extern bool vinsn_separable_p (vinsn_t);
1536extern bool vinsn_cond_branch_p (vinsn_t);
1537extern void recompute_vinsn_lhs_rhs (vinsn_t);
1538extern int sel_vinsn_cost (vinsn_t);
1539extern insn_t sel_gen_insn_from_rtx_after (rtx, expr_t, int, insn_t);
1540extern insn_t sel_gen_recovery_insn_from_rtx_after (rtx, expr_t, int, insn_t);
1541extern insn_t sel_gen_insn_from_expr_after (expr_t, vinsn_t, int, insn_t);
1542extern insn_t sel_move_insn (expr_t, int, insn_t);
1543extern void vinsn_attach (vinsn_t);
1544extern void vinsn_detach (vinsn_t);
1545extern vinsn_t vinsn_copy (vinsn_t, bool);
1546extern bool vinsn_equal_p (vinsn_t, vinsn_t);
1547
1548/* EXPR functions. */
1549extern void copy_expr (expr_t, expr_t);
1550extern void copy_expr_onside (expr_t, expr_t);
1551extern void merge_expr_data (expr_t, expr_t, insn_t);
1552extern void merge_expr (expr_t, expr_t, insn_t);
1553extern void clear_expr (expr_t);
1554extern unsigned expr_dest_regno (expr_t);
1555extern rtx expr_dest_reg (expr_t);
1556extern int find_in_history_vect (vec<expr_history_def> ,
1557 rtx, vinsn_t, bool);
1558extern void insert_in_history_vect (vec<expr_history_def> *,
1559 unsigned, enum local_trans_type,
1560 vinsn_t, vinsn_t, ds_t);
1561extern void mark_unavailable_targets (av_set_t, av_set_t, regset);
1562extern int speculate_expr (expr_t, ds_t);
1563
1564/* Av set functions. */
1565extern void av_set_add (av_set_t *, expr_t);
1566extern void av_set_iter_remove (av_set_iterator *);
1567extern expr_t av_set_lookup (av_set_t, vinsn_t);
1568extern expr_t merge_with_other_exprs (av_set_t *, av_set_iterator *, expr_t);
1569extern bool av_set_is_in_p (av_set_t, vinsn_t);
1570extern av_set_t av_set_copy (av_set_t);
1571extern void av_set_union_and_clear (av_set_t *, av_set_t *, insn_t);
1572extern void av_set_union_and_live (av_set_t *, av_set_t *, regset, regset, insn_t);
1573extern void av_set_clear (av_set_t *);
1574extern void av_set_leave_one_nonspec (av_set_t *);
1575extern expr_t av_set_element (av_set_t, int);
1576extern void av_set_substract_cond_branches (av_set_t *);
1577extern void av_set_split_usefulness (av_set_t, int, int);
1578extern void av_set_code_motion_filter (av_set_t *, av_set_t);
1579
1580extern void sel_save_haifa_priorities (void);
1581
1582extern void sel_init_global_and_expr (bb_vec_t);
1583extern void sel_finish_global_and_expr (void);
1584
1585extern regset compute_live (insn_t);
1586extern bool register_unavailable_p (regset, rtx);
1587
1588/* Dependence analysis functions. */
1589extern void sel_clear_has_dependence (void);
1590extern ds_t has_dependence_p (expr_t, insn_t, ds_t **);
1591
1592extern int tick_check_p (expr_t, deps_t, fence_t);
1593
1594/* Functions to work with insns. */
1595extern bool lhs_of_insn_equals_to_dest_p (insn_t, rtx);
1596extern bool insn_eligible_for_subst_p (insn_t);
1597extern void get_dest_and_mode (rtx, rtx *, machine_mode *);
1598
1599extern bool bookkeeping_can_be_created_if_moved_through_p (insn_t);
1600extern bool sel_remove_insn (insn_t, bool, bool);
1601extern bool bb_header_p (insn_t);
1602extern void sel_init_invalid_data_sets (insn_t);
1603extern bool insn_at_boundary_p (insn_t);
1604
1605/* Basic block and CFG functions. */
1606
1607extern rtx_insn *sel_bb_head (basic_block);
1608extern bool sel_bb_head_p (insn_t);
1609extern rtx_insn *sel_bb_end (basic_block);
1610extern bool sel_bb_end_p (insn_t);
1611extern bool sel_bb_empty_p (basic_block);
1612
1613extern bool in_current_region_p (basic_block);
1614extern basic_block fallthru_bb_of_jump (const rtx_insn *);
1615
1616extern void sel_init_bbs (bb_vec_t);
1617extern void sel_finish_bbs (void);
1618
1619extern struct succs_info * compute_succs_info (insn_t, short);
1620extern void free_succs_info (struct succs_info *);
1621extern bool sel_insn_has_single_succ_p (insn_t, int);
1622extern bool sel_num_cfg_preds_gt_1 (insn_t);
1623extern int get_seqno_by_preds (rtx_insn *);
1624
1625extern bool bb_ends_ebb_p (basic_block);
1626extern bool in_same_ebb_p (insn_t, insn_t);
1627
1628extern bool tidy_control_flow (basic_block, bool);
1629extern void free_bb_note_pool (void);
1630
1631extern void purge_empty_blocks (void);
1632extern basic_block sel_split_edge (edge);
1633extern basic_block sel_create_recovery_block (insn_t);
1634extern bool sel_redirect_edge_and_branch (edge, basic_block);
1635extern void sel_redirect_edge_and_branch_force (edge, basic_block);
1636extern void sel_init_pipelining (void);
1637extern void sel_finish_pipelining (void);
1638extern void sel_sched_region (int);
1639extern loop_p get_loop_nest_for_rgn (unsigned int);
1640extern bool considered_for_pipelining_p (struct loop *);
1641extern void make_region_from_loop_preheader (vec<basic_block> *&);
1642extern void sel_add_loop_preheaders (bb_vec_t *);
1643extern bool sel_is_loop_preheader_p (basic_block);
1644extern void clear_outdated_rtx_info (basic_block);
1645extern void free_data_sets (basic_block);
1646extern void exchange_data_sets (basic_block, basic_block);
1647extern void copy_data_sets (basic_block, basic_block);
1648
1649extern void sel_register_cfg_hooks (void);
1650extern void sel_unregister_cfg_hooks (void);
1651
1652/* Expression transformation routines. */
1653extern rtx_insn *create_insn_rtx_from_pattern (rtx, rtx);
1654extern vinsn_t create_vinsn_from_insn_rtx (rtx_insn *, bool);
1655extern rtx_insn *create_copy_of_insn_rtx (rtx);
1656extern void change_vinsn_in_expr (expr_t, vinsn_t);
1657
1658/* Various initialization functions. */
1659extern void init_lv_sets (void);
1660extern void free_lv_sets (void);
1661extern void setup_nop_and_exit_insns (void);
1662extern void free_nop_and_exit_insns (void);
1663extern void free_data_for_scheduled_insn (insn_t);
1664extern void setup_nop_vinsn (void);
1665extern void free_nop_vinsn (void);
1666extern void sel_set_sched_flags (void);
1667extern void sel_setup_sched_infos (void);
1668extern void alloc_sched_pools (void);
1669extern void free_sched_pools (void);
1670
1671#endif /* GCC_SEL_SCHED_IR_H */
1672