Warning: That file was not part of the compilation database. It may have many parsing errors.
1 | /* Header file for SSA iterators. |
---|---|
2 | Copyright (C) 2013-2017 Free Software Foundation, Inc. |
3 | |
4 | This file is part of GCC. |
5 | |
6 | GCC is free software; you can redistribute it and/or modify it under |
7 | the terms of the GNU General Public License as published by the Free |
8 | Software Foundation; either version 3, or (at your option) any later |
9 | version. |
10 | |
11 | GCC is distributed in the hope that it will be useful, but WITHOUT ANY |
12 | WARRANTY; without even the implied warranty of MERCHANTABILITY or |
13 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
14 | for more details. |
15 | |
16 | You should have received a copy of the GNU General Public License |
17 | along with GCC; see the file COPYING3. If not see |
18 | <http://www.gnu.org/licenses/>. */ |
19 | |
20 | #ifndef GCC_SSA_ITERATORS_H |
21 | #define GCC_SSA_ITERATORS_H |
22 | |
23 | /* Immediate use lists are used to directly access all uses for an SSA |
24 | name and get pointers to the statement for each use. |
25 | |
26 | The structure ssa_use_operand_t consists of PREV and NEXT pointers |
27 | to maintain the list. A USE pointer, which points to address where |
28 | the use is located and a LOC pointer which can point to the |
29 | statement where the use is located, or, in the case of the root |
30 | node, it points to the SSA name itself. |
31 | |
32 | The list is anchored by an occurrence of ssa_operand_d *in* the |
33 | ssa_name node itself (named 'imm_uses'). This node is uniquely |
34 | identified by having a NULL USE pointer. and the LOC pointer |
35 | pointing back to the ssa_name node itself. This node forms the |
36 | base for a circular list, and initially this is the only node in |
37 | the list. |
38 | |
39 | Fast iteration allows each use to be examined, but does not allow |
40 | any modifications to the uses or stmts. |
41 | |
42 | Normal iteration allows insertion, deletion, and modification. the |
43 | iterator manages this by inserting a marker node into the list |
44 | immediately before the node currently being examined in the list. |
45 | this marker node is uniquely identified by having null stmt *and* a |
46 | null use pointer. |
47 | |
48 | When iterating to the next use, the iteration routines check to see |
49 | if the node after the marker has changed. if it has, then the node |
50 | following the marker is now the next one to be visited. if not, the |
51 | marker node is moved past that node in the list (visualize it as |
52 | bumping the marker node through the list). this continues until |
53 | the marker node is moved to the original anchor position. the |
54 | marker node is then removed from the list. |
55 | |
56 | If iteration is halted early, the marker node must be removed from |
57 | the list before continuing. */ |
58 | struct imm_use_iterator |
59 | { |
60 | /* This is the current use the iterator is processing. */ |
61 | ssa_use_operand_t *imm_use; |
62 | /* This marks the last use in the list (use node from SSA_NAME) */ |
63 | ssa_use_operand_t *end_p; |
64 | /* This node is inserted and used to mark the end of the uses for a stmt. */ |
65 | ssa_use_operand_t iter_node; |
66 | /* This is the next ssa_name to visit. IMM_USE may get removed before |
67 | the next one is traversed to, so it must be cached early. */ |
68 | ssa_use_operand_t *next_imm_name; |
69 | }; |
70 | |
71 | |
72 | /* Use this iterator when simply looking at stmts. Adding, deleting or |
73 | modifying stmts will cause this iterator to malfunction. */ |
74 | |
75 | #define FOR_EACH_IMM_USE_FAST(DEST, ITER, SSAVAR) \ |
76 | for ((DEST) = first_readonly_imm_use (&(ITER), (SSAVAR)); \ |
77 | !end_readonly_imm_use_p (&(ITER)); \ |
78 | (void) ((DEST) = next_readonly_imm_use (&(ITER)))) |
79 | |
80 | /* Use this iterator to visit each stmt which has a use of SSAVAR. */ |
81 | |
82 | #define FOR_EACH_IMM_USE_STMT(STMT, ITER, SSAVAR) \ |
83 | for ((STMT) = first_imm_use_stmt (&(ITER), (SSAVAR)); \ |
84 | !end_imm_use_stmt_p (&(ITER)); \ |
85 | (void) ((STMT) = next_imm_use_stmt (&(ITER)))) |
86 | |
87 | /* Use this to terminate the FOR_EACH_IMM_USE_STMT loop early. Failure to |
88 | do so will result in leaving a iterator marker node in the immediate |
89 | use list, and nothing good will come from that. */ |
90 | #define BREAK_FROM_IMM_USE_STMT(ITER) \ |
91 | { \ |
92 | end_imm_use_stmt_traverse (&(ITER)); \ |
93 | break; \ |
94 | } |
95 | |
96 | /* Similarly for return. */ |
97 | #define RETURN_FROM_IMM_USE_STMT(ITER, VAL) \ |
98 | { \ |
99 | end_imm_use_stmt_traverse (&(ITER)); \ |
100 | return (VAL); \ |
101 | } |
102 | |
103 | /* Use this iterator in combination with FOR_EACH_IMM_USE_STMT to |
104 | get access to each occurrence of ssavar on the stmt returned by |
105 | that iterator.. for instance: |
106 | |
107 | FOR_EACH_IMM_USE_STMT (stmt, iter, ssavar) |
108 | { |
109 | FOR_EACH_IMM_USE_ON_STMT (use_p, iter) |
110 | { |
111 | SET_USE (use_p, blah); |
112 | } |
113 | update_stmt (stmt); |
114 | } */ |
115 | |
116 | #define FOR_EACH_IMM_USE_ON_STMT(DEST, ITER) \ |
117 | for ((DEST) = first_imm_use_on_stmt (&(ITER)); \ |
118 | !end_imm_use_on_stmt_p (&(ITER)); \ |
119 | (void) ((DEST) = next_imm_use_on_stmt (&(ITER)))) |
120 | |
121 | |
122 | |
123 | extern bool single_imm_use_1 (const ssa_use_operand_t *head, |
124 | use_operand_p *use_p, gimple **stmt); |
125 | |
126 | |
127 | enum ssa_op_iter_type { |
128 | ssa_op_iter_none = 0, |
129 | ssa_op_iter_tree, |
130 | ssa_op_iter_use, |
131 | ssa_op_iter_def |
132 | }; |
133 | |
134 | /* This structure is used in the operand iterator loops. It contains the |
135 | items required to determine which operand is retrieved next. During |
136 | optimization, this structure is scalarized, and any unused fields are |
137 | optimized away, resulting in little overhead. */ |
138 | |
139 | struct ssa_op_iter |
140 | { |
141 | enum ssa_op_iter_type iter_type; |
142 | bool done; |
143 | int flags; |
144 | unsigned i; |
145 | unsigned numops; |
146 | use_optype_p uses; |
147 | gimple *stmt; |
148 | }; |
149 | |
150 | /* NOTE: Keep these in sync with doc/tree-ssa.texi. */ |
151 | /* These flags are used to determine which operands are returned during |
152 | execution of the loop. */ |
153 | #define SSA_OP_USE 0x01 /* Real USE operands. */ |
154 | #define SSA_OP_DEF 0x02 /* Real DEF operands. */ |
155 | #define SSA_OP_VUSE 0x04 /* VUSE operands. */ |
156 | #define SSA_OP_VDEF 0x08 /* VDEF operands. */ |
157 | /* These are commonly grouped operand flags. */ |
158 | #define SSA_OP_VIRTUAL_USES (SSA_OP_VUSE) |
159 | #define SSA_OP_VIRTUAL_DEFS (SSA_OP_VDEF) |
160 | #define SSA_OP_ALL_VIRTUALS (SSA_OP_VIRTUAL_USES | SSA_OP_VIRTUAL_DEFS) |
161 | #define SSA_OP_ALL_USES (SSA_OP_VIRTUAL_USES | SSA_OP_USE) |
162 | #define SSA_OP_ALL_DEFS (SSA_OP_VIRTUAL_DEFS | SSA_OP_DEF) |
163 | #define SSA_OP_ALL_OPERANDS (SSA_OP_ALL_USES | SSA_OP_ALL_DEFS) |
164 | |
165 | /* This macro executes a loop over the operands of STMT specified in FLAG, |
166 | returning each operand as a 'tree' in the variable TREEVAR. ITER is an |
167 | ssa_op_iter structure used to control the loop. */ |
168 | #define FOR_EACH_SSA_TREE_OPERAND(TREEVAR, STMT, ITER, FLAGS) \ |
169 | for (TREEVAR = op_iter_init_tree (&(ITER), STMT, FLAGS); \ |
170 | !op_iter_done (&(ITER)); \ |
171 | (void) (TREEVAR = op_iter_next_tree (&(ITER)))) |
172 | |
173 | /* This macro executes a loop over the operands of STMT specified in FLAG, |
174 | returning each operand as a 'use_operand_p' in the variable USEVAR. |
175 | ITER is an ssa_op_iter structure used to control the loop. */ |
176 | #define FOR_EACH_SSA_USE_OPERAND(USEVAR, STMT, ITER, FLAGS) \ |
177 | for (USEVAR = op_iter_init_use (&(ITER), STMT, FLAGS); \ |
178 | !op_iter_done (&(ITER)); \ |
179 | USEVAR = op_iter_next_use (&(ITER))) |
180 | |
181 | /* This macro executes a loop over the operands of STMT specified in FLAG, |
182 | returning each operand as a 'def_operand_p' in the variable DEFVAR. |
183 | ITER is an ssa_op_iter structure used to control the loop. */ |
184 | #define FOR_EACH_SSA_DEF_OPERAND(DEFVAR, STMT, ITER, FLAGS) \ |
185 | for (DEFVAR = op_iter_init_def (&(ITER), STMT, FLAGS); \ |
186 | !op_iter_done (&(ITER)); \ |
187 | DEFVAR = op_iter_next_def (&(ITER))) |
188 | |
189 | /* This macro will execute a loop over all the arguments of a PHI which |
190 | match FLAGS. A use_operand_p is always returned via USEVAR. FLAGS |
191 | can be either SSA_OP_USE or SSA_OP_VIRTUAL_USES or SSA_OP_ALL_USES. */ |
192 | #define FOR_EACH_PHI_ARG(USEVAR, STMT, ITER, FLAGS) \ |
193 | for ((USEVAR) = op_iter_init_phiuse (&(ITER), STMT, FLAGS); \ |
194 | !op_iter_done (&(ITER)); \ |
195 | (USEVAR) = op_iter_next_use (&(ITER))) |
196 | |
197 | |
198 | /* This macro will execute a loop over a stmt, regardless of whether it is |
199 | a real stmt or a PHI node, looking at the USE nodes matching FLAGS. */ |
200 | #define FOR_EACH_PHI_OR_STMT_USE(USEVAR, STMT, ITER, FLAGS) \ |
201 | for ((USEVAR) = (gimple_code (STMT) == GIMPLE_PHI \ |
202 | ? op_iter_init_phiuse (&(ITER), \ |
203 | as_a <gphi *> (STMT), \ |
204 | FLAGS) \ |
205 | : op_iter_init_use (&(ITER), STMT, FLAGS)); \ |
206 | !op_iter_done (&(ITER)); \ |
207 | (USEVAR) = op_iter_next_use (&(ITER))) |
208 | |
209 | /* This macro will execute a loop over a stmt, regardless of whether it is |
210 | a real stmt or a PHI node, looking at the DEF nodes matching FLAGS. */ |
211 | #define FOR_EACH_PHI_OR_STMT_DEF(DEFVAR, STMT, ITER, FLAGS) \ |
212 | for ((DEFVAR) = (gimple_code (STMT) == GIMPLE_PHI \ |
213 | ? op_iter_init_phidef (&(ITER), \ |
214 | as_a <gphi *> (STMT), \ |
215 | FLAGS) \ |
216 | : op_iter_init_def (&(ITER), STMT, FLAGS)); \ |
217 | !op_iter_done (&(ITER)); \ |
218 | (DEFVAR) = op_iter_next_def (&(ITER))) |
219 | |
220 | /* This macro returns an operand in STMT as a tree if it is the ONLY |
221 | operand matching FLAGS. If there are 0 or more than 1 operand matching |
222 | FLAGS, then NULL_TREE is returned. */ |
223 | #define SINGLE_SSA_TREE_OPERAND(STMT, FLAGS) \ |
224 | single_ssa_tree_operand (STMT, FLAGS) |
225 | |
226 | /* This macro returns an operand in STMT as a use_operand_p if it is the ONLY |
227 | operand matching FLAGS. If there are 0 or more than 1 operand matching |
228 | FLAGS, then NULL_USE_OPERAND_P is returned. */ |
229 | #define SINGLE_SSA_USE_OPERAND(STMT, FLAGS) \ |
230 | single_ssa_use_operand (STMT, FLAGS) |
231 | |
232 | /* This macro returns an operand in STMT as a def_operand_p if it is the ONLY |
233 | operand matching FLAGS. If there are 0 or more than 1 operand matching |
234 | FLAGS, then NULL_DEF_OPERAND_P is returned. */ |
235 | #define SINGLE_SSA_DEF_OPERAND(STMT, FLAGS) \ |
236 | single_ssa_def_operand (STMT, FLAGS) |
237 | |
238 | /* This macro returns TRUE if there are no operands matching FLAGS in STMT. */ |
239 | #define ZERO_SSA_OPERANDS(STMT, FLAGS) zero_ssa_operands (STMT, FLAGS) |
240 | |
241 | /* This macro counts the number of operands in STMT matching FLAGS. */ |
242 | #define NUM_SSA_OPERANDS(STMT, FLAGS) num_ssa_operands (STMT, FLAGS) |
243 | |
244 | |
245 | /* Delink an immediate_uses node from its chain. */ |
246 | static inline void |
247 | delink_imm_use (ssa_use_operand_t *linknode) |
248 | { |
249 | /* Return if this node is not in a list. */ |
250 | if (linknode->prev == NULL) |
251 | return; |
252 | |
253 | linknode->prev->next = linknode->next; |
254 | linknode->next->prev = linknode->prev; |
255 | linknode->prev = NULL; |
256 | linknode->next = NULL; |
257 | } |
258 | |
259 | /* Link ssa_imm_use node LINKNODE into the chain for LIST. */ |
260 | static inline void |
261 | link_imm_use_to_list (ssa_use_operand_t *linknode, ssa_use_operand_t *list) |
262 | { |
263 | /* Link the new node at the head of the list. If we are in the process of |
264 | traversing the list, we won't visit any new nodes added to it. */ |
265 | linknode->prev = list; |
266 | linknode->next = list->next; |
267 | list->next->prev = linknode; |
268 | list->next = linknode; |
269 | } |
270 | |
271 | /* Link ssa_imm_use node LINKNODE into the chain for DEF. */ |
272 | static inline void |
273 | link_imm_use (ssa_use_operand_t *linknode, tree def) |
274 | { |
275 | ssa_use_operand_t *root; |
276 | |
277 | if (!def || TREE_CODE (def) != SSA_NAME) |
278 | linknode->prev = NULL; |
279 | else |
280 | { |
281 | root = &(SSA_NAME_IMM_USE_NODE (def)); |
282 | if (linknode->use) |
283 | gcc_checking_assert (*(linknode->use) == def); |
284 | link_imm_use_to_list (linknode, root); |
285 | } |
286 | } |
287 | |
288 | /* Set the value of a use pointed to by USE to VAL. */ |
289 | static inline void |
290 | set_ssa_use_from_ptr (use_operand_p use, tree val) |
291 | { |
292 | delink_imm_use (use); |
293 | *(use->use) = val; |
294 | link_imm_use (use, val); |
295 | } |
296 | |
297 | /* Link ssa_imm_use node LINKNODE into the chain for DEF, with use occurring |
298 | in STMT. */ |
299 | static inline void |
300 | link_imm_use_stmt (ssa_use_operand_t *linknode, tree def, gimple *stmt) |
301 | { |
302 | if (stmt) |
303 | link_imm_use (linknode, def); |
304 | else |
305 | link_imm_use (linknode, NULL); |
306 | linknode->loc.stmt = stmt; |
307 | } |
308 | |
309 | /* Relink a new node in place of an old node in the list. */ |
310 | static inline void |
311 | relink_imm_use (ssa_use_operand_t *node, ssa_use_operand_t *old) |
312 | { |
313 | /* The node one had better be in the same list. */ |
314 | gcc_checking_assert (*(old->use) == *(node->use)); |
315 | node->prev = old->prev; |
316 | node->next = old->next; |
317 | if (old->prev) |
318 | { |
319 | old->prev->next = node; |
320 | old->next->prev = node; |
321 | /* Remove the old node from the list. */ |
322 | old->prev = NULL; |
323 | } |
324 | } |
325 | |
326 | /* Relink ssa_imm_use node LINKNODE into the chain for OLD, with use occurring |
327 | in STMT. */ |
328 | static inline void |
329 | relink_imm_use_stmt (ssa_use_operand_t *linknode, ssa_use_operand_t *old, |
330 | gimple *stmt) |
331 | { |
332 | if (stmt) |
333 | relink_imm_use (linknode, old); |
334 | else |
335 | link_imm_use (linknode, NULL); |
336 | linknode->loc.stmt = stmt; |
337 | } |
338 | |
339 | |
340 | /* Return true is IMM has reached the end of the immediate use list. */ |
341 | static inline bool |
342 | end_readonly_imm_use_p (const imm_use_iterator *imm) |
343 | { |
344 | return (imm->imm_use == imm->end_p); |
345 | } |
346 | |
347 | /* Initialize iterator IMM to process the list for VAR. */ |
348 | static inline use_operand_p |
349 | first_readonly_imm_use (imm_use_iterator *imm, tree var) |
350 | { |
351 | imm->end_p = &(SSA_NAME_IMM_USE_NODE (var)); |
352 | imm->imm_use = imm->end_p->next; |
353 | imm->iter_node.next = imm->imm_use->next; |
354 | if (end_readonly_imm_use_p (imm)) |
355 | return NULL_USE_OPERAND_P; |
356 | return imm->imm_use; |
357 | } |
358 | |
359 | /* Bump IMM to the next use in the list. */ |
360 | static inline use_operand_p |
361 | next_readonly_imm_use (imm_use_iterator *imm) |
362 | { |
363 | use_operand_p old = imm->imm_use; |
364 | |
365 | /* If this assertion fails, it indicates the 'next' pointer has changed |
366 | since the last bump. This indicates that the list is being modified |
367 | via stmt changes, or SET_USE, or somesuch thing, and you need to be |
368 | using the SAFE version of the iterator. */ |
369 | if (flag_checking) |
370 | { |
371 | gcc_assert (imm->iter_node.next == old->next); |
372 | imm->iter_node.next = old->next->next; |
373 | } |
374 | |
375 | imm->imm_use = old->next; |
376 | if (end_readonly_imm_use_p (imm)) |
377 | return NULL_USE_OPERAND_P; |
378 | return imm->imm_use; |
379 | } |
380 | |
381 | |
382 | /* Return true if VAR has no nondebug uses. */ |
383 | static inline bool |
384 | has_zero_uses (const_tree var) |
385 | { |
386 | const ssa_use_operand_t *const head = &(SSA_NAME_IMM_USE_NODE (var)); |
387 | const ssa_use_operand_t *ptr; |
388 | |
389 | for (ptr = head->next; ptr != head; ptr = ptr->next) |
390 | if (USE_STMT (ptr) && !is_gimple_debug (USE_STMT (ptr))) |
391 | return false; |
392 | |
393 | return true; |
394 | } |
395 | |
396 | /* Return true if VAR has a single nondebug use. */ |
397 | static inline bool |
398 | has_single_use (const_tree var) |
399 | { |
400 | const ssa_use_operand_t *const head = &(SSA_NAME_IMM_USE_NODE (var)); |
401 | const ssa_use_operand_t *ptr; |
402 | bool single = false; |
403 | |
404 | for (ptr = head->next; ptr != head; ptr = ptr->next) |
405 | if (USE_STMT(ptr) && !is_gimple_debug (USE_STMT (ptr))) |
406 | { |
407 | if (single) |
408 | return false; |
409 | else |
410 | single = true; |
411 | } |
412 | |
413 | return single; |
414 | } |
415 | |
416 | /* If VAR has only a single immediate nondebug use, return true, and |
417 | set USE_P and STMT to the use pointer and stmt of occurrence. */ |
418 | static inline bool |
419 | single_imm_use (const_tree var, use_operand_p *use_p, gimple **stmt) |
420 | { |
421 | const ssa_use_operand_t *const ptr = &(SSA_NAME_IMM_USE_NODE (var)); |
422 | |
423 | /* If there aren't any uses whatsoever, we're done. */ |
424 | if (ptr == ptr->next) |
425 | { |
426 | return_false: |
427 | *use_p = NULL_USE_OPERAND_P; |
428 | *stmt = NULL; |
429 | return false; |
430 | } |
431 | |
432 | /* If there's a single use, check that it's not a debug stmt. */ |
433 | if (ptr == ptr->next->next) |
434 | { |
435 | if (USE_STMT (ptr->next) && !is_gimple_debug (USE_STMT (ptr->next))) |
436 | { |
437 | *use_p = ptr->next; |
438 | *stmt = ptr->next->loc.stmt; |
439 | return true; |
440 | } |
441 | else |
442 | goto return_false; |
443 | } |
444 | |
445 | return single_imm_use_1 (ptr, use_p, stmt); |
446 | } |
447 | |
448 | /* Return the number of nondebug immediate uses of VAR. */ |
449 | static inline unsigned int |
450 | num_imm_uses (const_tree var) |
451 | { |
452 | const ssa_use_operand_t *const start = &(SSA_NAME_IMM_USE_NODE (var)); |
453 | const ssa_use_operand_t *ptr; |
454 | unsigned int num = 0; |
455 | |
456 | if (!MAY_HAVE_DEBUG_BIND_STMTS) |
457 | { |
458 | for (ptr = start->next; ptr != start; ptr = ptr->next) |
459 | if (USE_STMT (ptr)) |
460 | num++; |
461 | } |
462 | else |
463 | for (ptr = start->next; ptr != start; ptr = ptr->next) |
464 | if (USE_STMT (ptr) && !is_gimple_debug (USE_STMT (ptr))) |
465 | num++; |
466 | |
467 | return num; |
468 | } |
469 | |
470 | /* ----------------------------------------------------------------------- */ |
471 | |
472 | /* The following set of routines are used to iterator over various type of |
473 | SSA operands. */ |
474 | |
475 | /* Return true if PTR is finished iterating. */ |
476 | static inline bool |
477 | op_iter_done (const ssa_op_iter *ptr) |
478 | { |
479 | return ptr->done; |
480 | } |
481 | |
482 | /* Get the next iterator use value for PTR. */ |
483 | static inline use_operand_p |
484 | op_iter_next_use (ssa_op_iter *ptr) |
485 | { |
486 | use_operand_p use_p; |
487 | gcc_checking_assert (ptr->iter_type == ssa_op_iter_use); |
488 | if (ptr->uses) |
489 | { |
490 | use_p = USE_OP_PTR (ptr->uses); |
491 | ptr->uses = ptr->uses->next; |
492 | return use_p; |
493 | } |
494 | if (ptr->i < ptr->numops) |
495 | { |
496 | return PHI_ARG_DEF_PTR (ptr->stmt, (ptr->i)++); |
497 | } |
498 | ptr->done = true; |
499 | return NULL_USE_OPERAND_P; |
500 | } |
501 | |
502 | /* Get the next iterator def value for PTR. */ |
503 | static inline def_operand_p |
504 | op_iter_next_def (ssa_op_iter *ptr) |
505 | { |
506 | gcc_checking_assert (ptr->iter_type == ssa_op_iter_def); |
507 | if (ptr->flags & SSA_OP_VDEF) |
508 | { |
509 | tree *p; |
510 | ptr->flags &= ~SSA_OP_VDEF; |
511 | p = gimple_vdef_ptr (ptr->stmt); |
512 | if (p && *p) |
513 | return p; |
514 | } |
515 | if (ptr->flags & SSA_OP_DEF) |
516 | { |
517 | while (ptr->i < ptr->numops) |
518 | { |
519 | tree *val = gimple_op_ptr (ptr->stmt, ptr->i); |
520 | ptr->i++; |
521 | if (*val) |
522 | { |
523 | if (TREE_CODE (*val) == TREE_LIST) |
524 | val = &TREE_VALUE (*val); |
525 | if (TREE_CODE (*val) == SSA_NAME |
526 | || is_gimple_reg (*val)) |
527 | return val; |
528 | } |
529 | } |
530 | ptr->flags &= ~SSA_OP_DEF; |
531 | } |
532 | |
533 | ptr->done = true; |
534 | return NULL_DEF_OPERAND_P; |
535 | } |
536 | |
537 | /* Get the next iterator tree value for PTR. */ |
538 | static inline tree |
539 | op_iter_next_tree (ssa_op_iter *ptr) |
540 | { |
541 | tree val; |
542 | gcc_checking_assert (ptr->iter_type == ssa_op_iter_tree); |
543 | if (ptr->uses) |
544 | { |
545 | val = USE_OP (ptr->uses); |
546 | ptr->uses = ptr->uses->next; |
547 | return val; |
548 | } |
549 | if (ptr->flags & SSA_OP_VDEF) |
550 | { |
551 | ptr->flags &= ~SSA_OP_VDEF; |
552 | if ((val = gimple_vdef (ptr->stmt))) |
553 | return val; |
554 | } |
555 | if (ptr->flags & SSA_OP_DEF) |
556 | { |
557 | while (ptr->i < ptr->numops) |
558 | { |
559 | val = gimple_op (ptr->stmt, ptr->i); |
560 | ptr->i++; |
561 | if (val) |
562 | { |
563 | if (TREE_CODE (val) == TREE_LIST) |
564 | val = TREE_VALUE (val); |
565 | if (TREE_CODE (val) == SSA_NAME |
566 | || is_gimple_reg (val)) |
567 | return val; |
568 | } |
569 | } |
570 | ptr->flags &= ~SSA_OP_DEF; |
571 | } |
572 | |
573 | ptr->done = true; |
574 | return NULL_TREE; |
575 | } |
576 | |
577 | |
578 | /* This functions clears the iterator PTR, and marks it done. This is normally |
579 | used to prevent warnings in the compile about might be uninitialized |
580 | components. */ |
581 | |
582 | static inline void |
583 | clear_and_done_ssa_iter (ssa_op_iter *ptr) |
584 | { |
585 | ptr->i = 0; |
586 | ptr->numops = 0; |
587 | ptr->uses = NULL; |
588 | ptr->iter_type = ssa_op_iter_none; |
589 | ptr->stmt = NULL; |
590 | ptr->done = true; |
591 | ptr->flags = 0; |
592 | } |
593 | |
594 | /* Initialize the iterator PTR to the virtual defs in STMT. */ |
595 | static inline void |
596 | op_iter_init (ssa_op_iter *ptr, gimple *stmt, int flags) |
597 | { |
598 | /* PHI nodes require a different iterator initialization path. We |
599 | do not support iterating over virtual defs or uses without |
600 | iterating over defs or uses at the same time. */ |
601 | gcc_checking_assert (gimple_code (stmt) != GIMPLE_PHI |
602 | && (!(flags & SSA_OP_VDEF) || (flags & SSA_OP_DEF)) |
603 | && (!(flags & SSA_OP_VUSE) || (flags & SSA_OP_USE))); |
604 | ptr->numops = 0; |
605 | if (flags & (SSA_OP_DEF | SSA_OP_VDEF)) |
606 | { |
607 | switch (gimple_code (stmt)) |
608 | { |
609 | case GIMPLE_ASSIGN: |
610 | case GIMPLE_CALL: |
611 | ptr->numops = 1; |
612 | break; |
613 | case GIMPLE_ASM: |
614 | ptr->numops = gimple_asm_noutputs (as_a <gasm *> (stmt)); |
615 | break; |
616 | case GIMPLE_TRANSACTION: |
617 | ptr->numops = 0; |
618 | flags &= ~SSA_OP_DEF; |
619 | break; |
620 | default: |
621 | ptr->numops = 0; |
622 | flags &= ~(SSA_OP_DEF | SSA_OP_VDEF); |
623 | break; |
624 | } |
625 | } |
626 | ptr->uses = (flags & (SSA_OP_USE|SSA_OP_VUSE)) ? gimple_use_ops (stmt) : NULL; |
627 | if (!(flags & SSA_OP_VUSE) |
628 | && ptr->uses |
629 | && gimple_vuse (stmt) != NULL_TREE) |
630 | ptr->uses = ptr->uses->next; |
631 | ptr->done = false; |
632 | ptr->i = 0; |
633 | |
634 | ptr->stmt = stmt; |
635 | ptr->flags = flags; |
636 | } |
637 | |
638 | /* Initialize iterator PTR to the use operands in STMT based on FLAGS. Return |
639 | the first use. */ |
640 | static inline use_operand_p |
641 | op_iter_init_use (ssa_op_iter *ptr, gimple *stmt, int flags) |
642 | { |
643 | gcc_checking_assert ((flags & SSA_OP_ALL_DEFS) == 0 |
644 | && (flags & SSA_OP_USE)); |
645 | op_iter_init (ptr, stmt, flags); |
646 | ptr->iter_type = ssa_op_iter_use; |
647 | return op_iter_next_use (ptr); |
648 | } |
649 | |
650 | /* Initialize iterator PTR to the def operands in STMT based on FLAGS. Return |
651 | the first def. */ |
652 | static inline def_operand_p |
653 | op_iter_init_def (ssa_op_iter *ptr, gimple *stmt, int flags) |
654 | { |
655 | gcc_checking_assert ((flags & SSA_OP_ALL_USES) == 0 |
656 | && (flags & SSA_OP_DEF)); |
657 | op_iter_init (ptr, stmt, flags); |
658 | ptr->iter_type = ssa_op_iter_def; |
659 | return op_iter_next_def (ptr); |
660 | } |
661 | |
662 | /* Initialize iterator PTR to the operands in STMT based on FLAGS. Return |
663 | the first operand as a tree. */ |
664 | static inline tree |
665 | op_iter_init_tree (ssa_op_iter *ptr, gimple *stmt, int flags) |
666 | { |
667 | op_iter_init (ptr, stmt, flags); |
668 | ptr->iter_type = ssa_op_iter_tree; |
669 | return op_iter_next_tree (ptr); |
670 | } |
671 | |
672 | |
673 | /* If there is a single operand in STMT matching FLAGS, return it. Otherwise |
674 | return NULL. */ |
675 | static inline tree |
676 | single_ssa_tree_operand (gimple *stmt, int flags) |
677 | { |
678 | tree var; |
679 | ssa_op_iter iter; |
680 | |
681 | var = op_iter_init_tree (&iter, stmt, flags); |
682 | if (op_iter_done (&iter)) |
683 | return NULL_TREE; |
684 | op_iter_next_tree (&iter); |
685 | if (op_iter_done (&iter)) |
686 | return var; |
687 | return NULL_TREE; |
688 | } |
689 | |
690 | |
691 | /* If there is a single operand in STMT matching FLAGS, return it. Otherwise |
692 | return NULL. */ |
693 | static inline use_operand_p |
694 | single_ssa_use_operand (gimple *stmt, int flags) |
695 | { |
696 | use_operand_p var; |
697 | ssa_op_iter iter; |
698 | |
699 | var = op_iter_init_use (&iter, stmt, flags); |
700 | if (op_iter_done (&iter)) |
701 | return NULL_USE_OPERAND_P; |
702 | op_iter_next_use (&iter); |
703 | if (op_iter_done (&iter)) |
704 | return var; |
705 | return NULL_USE_OPERAND_P; |
706 | } |
707 | |
708 | /* Return the single virtual use operand in STMT if present. Otherwise |
709 | return NULL. */ |
710 | static inline use_operand_p |
711 | ssa_vuse_operand (gimple *stmt) |
712 | { |
713 | if (! gimple_vuse (stmt)) |
714 | return NULL_USE_OPERAND_P; |
715 | return USE_OP_PTR (gimple_use_ops (stmt)); |
716 | } |
717 | |
718 | |
719 | /* If there is a single operand in STMT matching FLAGS, return it. Otherwise |
720 | return NULL. */ |
721 | static inline def_operand_p |
722 | single_ssa_def_operand (gimple *stmt, int flags) |
723 | { |
724 | def_operand_p var; |
725 | ssa_op_iter iter; |
726 | |
727 | var = op_iter_init_def (&iter, stmt, flags); |
728 | if (op_iter_done (&iter)) |
729 | return NULL_DEF_OPERAND_P; |
730 | op_iter_next_def (&iter); |
731 | if (op_iter_done (&iter)) |
732 | return var; |
733 | return NULL_DEF_OPERAND_P; |
734 | } |
735 | |
736 | |
737 | /* Return true if there are zero operands in STMT matching the type |
738 | given in FLAGS. */ |
739 | static inline bool |
740 | zero_ssa_operands (gimple *stmt, int flags) |
741 | { |
742 | ssa_op_iter iter; |
743 | |
744 | op_iter_init_tree (&iter, stmt, flags); |
745 | return op_iter_done (&iter); |
746 | } |
747 | |
748 | |
749 | /* Return the number of operands matching FLAGS in STMT. */ |
750 | static inline int |
751 | num_ssa_operands (gimple *stmt, int flags) |
752 | { |
753 | ssa_op_iter iter; |
754 | tree t; |
755 | int num = 0; |
756 | |
757 | gcc_checking_assert (gimple_code (stmt) != GIMPLE_PHI); |
758 | FOR_EACH_SSA_TREE_OPERAND (t, stmt, iter, flags) |
759 | num++; |
760 | return num; |
761 | } |
762 | |
763 | /* If there is a single DEF in the PHI node which matches FLAG, return it. |
764 | Otherwise return NULL_DEF_OPERAND_P. */ |
765 | static inline tree |
766 | single_phi_def (gphi *stmt, int flags) |
767 | { |
768 | tree def = PHI_RESULT (stmt); |
769 | if ((flags & SSA_OP_DEF) && is_gimple_reg (def)) |
770 | return def; |
771 | if ((flags & SSA_OP_VIRTUAL_DEFS) && !is_gimple_reg (def)) |
772 | return def; |
773 | return NULL_TREE; |
774 | } |
775 | |
776 | /* Initialize the iterator PTR for uses matching FLAGS in PHI. FLAGS should |
777 | be either SSA_OP_USES or SSA_OP_VIRTUAL_USES. */ |
778 | static inline use_operand_p |
779 | op_iter_init_phiuse (ssa_op_iter *ptr, gphi *phi, int flags) |
780 | { |
781 | tree phi_def = gimple_phi_result (phi); |
782 | int comp; |
783 | |
784 | clear_and_done_ssa_iter (ptr); |
785 | ptr->done = false; |
786 | |
787 | gcc_checking_assert ((flags & (SSA_OP_USE | SSA_OP_VIRTUAL_USES)) != 0); |
788 | |
789 | comp = (is_gimple_reg (phi_def) ? SSA_OP_USE : SSA_OP_VIRTUAL_USES); |
790 | |
791 | /* If the PHI node doesn't the operand type we care about, we're done. */ |
792 | if ((flags & comp) == 0) |
793 | { |
794 | ptr->done = true; |
795 | return NULL_USE_OPERAND_P; |
796 | } |
797 | |
798 | ptr->stmt = phi; |
799 | ptr->numops = gimple_phi_num_args (phi); |
800 | ptr->iter_type = ssa_op_iter_use; |
801 | ptr->flags = flags; |
802 | return op_iter_next_use (ptr); |
803 | } |
804 | |
805 | |
806 | /* Start an iterator for a PHI definition. */ |
807 | |
808 | static inline def_operand_p |
809 | op_iter_init_phidef (ssa_op_iter *ptr, gphi *phi, int flags) |
810 | { |
811 | tree phi_def = PHI_RESULT (phi); |
812 | int comp; |
813 | |
814 | clear_and_done_ssa_iter (ptr); |
815 | ptr->done = false; |
816 | |
817 | gcc_checking_assert ((flags & (SSA_OP_DEF | SSA_OP_VIRTUAL_DEFS)) != 0); |
818 | |
819 | comp = (is_gimple_reg (phi_def) ? SSA_OP_DEF : SSA_OP_VIRTUAL_DEFS); |
820 | |
821 | /* If the PHI node doesn't have the operand type we care about, |
822 | we're done. */ |
823 | if ((flags & comp) == 0) |
824 | { |
825 | ptr->done = true; |
826 | return NULL_DEF_OPERAND_P; |
827 | } |
828 | |
829 | ptr->iter_type = ssa_op_iter_def; |
830 | /* The first call to op_iter_next_def will terminate the iterator since |
831 | all the fields are NULL. Simply return the result here as the first and |
832 | therefore only result. */ |
833 | return PHI_RESULT_PTR (phi); |
834 | } |
835 | |
836 | /* Return true is IMM has reached the end of the immediate use stmt list. */ |
837 | |
838 | static inline bool |
839 | end_imm_use_stmt_p (const imm_use_iterator *imm) |
840 | { |
841 | return (imm->imm_use == imm->end_p); |
842 | } |
843 | |
844 | /* Finished the traverse of an immediate use stmt list IMM by removing the |
845 | placeholder node from the list. */ |
846 | |
847 | static inline void |
848 | end_imm_use_stmt_traverse (imm_use_iterator *imm) |
849 | { |
850 | delink_imm_use (&(imm->iter_node)); |
851 | } |
852 | |
853 | /* Immediate use traversal of uses within a stmt require that all the |
854 | uses on a stmt be sequentially listed. This routine is used to build up |
855 | this sequential list by adding USE_P to the end of the current list |
856 | currently delimited by HEAD and LAST_P. The new LAST_P value is |
857 | returned. */ |
858 | |
859 | static inline use_operand_p |
860 | move_use_after_head (use_operand_p use_p, use_operand_p head, |
861 | use_operand_p last_p) |
862 | { |
863 | gcc_checking_assert (USE_FROM_PTR (use_p) == USE_FROM_PTR (head)); |
864 | /* Skip head when we find it. */ |
865 | if (use_p != head) |
866 | { |
867 | /* If use_p is already linked in after last_p, continue. */ |
868 | if (last_p->next == use_p) |
869 | last_p = use_p; |
870 | else |
871 | { |
872 | /* Delink from current location, and link in at last_p. */ |
873 | delink_imm_use (use_p); |
874 | link_imm_use_to_list (use_p, last_p); |
875 | last_p = use_p; |
876 | } |
877 | } |
878 | return last_p; |
879 | } |
880 | |
881 | |
882 | /* This routine will relink all uses with the same stmt as HEAD into the list |
883 | immediately following HEAD for iterator IMM. */ |
884 | |
885 | static inline void |
886 | link_use_stmts_after (use_operand_p head, imm_use_iterator *imm) |
887 | { |
888 | use_operand_p use_p; |
889 | use_operand_p last_p = head; |
890 | gimple *head_stmt = USE_STMT (head); |
891 | tree use = USE_FROM_PTR (head); |
892 | ssa_op_iter op_iter; |
893 | int flag; |
894 | |
895 | /* Only look at virtual or real uses, depending on the type of HEAD. */ |
896 | flag = (is_gimple_reg (use) ? SSA_OP_USE : SSA_OP_VIRTUAL_USES); |
897 | |
898 | if (gphi *phi = dyn_cast <gphi *> (head_stmt)) |
899 | { |
900 | FOR_EACH_PHI_ARG (use_p, phi, op_iter, flag) |
901 | if (USE_FROM_PTR (use_p) == use) |
902 | last_p = move_use_after_head (use_p, head, last_p); |
903 | } |
904 | else |
905 | { |
906 | if (flag == SSA_OP_USE) |
907 | { |
908 | FOR_EACH_SSA_USE_OPERAND (use_p, head_stmt, op_iter, flag) |
909 | if (USE_FROM_PTR (use_p) == use) |
910 | last_p = move_use_after_head (use_p, head, last_p); |
911 | } |
912 | else if ((use_p = gimple_vuse_op (head_stmt)) != NULL_USE_OPERAND_P) |
913 | { |
914 | if (USE_FROM_PTR (use_p) == use) |
915 | last_p = move_use_after_head (use_p, head, last_p); |
916 | } |
917 | } |
918 | /* Link iter node in after last_p. */ |
919 | if (imm->iter_node.prev != NULL) |
920 | delink_imm_use (&imm->iter_node); |
921 | link_imm_use_to_list (&(imm->iter_node), last_p); |
922 | } |
923 | |
924 | /* Initialize IMM to traverse over uses of VAR. Return the first statement. */ |
925 | static inline gimple * |
926 | first_imm_use_stmt (imm_use_iterator *imm, tree var) |
927 | { |
928 | imm->end_p = &(SSA_NAME_IMM_USE_NODE (var)); |
929 | imm->imm_use = imm->end_p->next; |
930 | imm->next_imm_name = NULL_USE_OPERAND_P; |
931 | |
932 | /* iter_node is used as a marker within the immediate use list to indicate |
933 | where the end of the current stmt's uses are. Initialize it to NULL |
934 | stmt and use, which indicates a marker node. */ |
935 | imm->iter_node.prev = NULL_USE_OPERAND_P; |
936 | imm->iter_node.next = NULL_USE_OPERAND_P; |
937 | imm->iter_node.loc.stmt = NULL; |
938 | imm->iter_node.use = NULL; |
939 | |
940 | if (end_imm_use_stmt_p (imm)) |
941 | return NULL; |
942 | |
943 | link_use_stmts_after (imm->imm_use, imm); |
944 | |
945 | return USE_STMT (imm->imm_use); |
946 | } |
947 | |
948 | /* Bump IMM to the next stmt which has a use of var. */ |
949 | |
950 | static inline gimple * |
951 | next_imm_use_stmt (imm_use_iterator *imm) |
952 | { |
953 | imm->imm_use = imm->iter_node.next; |
954 | if (end_imm_use_stmt_p (imm)) |
955 | { |
956 | if (imm->iter_node.prev != NULL) |
957 | delink_imm_use (&imm->iter_node); |
958 | return NULL; |
959 | } |
960 | |
961 | link_use_stmts_after (imm->imm_use, imm); |
962 | return USE_STMT (imm->imm_use); |
963 | } |
964 | |
965 | /* This routine will return the first use on the stmt IMM currently refers |
966 | to. */ |
967 | |
968 | static inline use_operand_p |
969 | first_imm_use_on_stmt (imm_use_iterator *imm) |
970 | { |
971 | imm->next_imm_name = imm->imm_use->next; |
972 | return imm->imm_use; |
973 | } |
974 | |
975 | /* Return TRUE if the last use on the stmt IMM refers to has been visited. */ |
976 | |
977 | static inline bool |
978 | end_imm_use_on_stmt_p (const imm_use_iterator *imm) |
979 | { |
980 | return (imm->imm_use == &(imm->iter_node)); |
981 | } |
982 | |
983 | /* Bump to the next use on the stmt IMM refers to, return NULL if done. */ |
984 | |
985 | static inline use_operand_p |
986 | next_imm_use_on_stmt (imm_use_iterator *imm) |
987 | { |
988 | imm->imm_use = imm->next_imm_name; |
989 | if (end_imm_use_on_stmt_p (imm)) |
990 | return NULL_USE_OPERAND_P; |
991 | else |
992 | { |
993 | imm->next_imm_name = imm->imm_use->next; |
994 | return imm->imm_use; |
995 | } |
996 | } |
997 | |
998 | /* Delink all immediate_use information for STMT. */ |
999 | static inline void |
1000 | delink_stmt_imm_use (gimple *stmt) |
1001 | { |
1002 | ssa_op_iter iter; |
1003 | use_operand_p use_p; |
1004 | |
1005 | if (ssa_operands_active (cfun)) |
1006 | FOR_EACH_PHI_OR_STMT_USE (use_p, stmt, iter, SSA_OP_ALL_USES) |
1007 | delink_imm_use (use_p); |
1008 | } |
1009 | |
1010 | #endif /* GCC_TREE_SSA_ITERATORS_H */ |
1011 |
Warning: That file was not part of the compilation database. It may have many parsing errors.