1/* Lower complex number operations to scalar operations.
2 Copyright (C) 2004-2017 Free Software Foundation, Inc.
3
4This file is part of GCC.
5
6GCC is free software; you can redistribute it and/or modify it
7under the terms of the GNU General Public License as published by the
8Free Software Foundation; either version 3, or (at your option) any
9later version.
10
11GCC is distributed in the hope that it will be useful, but WITHOUT
12ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
15
16You should have received a copy of the GNU General Public License
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
19
20#include "config.h"
21#include "system.h"
22#include "coretypes.h"
23#include "backend.h"
24#include "rtl.h"
25#include "tree.h"
26#include "gimple.h"
27#include "cfghooks.h"
28#include "tree-pass.h"
29#include "ssa.h"
30#include "fold-const.h"
31#include "stor-layout.h"
32#include "tree-eh.h"
33#include "gimplify.h"
34#include "gimple-iterator.h"
35#include "gimplify-me.h"
36#include "tree-cfg.h"
37#include "tree-dfa.h"
38#include "tree-ssa.h"
39#include "tree-ssa-propagate.h"
40#include "tree-hasher.h"
41#include "cfgloop.h"
42#include "cfganal.h"
43
44
45/* For each complex ssa name, a lattice value. We're interested in finding
46 out whether a complex number is degenerate in some way, having only real
47 or only complex parts. */
48
49enum
50{
51 UNINITIALIZED = 0,
52 ONLY_REAL = 1,
53 ONLY_IMAG = 2,
54 VARYING = 3
55};
56
57/* The type complex_lattice_t holds combinations of the above
58 constants. */
59typedef int complex_lattice_t;
60
61#define PAIR(a, b) ((a) << 2 | (b))
62
63class complex_propagate : public ssa_propagation_engine
64{
65 enum ssa_prop_result visit_stmt (gimple *, edge *, tree *) FINAL OVERRIDE;
66 enum ssa_prop_result visit_phi (gphi *) FINAL OVERRIDE;
67};
68
69static vec<complex_lattice_t> complex_lattice_values;
70
71/* For each complex variable, a pair of variables for the components exists in
72 the hashtable. */
73static int_tree_htab_type *complex_variable_components;
74
75/* For each complex SSA_NAME, a pair of ssa names for the components. */
76static vec<tree> complex_ssa_name_components;
77
78/* Vector of PHI triplets (original complex PHI and corresponding real and
79 imag PHIs if real and/or imag PHIs contain temporarily
80 non-SSA_NAME/non-invariant args that need to be replaced by SSA_NAMEs. */
81static vec<gphi *> phis_to_revisit;
82
83/* Lookup UID in the complex_variable_components hashtable and return the
84 associated tree. */
85static tree
86cvc_lookup (unsigned int uid)
87{
88 struct int_tree_map in;
89 in.uid = uid;
90 return complex_variable_components->find_with_hash (in, uid).to;
91}
92
93/* Insert the pair UID, TO into the complex_variable_components hashtable. */
94
95static void
96cvc_insert (unsigned int uid, tree to)
97{
98 int_tree_map h;
99 int_tree_map *loc;
100
101 h.uid = uid;
102 loc = complex_variable_components->find_slot_with_hash (h, uid, INSERT);
103 loc->uid = uid;
104 loc->to = to;
105}
106
107/* Return true if T is not a zero constant. In the case of real values,
108 we're only interested in +0.0. */
109
110static int
111some_nonzerop (tree t)
112{
113 int zerop = false;
114
115 /* Operations with real or imaginary part of a complex number zero
116 cannot be treated the same as operations with a real or imaginary
117 operand if we care about the signs of zeros in the result. */
118 if (TREE_CODE (t) == REAL_CST && !flag_signed_zeros)
119 zerop = real_identical (&TREE_REAL_CST (t), &dconst0);
120 else if (TREE_CODE (t) == FIXED_CST)
121 zerop = fixed_zerop (t);
122 else if (TREE_CODE (t) == INTEGER_CST)
123 zerop = integer_zerop (t);
124
125 return !zerop;
126}
127
128
129/* Compute a lattice value from the components of a complex type REAL
130 and IMAG. */
131
132static complex_lattice_t
133find_lattice_value_parts (tree real, tree imag)
134{
135 int r, i;
136 complex_lattice_t ret;
137
138 r = some_nonzerop (real);
139 i = some_nonzerop (imag);
140 ret = r * ONLY_REAL + i * ONLY_IMAG;
141
142 /* ??? On occasion we could do better than mapping 0+0i to real, but we
143 certainly don't want to leave it UNINITIALIZED, which eventually gets
144 mapped to VARYING. */
145 if (ret == UNINITIALIZED)
146 ret = ONLY_REAL;
147
148 return ret;
149}
150
151
152/* Compute a lattice value from gimple_val T. */
153
154static complex_lattice_t
155find_lattice_value (tree t)
156{
157 tree real, imag;
158
159 switch (TREE_CODE (t))
160 {
161 case SSA_NAME:
162 return complex_lattice_values[SSA_NAME_VERSION (t)];
163
164 case COMPLEX_CST:
165 real = TREE_REALPART (t);
166 imag = TREE_IMAGPART (t);
167 break;
168
169 default:
170 gcc_unreachable ();
171 }
172
173 return find_lattice_value_parts (real, imag);
174}
175
176/* Determine if LHS is something for which we're interested in seeing
177 simulation results. */
178
179static bool
180is_complex_reg (tree lhs)
181{
182 return TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE && is_gimple_reg (lhs);
183}
184
185/* Mark the incoming parameters to the function as VARYING. */
186
187static void
188init_parameter_lattice_values (void)
189{
190 tree parm, ssa_name;
191
192 for (parm = DECL_ARGUMENTS (cfun->decl); parm ; parm = DECL_CHAIN (parm))
193 if (is_complex_reg (parm)
194 && (ssa_name = ssa_default_def (cfun, parm)) != NULL_TREE)
195 complex_lattice_values[SSA_NAME_VERSION (ssa_name)] = VARYING;
196}
197
198/* Initialize simulation state for each statement. Return false if we
199 found no statements we want to simulate, and thus there's nothing
200 for the entire pass to do. */
201
202static bool
203init_dont_simulate_again (void)
204{
205 basic_block bb;
206 bool saw_a_complex_op = false;
207
208 FOR_EACH_BB_FN (bb, cfun)
209 {
210 for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
211 gsi_next (&gsi))
212 {
213 gphi *phi = gsi.phi ();
214 prop_set_simulate_again (phi,
215 is_complex_reg (gimple_phi_result (phi)));
216 }
217
218 for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
219 gsi_next (&gsi))
220 {
221 gimple *stmt;
222 tree op0, op1;
223 bool sim_again_p;
224
225 stmt = gsi_stmt (gsi);
226 op0 = op1 = NULL_TREE;
227
228 /* Most control-altering statements must be initially
229 simulated, else we won't cover the entire cfg. */
230 sim_again_p = stmt_ends_bb_p (stmt);
231
232 switch (gimple_code (stmt))
233 {
234 case GIMPLE_CALL:
235 if (gimple_call_lhs (stmt))
236 sim_again_p = is_complex_reg (gimple_call_lhs (stmt));
237 break;
238
239 case GIMPLE_ASSIGN:
240 sim_again_p = is_complex_reg (gimple_assign_lhs (stmt));
241 if (gimple_assign_rhs_code (stmt) == REALPART_EXPR
242 || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR)
243 op0 = TREE_OPERAND (gimple_assign_rhs1 (stmt), 0);
244 else
245 op0 = gimple_assign_rhs1 (stmt);
246 if (gimple_num_ops (stmt) > 2)
247 op1 = gimple_assign_rhs2 (stmt);
248 break;
249
250 case GIMPLE_COND:
251 op0 = gimple_cond_lhs (stmt);
252 op1 = gimple_cond_rhs (stmt);
253 break;
254
255 default:
256 break;
257 }
258
259 if (op0 || op1)
260 switch (gimple_expr_code (stmt))
261 {
262 case EQ_EXPR:
263 case NE_EXPR:
264 case PLUS_EXPR:
265 case MINUS_EXPR:
266 case MULT_EXPR:
267 case TRUNC_DIV_EXPR:
268 case CEIL_DIV_EXPR:
269 case FLOOR_DIV_EXPR:
270 case ROUND_DIV_EXPR:
271 case RDIV_EXPR:
272 if (TREE_CODE (TREE_TYPE (op0)) == COMPLEX_TYPE
273 || TREE_CODE (TREE_TYPE (op1)) == COMPLEX_TYPE)
274 saw_a_complex_op = true;
275 break;
276
277 case NEGATE_EXPR:
278 case CONJ_EXPR:
279 if (TREE_CODE (TREE_TYPE (op0)) == COMPLEX_TYPE)
280 saw_a_complex_op = true;
281 break;
282
283 case REALPART_EXPR:
284 case IMAGPART_EXPR:
285 /* The total store transformation performed during
286 gimplification creates such uninitialized loads
287 and we need to lower the statement to be able
288 to fix things up. */
289 if (TREE_CODE (op0) == SSA_NAME
290 && ssa_undefined_value_p (op0))
291 saw_a_complex_op = true;
292 break;
293
294 default:
295 break;
296 }
297
298 prop_set_simulate_again (stmt, sim_again_p);
299 }
300 }
301
302 return saw_a_complex_op;
303}
304
305
306/* Evaluate statement STMT against the complex lattice defined above. */
307
308enum ssa_prop_result
309complex_propagate::visit_stmt (gimple *stmt, edge *taken_edge_p ATTRIBUTE_UNUSED,
310 tree *result_p)
311{
312 complex_lattice_t new_l, old_l, op1_l, op2_l;
313 unsigned int ver;
314 tree lhs;
315
316 lhs = gimple_get_lhs (stmt);
317 /* Skip anything but GIMPLE_ASSIGN and GIMPLE_CALL with a lhs. */
318 if (!lhs)
319 return SSA_PROP_VARYING;
320
321 /* These conditions should be satisfied due to the initial filter
322 set up in init_dont_simulate_again. */
323 gcc_assert (TREE_CODE (lhs) == SSA_NAME);
324 gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE);
325
326 *result_p = lhs;
327 ver = SSA_NAME_VERSION (lhs);
328 old_l = complex_lattice_values[ver];
329
330 switch (gimple_expr_code (stmt))
331 {
332 case SSA_NAME:
333 case COMPLEX_CST:
334 new_l = find_lattice_value (gimple_assign_rhs1 (stmt));
335 break;
336
337 case COMPLEX_EXPR:
338 new_l = find_lattice_value_parts (gimple_assign_rhs1 (stmt),
339 gimple_assign_rhs2 (stmt));
340 break;
341
342 case PLUS_EXPR:
343 case MINUS_EXPR:
344 op1_l = find_lattice_value (gimple_assign_rhs1 (stmt));
345 op2_l = find_lattice_value (gimple_assign_rhs2 (stmt));
346
347 /* We've set up the lattice values such that IOR neatly
348 models addition. */
349 new_l = op1_l | op2_l;
350 break;
351
352 case MULT_EXPR:
353 case RDIV_EXPR:
354 case TRUNC_DIV_EXPR:
355 case CEIL_DIV_EXPR:
356 case FLOOR_DIV_EXPR:
357 case ROUND_DIV_EXPR:
358 op1_l = find_lattice_value (gimple_assign_rhs1 (stmt));
359 op2_l = find_lattice_value (gimple_assign_rhs2 (stmt));
360
361 /* Obviously, if either varies, so does the result. */
362 if (op1_l == VARYING || op2_l == VARYING)
363 new_l = VARYING;
364 /* Don't prematurely promote variables if we've not yet seen
365 their inputs. */
366 else if (op1_l == UNINITIALIZED)
367 new_l = op2_l;
368 else if (op2_l == UNINITIALIZED)
369 new_l = op1_l;
370 else
371 {
372 /* At this point both numbers have only one component. If the
373 numbers are of opposite kind, the result is imaginary,
374 otherwise the result is real. The add/subtract translates
375 the real/imag from/to 0/1; the ^ performs the comparison. */
376 new_l = ((op1_l - ONLY_REAL) ^ (op2_l - ONLY_REAL)) + ONLY_REAL;
377
378 /* Don't allow the lattice value to flip-flop indefinitely. */
379 new_l |= old_l;
380 }
381 break;
382
383 case NEGATE_EXPR:
384 case CONJ_EXPR:
385 new_l = find_lattice_value (gimple_assign_rhs1 (stmt));
386 break;
387
388 default:
389 new_l = VARYING;
390 break;
391 }
392
393 /* If nothing changed this round, let the propagator know. */
394 if (new_l == old_l)
395 return SSA_PROP_NOT_INTERESTING;
396
397 complex_lattice_values[ver] = new_l;
398 return new_l == VARYING ? SSA_PROP_VARYING : SSA_PROP_INTERESTING;
399}
400
401/* Evaluate a PHI node against the complex lattice defined above. */
402
403enum ssa_prop_result
404complex_propagate::visit_phi (gphi *phi)
405{
406 complex_lattice_t new_l, old_l;
407 unsigned int ver;
408 tree lhs;
409 int i;
410
411 lhs = gimple_phi_result (phi);
412
413 /* This condition should be satisfied due to the initial filter
414 set up in init_dont_simulate_again. */
415 gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE);
416
417 /* We've set up the lattice values such that IOR neatly models PHI meet. */
418 new_l = UNINITIALIZED;
419 for (i = gimple_phi_num_args (phi) - 1; i >= 0; --i)
420 new_l |= find_lattice_value (gimple_phi_arg_def (phi, i));
421
422 ver = SSA_NAME_VERSION (lhs);
423 old_l = complex_lattice_values[ver];
424
425 if (new_l == old_l)
426 return SSA_PROP_NOT_INTERESTING;
427
428 complex_lattice_values[ver] = new_l;
429 return new_l == VARYING ? SSA_PROP_VARYING : SSA_PROP_INTERESTING;
430}
431
432/* Create one backing variable for a complex component of ORIG. */
433
434static tree
435create_one_component_var (tree type, tree orig, const char *prefix,
436 const char *suffix, enum tree_code code)
437{
438 tree r = create_tmp_var (type, prefix);
439
440 DECL_SOURCE_LOCATION (r) = DECL_SOURCE_LOCATION (orig);
441 DECL_ARTIFICIAL (r) = 1;
442
443 if (DECL_NAME (orig) && !DECL_IGNORED_P (orig))
444 {
445 const char *name = IDENTIFIER_POINTER (DECL_NAME (orig));
446 name = ACONCAT ((name, suffix, NULL));
447 DECL_NAME (r) = get_identifier (name);
448
449 SET_DECL_DEBUG_EXPR (r, build1 (code, type, orig));
450 DECL_HAS_DEBUG_EXPR_P (r) = 1;
451 DECL_IGNORED_P (r) = 0;
452 TREE_NO_WARNING (r) = TREE_NO_WARNING (orig);
453 }
454 else
455 {
456 DECL_IGNORED_P (r) = 1;
457 TREE_NO_WARNING (r) = 1;
458 }
459
460 return r;
461}
462
463/* Retrieve a value for a complex component of VAR. */
464
465static tree
466get_component_var (tree var, bool imag_p)
467{
468 size_t decl_index = DECL_UID (var) * 2 + imag_p;
469 tree ret = cvc_lookup (decl_index);
470
471 if (ret == NULL)
472 {
473 ret = create_one_component_var (TREE_TYPE (TREE_TYPE (var)), var,
474 imag_p ? "CI" : "CR",
475 imag_p ? "$imag" : "$real",
476 imag_p ? IMAGPART_EXPR : REALPART_EXPR);
477 cvc_insert (decl_index, ret);
478 }
479
480 return ret;
481}
482
483/* Retrieve a value for a complex component of SSA_NAME. */
484
485static tree
486get_component_ssa_name (tree ssa_name, bool imag_p)
487{
488 complex_lattice_t lattice = find_lattice_value (ssa_name);
489 size_t ssa_name_index;
490 tree ret;
491
492 if (lattice == (imag_p ? ONLY_REAL : ONLY_IMAG))
493 {
494 tree inner_type = TREE_TYPE (TREE_TYPE (ssa_name));
495 if (SCALAR_FLOAT_TYPE_P (inner_type))
496 return build_real (inner_type, dconst0);
497 else
498 return build_int_cst (inner_type, 0);
499 }
500
501 ssa_name_index = SSA_NAME_VERSION (ssa_name) * 2 + imag_p;
502 ret = complex_ssa_name_components[ssa_name_index];
503 if (ret == NULL)
504 {
505 if (SSA_NAME_VAR (ssa_name))
506 ret = get_component_var (SSA_NAME_VAR (ssa_name), imag_p);
507 else
508 ret = TREE_TYPE (TREE_TYPE (ssa_name));
509 ret = make_ssa_name (ret);
510
511 /* Copy some properties from the original. In particular, whether it
512 is used in an abnormal phi, and whether it's uninitialized. */
513 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ret)
514 = SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name);
515 if (SSA_NAME_IS_DEFAULT_DEF (ssa_name)
516 && TREE_CODE (SSA_NAME_VAR (ssa_name)) == VAR_DECL)
517 {
518 SSA_NAME_DEF_STMT (ret) = SSA_NAME_DEF_STMT (ssa_name);
519 set_ssa_default_def (cfun, SSA_NAME_VAR (ret), ret);
520 }
521
522 complex_ssa_name_components[ssa_name_index] = ret;
523 }
524
525 return ret;
526}
527
528/* Set a value for a complex component of SSA_NAME, return a
529 gimple_seq of stuff that needs doing. */
530
531static gimple_seq
532set_component_ssa_name (tree ssa_name, bool imag_p, tree value)
533{
534 complex_lattice_t lattice = find_lattice_value (ssa_name);
535 size_t ssa_name_index;
536 tree comp;
537 gimple *last;
538 gimple_seq list;
539
540 /* We know the value must be zero, else there's a bug in our lattice
541 analysis. But the value may well be a variable known to contain
542 zero. We should be safe ignoring it. */
543 if (lattice == (imag_p ? ONLY_REAL : ONLY_IMAG))
544 return NULL;
545
546 /* If we've already assigned an SSA_NAME to this component, then this
547 means that our walk of the basic blocks found a use before the set.
548 This is fine. Now we should create an initialization for the value
549 we created earlier. */
550 ssa_name_index = SSA_NAME_VERSION (ssa_name) * 2 + imag_p;
551 comp = complex_ssa_name_components[ssa_name_index];
552 if (comp)
553 ;
554
555 /* If we've nothing assigned, and the value we're given is already stable,
556 then install that as the value for this SSA_NAME. This preemptively
557 copy-propagates the value, which avoids unnecessary memory allocation. */
558 else if (is_gimple_min_invariant (value)
559 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name))
560 {
561 complex_ssa_name_components[ssa_name_index] = value;
562 return NULL;
563 }
564 else if (TREE_CODE (value) == SSA_NAME
565 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name))
566 {
567 /* Replace an anonymous base value with the variable from cvc_lookup.
568 This should result in better debug info. */
569 if (SSA_NAME_VAR (ssa_name)
570 && (!SSA_NAME_VAR (value) || DECL_IGNORED_P (SSA_NAME_VAR (value)))
571 && !DECL_IGNORED_P (SSA_NAME_VAR (ssa_name)))
572 {
573 comp = get_component_var (SSA_NAME_VAR (ssa_name), imag_p);
574 replace_ssa_name_symbol (value, comp);
575 }
576
577 complex_ssa_name_components[ssa_name_index] = value;
578 return NULL;
579 }
580
581 /* Finally, we need to stabilize the result by installing the value into
582 a new ssa name. */
583 else
584 comp = get_component_ssa_name (ssa_name, imag_p);
585
586 /* Do all the work to assign VALUE to COMP. */
587 list = NULL;
588 value = force_gimple_operand (value, &list, false, NULL);
589 last = gimple_build_assign (comp, value);
590 gimple_seq_add_stmt (&list, last);
591 gcc_assert (SSA_NAME_DEF_STMT (comp) == last);
592
593 return list;
594}
595
596/* Extract the real or imaginary part of a complex variable or constant.
597 Make sure that it's a proper gimple_val and gimplify it if not.
598 Emit any new code before gsi. */
599
600static tree
601extract_component (gimple_stmt_iterator *gsi, tree t, bool imagpart_p,
602 bool gimple_p, bool phiarg_p = false)
603{
604 switch (TREE_CODE (t))
605 {
606 case COMPLEX_CST:
607 return imagpart_p ? TREE_IMAGPART (t) : TREE_REALPART (t);
608
609 case COMPLEX_EXPR:
610 gcc_unreachable ();
611
612 case BIT_FIELD_REF:
613 {
614 tree inner_type = TREE_TYPE (TREE_TYPE (t));
615 t = unshare_expr (t);
616 TREE_TYPE (t) = inner_type;
617 TREE_OPERAND (t, 1) = TYPE_SIZE (inner_type);
618 if (imagpart_p)
619 TREE_OPERAND (t, 2) = size_binop (PLUS_EXPR, TREE_OPERAND (t, 2),
620 TYPE_SIZE (inner_type));
621 if (gimple_p)
622 t = force_gimple_operand_gsi (gsi, t, true, NULL, true,
623 GSI_SAME_STMT);
624 return t;
625 }
626
627 case VAR_DECL:
628 case RESULT_DECL:
629 case PARM_DECL:
630 case COMPONENT_REF:
631 case ARRAY_REF:
632 case VIEW_CONVERT_EXPR:
633 case MEM_REF:
634 {
635 tree inner_type = TREE_TYPE (TREE_TYPE (t));
636
637 t = build1 ((imagpart_p ? IMAGPART_EXPR : REALPART_EXPR),
638 inner_type, unshare_expr (t));
639
640 if (gimple_p)
641 t = force_gimple_operand_gsi (gsi, t, true, NULL, true,
642 GSI_SAME_STMT);
643
644 return t;
645 }
646
647 case SSA_NAME:
648 t = get_component_ssa_name (t, imagpart_p);
649 if (TREE_CODE (t) == SSA_NAME && SSA_NAME_DEF_STMT (t) == NULL)
650 gcc_assert (phiarg_p);
651 return t;
652
653 default:
654 gcc_unreachable ();
655 }
656}
657
658/* Update the complex components of the ssa name on the lhs of STMT. */
659
660static void
661update_complex_components (gimple_stmt_iterator *gsi, gimple *stmt, tree r,
662 tree i)
663{
664 tree lhs;
665 gimple_seq list;
666
667 lhs = gimple_get_lhs (stmt);
668
669 list = set_component_ssa_name (lhs, false, r);
670 if (list)
671 gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
672
673 list = set_component_ssa_name (lhs, true, i);
674 if (list)
675 gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
676}
677
678static void
679update_complex_components_on_edge (edge e, tree lhs, tree r, tree i)
680{
681 gimple_seq list;
682
683 list = set_component_ssa_name (lhs, false, r);
684 if (list)
685 gsi_insert_seq_on_edge (e, list);
686
687 list = set_component_ssa_name (lhs, true, i);
688 if (list)
689 gsi_insert_seq_on_edge (e, list);
690}
691
692
693/* Update an assignment to a complex variable in place. */
694
695static void
696update_complex_assignment (gimple_stmt_iterator *gsi, tree r, tree i)
697{
698 gimple *stmt;
699
700 gimple_assign_set_rhs_with_ops (gsi, COMPLEX_EXPR, r, i);
701 stmt = gsi_stmt (*gsi);
702 update_stmt (stmt);
703 if (maybe_clean_eh_stmt (stmt))
704 gimple_purge_dead_eh_edges (gimple_bb (stmt));
705
706 if (gimple_in_ssa_p (cfun))
707 update_complex_components (gsi, gsi_stmt (*gsi), r, i);
708}
709
710
711/* Generate code at the entry point of the function to initialize the
712 component variables for a complex parameter. */
713
714static void
715update_parameter_components (void)
716{
717 edge entry_edge = single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun));
718 tree parm;
719
720 for (parm = DECL_ARGUMENTS (cfun->decl); parm ; parm = DECL_CHAIN (parm))
721 {
722 tree type = TREE_TYPE (parm);
723 tree ssa_name, r, i;
724
725 if (TREE_CODE (type) != COMPLEX_TYPE || !is_gimple_reg (parm))
726 continue;
727
728 type = TREE_TYPE (type);
729 ssa_name = ssa_default_def (cfun, parm);
730 if (!ssa_name)
731 continue;
732
733 r = build1 (REALPART_EXPR, type, ssa_name);
734 i = build1 (IMAGPART_EXPR, type, ssa_name);
735 update_complex_components_on_edge (entry_edge, ssa_name, r, i);
736 }
737}
738
739/* Generate code to set the component variables of a complex variable
740 to match the PHI statements in block BB. */
741
742static void
743update_phi_components (basic_block bb)
744{
745 gphi_iterator gsi;
746
747 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
748 {
749 gphi *phi = gsi.phi ();
750
751 if (is_complex_reg (gimple_phi_result (phi)))
752 {
753 gphi *p[2] = { NULL, NULL };
754 unsigned int i, j, n;
755 bool revisit_phi = false;
756
757 for (j = 0; j < 2; j++)
758 {
759 tree l = get_component_ssa_name (gimple_phi_result (phi), j > 0);
760 if (TREE_CODE (l) == SSA_NAME)
761 p[j] = create_phi_node (l, bb);
762 }
763
764 for (i = 0, n = gimple_phi_num_args (phi); i < n; ++i)
765 {
766 tree comp, arg = gimple_phi_arg_def (phi, i);
767 for (j = 0; j < 2; j++)
768 if (p[j])
769 {
770 comp = extract_component (NULL, arg, j > 0, false, true);
771 if (TREE_CODE (comp) == SSA_NAME
772 && SSA_NAME_DEF_STMT (comp) == NULL)
773 {
774 /* For the benefit of any gimple simplification during
775 this pass that might walk SSA_NAME def stmts,
776 don't add SSA_NAMEs without definitions into the
777 PHI arguments, but put a decl in there instead
778 temporarily, and revisit this PHI later on. */
779 if (SSA_NAME_VAR (comp))
780 comp = SSA_NAME_VAR (comp);
781 else
782 comp = create_tmp_reg (TREE_TYPE (comp),
783 get_name (comp));
784 revisit_phi = true;
785 }
786 SET_PHI_ARG_DEF (p[j], i, comp);
787 }
788 }
789
790 if (revisit_phi)
791 {
792 phis_to_revisit.safe_push (phi);
793 phis_to_revisit.safe_push (p[0]);
794 phis_to_revisit.safe_push (p[1]);
795 }
796 }
797 }
798}
799
800/* Expand a complex move to scalars. */
801
802static void
803expand_complex_move (gimple_stmt_iterator *gsi, tree type)
804{
805 tree inner_type = TREE_TYPE (type);
806 tree r, i, lhs, rhs;
807 gimple *stmt = gsi_stmt (*gsi);
808
809 if (is_gimple_assign (stmt))
810 {
811 lhs = gimple_assign_lhs (stmt);
812 if (gimple_num_ops (stmt) == 2)
813 rhs = gimple_assign_rhs1 (stmt);
814 else
815 rhs = NULL_TREE;
816 }
817 else if (is_gimple_call (stmt))
818 {
819 lhs = gimple_call_lhs (stmt);
820 rhs = NULL_TREE;
821 }
822 else
823 gcc_unreachable ();
824
825 if (TREE_CODE (lhs) == SSA_NAME)
826 {
827 if (is_ctrl_altering_stmt (stmt))
828 {
829 edge e;
830
831 /* The value is not assigned on the exception edges, so we need not
832 concern ourselves there. We do need to update on the fallthru
833 edge. Find it. */
834 e = find_fallthru_edge (gsi_bb (*gsi)->succs);
835 if (!e)
836 gcc_unreachable ();
837
838 r = build1 (REALPART_EXPR, inner_type, lhs);
839 i = build1 (IMAGPART_EXPR, inner_type, lhs);
840 update_complex_components_on_edge (e, lhs, r, i);
841 }
842 else if (is_gimple_call (stmt)
843 || gimple_has_side_effects (stmt)
844 || gimple_assign_rhs_code (stmt) == PAREN_EXPR)
845 {
846 r = build1 (REALPART_EXPR, inner_type, lhs);
847 i = build1 (IMAGPART_EXPR, inner_type, lhs);
848 update_complex_components (gsi, stmt, r, i);
849 }
850 else
851 {
852 if (gimple_assign_rhs_code (stmt) != COMPLEX_EXPR)
853 {
854 r = extract_component (gsi, rhs, 0, true);
855 i = extract_component (gsi, rhs, 1, true);
856 }
857 else
858 {
859 r = gimple_assign_rhs1 (stmt);
860 i = gimple_assign_rhs2 (stmt);
861 }
862 update_complex_assignment (gsi, r, i);
863 }
864 }
865 else if (rhs && TREE_CODE (rhs) == SSA_NAME && !TREE_SIDE_EFFECTS (lhs))
866 {
867 tree x;
868 gimple *t;
869 location_t loc;
870
871 loc = gimple_location (stmt);
872 r = extract_component (gsi, rhs, 0, false);
873 i = extract_component (gsi, rhs, 1, false);
874
875 x = build1 (REALPART_EXPR, inner_type, unshare_expr (lhs));
876 t = gimple_build_assign (x, r);
877 gimple_set_location (t, loc);
878 gsi_insert_before (gsi, t, GSI_SAME_STMT);
879
880 if (stmt == gsi_stmt (*gsi))
881 {
882 x = build1 (IMAGPART_EXPR, inner_type, unshare_expr (lhs));
883 gimple_assign_set_lhs (stmt, x);
884 gimple_assign_set_rhs1 (stmt, i);
885 }
886 else
887 {
888 x = build1 (IMAGPART_EXPR, inner_type, unshare_expr (lhs));
889 t = gimple_build_assign (x, i);
890 gimple_set_location (t, loc);
891 gsi_insert_before (gsi, t, GSI_SAME_STMT);
892
893 stmt = gsi_stmt (*gsi);
894 gcc_assert (gimple_code (stmt) == GIMPLE_RETURN);
895 gimple_return_set_retval (as_a <greturn *> (stmt), lhs);
896 }
897
898 update_stmt (stmt);
899 }
900}
901
902/* Expand complex addition to scalars:
903 a + b = (ar + br) + i(ai + bi)
904 a - b = (ar - br) + i(ai + bi)
905*/
906
907static void
908expand_complex_addition (gimple_stmt_iterator *gsi, tree inner_type,
909 tree ar, tree ai, tree br, tree bi,
910 enum tree_code code,
911 complex_lattice_t al, complex_lattice_t bl)
912{
913 tree rr, ri;
914
915 switch (PAIR (al, bl))
916 {
917 case PAIR (ONLY_REAL, ONLY_REAL):
918 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
919 ri = ai;
920 break;
921
922 case PAIR (ONLY_REAL, ONLY_IMAG):
923 rr = ar;
924 if (code == MINUS_EXPR)
925 ri = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ai, bi);
926 else
927 ri = bi;
928 break;
929
930 case PAIR (ONLY_IMAG, ONLY_REAL):
931 if (code == MINUS_EXPR)
932 rr = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ar, br);
933 else
934 rr = br;
935 ri = ai;
936 break;
937
938 case PAIR (ONLY_IMAG, ONLY_IMAG):
939 rr = ar;
940 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
941 break;
942
943 case PAIR (VARYING, ONLY_REAL):
944 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
945 ri = ai;
946 break;
947
948 case PAIR (VARYING, ONLY_IMAG):
949 rr = ar;
950 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
951 break;
952
953 case PAIR (ONLY_REAL, VARYING):
954 if (code == MINUS_EXPR)
955 goto general;
956 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
957 ri = bi;
958 break;
959
960 case PAIR (ONLY_IMAG, VARYING):
961 if (code == MINUS_EXPR)
962 goto general;
963 rr = br;
964 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
965 break;
966
967 case PAIR (VARYING, VARYING):
968 general:
969 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
970 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
971 break;
972
973 default:
974 gcc_unreachable ();
975 }
976
977 update_complex_assignment (gsi, rr, ri);
978}
979
980/* Expand a complex multiplication or division to a libcall to the c99
981 compliant routines. */
982
983static void
984expand_complex_libcall (gimple_stmt_iterator *gsi, tree ar, tree ai,
985 tree br, tree bi, enum tree_code code)
986{
987 machine_mode mode;
988 enum built_in_function bcode;
989 tree fn, type, lhs;
990 gimple *old_stmt;
991 gcall *stmt;
992
993 old_stmt = gsi_stmt (*gsi);
994 lhs = gimple_assign_lhs (old_stmt);
995 type = TREE_TYPE (lhs);
996
997 mode = TYPE_MODE (type);
998 gcc_assert (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT);
999
1000 if (code == MULT_EXPR)
1001 bcode = ((enum built_in_function)
1002 (BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
1003 else if (code == RDIV_EXPR)
1004 bcode = ((enum built_in_function)
1005 (BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
1006 else
1007 gcc_unreachable ();
1008 fn = builtin_decl_explicit (bcode);
1009
1010 stmt = gimple_build_call (fn, 4, ar, ai, br, bi);
1011 gimple_call_set_lhs (stmt, lhs);
1012 update_stmt (stmt);
1013 gsi_replace (gsi, stmt, false);
1014
1015 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt))
1016 gimple_purge_dead_eh_edges (gsi_bb (*gsi));
1017
1018 if (gimple_in_ssa_p (cfun))
1019 {
1020 type = TREE_TYPE (type);
1021 update_complex_components (gsi, stmt,
1022 build1 (REALPART_EXPR, type, lhs),
1023 build1 (IMAGPART_EXPR, type, lhs));
1024 SSA_NAME_DEF_STMT (lhs) = stmt;
1025 }
1026}
1027
1028/* Expand complex multiplication to scalars:
1029 a * b = (ar*br - ai*bi) + i(ar*bi + br*ai)
1030*/
1031
1032static void
1033expand_complex_multiplication (gimple_stmt_iterator *gsi, tree inner_type,
1034 tree ar, tree ai, tree br, tree bi,
1035 complex_lattice_t al, complex_lattice_t bl)
1036{
1037 tree rr, ri;
1038
1039 if (al < bl)
1040 {
1041 complex_lattice_t tl;
1042 rr = ar, ar = br, br = rr;
1043 ri = ai, ai = bi, bi = ri;
1044 tl = al, al = bl, bl = tl;
1045 }
1046
1047 switch (PAIR (al, bl))
1048 {
1049 case PAIR (ONLY_REAL, ONLY_REAL):
1050 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1051 ri = ai;
1052 break;
1053
1054 case PAIR (ONLY_IMAG, ONLY_REAL):
1055 rr = ar;
1056 if (TREE_CODE (ai) == REAL_CST
1057 && real_identical (&TREE_REAL_CST (ai), &dconst1))
1058 ri = br;
1059 else
1060 ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1061 break;
1062
1063 case PAIR (ONLY_IMAG, ONLY_IMAG):
1064 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1065 rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, rr);
1066 ri = ar;
1067 break;
1068
1069 case PAIR (VARYING, ONLY_REAL):
1070 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1071 ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1072 break;
1073
1074 case PAIR (VARYING, ONLY_IMAG):
1075 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1076 rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, rr);
1077 ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi);
1078 break;
1079
1080 case PAIR (VARYING, VARYING):
1081 if (flag_complex_method == 2 && SCALAR_FLOAT_TYPE_P (inner_type))
1082 {
1083 expand_complex_libcall (gsi, ar, ai, br, bi, MULT_EXPR);
1084 return;
1085 }
1086 else
1087 {
1088 tree t1, t2, t3, t4;
1089
1090 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1091 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1092 t3 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi);
1093
1094 /* Avoid expanding redundant multiplication for the common
1095 case of squaring a complex number. */
1096 if (ar == br && ai == bi)
1097 t4 = t3;
1098 else
1099 t4 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1100
1101 rr = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, t2);
1102 ri = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t3, t4);
1103 }
1104 break;
1105
1106 default:
1107 gcc_unreachable ();
1108 }
1109
1110 update_complex_assignment (gsi, rr, ri);
1111}
1112
1113/* Keep this algorithm in sync with fold-const.c:const_binop().
1114
1115 Expand complex division to scalars, straightforward algorithm.
1116 a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t)
1117 t = br*br + bi*bi
1118*/
1119
1120static void
1121expand_complex_div_straight (gimple_stmt_iterator *gsi, tree inner_type,
1122 tree ar, tree ai, tree br, tree bi,
1123 enum tree_code code)
1124{
1125 tree rr, ri, div, t1, t2, t3;
1126
1127 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, br, br);
1128 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, bi, bi);
1129 div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, t2);
1130
1131 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1132 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1133 t3 = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, t2);
1134 rr = gimplify_build2 (gsi, code, inner_type, t3, div);
1135
1136 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1137 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi);
1138 t3 = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, t2);
1139 ri = gimplify_build2 (gsi, code, inner_type, t3, div);
1140
1141 update_complex_assignment (gsi, rr, ri);
1142}
1143
1144/* Keep this algorithm in sync with fold-const.c:const_binop().
1145
1146 Expand complex division to scalars, modified algorithm to minimize
1147 overflow with wide input ranges. */
1148
1149static void
1150expand_complex_div_wide (gimple_stmt_iterator *gsi, tree inner_type,
1151 tree ar, tree ai, tree br, tree bi,
1152 enum tree_code code)
1153{
1154 tree rr, ri, ratio, div, t1, t2, tr, ti, compare;
1155 basic_block bb_cond, bb_true, bb_false, bb_join;
1156 gimple *stmt;
1157
1158 /* Examine |br| < |bi|, and branch. */
1159 t1 = gimplify_build1 (gsi, ABS_EXPR, inner_type, br);
1160 t2 = gimplify_build1 (gsi, ABS_EXPR, inner_type, bi);
1161 compare = fold_build2_loc (gimple_location (gsi_stmt (*gsi)),
1162 LT_EXPR, boolean_type_node, t1, t2);
1163 STRIP_NOPS (compare);
1164
1165 bb_cond = bb_true = bb_false = bb_join = NULL;
1166 rr = ri = tr = ti = NULL;
1167 if (TREE_CODE (compare) != INTEGER_CST)
1168 {
1169 edge e;
1170 gimple *stmt;
1171 tree cond, tmp;
1172
1173 tmp = create_tmp_var (boolean_type_node);
1174 stmt = gimple_build_assign (tmp, compare);
1175 if (gimple_in_ssa_p (cfun))
1176 {
1177 tmp = make_ssa_name (tmp, stmt);
1178 gimple_assign_set_lhs (stmt, tmp);
1179 }
1180
1181 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1182
1183 cond = fold_build2_loc (gimple_location (stmt),
1184 EQ_EXPR, boolean_type_node, tmp, boolean_true_node);
1185 stmt = gimple_build_cond_from_tree (cond, NULL_TREE, NULL_TREE);
1186 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1187
1188 /* Split the original block, and create the TRUE and FALSE blocks. */
1189 e = split_block (gsi_bb (*gsi), stmt);
1190 bb_cond = e->src;
1191 bb_join = e->dest;
1192 bb_true = create_empty_bb (bb_cond);
1193 bb_false = create_empty_bb (bb_true);
1194 bb_true->count = bb_false->count
1195 = bb_cond->count.apply_probability (profile_probability::even ());
1196
1197 /* Wire the blocks together. */
1198 e->flags = EDGE_TRUE_VALUE;
1199 /* TODO: With value profile we could add an historgram to determine real
1200 branch outcome. */
1201 e->probability = profile_probability::even ();
1202 redirect_edge_succ (e, bb_true);
1203 edge e2 = make_edge (bb_cond, bb_false, EDGE_FALSE_VALUE);
1204 e2->probability = profile_probability::even ();
1205 make_single_succ_edge (bb_true, bb_join, EDGE_FALLTHRU);
1206 make_single_succ_edge (bb_false, bb_join, EDGE_FALLTHRU);
1207 add_bb_to_loop (bb_true, bb_cond->loop_father);
1208 add_bb_to_loop (bb_false, bb_cond->loop_father);
1209
1210 /* Update dominance info. Note that bb_join's data was
1211 updated by split_block. */
1212 if (dom_info_available_p (CDI_DOMINATORS))
1213 {
1214 set_immediate_dominator (CDI_DOMINATORS, bb_true, bb_cond);
1215 set_immediate_dominator (CDI_DOMINATORS, bb_false, bb_cond);
1216 }
1217
1218 rr = create_tmp_reg (inner_type);
1219 ri = create_tmp_reg (inner_type);
1220 }
1221
1222 /* In the TRUE branch, we compute
1223 ratio = br/bi;
1224 div = (br * ratio) + bi;
1225 tr = (ar * ratio) + ai;
1226 ti = (ai * ratio) - ar;
1227 tr = tr / div;
1228 ti = ti / div; */
1229 if (bb_true || integer_nonzerop (compare))
1230 {
1231 if (bb_true)
1232 {
1233 *gsi = gsi_last_bb (bb_true);
1234 gsi_insert_after (gsi, gimple_build_nop (), GSI_NEW_STMT);
1235 }
1236
1237 ratio = gimplify_build2 (gsi, code, inner_type, br, bi);
1238
1239 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, br, ratio);
1240 div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, bi);
1241
1242 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, ratio);
1243 tr = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, ai);
1244
1245 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, ratio);
1246 ti = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, ar);
1247
1248 tr = gimplify_build2 (gsi, code, inner_type, tr, div);
1249 ti = gimplify_build2 (gsi, code, inner_type, ti, div);
1250
1251 if (bb_true)
1252 {
1253 stmt = gimple_build_assign (rr, tr);
1254 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1255 stmt = gimple_build_assign (ri, ti);
1256 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1257 gsi_remove (gsi, true);
1258 }
1259 }
1260
1261 /* In the FALSE branch, we compute
1262 ratio = d/c;
1263 divisor = (d * ratio) + c;
1264 tr = (b * ratio) + a;
1265 ti = b - (a * ratio);
1266 tr = tr / div;
1267 ti = ti / div; */
1268 if (bb_false || integer_zerop (compare))
1269 {
1270 if (bb_false)
1271 {
1272 *gsi = gsi_last_bb (bb_false);
1273 gsi_insert_after (gsi, gimple_build_nop (), GSI_NEW_STMT);
1274 }
1275
1276 ratio = gimplify_build2 (gsi, code, inner_type, bi, br);
1277
1278 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, bi, ratio);
1279 div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, br);
1280
1281 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, ratio);
1282 tr = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, ar);
1283
1284 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, ratio);
1285 ti = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ai, t1);
1286
1287 tr = gimplify_build2 (gsi, code, inner_type, tr, div);
1288 ti = gimplify_build2 (gsi, code, inner_type, ti, div);
1289
1290 if (bb_false)
1291 {
1292 stmt = gimple_build_assign (rr, tr);
1293 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1294 stmt = gimple_build_assign (ri, ti);
1295 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1296 gsi_remove (gsi, true);
1297 }
1298 }
1299
1300 if (bb_join)
1301 *gsi = gsi_start_bb (bb_join);
1302 else
1303 rr = tr, ri = ti;
1304
1305 update_complex_assignment (gsi, rr, ri);
1306}
1307
1308/* Expand complex division to scalars. */
1309
1310static void
1311expand_complex_division (gimple_stmt_iterator *gsi, tree inner_type,
1312 tree ar, tree ai, tree br, tree bi,
1313 enum tree_code code,
1314 complex_lattice_t al, complex_lattice_t bl)
1315{
1316 tree rr, ri;
1317
1318 switch (PAIR (al, bl))
1319 {
1320 case PAIR (ONLY_REAL, ONLY_REAL):
1321 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
1322 ri = ai;
1323 break;
1324
1325 case PAIR (ONLY_REAL, ONLY_IMAG):
1326 rr = ai;
1327 ri = gimplify_build2 (gsi, code, inner_type, ar, bi);
1328 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ri);
1329 break;
1330
1331 case PAIR (ONLY_IMAG, ONLY_REAL):
1332 rr = ar;
1333 ri = gimplify_build2 (gsi, code, inner_type, ai, br);
1334 break;
1335
1336 case PAIR (ONLY_IMAG, ONLY_IMAG):
1337 rr = gimplify_build2 (gsi, code, inner_type, ai, bi);
1338 ri = ar;
1339 break;
1340
1341 case PAIR (VARYING, ONLY_REAL):
1342 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
1343 ri = gimplify_build2 (gsi, code, inner_type, ai, br);
1344 break;
1345
1346 case PAIR (VARYING, ONLY_IMAG):
1347 rr = gimplify_build2 (gsi, code, inner_type, ai, bi);
1348 ri = gimplify_build2 (gsi, code, inner_type, ar, bi);
1349 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ri);
1350 break;
1351
1352 case PAIR (ONLY_REAL, VARYING):
1353 case PAIR (ONLY_IMAG, VARYING):
1354 case PAIR (VARYING, VARYING):
1355 switch (flag_complex_method)
1356 {
1357 case 0:
1358 /* straightforward implementation of complex divide acceptable. */
1359 expand_complex_div_straight (gsi, inner_type, ar, ai, br, bi, code);
1360 break;
1361
1362 case 2:
1363 if (SCALAR_FLOAT_TYPE_P (inner_type))
1364 {
1365 expand_complex_libcall (gsi, ar, ai, br, bi, code);
1366 break;
1367 }
1368 /* FALLTHRU */
1369
1370 case 1:
1371 /* wide ranges of inputs must work for complex divide. */
1372 expand_complex_div_wide (gsi, inner_type, ar, ai, br, bi, code);
1373 break;
1374
1375 default:
1376 gcc_unreachable ();
1377 }
1378 return;
1379
1380 default:
1381 gcc_unreachable ();
1382 }
1383
1384 update_complex_assignment (gsi, rr, ri);
1385}
1386
1387/* Expand complex negation to scalars:
1388 -a = (-ar) + i(-ai)
1389*/
1390
1391static void
1392expand_complex_negation (gimple_stmt_iterator *gsi, tree inner_type,
1393 tree ar, tree ai)
1394{
1395 tree rr, ri;
1396
1397 rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ar);
1398 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ai);
1399
1400 update_complex_assignment (gsi, rr, ri);
1401}
1402
1403/* Expand complex conjugate to scalars:
1404 ~a = (ar) + i(-ai)
1405*/
1406
1407static void
1408expand_complex_conjugate (gimple_stmt_iterator *gsi, tree inner_type,
1409 tree ar, tree ai)
1410{
1411 tree ri;
1412
1413 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ai);
1414
1415 update_complex_assignment (gsi, ar, ri);
1416}
1417
1418/* Expand complex comparison (EQ or NE only). */
1419
1420static void
1421expand_complex_comparison (gimple_stmt_iterator *gsi, tree ar, tree ai,
1422 tree br, tree bi, enum tree_code code)
1423{
1424 tree cr, ci, cc, type;
1425 gimple *stmt;
1426
1427 cr = gimplify_build2 (gsi, code, boolean_type_node, ar, br);
1428 ci = gimplify_build2 (gsi, code, boolean_type_node, ai, bi);
1429 cc = gimplify_build2 (gsi,
1430 (code == EQ_EXPR ? TRUTH_AND_EXPR : TRUTH_OR_EXPR),
1431 boolean_type_node, cr, ci);
1432
1433 stmt = gsi_stmt (*gsi);
1434
1435 switch (gimple_code (stmt))
1436 {
1437 case GIMPLE_RETURN:
1438 {
1439 greturn *return_stmt = as_a <greturn *> (stmt);
1440 type = TREE_TYPE (gimple_return_retval (return_stmt));
1441 gimple_return_set_retval (return_stmt, fold_convert (type, cc));
1442 }
1443 break;
1444
1445 case GIMPLE_ASSIGN:
1446 type = TREE_TYPE (gimple_assign_lhs (stmt));
1447 gimple_assign_set_rhs_from_tree (gsi, fold_convert (type, cc));
1448 stmt = gsi_stmt (*gsi);
1449 break;
1450
1451 case GIMPLE_COND:
1452 {
1453 gcond *cond_stmt = as_a <gcond *> (stmt);
1454 gimple_cond_set_code (cond_stmt, EQ_EXPR);
1455 gimple_cond_set_lhs (cond_stmt, cc);
1456 gimple_cond_set_rhs (cond_stmt, boolean_true_node);
1457 }
1458 break;
1459
1460 default:
1461 gcc_unreachable ();
1462 }
1463
1464 update_stmt (stmt);
1465}
1466
1467/* Expand inline asm that sets some complex SSA_NAMEs. */
1468
1469static void
1470expand_complex_asm (gimple_stmt_iterator *gsi)
1471{
1472 gasm *stmt = as_a <gasm *> (gsi_stmt (*gsi));
1473 unsigned int i;
1474
1475 for (i = 0; i < gimple_asm_noutputs (stmt); ++i)
1476 {
1477 tree link = gimple_asm_output_op (stmt, i);
1478 tree op = TREE_VALUE (link);
1479 if (TREE_CODE (op) == SSA_NAME
1480 && TREE_CODE (TREE_TYPE (op)) == COMPLEX_TYPE)
1481 {
1482 tree type = TREE_TYPE (op);
1483 tree inner_type = TREE_TYPE (type);
1484 tree r = build1 (REALPART_EXPR, inner_type, op);
1485 tree i = build1 (IMAGPART_EXPR, inner_type, op);
1486 gimple_seq list = set_component_ssa_name (op, false, r);
1487
1488 if (list)
1489 gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
1490
1491 list = set_component_ssa_name (op, true, i);
1492 if (list)
1493 gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
1494 }
1495 }
1496}
1497
1498/* Process one statement. If we identify a complex operation, expand it. */
1499
1500static void
1501expand_complex_operations_1 (gimple_stmt_iterator *gsi)
1502{
1503 gimple *stmt = gsi_stmt (*gsi);
1504 tree type, inner_type, lhs;
1505 tree ac, ar, ai, bc, br, bi;
1506 complex_lattice_t al, bl;
1507 enum tree_code code;
1508
1509 if (gimple_code (stmt) == GIMPLE_ASM)
1510 {
1511 expand_complex_asm (gsi);
1512 return;
1513 }
1514
1515 lhs = gimple_get_lhs (stmt);
1516 if (!lhs && gimple_code (stmt) != GIMPLE_COND)
1517 return;
1518
1519 type = TREE_TYPE (gimple_op (stmt, 0));
1520 code = gimple_expr_code (stmt);
1521
1522 /* Initial filter for operations we handle. */
1523 switch (code)
1524 {
1525 case PLUS_EXPR:
1526 case MINUS_EXPR:
1527 case MULT_EXPR:
1528 case TRUNC_DIV_EXPR:
1529 case CEIL_DIV_EXPR:
1530 case FLOOR_DIV_EXPR:
1531 case ROUND_DIV_EXPR:
1532 case RDIV_EXPR:
1533 case NEGATE_EXPR:
1534 case CONJ_EXPR:
1535 if (TREE_CODE (type) != COMPLEX_TYPE)
1536 return;
1537 inner_type = TREE_TYPE (type);
1538 break;
1539
1540 case EQ_EXPR:
1541 case NE_EXPR:
1542 /* Note, both GIMPLE_ASSIGN and GIMPLE_COND may have an EQ_EXPR
1543 subcode, so we need to access the operands using gimple_op. */
1544 inner_type = TREE_TYPE (gimple_op (stmt, 1));
1545 if (TREE_CODE (inner_type) != COMPLEX_TYPE)
1546 return;
1547 break;
1548
1549 default:
1550 {
1551 tree rhs;
1552
1553 /* GIMPLE_COND may also fallthru here, but we do not need to
1554 do anything with it. */
1555 if (gimple_code (stmt) == GIMPLE_COND)
1556 return;
1557
1558 if (TREE_CODE (type) == COMPLEX_TYPE)
1559 expand_complex_move (gsi, type);
1560 else if (is_gimple_assign (stmt)
1561 && (gimple_assign_rhs_code (stmt) == REALPART_EXPR
1562 || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR)
1563 && TREE_CODE (lhs) == SSA_NAME)
1564 {
1565 rhs = gimple_assign_rhs1 (stmt);
1566 rhs = extract_component (gsi, TREE_OPERAND (rhs, 0),
1567 gimple_assign_rhs_code (stmt)
1568 == IMAGPART_EXPR,
1569 false);
1570 gimple_assign_set_rhs_from_tree (gsi, rhs);
1571 stmt = gsi_stmt (*gsi);
1572 update_stmt (stmt);
1573 }
1574 }
1575 return;
1576 }
1577
1578 /* Extract the components of the two complex values. Make sure and
1579 handle the common case of the same value used twice specially. */
1580 if (is_gimple_assign (stmt))
1581 {
1582 ac = gimple_assign_rhs1 (stmt);
1583 bc = (gimple_num_ops (stmt) > 2) ? gimple_assign_rhs2 (stmt) : NULL;
1584 }
1585 /* GIMPLE_CALL can not get here. */
1586 else
1587 {
1588 ac = gimple_cond_lhs (stmt);
1589 bc = gimple_cond_rhs (stmt);
1590 }
1591
1592 ar = extract_component (gsi, ac, false, true);
1593 ai = extract_component (gsi, ac, true, true);
1594
1595 if (ac == bc)
1596 br = ar, bi = ai;
1597 else if (bc)
1598 {
1599 br = extract_component (gsi, bc, 0, true);
1600 bi = extract_component (gsi, bc, 1, true);
1601 }
1602 else
1603 br = bi = NULL_TREE;
1604
1605 if (gimple_in_ssa_p (cfun))
1606 {
1607 al = find_lattice_value (ac);
1608 if (al == UNINITIALIZED)
1609 al = VARYING;
1610
1611 if (TREE_CODE_CLASS (code) == tcc_unary)
1612 bl = UNINITIALIZED;
1613 else if (ac == bc)
1614 bl = al;
1615 else
1616 {
1617 bl = find_lattice_value (bc);
1618 if (bl == UNINITIALIZED)
1619 bl = VARYING;
1620 }
1621 }
1622 else
1623 al = bl = VARYING;
1624
1625 switch (code)
1626 {
1627 case PLUS_EXPR:
1628 case MINUS_EXPR:
1629 expand_complex_addition (gsi, inner_type, ar, ai, br, bi, code, al, bl);
1630 break;
1631
1632 case MULT_EXPR:
1633 expand_complex_multiplication (gsi, inner_type, ar, ai, br, bi, al, bl);
1634 break;
1635
1636 case TRUNC_DIV_EXPR:
1637 case CEIL_DIV_EXPR:
1638 case FLOOR_DIV_EXPR:
1639 case ROUND_DIV_EXPR:
1640 case RDIV_EXPR:
1641 expand_complex_division (gsi, inner_type, ar, ai, br, bi, code, al, bl);
1642 break;
1643
1644 case NEGATE_EXPR:
1645 expand_complex_negation (gsi, inner_type, ar, ai);
1646 break;
1647
1648 case CONJ_EXPR:
1649 expand_complex_conjugate (gsi, inner_type, ar, ai);
1650 break;
1651
1652 case EQ_EXPR:
1653 case NE_EXPR:
1654 expand_complex_comparison (gsi, ar, ai, br, bi, code);
1655 break;
1656
1657 default:
1658 gcc_unreachable ();
1659 }
1660}
1661
1662
1663/* Entry point for complex operation lowering during optimization. */
1664
1665static unsigned int
1666tree_lower_complex (void)
1667{
1668 gimple_stmt_iterator gsi;
1669 basic_block bb;
1670 int n_bbs, i;
1671 int *rpo;
1672
1673 if (!init_dont_simulate_again ())
1674 return 0;
1675
1676 complex_lattice_values.create (num_ssa_names);
1677 complex_lattice_values.safe_grow_cleared (num_ssa_names);
1678
1679 init_parameter_lattice_values ();
1680 class complex_propagate complex_propagate;
1681 complex_propagate.ssa_propagate ();
1682
1683 complex_variable_components = new int_tree_htab_type (10);
1684
1685 complex_ssa_name_components.create (2 * num_ssa_names);
1686 complex_ssa_name_components.safe_grow_cleared (2 * num_ssa_names);
1687
1688 update_parameter_components ();
1689
1690 rpo = XNEWVEC (int, last_basic_block_for_fn (cfun));
1691 n_bbs = pre_and_rev_post_order_compute (NULL, rpo, false);
1692 for (i = 0; i < n_bbs; i++)
1693 {
1694 bb = BASIC_BLOCK_FOR_FN (cfun, rpo[i]);
1695 update_phi_components (bb);
1696 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1697 expand_complex_operations_1 (&gsi);
1698 }
1699
1700 free (rpo);
1701
1702 if (!phis_to_revisit.is_empty ())
1703 {
1704 unsigned int n = phis_to_revisit.length ();
1705 for (unsigned int j = 0; j < n; j += 3)
1706 for (unsigned int k = 0; k < 2; k++)
1707 if (gphi *phi = phis_to_revisit[j + k + 1])
1708 {
1709 unsigned int m = gimple_phi_num_args (phi);
1710 for (unsigned int l = 0; l < m; ++l)
1711 {
1712 tree op = gimple_phi_arg_def (phi, l);
1713 if (TREE_CODE (op) == SSA_NAME
1714 || is_gimple_min_invariant (op))
1715 continue;
1716 tree arg = gimple_phi_arg_def (phis_to_revisit[j], l);
1717 op = extract_component (NULL, arg, k > 0, false, false);
1718 SET_PHI_ARG_DEF (phi, l, op);
1719 }
1720 }
1721 phis_to_revisit.release ();
1722 }
1723
1724 gsi_commit_edge_inserts ();
1725
1726 delete complex_variable_components;
1727 complex_variable_components = NULL;
1728 complex_ssa_name_components.release ();
1729 complex_lattice_values.release ();
1730 return 0;
1731}
1732
1733namespace {
1734
1735const pass_data pass_data_lower_complex =
1736{
1737 GIMPLE_PASS, /* type */
1738 "cplxlower", /* name */
1739 OPTGROUP_NONE, /* optinfo_flags */
1740 TV_NONE, /* tv_id */
1741 PROP_ssa, /* properties_required */
1742 PROP_gimple_lcx, /* properties_provided */
1743 0, /* properties_destroyed */
1744 0, /* todo_flags_start */
1745 TODO_update_ssa, /* todo_flags_finish */
1746};
1747
1748class pass_lower_complex : public gimple_opt_pass
1749{
1750public:
1751 pass_lower_complex (gcc::context *ctxt)
1752 : gimple_opt_pass (pass_data_lower_complex, ctxt)
1753 {}
1754
1755 /* opt_pass methods: */
1756 opt_pass * clone () { return new pass_lower_complex (m_ctxt); }
1757 virtual unsigned int execute (function *) { return tree_lower_complex (); }
1758
1759}; // class pass_lower_complex
1760
1761} // anon namespace
1762
1763gimple_opt_pass *
1764make_pass_lower_complex (gcc::context *ctxt)
1765{
1766 return new pass_lower_complex (ctxt);
1767}
1768
1769
1770namespace {
1771
1772const pass_data pass_data_lower_complex_O0 =
1773{
1774 GIMPLE_PASS, /* type */
1775 "cplxlower0", /* name */
1776 OPTGROUP_NONE, /* optinfo_flags */
1777 TV_NONE, /* tv_id */
1778 PROP_cfg, /* properties_required */
1779 PROP_gimple_lcx, /* properties_provided */
1780 0, /* properties_destroyed */
1781 0, /* todo_flags_start */
1782 TODO_update_ssa, /* todo_flags_finish */
1783};
1784
1785class pass_lower_complex_O0 : public gimple_opt_pass
1786{
1787public:
1788 pass_lower_complex_O0 (gcc::context *ctxt)
1789 : gimple_opt_pass (pass_data_lower_complex_O0, ctxt)
1790 {}
1791
1792 /* opt_pass methods: */
1793 virtual bool gate (function *fun)
1794 {
1795 /* With errors, normal optimization passes are not run. If we don't
1796 lower complex operations at all, rtl expansion will abort. */
1797 return !(fun->curr_properties & PROP_gimple_lcx);
1798 }
1799
1800 virtual unsigned int execute (function *) { return tree_lower_complex (); }
1801
1802}; // class pass_lower_complex_O0
1803
1804} // anon namespace
1805
1806gimple_opt_pass *
1807make_pass_lower_complex_O0 (gcc::context *ctxt)
1808{
1809 return new pass_lower_complex_O0 (ctxt);
1810}
1811