1/* Complex cosine hyperbole function for complex __float128.
2 Copyright (C) 1997-2012 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
4 Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
5
6 The GNU C Library is free software; you can redistribute it and/or
7 modify it under the terms of the GNU Lesser General Public
8 License as published by the Free Software Foundation; either
9 version 2.1 of the License, or (at your option) any later version.
10
11 The GNU C Library is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 Lesser General Public License for more details.
15
16 You should have received a copy of the GNU Lesser General Public
17 License along with the GNU C Library; if not, see
18 <http://www.gnu.org/licenses/>. */
19
20#include "quadmath-imp.h"
21
22#ifdef HAVE_FENV_H
23# include <fenv.h>
24#endif
25
26
27__complex128
28ccoshq (__complex128 x)
29{
30 __complex128 retval;
31 int rcls = fpclassifyq (__real__ x);
32 int icls = fpclassifyq (__imag__ x);
33
34 if (__builtin_expect (rcls >= QUADFP_ZERO, 1))
35 {
36 /* Real part is finite. */
37 if (__builtin_expect (icls >= QUADFP_ZERO, 1))
38 {
39 /* Imaginary part is finite. */
40 const int t = (int) ((FLT128_MAX_EXP - 1) * M_LN2q);
41 __float128 sinix, cosix;
42
43 if (__builtin_expect (icls != QUADFP_SUBNORMAL, 1))
44 {
45 sincosq (__imag__ x, &sinix, &cosix);
46 }
47 else
48 {
49 sinix = __imag__ x;
50 cosix = 1.0Q;
51 }
52
53 if (fabsq (__real__ x) > t)
54 {
55 __float128 exp_t = expq (t);
56 __float128 rx = fabsq (__real__ x);
57 if (signbitq (__real__ x))
58 sinix = -sinix;
59 rx -= t;
60 sinix *= exp_t / 2.0Q;
61 cosix *= exp_t / 2.0Q;
62 if (rx > t)
63 {
64 rx -= t;
65 sinix *= exp_t;
66 cosix *= exp_t;
67 }
68 if (rx > t)
69 {
70 /* Overflow (original real part of x > 3t). */
71 __real__ retval = FLT128_MAX * cosix;
72 __imag__ retval = FLT128_MAX * sinix;
73 }
74 else
75 {
76 __float128 exp_val = expq (rx);
77 __real__ retval = exp_val * cosix;
78 __imag__ retval = exp_val * sinix;
79 }
80 }
81 else
82 {
83 __real__ retval = coshq (__real__ x) * cosix;
84 __imag__ retval = sinhq (__real__ x) * sinix;
85 }
86 }
87 else
88 {
89 __imag__ retval = __real__ x == 0.0Q ? 0.0Q : nanq ("");
90 __real__ retval = nanq ("") + nanq ("");
91
92#ifdef HAVE_FENV_H
93 if (icls == QUADFP_INFINITE)
94 feraiseexcept (FE_INVALID);
95#endif
96 }
97 }
98 else if (rcls == QUADFP_INFINITE)
99 {
100 /* Real part is infinite. */
101 if (__builtin_expect (icls > QUADFP_ZERO, 1))
102 {
103 /* Imaginary part is finite. */
104 __float128 sinix, cosix;
105
106 if (__builtin_expect (icls != QUADFP_SUBNORMAL, 1))
107 {
108 sincosq (__imag__ x, &sinix, &cosix);
109 }
110 else
111 {
112 sinix = __imag__ x;
113 cosix = 1.0Q;
114 }
115
116 __real__ retval = copysignq (HUGE_VALQ, cosix);
117 __imag__ retval = (copysignq (HUGE_VALQ, sinix)
118 * copysignq (1.0Q, __real__ x));
119 }
120 else if (icls == QUADFP_ZERO)
121 {
122 /* Imaginary part is 0.0. */
123 __real__ retval = HUGE_VALQ;
124 __imag__ retval = __imag__ x * copysignq (1.0Q, __real__ x);
125 }
126 else
127 {
128 /* The addition raises the invalid exception. */
129 __real__ retval = HUGE_VALQ;
130 __imag__ retval = nanq ("") + nanq ("");
131
132#ifdef HAVE_FENV_H
133 if (icls == QUADFP_INFINITE)
134 feraiseexcept (FE_INVALID);
135#endif
136 }
137 }
138 else
139 {
140 __real__ retval = nanq ("");
141 __imag__ retval = __imag__ x == 0.0 ? __imag__ x : nanq ("");
142 }
143
144 return retval;
145}
146