1/* Return value of complex exponential function for complex __float128 value.
2 Copyright (C) 1997-2012 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
4 Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
5
6 The GNU C Library is free software; you can redistribute it and/or
7 modify it under the terms of the GNU Lesser General Public
8 License as published by the Free Software Foundation; either
9 version 2.1 of the License, or (at your option) any later version.
10
11 The GNU C Library is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 Lesser General Public License for more details.
15
16 You should have received a copy of the GNU Lesser General Public
17 License along with the GNU C Library; if not, see
18 <http://www.gnu.org/licenses/>. */
19
20#include "quadmath-imp.h"
21
22#ifdef HAVE_FENV_H
23# include <fenv.h>
24#endif
25
26
27__complex128
28cexpq (__complex128 x)
29{
30 __complex128 retval;
31 int rcls = fpclassifyq (__real__ x);
32 int icls = fpclassifyq (__imag__ x);
33
34 if (__builtin_expect (rcls >= QUADFP_ZERO, 1))
35 {
36 /* Real part is finite. */
37 if (__builtin_expect (icls >= QUADFP_ZERO, 1))
38 {
39 /* Imaginary part is finite. */
40 const int t = (int) ((FLT128_MAX_EXP - 1) * M_LN2q);
41 __float128 sinix, cosix;
42
43 if (__builtin_expect (icls != QUADFP_SUBNORMAL, 1))
44 {
45 sincosq (__imag__ x, &sinix, &cosix);
46 }
47 else
48 {
49 sinix = __imag__ x;
50 cosix = 1.0Q;
51 }
52
53 if (__real__ x > t)
54 {
55 __float128 exp_t = expq (t);
56 __real__ x -= t;
57 sinix *= exp_t;
58 cosix *= exp_t;
59 if (__real__ x > t)
60 {
61 __real__ x -= t;
62 sinix *= exp_t;
63 cosix *= exp_t;
64 }
65 }
66 if (__real__ x > t)
67 {
68 /* Overflow (original real part of x > 3t). */
69 __real__ retval = FLT128_MAX * cosix;
70 __imag__ retval = FLT128_MAX * sinix;
71 }
72 else
73 {
74 __float128 exp_val = expq (__real__ x);
75 __real__ retval = exp_val * cosix;
76 __imag__ retval = exp_val * sinix;
77 }
78 }
79 else
80 {
81 /* If the imaginary part is +-inf or NaN and the real part
82 is not +-inf the result is NaN + iNaN. */
83 __real__ retval = nanq ("");
84 __imag__ retval = nanq ("");
85
86#ifdef HAVE_FENV_H
87 feraiseexcept (FE_INVALID);
88#endif
89 }
90 }
91 else if (__builtin_expect (rcls == QUADFP_INFINITE, 1))
92 {
93 /* Real part is infinite. */
94 if (__builtin_expect (icls >= QUADFP_ZERO, 1))
95 {
96 /* Imaginary part is finite. */
97 __float128 value = signbitq (__real__ x) ? 0.0Q : HUGE_VALQ;
98
99 if (icls == QUADFP_ZERO)
100 {
101 /* Imaginary part is 0.0. */
102 __real__ retval = value;
103 __imag__ retval = __imag__ x;
104 }
105 else
106 {
107 __float128 sinix, cosix;
108
109 if (__builtin_expect (icls != QUADFP_SUBNORMAL, 1))
110 {
111 sincosq (__imag__ x, &sinix, &cosix);
112 }
113 else
114 {
115 sinix = __imag__ x;
116 cosix = 1.0Q;
117 }
118
119 __real__ retval = copysignq (value, cosix);
120 __imag__ retval = copysignq (value, sinix);
121 }
122 }
123 else if (signbitq (__real__ x) == 0)
124 {
125 __real__ retval = HUGE_VALQ;
126 __imag__ retval = nanq ("");
127
128#ifdef HAVE_FENV_H
129 if (icls == QUADFP_INFINITE)
130 feraiseexcept (FE_INVALID);
131#endif
132 }
133 else
134 {
135 __real__ retval = 0.0Q;
136 __imag__ retval = copysignq (0.0Q, __imag__ x);
137 }
138 }
139 else
140 {
141 /* If the real part is NaN the result is NaN + iNaN. */
142 __real__ retval = nanq ("");
143 __imag__ retval = nanq ("");
144
145#ifdef HAVE_FENV_H
146 if (rcls != QUADFP_NAN || icls != QUADFP_NAN)
147 feraiseexcept (FE_INVALID);
148#endif
149 }
150
151 return retval;
152}
153