1/* Complex sine hyperbole function for complex __float128.
2 Copyright (C) 1997-2012 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
4 Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
5
6 The GNU C Library is free software; you can redistribute it and/or
7 modify it under the terms of the GNU Lesser General Public
8 License as published by the Free Software Foundation; either
9 version 2.1 of the License, or (at your option) any later version.
10
11 The GNU C Library is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 Lesser General Public License for more details.
15
16 You should have received a copy of the GNU Lesser General Public
17 License along with the GNU C Library; if not, see
18 <http://www.gnu.org/licenses/>. */
19
20#include "quadmath-imp.h"
21
22#ifdef HAVE_FENV_H
23# include <fenv.h>
24#endif
25
26
27__complex128
28csinhq (__complex128 x)
29{
30 __complex128 retval;
31 int negate = signbitq (__real__ x);
32 int rcls = fpclassifyq (__real__ x);
33 int icls = fpclassifyq (__imag__ x);
34
35 __real__ x = fabsq (__real__ x);
36
37 if (__builtin_expect (rcls >= QUADFP_ZERO, 1))
38 {
39 /* Real part is finite. */
40 if (__builtin_expect (icls >= QUADFP_ZERO, 1))
41 {
42 /* Imaginary part is finite. */
43 const int t = (int) ((FLT128_MAX_EXP - 1) * M_LN2q);
44 __float128 sinix, cosix;
45
46 if (__builtin_expect (icls != QUADFP_SUBNORMAL, 1))
47 {
48 sincosq (__imag__ x, &sinix, &cosix);
49 }
50 else
51 {
52 sinix = __imag__ x;
53 cosix = 1.0Q;
54 }
55
56 if (fabsq (__real__ x) > t)
57 {
58 __float128 exp_t = expq (t);
59 __float128 rx = fabsq (__real__ x);
60 if (signbitq (__real__ x))
61 cosix = -cosix;
62 rx -= t;
63 sinix *= exp_t / 2.0Q;
64 cosix *= exp_t / 2.0Q;
65 if (rx > t)
66 {
67 rx -= t;
68 sinix *= exp_t;
69 cosix *= exp_t;
70 }
71 if (rx > t)
72 {
73 /* Overflow (original real part of x > 3t). */
74 __real__ retval = FLT128_MAX * cosix;
75 __imag__ retval = FLT128_MAX * sinix;
76 }
77 else
78 {
79 __float128 exp_val = expq (rx);
80 __real__ retval = exp_val * cosix;
81 __imag__ retval = exp_val * sinix;
82 }
83 }
84 else
85 {
86 __real__ retval = sinhq (__real__ x) * cosix;
87 __imag__ retval = coshq (__real__ x) * sinix;
88 }
89
90 if (negate)
91 __real__ retval = -__real__ retval;
92 }
93 else
94 {
95 if (rcls == QUADFP_ZERO)
96 {
97 /* Real part is 0.0. */
98 __real__ retval = copysignq (0.0Q, negate ? -1.0Q : 1.0Q);
99 __imag__ retval = nanq ("") + nanq ("");
100
101#ifdef HAVE_FENV_H
102 if (icls == QUADFP_INFINITE)
103 feraiseexcept (FE_INVALID);
104#endif
105 }
106 else
107 {
108 __real__ retval = nanq ("");
109 __imag__ retval = nanq ("");
110
111#ifdef HAVE_FENV_H
112 feraiseexcept (FE_INVALID);
113#endif
114 }
115 }
116 }
117 else if (rcls == QUADFP_INFINITE)
118 {
119 /* Real part is infinite. */
120 if (__builtin_expect (icls > QUADFP_ZERO, 1))
121 {
122 /* Imaginary part is finite. */
123 __float128 sinix, cosix;
124
125 if (__builtin_expect (icls != QUADFP_SUBNORMAL, 1))
126 {
127 sincosq (__imag__ x, &sinix, &cosix);
128 }
129 else
130 {
131 sinix = __imag__ x;
132 cosix = 1.0;
133 }
134
135 __real__ retval = copysignq (HUGE_VALQ, cosix);
136 __imag__ retval = copysignq (HUGE_VALQ, sinix);
137
138 if (negate)
139 __real__ retval = -__real__ retval;
140 }
141 else if (icls == QUADFP_ZERO)
142 {
143 /* Imaginary part is 0.0. */
144 __real__ retval = negate ? -HUGE_VALQ : HUGE_VALQ;
145 __imag__ retval = __imag__ x;
146 }
147 else
148 {
149 /* The addition raises the invalid exception. */
150 __real__ retval = HUGE_VALQ;
151 __imag__ retval = nanq ("") + nanq ("");
152
153#ifdef HAVE_FENV_H
154 if (icls == QUADFP_INFINITE)
155 feraiseexcept (FE_INVALID);
156#endif
157 }
158 }
159 else
160 {
161 __real__ retval = nanq ("");
162 __imag__ retval = __imag__ x == 0.0Q ? __imag__ x : nanq ("");
163 }
164
165 return retval;
166}
167