1/* Complex sine function for complex __float128.
2 Copyright (C) 1997-2012 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
4 Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
5
6 The GNU C Library is free software; you can redistribute it and/or
7 modify it under the terms of the GNU Lesser General Public
8 License as published by the Free Software Foundation; either
9 version 2.1 of the License, or (at your option) any later version.
10
11 The GNU C Library is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 Lesser General Public License for more details.
15
16 You should have received a copy of the GNU Lesser General Public
17 License along with the GNU C Library; if not, see
18 <http://www.gnu.org/licenses/>. */
19
20#include "quadmath-imp.h"
21
22#ifdef HAVE_FENV_H
23# include <fenv.h>
24#endif
25
26
27__complex128
28csinq (__complex128 x)
29{
30 __complex128 retval;
31 int negate = signbitq (__real__ x);
32 int rcls = fpclassifyq (__real__ x);
33 int icls = fpclassifyq (__imag__ x);
34
35 __real__ x = fabsq (__real__ x);
36
37 if (__builtin_expect (icls >= QUADFP_ZERO, 1))
38 {
39 /* Imaginary part is finite. */
40 if (__builtin_expect (rcls >= QUADFP_ZERO, 1))
41 {
42 /* Real part is finite. */
43 const int t = (int) ((FLT128_MAX_EXP - 1) * M_LN2q);
44 __float128 sinix, cosix;
45
46 if (__builtin_expect (rcls != QUADFP_SUBNORMAL, 1))
47 {
48 sincosq (__real__ x, &sinix, &cosix);
49 }
50 else
51 {
52 sinix = __real__ x;
53 cosix = 1.0Q;
54 }
55
56 if (fabsq (__imag__ x) > t)
57 {
58 __float128 exp_t = expq (t);
59 __float128 ix = fabsq (__imag__ x);
60 if (signbitq (__imag__ x))
61 cosix = -cosix;
62 ix -= t;
63 sinix *= exp_t / 2.0Q;
64 cosix *= exp_t / 2.0Q;
65 if (ix > t)
66 {
67 ix -= t;
68 sinix *= exp_t;
69 cosix *= exp_t;
70 }
71 if (ix > t)
72 {
73 /* Overflow (original imaginary part of x > 3t). */
74 __real__ retval = FLT128_MAX * sinix;
75 __imag__ retval = FLT128_MAX * cosix;
76 }
77 else
78 {
79 __float128 exp_val = expq (ix);
80 __real__ retval = exp_val * sinix;
81 __imag__ retval = exp_val * cosix;
82 }
83 }
84 else
85 {
86 __real__ retval = coshq (__imag__ x) * sinix;
87 __imag__ retval = sinhq (__imag__ x) * cosix;
88 }
89
90 if (negate)
91 __real__ retval = -__real__ retval;
92 }
93 else
94 {
95 if (icls == QUADFP_ZERO)
96 {
97 /* Imaginary part is 0.0. */
98 __real__ retval = nanq ("");
99 __imag__ retval = __imag__ x;
100
101#ifdef HAVE_FENV_H
102 if (rcls == QUADFP_INFINITE)
103 feraiseexcept (FE_INVALID);
104#endif
105 }
106 else
107 {
108 __real__ retval = nanq ("");
109 __imag__ retval = nanq ("");
110
111#ifdef HAVE_FENV_H
112 feraiseexcept (FE_INVALID);
113#endif
114 }
115 }
116 }
117 else if (icls == QUADFP_INFINITE)
118 {
119 /* Imaginary part is infinite. */
120 if (rcls == QUADFP_ZERO)
121 {
122 /* Real part is 0.0. */
123 __real__ retval = copysignq (0.0Q, negate ? -1.0Q : 1.0Q);
124 __imag__ retval = __imag__ x;
125 }
126 else if (rcls > QUADFP_ZERO)
127 {
128 /* Real part is finite. */
129 __float128 sinix, cosix;
130
131 if (__builtin_expect (rcls != QUADFP_SUBNORMAL, 1))
132 {
133 sincosq (__real__ x, &sinix, &cosix);
134 }
135 else
136 {
137 sinix = __real__ x;
138 cosix = 1.0;
139 }
140
141 __real__ retval = copysignq (HUGE_VALQ, sinix);
142 __imag__ retval = copysignq (HUGE_VALQ, cosix);
143
144 if (negate)
145 __real__ retval = -__real__ retval;
146 if (signbitq (__imag__ x))
147 __imag__ retval = -__imag__ retval;
148 }
149 else
150 {
151 /* The addition raises the invalid exception. */
152 __real__ retval = nanq ("");
153 __imag__ retval = HUGE_VALQ;
154
155#ifdef HAVE_FENV_H
156 if (rcls == QUADFP_INFINITE)
157 feraiseexcept (FE_INVALID);
158#endif
159 }
160 }
161 else
162 {
163 if (rcls == QUADFP_ZERO)
164 __real__ retval = copysignq (0.0Q, negate ? -1.0Q : 1.0Q);
165 else
166 __real__ retval = nanq ("");
167 __imag__ retval = nanq ("");
168 }
169
170 return retval;
171}
172