1 | /* sinq.c -- __float128 version of s_sin.c. |
2 | * Conversion to long double by Jakub Jelinek, jj@ultra.linux.cz. |
3 | */ |
4 | |
5 | /* |
6 | * ==================================================== |
7 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
8 | * |
9 | * Developed at SunPro, a Sun Microsystems, Inc. business. |
10 | * Permission to use, copy, modify, and distribute this |
11 | * software is freely granted, provided that this notice |
12 | * is preserved. |
13 | * ==================================================== |
14 | */ |
15 | |
16 | /* sinq(x) |
17 | * Return sine function of x. |
18 | * |
19 | * kernel function: |
20 | * __quadmath_kernel_sinq ... sine function on [-pi/4,pi/4] |
21 | * __quadmath_kernel_cosq ... cose function on [-pi/4,pi/4] |
22 | * __quadmath_rem_pio2q ... argument reduction routine |
23 | * |
24 | * Method. |
25 | * Let S,C and T denote the sin, cos and tan respectively on |
26 | * [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2 |
27 | * in [-pi/4 , +pi/4], and let n = k mod 4. |
28 | * We have |
29 | * |
30 | * n sin(x) cos(x) tan(x) |
31 | * ---------------------------------------------------------- |
32 | * 0 S C T |
33 | * 1 C -S -1/T |
34 | * 2 -S -C T |
35 | * 3 -C S -1/T |
36 | * ---------------------------------------------------------- |
37 | * |
38 | * Special cases: |
39 | * Let trig be any of sin, cos, or tan. |
40 | * trig(+-INF) is NaN, with signals; |
41 | * trig(NaN) is that NaN; |
42 | * |
43 | * Accuracy: |
44 | * TRIG(x) returns trig(x) nearly rounded |
45 | */ |
46 | |
47 | #include "quadmath-imp.h" |
48 | |
49 | __float128 |
50 | sinq (__float128 x) |
51 | { |
52 | __float128 y[2],z=0.0Q; |
53 | int64_t n, ix; |
54 | |
55 | /* High word of x. */ |
56 | GET_FLT128_MSW64(ix,x); |
57 | |
58 | /* |x| ~< pi/4 */ |
59 | ix &= 0x7fffffffffffffffLL; |
60 | if(ix <= 0x3ffe921fb54442d1LL) |
61 | return __quadmath_kernel_sinq(x,z,0); |
62 | |
63 | /* sin(Inf or NaN) is NaN */ |
64 | else if (ix>=0x7fff000000000000LL) { |
65 | if (ix == 0x7fff000000000000LL) { |
66 | GET_FLT128_LSW64(n,x); |
67 | } |
68 | return x-x; |
69 | } |
70 | |
71 | /* argument reduction needed */ |
72 | else { |
73 | n = __quadmath_rem_pio2q(x,y); |
74 | switch(n&3) { |
75 | case 0: return __quadmath_kernel_sinq(y[0],y[1],1); |
76 | case 1: return __quadmath_kernel_cosq(y[0],y[1]); |
77 | case 2: return -__quadmath_kernel_sinq(y[0],y[1],1); |
78 | default: |
79 | return -__quadmath_kernel_cosq(y[0],y[1]); |
80 | } |
81 | } |
82 | } |
83 | |