1 | /* Quad-precision floating point sine on <-pi/4,pi/4>. |
2 | Copyright (C) 1999 Free Software Foundation, Inc. |
3 | This file is part of the GNU C Library. |
4 | Contributed by Jakub Jelinek <jj@ultra.linux.cz> |
5 | |
6 | The GNU C Library is free software; you can redistribute it and/or |
7 | modify it under the terms of the GNU Lesser General Public |
8 | License as published by the Free Software Foundation; either |
9 | version 2.1 of the License, or (at your option) any later version. |
10 | |
11 | The GNU C Library is distributed in the hope that it will be useful, |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
14 | Lesser General Public License for more details. |
15 | |
16 | You should have received a copy of the GNU Lesser General Public |
17 | License along with the GNU C Library; if not, write to the Free |
18 | Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA |
19 | 02111-1307 USA. */ |
20 | |
21 | #include "quadmath-imp.h" |
22 | |
23 | static const __float128 c[] = { |
24 | #define ONE c[0] |
25 | 1.00000000000000000000000000000000000E+00Q, /* 3fff0000000000000000000000000000 */ |
26 | |
27 | /* cos x ~ ONE + x^2 ( SCOS1 + SCOS2 * x^2 + ... + SCOS4 * x^6 + SCOS5 * x^8 ) |
28 | x in <0,1/256> */ |
29 | #define SCOS1 c[1] |
30 | #define SCOS2 c[2] |
31 | #define SCOS3 c[3] |
32 | #define SCOS4 c[4] |
33 | #define SCOS5 c[5] |
34 | -5.00000000000000000000000000000000000E-01Q, /* bffe0000000000000000000000000000 */ |
35 | 4.16666666666666666666666666556146073E-02Q, /* 3ffa5555555555555555555555395023 */ |
36 | -1.38888888888888888888309442601939728E-03Q, /* bff56c16c16c16c16c16a566e42c0375 */ |
37 | 2.48015873015862382987049502531095061E-05Q, /* 3fefa01a01a019ee02dcf7da2d6d5444 */ |
38 | -2.75573112601362126593516899592158083E-07Q, /* bfe927e4f5dce637cb0b54908754bde0 */ |
39 | |
40 | /* sin x ~ ONE * x + x^3 ( SIN1 + SIN2 * x^2 + ... + SIN7 * x^12 + SIN8 * x^14 ) |
41 | x in <0,0.1484375> */ |
42 | #define SIN1 c[6] |
43 | #define SIN2 c[7] |
44 | #define SIN3 c[8] |
45 | #define SIN4 c[9] |
46 | #define SIN5 c[10] |
47 | #define SIN6 c[11] |
48 | #define SIN7 c[12] |
49 | #define SIN8 c[13] |
50 | -1.66666666666666666666666666666666538e-01Q, /* bffc5555555555555555555555555550 */ |
51 | 8.33333333333333333333333333307532934e-03Q, /* 3ff811111111111111111111110e7340 */ |
52 | -1.98412698412698412698412534478712057e-04Q, /* bff2a01a01a01a01a01a019e7a626296 */ |
53 | 2.75573192239858906520896496653095890e-06Q, /* 3fec71de3a556c7338fa38527474b8f5 */ |
54 | -2.50521083854417116999224301266655662e-08Q, /* bfe5ae64567f544e16c7de65c2ea551f */ |
55 | 1.60590438367608957516841576404938118e-10Q, /* 3fde6124613a811480538a9a41957115 */ |
56 | -7.64716343504264506714019494041582610e-13Q, /* bfd6ae7f3d5aef30c7bc660b060ef365 */ |
57 | 2.81068754939739570236322404393398135e-15Q, /* 3fce9510115aabf87aceb2022a9a9180 */ |
58 | |
59 | /* sin x ~ ONE * x + x^3 ( SSIN1 + SSIN2 * x^2 + ... + SSIN4 * x^6 + SSIN5 * x^8 ) |
60 | x in <0,1/256> */ |
61 | #define SSIN1 c[14] |
62 | #define SSIN2 c[15] |
63 | #define SSIN3 c[16] |
64 | #define SSIN4 c[17] |
65 | #define SSIN5 c[18] |
66 | -1.66666666666666666666666666666666659E-01Q, /* bffc5555555555555555555555555555 */ |
67 | 8.33333333333333333333333333146298442E-03Q, /* 3ff81111111111111111111110fe195d */ |
68 | -1.98412698412698412697726277416810661E-04Q, /* bff2a01a01a01a01a019e7121e080d88 */ |
69 | 2.75573192239848624174178393552189149E-06Q, /* 3fec71de3a556c640c6aaa51aa02ab41 */ |
70 | -2.50521016467996193495359189395805639E-08Q, /* bfe5ae644ee90c47dc71839de75b2787 */ |
71 | }; |
72 | |
73 | #define SINCOSQ_COS_HI 0 |
74 | #define SINCOSQ_COS_LO 1 |
75 | #define SINCOSQ_SIN_HI 2 |
76 | #define SINCOSQ_SIN_LO 3 |
77 | extern const __float128 __sincosq_table[]; |
78 | |
79 | __float128 |
80 | __quadmath_kernel_sinq (__float128 x, __float128 y, int iy) |
81 | { |
82 | __float128 h, l, z, sin_l, cos_l_m1; |
83 | int64_t ix; |
84 | uint32_t tix, hix, index; |
85 | GET_FLT128_MSW64 (ix, x); |
86 | tix = ((uint64_t)ix) >> 32; |
87 | tix &= ~0x80000000; /* tix = |x|'s high 32 bits */ |
88 | if (tix < 0x3ffc3000) /* |x| < 0.1484375 */ |
89 | { |
90 | /* Argument is small enough to approximate it by a Chebyshev |
91 | polynomial of degree 17. */ |
92 | if (tix < 0x3fc60000) /* |x| < 2^-57 */ |
93 | { |
94 | math_check_force_underflow (x); |
95 | if (!((int)x)) return x; /* generate inexact */ |
96 | } |
97 | z = x * x; |
98 | return x + (x * (z*(SIN1+z*(SIN2+z*(SIN3+z*(SIN4+ |
99 | z*(SIN5+z*(SIN6+z*(SIN7+z*SIN8))))))))); |
100 | } |
101 | else |
102 | { |
103 | /* So that we don't have to use too large polynomial, we find |
104 | l and h such that x = l + h, where fabsl(l) <= 1.0/256 with 83 |
105 | possible values for h. We look up cosq(h) and sinq(h) in |
106 | pre-computed tables, compute cosq(l) and sinq(l) using a |
107 | Chebyshev polynomial of degree 10(11) and compute |
108 | sinq(h+l) = sinq(h)cosq(l) + cosq(h)sinq(l). */ |
109 | index = 0x3ffe - (tix >> 16); |
110 | hix = (tix + (0x200 << index)) & (0xfffffc00 << index); |
111 | x = fabsq (x); |
112 | switch (index) |
113 | { |
114 | case 0: index = ((45 << 10) + hix - 0x3ffe0000) >> 8; break; |
115 | case 1: index = ((13 << 11) + hix - 0x3ffd0000) >> 9; break; |
116 | default: |
117 | case 2: index = (hix - 0x3ffc3000) >> 10; break; |
118 | } |
119 | |
120 | SET_FLT128_WORDS64(h, ((uint64_t)hix) << 32, 0); |
121 | if (iy) |
122 | l = (ix < 0 ? -y : y) - (h - x); |
123 | else |
124 | l = x - h; |
125 | z = l * l; |
126 | sin_l = l*(ONE+z*(SSIN1+z*(SSIN2+z*(SSIN3+z*(SSIN4+z*SSIN5))))); |
127 | cos_l_m1 = z*(SCOS1+z*(SCOS2+z*(SCOS3+z*(SCOS4+z*SCOS5)))); |
128 | z = __sincosq_table [index + SINCOSQ_SIN_HI] |
129 | + (__sincosq_table [index + SINCOSQ_SIN_LO] |
130 | + (__sincosq_table [index + SINCOSQ_SIN_HI] * cos_l_m1) |
131 | + (__sincosq_table [index + SINCOSQ_COS_HI] * sin_l)); |
132 | return (ix < 0) ? -z : z; |
133 | } |
134 | } |
135 | |