1 | /* s_tanhl.c -- __float128 version of s_tanh.c. |
2 | * Conversion to __float128 by Ulrich Drepper, |
3 | * Cygnus Support, drepper@cygnus.com. |
4 | */ |
5 | |
6 | /* |
7 | * ==================================================== |
8 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
9 | * |
10 | * Developed at SunPro, a Sun Microsystems, Inc. business. |
11 | * Permission to use, copy, modify, and distribute this |
12 | * software is freely granted, provided that this notice |
13 | * is preserved. |
14 | * ==================================================== |
15 | */ |
16 | |
17 | /* Changes for 128-bit __float128 contributed by |
18 | Stephen L. Moshier <moshier@na-net.ornl.gov> */ |
19 | |
20 | /* tanhl(x) |
21 | * Return the Hyperbolic Tangent of x |
22 | * |
23 | * Method : |
24 | * x -x |
25 | * e - e |
26 | * 0. tanhl(x) is defined to be ----------- |
27 | * x -x |
28 | * e + e |
29 | * 1. reduce x to non-negative by tanhl(-x) = -tanhl(x). |
30 | * 2. 0 <= x <= 2**-57 : tanhl(x) := x*(one+x) |
31 | * -t |
32 | * 2**-57 < x <= 1 : tanhl(x) := -----; t = expm1l(-2x) |
33 | * t + 2 |
34 | * 2 |
35 | * 1 <= x <= 40.0 : tanhl(x) := 1- ----- ; t=expm1l(2x) |
36 | * t + 2 |
37 | * 40.0 < x <= INF : tanhl(x) := 1. |
38 | * |
39 | * Special cases: |
40 | * tanhl(NaN) is NaN; |
41 | * only tanhl(0)=0 is exact for finite argument. |
42 | */ |
43 | |
44 | #include "quadmath-imp.h" |
45 | |
46 | static const __float128 one = 1.0Q, two = 2.0Q, tiny = 1.0e-4900Q; |
47 | |
48 | __float128 |
49 | tanhq (__float128 x) |
50 | { |
51 | __float128 t, z; |
52 | uint32_t jx, ix; |
53 | ieee854_float128 u; |
54 | |
55 | /* Words of |x|. */ |
56 | u.value = x; |
57 | jx = u.words32.w0; |
58 | ix = jx & 0x7fffffff; |
59 | /* x is INF or NaN */ |
60 | if (ix >= 0x7fff0000) |
61 | { |
62 | /* for NaN it's not important which branch: tanhl(NaN) = NaN */ |
63 | if (jx & 0x80000000) |
64 | return one / x - one; /* tanhl(-inf)= -1; */ |
65 | else |
66 | return one / x + one; /* tanhl(+inf)=+1 */ |
67 | } |
68 | |
69 | /* |x| < 40 */ |
70 | if (ix < 0x40044000) |
71 | { |
72 | if (u.value == 0) |
73 | return x; /* x == +- 0 */ |
74 | if (ix < 0x3fc60000) /* |x| < 2^-57 */ |
75 | { |
76 | math_check_force_underflow (x); |
77 | return x * (one + tiny); /* tanh(small) = small */ |
78 | } |
79 | u.words32.w0 = ix; /* Absolute value of x. */ |
80 | if (ix >= 0x3fff0000) |
81 | { /* |x| >= 1 */ |
82 | t = expm1q (two * u.value); |
83 | z = one - two / (t + two); |
84 | } |
85 | else |
86 | { |
87 | t = expm1q (-two * u.value); |
88 | z = -t / (t + two); |
89 | } |
90 | /* |x| > 40, return +-1 */ |
91 | } |
92 | else |
93 | { |
94 | z = one - tiny; /* raised inexact flag */ |
95 | } |
96 | return (jx & 0x80000000) ? -z : z; |
97 | } |
98 | |