1 | /* Compute x^2 + y^2 - 1, without large cancellation error. |
2 | Copyright (C) 2012 Free Software Foundation, Inc. |
3 | This file is part of the GNU C Library. |
4 | |
5 | The GNU C Library is free software; you can redistribute it and/or |
6 | modify it under the terms of the GNU Lesser General Public |
7 | License as published by the Free Software Foundation; either |
8 | version 2.1 of the License, or (at your option) any later version. |
9 | |
10 | The GNU C Library is distributed in the hope that it will be useful, |
11 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
13 | Lesser General Public License for more details. |
14 | |
15 | You should have received a copy of the GNU Lesser General Public |
16 | License along with the GNU C Library; if not, see |
17 | <http://www.gnu.org/licenses/>. */ |
18 | |
19 | #include "quadmath-imp.h" |
20 | #include <stdlib.h> |
21 | |
22 | /* Calculate X + Y exactly and store the result in *HI + *LO. It is |
23 | given that |X| >= |Y| and the values are small enough that no |
24 | overflow occurs. */ |
25 | |
26 | static inline void |
27 | add_split (__float128 *hi, __float128 *lo, __float128 x, __float128 y) |
28 | { |
29 | /* Apply Dekker's algorithm. */ |
30 | *hi = x + y; |
31 | *lo = (x - *hi) + y; |
32 | } |
33 | |
34 | /* Calculate X * Y exactly and store the result in *HI + *LO. It is |
35 | given that the values are small enough that no overflow occurs and |
36 | large enough (or zero) that no underflow occurs. */ |
37 | |
38 | static inline void |
39 | mul_split (__float128 *hi, __float128 *lo, __float128 x, __float128 y) |
40 | { |
41 | /* Fast built-in fused multiply-add. */ |
42 | *hi = x * y; |
43 | *lo = fmaq (x, y, -*hi); |
44 | } |
45 | |
46 | /* Compare absolute values of floating-point values pointed to by P |
47 | and Q for qsort. */ |
48 | |
49 | static int |
50 | compare (const void *p, const void *q) |
51 | { |
52 | __float128 pld = fabsq (*(const __float128 *) p); |
53 | __float128 qld = fabsq (*(const __float128 *) q); |
54 | if (pld < qld) |
55 | return -1; |
56 | else if (pld == qld) |
57 | return 0; |
58 | else |
59 | return 1; |
60 | } |
61 | |
62 | /* Return X^2 + Y^2 - 1, computed without large cancellation error. |
63 | It is given that 1 > X >= Y >= epsilon / 2, and that either X >= |
64 | 0.75 or Y >= 0.5. */ |
65 | |
66 | __float128 |
67 | __quadmath_x2y2m1q (__float128 x, __float128 y) |
68 | { |
69 | __float128 vals[4]; |
70 | size_t i; |
71 | |
72 | /* FIXME: SET_RESTORE_ROUNDL (FE_TONEAREST); */ |
73 | mul_split (&vals[1], &vals[0], x, x); |
74 | mul_split (&vals[3], &vals[2], y, y); |
75 | if (x >= 0.75Q) |
76 | vals[1] -= 1.0Q; |
77 | else |
78 | { |
79 | vals[1] -= 0.5Q; |
80 | vals[3] -= 0.5Q; |
81 | } |
82 | qsort (vals, 4, sizeof (__float128), compare); |
83 | /* Add up the values so that each element of VALS has absolute value |
84 | at most equal to the last set bit of the next nonzero |
85 | element. */ |
86 | for (i = 0; i <= 2; i++) |
87 | { |
88 | add_split (&vals[i + 1], &vals[i], vals[i + 1], vals[i]); |
89 | qsort (vals + i + 1, 3 - i, sizeof (__float128), compare); |
90 | } |
91 | /* Now any error from this addition will be small. */ |
92 | return vals[3] + vals[2] + vals[1] + vals[0]; |
93 | } |
94 | |