1/* GCC Quad-Precision Math Library
2 Copyright (C) 2010, 2011 Free Software Foundation, Inc.
3 Written by Francois-Xavier Coudert <fxcoudert@gcc.gnu.org>
4
5This file is part of the libquadmath library.
6Libquadmath is free software; you can redistribute it and/or
7modify it under the terms of the GNU Library General Public
8License as published by the Free Software Foundation; either
9version 2 of the License, or (at your option) any later version.
10
11Libquadmath is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14Library General Public License for more details.
15
16You should have received a copy of the GNU Library General Public
17License along with libquadmath; see the file COPYING.LIB. If
18not, write to the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor,
19Boston, MA 02110-1301, USA. */
20
21#ifndef QUADMATH_IMP_H
22#define QUADMATH_IMP_H
23
24#include <stdint.h>
25#include <stdlib.h>
26#include "quadmath.h"
27#include "config.h"
28
29
30/* Under IEEE 754, an architecture may determine tininess of
31 floating-point results either "before rounding" or "after
32 rounding", but must do so in the same way for all operations
33 returning binary results. Define TININESS_AFTER_ROUNDING to 1 for
34 "after rounding" architectures, 0 for "before rounding"
35 architectures. */
36
37#define TININESS_AFTER_ROUNDING 1
38
39
40/* Prototypes for internal functions. */
41extern int32_t __quadmath_rem_pio2q (__float128, __float128 *);
42extern void __quadmath_kernel_sincosq (__float128, __float128, __float128 *,
43 __float128 *, int);
44extern __float128 __quadmath_kernel_sinq (__float128, __float128, int);
45extern __float128 __quadmath_kernel_cosq (__float128, __float128);
46extern __float128 __quadmath_x2y2m1q (__float128 x, __float128 y);
47extern int __quadmath_isinf_nsq (__float128 x);
48
49
50
51
52
53/* Frankly, if you have __float128, you have 64-bit integers, right? */
54#ifndef UINT64_C
55# error "No way!"
56#endif
57
58
59/* Main union type we use to manipulate the floating-point type. */
60typedef union
61{
62 __float128 value;
63
64 struct
65#ifdef __MINGW32__
66 /* On mingw targets the ms-bitfields option is active by default.
67 Therefore enforce gnu-bitfield style. */
68 __attribute__ ((gcc_struct))
69#endif
70 {
71#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
72 unsigned negative:1;
73 unsigned exponent:15;
74 uint64_t mant_high:48;
75 uint64_t mant_low:64;
76#else
77 uint64_t mant_low:64;
78 uint64_t mant_high:48;
79 unsigned exponent:15;
80 unsigned negative:1;
81#endif
82 } ieee;
83
84 struct
85 {
86#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
87 uint64_t high;
88 uint64_t low;
89#else
90 uint64_t low;
91 uint64_t high;
92#endif
93 } words64;
94
95 struct
96 {
97#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
98 uint32_t w0;
99 uint32_t w1;
100 uint32_t w2;
101 uint32_t w3;
102#else
103 uint32_t w3;
104 uint32_t w2;
105 uint32_t w1;
106 uint32_t w0;
107#endif
108 } words32;
109
110 struct
111#ifdef __MINGW32__
112 /* Make sure we are using gnu-style bitfield handling. */
113 __attribute__ ((gcc_struct))
114#endif
115 {
116#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
117 unsigned negative:1;
118 unsigned exponent:15;
119 unsigned quiet_nan:1;
120 uint64_t mant_high:47;
121 uint64_t mant_low:64;
122#else
123 uint64_t mant_low:64;
124 uint64_t mant_high:47;
125 unsigned quiet_nan:1;
126 unsigned exponent:15;
127 unsigned negative:1;
128#endif
129 } nan;
130
131} ieee854_float128;
132
133
134/* Get two 64 bit ints from a long double. */
135#define GET_FLT128_WORDS64(ix0,ix1,d) \
136do { \
137 ieee854_float128 u; \
138 u.value = (d); \
139 (ix0) = u.words64.high; \
140 (ix1) = u.words64.low; \
141} while (0)
142
143/* Set a long double from two 64 bit ints. */
144#define SET_FLT128_WORDS64(d,ix0,ix1) \
145do { \
146 ieee854_float128 u; \
147 u.words64.high = (ix0); \
148 u.words64.low = (ix1); \
149 (d) = u.value; \
150} while (0)
151
152/* Get the more significant 64 bits of a long double mantissa. */
153#define GET_FLT128_MSW64(v,d) \
154do { \
155 ieee854_float128 u; \
156 u.value = (d); \
157 (v) = u.words64.high; \
158} while (0)
159
160/* Set the more significant 64 bits of a long double mantissa from an int. */
161#define SET_FLT128_MSW64(d,v) \
162do { \
163 ieee854_float128 u; \
164 u.value = (d); \
165 u.words64.high = (v); \
166 (d) = u.value; \
167} while (0)
168
169/* Get the least significant 64 bits of a long double mantissa. */
170#define GET_FLT128_LSW64(v,d) \
171do { \
172 ieee854_float128 u; \
173 u.value = (d); \
174 (v) = u.words64.low; \
175} while (0)
176
177
178#define IEEE854_FLOAT128_BIAS 0x3fff
179
180#define QUADFP_NAN 0
181#define QUADFP_INFINITE 1
182#define QUADFP_ZERO 2
183#define QUADFP_SUBNORMAL 3
184#define QUADFP_NORMAL 4
185#define fpclassifyq(x) \
186 __builtin_fpclassify (QUADFP_NAN, QUADFP_INFINITE, QUADFP_NORMAL, \
187 QUADFP_SUBNORMAL, QUADFP_ZERO, x)
188
189#ifndef math_opt_barrier
190# define math_opt_barrier(x) \
191({ __typeof (x) __x = (x); __asm ("" : "+m" (__x)); __x; })
192# define math_force_eval(x) \
193({ __typeof (x) __x = (x); __asm __volatile__ ("" : : "m" (__x)); })
194#endif
195
196/* math_narrow_eval reduces its floating-point argument to the range
197 and precision of its semantic type. (The original evaluation may
198 still occur with excess range and precision, so the result may be
199 affected by double rounding.) */
200#define math_narrow_eval(x) (x)
201
202/* If X (which is not a NaN) is subnormal, force an underflow
203 exception. */
204#define math_check_force_underflow(x) \
205 do \
206 { \
207 __float128 force_underflow_tmp = (x); \
208 if (fabsq (force_underflow_tmp) < FLT128_MIN) \
209 { \
210 __float128 force_underflow_tmp2 \
211 = force_underflow_tmp * force_underflow_tmp; \
212 math_force_eval (force_underflow_tmp2); \
213 } \
214 } \
215 while (0)
216/* Likewise, but X is also known to be nonnegative. */
217#define math_check_force_underflow_nonneg(x) \
218 do \
219 { \
220 __float128 force_underflow_tmp = (x); \
221 if (force_underflow_tmp < FLT128_MIN) \
222 { \
223 __float128 force_underflow_tmp2 \
224 = force_underflow_tmp * force_underflow_tmp; \
225 math_force_eval (force_underflow_tmp2); \
226 } \
227 } \
228 while (0)
229
230#endif
231