1// List implementation -*- C++ -*-
2
3// Copyright (C) 2001-2013 Free Software Foundation, Inc.
4//
5// This file is part of the GNU ISO C++ Library. This library is free
6// software; you can redistribute it and/or modify it under the
7// terms of the GNU General Public License as published by the
8// Free Software Foundation; either version 3, or (at your option)
9// any later version.
10
11// This library is distributed in the hope that it will be useful,
12// but WITHOUT ANY WARRANTY; without even the implied warranty of
13// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14// GNU General Public License for more details.
15
16// Under Section 7 of GPL version 3, you are granted additional
17// permissions described in the GCC Runtime Library Exception, version
18// 3.1, as published by the Free Software Foundation.
19
20// You should have received a copy of the GNU General Public License and
21// a copy of the GCC Runtime Library Exception along with this program;
22// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23// <http://www.gnu.org/licenses/>.
24
25/*
26 *
27 * Copyright (c) 1994
28 * Hewlett-Packard Company
29 *
30 * Permission to use, copy, modify, distribute and sell this software
31 * and its documentation for any purpose is hereby granted without fee,
32 * provided that the above copyright notice appear in all copies and
33 * that both that copyright notice and this permission notice appear
34 * in supporting documentation. Hewlett-Packard Company makes no
35 * representations about the suitability of this software for any
36 * purpose. It is provided "as is" without express or implied warranty.
37 *
38 *
39 * Copyright (c) 1996,1997
40 * Silicon Graphics Computer Systems, Inc.
41 *
42 * Permission to use, copy, modify, distribute and sell this software
43 * and its documentation for any purpose is hereby granted without fee,
44 * provided that the above copyright notice appear in all copies and
45 * that both that copyright notice and this permission notice appear
46 * in supporting documentation. Silicon Graphics makes no
47 * representations about the suitability of this software for any
48 * purpose. It is provided "as is" without express or implied warranty.
49 */
50
51/** @file bits/stl_list.h
52 * This is an internal header file, included by other library headers.
53 * Do not attempt to use it directly. @headername{list}
54 */
55
56#ifndef _STL_LIST_H
57#define _STL_LIST_H 1
58
59#include <bits/concept_check.h>
60#if __cplusplus >= 201103L
61#include <initializer_list>
62#endif
63
64namespace std _GLIBCXX_VISIBILITY(default)
65{
66 namespace __detail
67 {
68 _GLIBCXX_BEGIN_NAMESPACE_VERSION
69
70 // Supporting structures are split into common and templated
71 // types; the latter publicly inherits from the former in an
72 // effort to reduce code duplication. This results in some
73 // "needless" static_cast'ing later on, but it's all safe
74 // downcasting.
75
76 /// Common part of a node in the %list.
77 struct _List_node_base
78 {
79 _List_node_base* _M_next;
80 _List_node_base* _M_prev;
81
82 static void
83 swap(_List_node_base& __x, _List_node_base& __y) _GLIBCXX_USE_NOEXCEPT;
84
85 void
86 _M_transfer(_List_node_base* const __first,
87 _List_node_base* const __last) _GLIBCXX_USE_NOEXCEPT;
88
89 void
90 _M_reverse() _GLIBCXX_USE_NOEXCEPT;
91
92 void
93 _M_hook(_List_node_base* const __position) _GLIBCXX_USE_NOEXCEPT;
94
95 void
96 _M_unhook() _GLIBCXX_USE_NOEXCEPT;
97 };
98
99 _GLIBCXX_END_NAMESPACE_VERSION
100 } // namespace detail
101
102_GLIBCXX_BEGIN_NAMESPACE_CONTAINER
103
104 /// An actual node in the %list.
105 template<typename _Tp>
106 struct _List_node : public __detail::_List_node_base
107 {
108 ///< User's data.
109 _Tp _M_data;
110
111#if __cplusplus >= 201103L
112 template<typename... _Args>
113 _List_node(_Args&&... __args)
114 : __detail::_List_node_base(), _M_data(std::forward<_Args>(__args)...)
115 { }
116#endif
117 };
118
119 /**
120 * @brief A list::iterator.
121 *
122 * All the functions are op overloads.
123 */
124 template<typename _Tp>
125 struct _List_iterator
126 {
127 typedef _List_iterator<_Tp> _Self;
128 typedef _List_node<_Tp> _Node;
129
130 typedef ptrdiff_t difference_type;
131 typedef std::bidirectional_iterator_tag iterator_category;
132 typedef _Tp value_type;
133 typedef _Tp* pointer;
134 typedef _Tp& reference;
135
136 _List_iterator()
137 : _M_node() { }
138
139 explicit
140 _List_iterator(__detail::_List_node_base* __x)
141 : _M_node(__x) { }
142
143 // Must downcast from _List_node_base to _List_node to get to _M_data.
144 reference
145 operator*() const
146 { return static_cast<_Node*>(_M_node)->_M_data; }
147
148 pointer
149 operator->() const
150 { return std::__addressof(static_cast<_Node*>(_M_node)->_M_data); }
151
152 _Self&
153 operator++()
154 {
155 _M_node = _M_node->_M_next;
156 return *this;
157 }
158
159 _Self
160 operator++(int)
161 {
162 _Self __tmp = *this;
163 _M_node = _M_node->_M_next;
164 return __tmp;
165 }
166
167 _Self&
168 operator--()
169 {
170 _M_node = _M_node->_M_prev;
171 return *this;
172 }
173
174 _Self
175 operator--(int)
176 {
177 _Self __tmp = *this;
178 _M_node = _M_node->_M_prev;
179 return __tmp;
180 }
181
182 bool
183 operator==(const _Self& __x) const
184 { return _M_node == __x._M_node; }
185
186 bool
187 operator!=(const _Self& __x) const
188 { return _M_node != __x._M_node; }
189
190 // The only member points to the %list element.
191 __detail::_List_node_base* _M_node;
192 };
193
194 /**
195 * @brief A list::const_iterator.
196 *
197 * All the functions are op overloads.
198 */
199 template<typename _Tp>
200 struct _List_const_iterator
201 {
202 typedef _List_const_iterator<_Tp> _Self;
203 typedef const _List_node<_Tp> _Node;
204 typedef _List_iterator<_Tp> iterator;
205
206 typedef ptrdiff_t difference_type;
207 typedef std::bidirectional_iterator_tag iterator_category;
208 typedef _Tp value_type;
209 typedef const _Tp* pointer;
210 typedef const _Tp& reference;
211
212 _List_const_iterator()
213 : _M_node() { }
214
215 explicit
216 _List_const_iterator(const __detail::_List_node_base* __x)
217 : _M_node(__x) { }
218
219 _List_const_iterator(const iterator& __x)
220 : _M_node(__x._M_node) { }
221
222 // Must downcast from List_node_base to _List_node to get to
223 // _M_data.
224 reference
225 operator*() const
226 { return static_cast<_Node*>(_M_node)->_M_data; }
227
228 pointer
229 operator->() const
230 { return std::__addressof(static_cast<_Node*>(_M_node)->_M_data); }
231
232 _Self&
233 operator++()
234 {
235 _M_node = _M_node->_M_next;
236 return *this;
237 }
238
239 _Self
240 operator++(int)
241 {
242 _Self __tmp = *this;
243 _M_node = _M_node->_M_next;
244 return __tmp;
245 }
246
247 _Self&
248 operator--()
249 {
250 _M_node = _M_node->_M_prev;
251 return *this;
252 }
253
254 _Self
255 operator--(int)
256 {
257 _Self __tmp = *this;
258 _M_node = _M_node->_M_prev;
259 return __tmp;
260 }
261
262 bool
263 operator==(const _Self& __x) const
264 { return _M_node == __x._M_node; }
265
266 bool
267 operator!=(const _Self& __x) const
268 { return _M_node != __x._M_node; }
269
270 // The only member points to the %list element.
271 const __detail::_List_node_base* _M_node;
272 };
273
274 template<typename _Val>
275 inline bool
276 operator==(const _List_iterator<_Val>& __x,
277 const _List_const_iterator<_Val>& __y)
278 { return __x._M_node == __y._M_node; }
279
280 template<typename _Val>
281 inline bool
282 operator!=(const _List_iterator<_Val>& __x,
283 const _List_const_iterator<_Val>& __y)
284 { return __x._M_node != __y._M_node; }
285
286
287 /// See bits/stl_deque.h's _Deque_base for an explanation.
288 template<typename _Tp, typename _Alloc>
289 class _List_base
290 {
291 protected:
292 // NOTA BENE
293 // The stored instance is not actually of "allocator_type"'s
294 // type. Instead we rebind the type to
295 // Allocator<List_node<Tp>>, which according to [20.1.5]/4
296 // should probably be the same. List_node<Tp> is not the same
297 // size as Tp (it's two pointers larger), and specializations on
298 // Tp may go unused because List_node<Tp> is being bound
299 // instead.
300 //
301 // We put this to the test in the constructors and in
302 // get_allocator, where we use conversions between
303 // allocator_type and _Node_alloc_type. The conversion is
304 // required by table 32 in [20.1.5].
305 typedef typename _Alloc::template rebind<_List_node<_Tp> >::other
306 _Node_alloc_type;
307
308 typedef typename _Alloc::template rebind<_Tp>::other _Tp_alloc_type;
309
310 struct _List_impl
311 : public _Node_alloc_type
312 {
313 __detail::_List_node_base _M_node;
314
315 _List_impl()
316 : _Node_alloc_type(), _M_node()
317 { }
318
319 _List_impl(const _Node_alloc_type& __a)
320 : _Node_alloc_type(__a), _M_node()
321 { }
322
323#if __cplusplus >= 201103L
324 _List_impl(_Node_alloc_type&& __a)
325 : _Node_alloc_type(std::move(__a)), _M_node()
326 { }
327#endif
328 };
329
330 _List_impl _M_impl;
331
332 _List_node<_Tp>*
333 _M_get_node()
334 { return _M_impl._Node_alloc_type::allocate(1); }
335
336 void
337 _M_put_node(_List_node<_Tp>* __p)
338 { _M_impl._Node_alloc_type::deallocate(__p, 1); }
339
340 public:
341 typedef _Alloc allocator_type;
342
343 _Node_alloc_type&
344 _M_get_Node_allocator() _GLIBCXX_NOEXCEPT
345 { return *static_cast<_Node_alloc_type*>(&_M_impl); }
346
347 const _Node_alloc_type&
348 _M_get_Node_allocator() const _GLIBCXX_NOEXCEPT
349 { return *static_cast<const _Node_alloc_type*>(&_M_impl); }
350
351 _Tp_alloc_type
352 _M_get_Tp_allocator() const _GLIBCXX_NOEXCEPT
353 { return _Tp_alloc_type(_M_get_Node_allocator()); }
354
355 allocator_type
356 get_allocator() const _GLIBCXX_NOEXCEPT
357 { return allocator_type(_M_get_Node_allocator()); }
358
359 _List_base()
360 : _M_impl()
361 { _M_init(); }
362
363 _List_base(const _Node_alloc_type& __a)
364 : _M_impl(__a)
365 { _M_init(); }
366
367#if __cplusplus >= 201103L
368 _List_base(_List_base&& __x)
369 : _M_impl(std::move(__x._M_get_Node_allocator()))
370 {
371 _M_init();
372 __detail::_List_node_base::swap(_M_impl._M_node, __x._M_impl._M_node);
373 }
374#endif
375
376 // This is what actually destroys the list.
377 ~_List_base() _GLIBCXX_NOEXCEPT
378 { _M_clear(); }
379
380 void
381 _M_clear();
382
383 void
384 _M_init()
385 {
386 this->_M_impl._M_node._M_next = &this->_M_impl._M_node;
387 this->_M_impl._M_node._M_prev = &this->_M_impl._M_node;
388 }
389 };
390
391 /**
392 * @brief A standard container with linear time access to elements,
393 * and fixed time insertion/deletion at any point in the sequence.
394 *
395 * @ingroup sequences
396 *
397 * @tparam _Tp Type of element.
398 * @tparam _Alloc Allocator type, defaults to allocator<_Tp>.
399 *
400 * Meets the requirements of a <a href="tables.html#65">container</a>, a
401 * <a href="tables.html#66">reversible container</a>, and a
402 * <a href="tables.html#67">sequence</a>, including the
403 * <a href="tables.html#68">optional sequence requirements</a> with the
404 * %exception of @c at and @c operator[].
405 *
406 * This is a @e doubly @e linked %list. Traversal up and down the
407 * %list requires linear time, but adding and removing elements (or
408 * @e nodes) is done in constant time, regardless of where the
409 * change takes place. Unlike std::vector and std::deque,
410 * random-access iterators are not provided, so subscripting ( @c
411 * [] ) access is not allowed. For algorithms which only need
412 * sequential access, this lack makes no difference.
413 *
414 * Also unlike the other standard containers, std::list provides
415 * specialized algorithms %unique to linked lists, such as
416 * splicing, sorting, and in-place reversal.
417 *
418 * A couple points on memory allocation for list<Tp>:
419 *
420 * First, we never actually allocate a Tp, we allocate
421 * List_node<Tp>'s and trust [20.1.5]/4 to DTRT. This is to ensure
422 * that after elements from %list<X,Alloc1> are spliced into
423 * %list<X,Alloc2>, destroying the memory of the second %list is a
424 * valid operation, i.e., Alloc1 giveth and Alloc2 taketh away.
425 *
426 * Second, a %list conceptually represented as
427 * @code
428 * A <---> B <---> C <---> D
429 * @endcode
430 * is actually circular; a link exists between A and D. The %list
431 * class holds (as its only data member) a private list::iterator
432 * pointing to @e D, not to @e A! To get to the head of the %list,
433 * we start at the tail and move forward by one. When this member
434 * iterator's next/previous pointers refer to itself, the %list is
435 * %empty.
436 */
437 template<typename _Tp, typename _Alloc = std::allocator<_Tp> >
438 class list : protected _List_base<_Tp, _Alloc>
439 {
440 // concept requirements
441 typedef typename _Alloc::value_type _Alloc_value_type;
442 __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
443 __glibcxx_class_requires2(_Tp, _Alloc_value_type, _SameTypeConcept)
444
445 typedef _List_base<_Tp, _Alloc> _Base;
446 typedef typename _Base::_Tp_alloc_type _Tp_alloc_type;
447 typedef typename _Base::_Node_alloc_type _Node_alloc_type;
448
449 public:
450 typedef _Tp value_type;
451 typedef typename _Tp_alloc_type::pointer pointer;
452 typedef typename _Tp_alloc_type::const_pointer const_pointer;
453 typedef typename _Tp_alloc_type::reference reference;
454 typedef typename _Tp_alloc_type::const_reference const_reference;
455 typedef _List_iterator<_Tp> iterator;
456 typedef _List_const_iterator<_Tp> const_iterator;
457 typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
458 typedef std::reverse_iterator<iterator> reverse_iterator;
459 typedef size_t size_type;
460 typedef ptrdiff_t difference_type;
461 typedef _Alloc allocator_type;
462
463 protected:
464 // Note that pointers-to-_Node's can be ctor-converted to
465 // iterator types.
466 typedef _List_node<_Tp> _Node;
467
468 using _Base::_M_impl;
469 using _Base::_M_put_node;
470 using _Base::_M_get_node;
471 using _Base::_M_get_Tp_allocator;
472 using _Base::_M_get_Node_allocator;
473
474 /**
475 * @param __args An instance of user data.
476 *
477 * Allocates space for a new node and constructs a copy of
478 * @a __args in it.
479 */
480#if __cplusplus < 201103L
481 _Node*
482 _M_create_node(const value_type& __x)
483 {
484 _Node* __p = this->_M_get_node();
485 __try
486 {
487 _M_get_Tp_allocator().construct
488 (std::__addressof(__p->_M_data), __x);
489 }
490 __catch(...)
491 {
492 _M_put_node(__p);
493 __throw_exception_again;
494 }
495 return __p;
496 }
497#else
498 template<typename... _Args>
499 _Node*
500 _M_create_node(_Args&&... __args)
501 {
502 _Node* __p = this->_M_get_node();
503 __try
504 {
505 _M_get_Node_allocator().construct(__p,
506 std::forward<_Args>(__args)...);
507 }
508 __catch(...)
509 {
510 _M_put_node(__p);
511 __throw_exception_again;
512 }
513 return __p;
514 }
515#endif
516
517 public:
518 // [23.2.2.1] construct/copy/destroy
519 // (assign() and get_allocator() are also listed in this section)
520 /**
521 * @brief Default constructor creates no elements.
522 */
523 list()
524 : _Base() { }
525
526 /**
527 * @brief Creates a %list with no elements.
528 * @param __a An allocator object.
529 */
530 explicit
531 list(const allocator_type& __a)
532 : _Base(_Node_alloc_type(__a)) { }
533
534#if __cplusplus >= 201103L
535 /**
536 * @brief Creates a %list with default constructed elements.
537 * @param __n The number of elements to initially create.
538 *
539 * This constructor fills the %list with @a __n default
540 * constructed elements.
541 */
542 explicit
543 list(size_type __n)
544 : _Base()
545 { _M_default_initialize(__n); }
546
547 /**
548 * @brief Creates a %list with copies of an exemplar element.
549 * @param __n The number of elements to initially create.
550 * @param __value An element to copy.
551 * @param __a An allocator object.
552 *
553 * This constructor fills the %list with @a __n copies of @a __value.
554 */
555 list(size_type __n, const value_type& __value,
556 const allocator_type& __a = allocator_type())
557 : _Base(_Node_alloc_type(__a))
558 { _M_fill_initialize(__n, __value); }
559#else
560 /**
561 * @brief Creates a %list with copies of an exemplar element.
562 * @param __n The number of elements to initially create.
563 * @param __value An element to copy.
564 * @param __a An allocator object.
565 *
566 * This constructor fills the %list with @a __n copies of @a __value.
567 */
568 explicit
569 list(size_type __n, const value_type& __value = value_type(),
570 const allocator_type& __a = allocator_type())
571 : _Base(_Node_alloc_type(__a))
572 { _M_fill_initialize(__n, __value); }
573#endif
574
575 /**
576 * @brief %List copy constructor.
577 * @param __x A %list of identical element and allocator types.
578 *
579 * The newly-created %list uses a copy of the allocation object used
580 * by @a __x.
581 */
582 list(const list& __x)
583 : _Base(__x._M_get_Node_allocator())
584 { _M_initialize_dispatch(__x.begin(), __x.end(), __false_type()); }
585
586#if __cplusplus >= 201103L
587 /**
588 * @brief %List move constructor.
589 * @param __x A %list of identical element and allocator types.
590 *
591 * The newly-created %list contains the exact contents of @a __x.
592 * The contents of @a __x are a valid, but unspecified %list.
593 */
594 list(list&& __x) noexcept
595 : _Base(std::move(__x)) { }
596
597 /**
598 * @brief Builds a %list from an initializer_list
599 * @param __l An initializer_list of value_type.
600 * @param __a An allocator object.
601 *
602 * Create a %list consisting of copies of the elements in the
603 * initializer_list @a __l. This is linear in __l.size().
604 */
605 list(initializer_list<value_type> __l,
606 const allocator_type& __a = allocator_type())
607 : _Base(_Node_alloc_type(__a))
608 { _M_initialize_dispatch(__l.begin(), __l.end(), __false_type()); }
609#endif
610
611 /**
612 * @brief Builds a %list from a range.
613 * @param __first An input iterator.
614 * @param __last An input iterator.
615 * @param __a An allocator object.
616 *
617 * Create a %list consisting of copies of the elements from
618 * [@a __first,@a __last). This is linear in N (where N is
619 * distance(@a __first,@a __last)).
620 */
621#if __cplusplus >= 201103L
622 template<typename _InputIterator,
623 typename = std::_RequireInputIter<_InputIterator>>
624 list(_InputIterator __first, _InputIterator __last,
625 const allocator_type& __a = allocator_type())
626 : _Base(_Node_alloc_type(__a))
627 { _M_initialize_dispatch(__first, __last, __false_type()); }
628#else
629 template<typename _InputIterator>
630 list(_InputIterator __first, _InputIterator __last,
631 const allocator_type& __a = allocator_type())
632 : _Base(_Node_alloc_type(__a))
633 {
634 // Check whether it's an integral type. If so, it's not an iterator.
635 typedef typename std::__is_integer<_InputIterator>::__type _Integral;
636 _M_initialize_dispatch(__first, __last, _Integral());
637 }
638#endif
639
640 /**
641 * No explicit dtor needed as the _Base dtor takes care of
642 * things. The _Base dtor only erases the elements, and note
643 * that if the elements themselves are pointers, the pointed-to
644 * memory is not touched in any way. Managing the pointer is
645 * the user's responsibility.
646 */
647
648 /**
649 * @brief %List assignment operator.
650 * @param __x A %list of identical element and allocator types.
651 *
652 * All the elements of @a __x are copied, but unlike the copy
653 * constructor, the allocator object is not copied.
654 */
655 list&
656 operator=(const list& __x);
657
658#if __cplusplus >= 201103L
659 /**
660 * @brief %List move assignment operator.
661 * @param __x A %list of identical element and allocator types.
662 *
663 * The contents of @a __x are moved into this %list (without copying).
664 * @a __x is a valid, but unspecified %list
665 */
666 list&
667 operator=(list&& __x)
668 {
669 // NB: DR 1204.
670 // NB: DR 675.
671 this->clear();
672 this->swap(__x);
673 return *this;
674 }
675
676 /**
677 * @brief %List initializer list assignment operator.
678 * @param __l An initializer_list of value_type.
679 *
680 * Replace the contents of the %list with copies of the elements
681 * in the initializer_list @a __l. This is linear in l.size().
682 */
683 list&
684 operator=(initializer_list<value_type> __l)
685 {
686 this->assign(__l.begin(), __l.end());
687 return *this;
688 }
689#endif
690
691 /**
692 * @brief Assigns a given value to a %list.
693 * @param __n Number of elements to be assigned.
694 * @param __val Value to be assigned.
695 *
696 * This function fills a %list with @a __n copies of the given
697 * value. Note that the assignment completely changes the %list
698 * and that the resulting %list's size is the same as the number
699 * of elements assigned. Old data may be lost.
700 */
701 void
702 assign(size_type __n, const value_type& __val)
703 { _M_fill_assign(__n, __val); }
704
705 /**
706 * @brief Assigns a range to a %list.
707 * @param __first An input iterator.
708 * @param __last An input iterator.
709 *
710 * This function fills a %list with copies of the elements in the
711 * range [@a __first,@a __last).
712 *
713 * Note that the assignment completely changes the %list and
714 * that the resulting %list's size is the same as the number of
715 * elements assigned. Old data may be lost.
716 */
717#if __cplusplus >= 201103L
718 template<typename _InputIterator,
719 typename = std::_RequireInputIter<_InputIterator>>
720 void
721 assign(_InputIterator __first, _InputIterator __last)
722 { _M_assign_dispatch(__first, __last, __false_type()); }
723#else
724 template<typename _InputIterator>
725 void
726 assign(_InputIterator __first, _InputIterator __last)
727 {
728 // Check whether it's an integral type. If so, it's not an iterator.
729 typedef typename std::__is_integer<_InputIterator>::__type _Integral;
730 _M_assign_dispatch(__first, __last, _Integral());
731 }
732#endif
733
734#if __cplusplus >= 201103L
735 /**
736 * @brief Assigns an initializer_list to a %list.
737 * @param __l An initializer_list of value_type.
738 *
739 * Replace the contents of the %list with copies of the elements
740 * in the initializer_list @a __l. This is linear in __l.size().
741 */
742 void
743 assign(initializer_list<value_type> __l)
744 { this->assign(__l.begin(), __l.end()); }
745#endif
746
747 /// Get a copy of the memory allocation object.
748 allocator_type
749 get_allocator() const _GLIBCXX_NOEXCEPT
750 { return _Base::get_allocator(); }
751
752 // iterators
753 /**
754 * Returns a read/write iterator that points to the first element in the
755 * %list. Iteration is done in ordinary element order.
756 */
757 iterator
758 begin() _GLIBCXX_NOEXCEPT
759 { return iterator(this->_M_impl._M_node._M_next); }
760
761 /**
762 * Returns a read-only (constant) iterator that points to the
763 * first element in the %list. Iteration is done in ordinary
764 * element order.
765 */
766 const_iterator
767 begin() const _GLIBCXX_NOEXCEPT
768 { return const_iterator(this->_M_impl._M_node._M_next); }
769
770 /**
771 * Returns a read/write iterator that points one past the last
772 * element in the %list. Iteration is done in ordinary element
773 * order.
774 */
775 iterator
776 end() _GLIBCXX_NOEXCEPT
777 { return iterator(&this->_M_impl._M_node); }
778
779 /**
780 * Returns a read-only (constant) iterator that points one past
781 * the last element in the %list. Iteration is done in ordinary
782 * element order.
783 */
784 const_iterator
785 end() const _GLIBCXX_NOEXCEPT
786 { return const_iterator(&this->_M_impl._M_node); }
787
788 /**
789 * Returns a read/write reverse iterator that points to the last
790 * element in the %list. Iteration is done in reverse element
791 * order.
792 */
793 reverse_iterator
794 rbegin() _GLIBCXX_NOEXCEPT
795 { return reverse_iterator(end()); }
796
797 /**
798 * Returns a read-only (constant) reverse iterator that points to
799 * the last element in the %list. Iteration is done in reverse
800 * element order.
801 */
802 const_reverse_iterator
803 rbegin() const _GLIBCXX_NOEXCEPT
804 { return const_reverse_iterator(end()); }
805
806 /**
807 * Returns a read/write reverse iterator that points to one
808 * before the first element in the %list. Iteration is done in
809 * reverse element order.
810 */
811 reverse_iterator
812 rend() _GLIBCXX_NOEXCEPT
813 { return reverse_iterator(begin()); }
814
815 /**
816 * Returns a read-only (constant) reverse iterator that points to one
817 * before the first element in the %list. Iteration is done in reverse
818 * element order.
819 */
820 const_reverse_iterator
821 rend() const _GLIBCXX_NOEXCEPT
822 { return const_reverse_iterator(begin()); }
823
824#if __cplusplus >= 201103L
825 /**
826 * Returns a read-only (constant) iterator that points to the
827 * first element in the %list. Iteration is done in ordinary
828 * element order.
829 */
830 const_iterator
831 cbegin() const noexcept
832 { return const_iterator(this->_M_impl._M_node._M_next); }
833
834 /**
835 * Returns a read-only (constant) iterator that points one past
836 * the last element in the %list. Iteration is done in ordinary
837 * element order.
838 */
839 const_iterator
840 cend() const noexcept
841 { return const_iterator(&this->_M_impl._M_node); }
842
843 /**
844 * Returns a read-only (constant) reverse iterator that points to
845 * the last element in the %list. Iteration is done in reverse
846 * element order.
847 */
848 const_reverse_iterator
849 crbegin() const noexcept
850 { return const_reverse_iterator(end()); }
851
852 /**
853 * Returns a read-only (constant) reverse iterator that points to one
854 * before the first element in the %list. Iteration is done in reverse
855 * element order.
856 */
857 const_reverse_iterator
858 crend() const noexcept
859 { return const_reverse_iterator(begin()); }
860#endif
861
862 // [23.2.2.2] capacity
863 /**
864 * Returns true if the %list is empty. (Thus begin() would equal
865 * end().)
866 */
867 bool
868 empty() const _GLIBCXX_NOEXCEPT
869 { return this->_M_impl._M_node._M_next == &this->_M_impl._M_node; }
870
871 /** Returns the number of elements in the %list. */
872 size_type
873 size() const _GLIBCXX_NOEXCEPT
874 { return std::distance(begin(), end()); }
875
876 /** Returns the size() of the largest possible %list. */
877 size_type
878 max_size() const _GLIBCXX_NOEXCEPT
879 { return _M_get_Node_allocator().max_size(); }
880
881#if __cplusplus >= 201103L
882 /**
883 * @brief Resizes the %list to the specified number of elements.
884 * @param __new_size Number of elements the %list should contain.
885 *
886 * This function will %resize the %list to the specified number
887 * of elements. If the number is smaller than the %list's
888 * current size the %list is truncated, otherwise default
889 * constructed elements are appended.
890 */
891 void
892 resize(size_type __new_size);
893
894 /**
895 * @brief Resizes the %list to the specified number of elements.
896 * @param __new_size Number of elements the %list should contain.
897 * @param __x Data with which new elements should be populated.
898 *
899 * This function will %resize the %list to the specified number
900 * of elements. If the number is smaller than the %list's
901 * current size the %list is truncated, otherwise the %list is
902 * extended and new elements are populated with given data.
903 */
904 void
905 resize(size_type __new_size, const value_type& __x);
906#else
907 /**
908 * @brief Resizes the %list to the specified number of elements.
909 * @param __new_size Number of elements the %list should contain.
910 * @param __x Data with which new elements should be populated.
911 *
912 * This function will %resize the %list to the specified number
913 * of elements. If the number is smaller than the %list's
914 * current size the %list is truncated, otherwise the %list is
915 * extended and new elements are populated with given data.
916 */
917 void
918 resize(size_type __new_size, value_type __x = value_type());
919#endif
920
921 // element access
922 /**
923 * Returns a read/write reference to the data at the first
924 * element of the %list.
925 */
926 reference
927 front()
928 { return *begin(); }
929
930 /**
931 * Returns a read-only (constant) reference to the data at the first
932 * element of the %list.
933 */
934 const_reference
935 front() const
936 { return *begin(); }
937
938 /**
939 * Returns a read/write reference to the data at the last element
940 * of the %list.
941 */
942 reference
943 back()
944 {
945 iterator __tmp = end();
946 --__tmp;
947 return *__tmp;
948 }
949
950 /**
951 * Returns a read-only (constant) reference to the data at the last
952 * element of the %list.
953 */
954 const_reference
955 back() const
956 {
957 const_iterator __tmp = end();
958 --__tmp;
959 return *__tmp;
960 }
961
962 // [23.2.2.3] modifiers
963 /**
964 * @brief Add data to the front of the %list.
965 * @param __x Data to be added.
966 *
967 * This is a typical stack operation. The function creates an
968 * element at the front of the %list and assigns the given data
969 * to it. Due to the nature of a %list this operation can be
970 * done in constant time, and does not invalidate iterators and
971 * references.
972 */
973 void
974 push_front(const value_type& __x)
975 { this->_M_insert(begin(), __x); }
976
977#if __cplusplus >= 201103L
978 void
979 push_front(value_type&& __x)
980 { this->_M_insert(begin(), std::move(__x)); }
981
982 template<typename... _Args>
983 void
984 emplace_front(_Args&&... __args)
985 { this->_M_insert(begin(), std::forward<_Args>(__args)...); }
986#endif
987
988 /**
989 * @brief Removes first element.
990 *
991 * This is a typical stack operation. It shrinks the %list by
992 * one. Due to the nature of a %list this operation can be done
993 * in constant time, and only invalidates iterators/references to
994 * the element being removed.
995 *
996 * Note that no data is returned, and if the first element's data
997 * is needed, it should be retrieved before pop_front() is
998 * called.
999 */
1000 void
1001 pop_front()
1002 { this->_M_erase(begin()); }
1003
1004 /**
1005 * @brief Add data to the end of the %list.
1006 * @param __x Data to be added.
1007 *
1008 * This is a typical stack operation. The function creates an
1009 * element at the end of the %list and assigns the given data to
1010 * it. Due to the nature of a %list this operation can be done
1011 * in constant time, and does not invalidate iterators and
1012 * references.
1013 */
1014 void
1015 push_back(const value_type& __x)
1016 { this->_M_insert(end(), __x); }
1017
1018#if __cplusplus >= 201103L
1019 void
1020 push_back(value_type&& __x)
1021 { this->_M_insert(end(), std::move(__x)); }
1022
1023 template<typename... _Args>
1024 void
1025 emplace_back(_Args&&... __args)
1026 { this->_M_insert(end(), std::forward<_Args>(__args)...); }
1027#endif
1028
1029 /**
1030 * @brief Removes last element.
1031 *
1032 * This is a typical stack operation. It shrinks the %list by
1033 * one. Due to the nature of a %list this operation can be done
1034 * in constant time, and only invalidates iterators/references to
1035 * the element being removed.
1036 *
1037 * Note that no data is returned, and if the last element's data
1038 * is needed, it should be retrieved before pop_back() is called.
1039 */
1040 void
1041 pop_back()
1042 { this->_M_erase(iterator(this->_M_impl._M_node._M_prev)); }
1043
1044#if __cplusplus >= 201103L
1045 /**
1046 * @brief Constructs object in %list before specified iterator.
1047 * @param __position A const_iterator into the %list.
1048 * @param __args Arguments.
1049 * @return An iterator that points to the inserted data.
1050 *
1051 * This function will insert an object of type T constructed
1052 * with T(std::forward<Args>(args)...) before the specified
1053 * location. Due to the nature of a %list this operation can
1054 * be done in constant time, and does not invalidate iterators
1055 * and references.
1056 */
1057 template<typename... _Args>
1058 iterator
1059 emplace(iterator __position, _Args&&... __args);
1060#endif
1061
1062 /**
1063 * @brief Inserts given value into %list before specified iterator.
1064 * @param __position An iterator into the %list.
1065 * @param __x Data to be inserted.
1066 * @return An iterator that points to the inserted data.
1067 *
1068 * This function will insert a copy of the given value before
1069 * the specified location. Due to the nature of a %list this
1070 * operation can be done in constant time, and does not
1071 * invalidate iterators and references.
1072 */
1073 iterator
1074 insert(iterator __position, const value_type& __x);
1075
1076#if __cplusplus >= 201103L
1077 /**
1078 * @brief Inserts given rvalue into %list before specified iterator.
1079 * @param __position An iterator into the %list.
1080 * @param __x Data to be inserted.
1081 * @return An iterator that points to the inserted data.
1082 *
1083 * This function will insert a copy of the given rvalue before
1084 * the specified location. Due to the nature of a %list this
1085 * operation can be done in constant time, and does not
1086 * invalidate iterators and references.
1087 */
1088 iterator
1089 insert(iterator __position, value_type&& __x)
1090 { return emplace(__position, std::move(__x)); }
1091
1092 /**
1093 * @brief Inserts the contents of an initializer_list into %list
1094 * before specified iterator.
1095 * @param __p An iterator into the %list.
1096 * @param __l An initializer_list of value_type.
1097 *
1098 * This function will insert copies of the data in the
1099 * initializer_list @a l into the %list before the location
1100 * specified by @a p.
1101 *
1102 * This operation is linear in the number of elements inserted and
1103 * does not invalidate iterators and references.
1104 */
1105 void
1106 insert(iterator __p, initializer_list<value_type> __l)
1107 { this->insert(__p, __l.begin(), __l.end()); }
1108#endif
1109
1110 /**
1111 * @brief Inserts a number of copies of given data into the %list.
1112 * @param __position An iterator into the %list.
1113 * @param __n Number of elements to be inserted.
1114 * @param __x Data to be inserted.
1115 *
1116 * This function will insert a specified number of copies of the
1117 * given data before the location specified by @a position.
1118 *
1119 * This operation is linear in the number of elements inserted and
1120 * does not invalidate iterators and references.
1121 */
1122 void
1123 insert(iterator __position, size_type __n, const value_type& __x)
1124 {
1125 list __tmp(__n, __x, get_allocator());
1126 splice(__position, __tmp);
1127 }
1128
1129 /**
1130 * @brief Inserts a range into the %list.
1131 * @param __position An iterator into the %list.
1132 * @param __first An input iterator.
1133 * @param __last An input iterator.
1134 *
1135 * This function will insert copies of the data in the range [@a
1136 * first,@a last) into the %list before the location specified by
1137 * @a position.
1138 *
1139 * This operation is linear in the number of elements inserted and
1140 * does not invalidate iterators and references.
1141 */
1142#if __cplusplus >= 201103L
1143 template<typename _InputIterator,
1144 typename = std::_RequireInputIter<_InputIterator>>
1145#else
1146 template<typename _InputIterator>
1147#endif
1148 void
1149 insert(iterator __position, _InputIterator __first,
1150 _InputIterator __last)
1151 {
1152 list __tmp(__first, __last, get_allocator());
1153 splice(__position, __tmp);
1154 }
1155
1156 /**
1157 * @brief Remove element at given position.
1158 * @param __position Iterator pointing to element to be erased.
1159 * @return An iterator pointing to the next element (or end()).
1160 *
1161 * This function will erase the element at the given position and thus
1162 * shorten the %list by one.
1163 *
1164 * Due to the nature of a %list this operation can be done in
1165 * constant time, and only invalidates iterators/references to
1166 * the element being removed. The user is also cautioned that
1167 * this function only erases the element, and that if the element
1168 * is itself a pointer, the pointed-to memory is not touched in
1169 * any way. Managing the pointer is the user's responsibility.
1170 */
1171 iterator
1172 erase(iterator __position);
1173
1174 /**
1175 * @brief Remove a range of elements.
1176 * @param __first Iterator pointing to the first element to be erased.
1177 * @param __last Iterator pointing to one past the last element to be
1178 * erased.
1179 * @return An iterator pointing to the element pointed to by @a last
1180 * prior to erasing (or end()).
1181 *
1182 * This function will erase the elements in the range @a
1183 * [first,last) and shorten the %list accordingly.
1184 *
1185 * This operation is linear time in the size of the range and only
1186 * invalidates iterators/references to the element being removed.
1187 * The user is also cautioned that this function only erases the
1188 * elements, and that if the elements themselves are pointers, the
1189 * pointed-to memory is not touched in any way. Managing the pointer
1190 * is the user's responsibility.
1191 */
1192 iterator
1193 erase(iterator __first, iterator __last)
1194 {
1195 while (__first != __last)
1196 __first = erase(__first);
1197 return __last;
1198 }
1199
1200 /**
1201 * @brief Swaps data with another %list.
1202 * @param __x A %list of the same element and allocator types.
1203 *
1204 * This exchanges the elements between two lists in constant
1205 * time. Note that the global std::swap() function is
1206 * specialized such that std::swap(l1,l2) will feed to this
1207 * function.
1208 */
1209 void
1210 swap(list& __x)
1211 {
1212 __detail::_List_node_base::swap(this->_M_impl._M_node,
1213 __x._M_impl._M_node);
1214
1215 // _GLIBCXX_RESOLVE_LIB_DEFECTS
1216 // 431. Swapping containers with unequal allocators.
1217 std::__alloc_swap<typename _Base::_Node_alloc_type>::
1218 _S_do_it(_M_get_Node_allocator(), __x._M_get_Node_allocator());
1219 }
1220
1221 /**
1222 * Erases all the elements. Note that this function only erases
1223 * the elements, and that if the elements themselves are
1224 * pointers, the pointed-to memory is not touched in any way.
1225 * Managing the pointer is the user's responsibility.
1226 */
1227 void
1228 clear() _GLIBCXX_NOEXCEPT
1229 {
1230 _Base::_M_clear();
1231 _Base::_M_init();
1232 }
1233
1234 // [23.2.2.4] list operations
1235 /**
1236 * @brief Insert contents of another %list.
1237 * @param __position Iterator referencing the element to insert before.
1238 * @param __x Source list.
1239 *
1240 * The elements of @a __x are inserted in constant time in front of
1241 * the element referenced by @a __position. @a __x becomes an empty
1242 * list.
1243 *
1244 * Requires this != @a __x.
1245 */
1246 void
1247#if __cplusplus >= 201103L
1248 splice(iterator __position, list&& __x)
1249#else
1250 splice(iterator __position, list& __x)
1251#endif
1252 {
1253 if (!__x.empty())
1254 {
1255 _M_check_equal_allocators(__x);
1256
1257 this->_M_transfer(__position, __x.begin(), __x.end());
1258 }
1259 }
1260
1261#if __cplusplus >= 201103L
1262 void
1263 splice(iterator __position, list& __x)
1264 { splice(__position, std::move(__x)); }
1265#endif
1266
1267 /**
1268 * @brief Insert element from another %list.
1269 * @param __position Iterator referencing the element to insert before.
1270 * @param __x Source list.
1271 * @param __i Iterator referencing the element to move.
1272 *
1273 * Removes the element in list @a __x referenced by @a __i and
1274 * inserts it into the current list before @a __position.
1275 */
1276 void
1277#if __cplusplus >= 201103L
1278 splice(iterator __position, list&& __x, iterator __i)
1279#else
1280 splice(iterator __position, list& __x, iterator __i)
1281#endif
1282 {
1283 iterator __j = __i;
1284 ++__j;
1285 if (__position == __i || __position == __j)
1286 return;
1287
1288 if (this != &__x)
1289 _M_check_equal_allocators(__x);
1290
1291 this->_M_transfer(__position, __i, __j);
1292 }
1293
1294#if __cplusplus >= 201103L
1295 void
1296 splice(iterator __position, list& __x, iterator __i)
1297 { splice(__position, std::move(__x), __i); }
1298#endif
1299
1300 /**
1301 * @brief Insert range from another %list.
1302 * @param __position Iterator referencing the element to insert before.
1303 * @param __x Source list.
1304 * @param __first Iterator referencing the start of range in x.
1305 * @param __last Iterator referencing the end of range in x.
1306 *
1307 * Removes elements in the range [__first,__last) and inserts them
1308 * before @a __position in constant time.
1309 *
1310 * Undefined if @a __position is in [__first,__last).
1311 */
1312 void
1313#if __cplusplus >= 201103L
1314 splice(iterator __position, list&& __x, iterator __first,
1315 iterator __last)
1316#else
1317 splice(iterator __position, list& __x, iterator __first,
1318 iterator __last)
1319#endif
1320 {
1321 if (__first != __last)
1322 {
1323 if (this != &__x)
1324 _M_check_equal_allocators(__x);
1325
1326 this->_M_transfer(__position, __first, __last);
1327 }
1328 }
1329
1330#if __cplusplus >= 201103L
1331 void
1332 splice(iterator __position, list& __x, iterator __first, iterator __last)
1333 { splice(__position, std::move(__x), __first, __last); }
1334#endif
1335
1336 /**
1337 * @brief Remove all elements equal to value.
1338 * @param __value The value to remove.
1339 *
1340 * Removes every element in the list equal to @a value.
1341 * Remaining elements stay in list order. Note that this
1342 * function only erases the elements, and that if the elements
1343 * themselves are pointers, the pointed-to memory is not
1344 * touched in any way. Managing the pointer is the user's
1345 * responsibility.
1346 */
1347 void
1348 remove(const _Tp& __value);
1349
1350 /**
1351 * @brief Remove all elements satisfying a predicate.
1352 * @tparam _Predicate Unary predicate function or object.
1353 *
1354 * Removes every element in the list for which the predicate
1355 * returns true. Remaining elements stay in list order. Note
1356 * that this function only erases the elements, and that if the
1357 * elements themselves are pointers, the pointed-to memory is
1358 * not touched in any way. Managing the pointer is the user's
1359 * responsibility.
1360 */
1361 template<typename _Predicate>
1362 void
1363 remove_if(_Predicate);
1364
1365 /**
1366 * @brief Remove consecutive duplicate elements.
1367 *
1368 * For each consecutive set of elements with the same value,
1369 * remove all but the first one. Remaining elements stay in
1370 * list order. Note that this function only erases the
1371 * elements, and that if the elements themselves are pointers,
1372 * the pointed-to memory is not touched in any way. Managing
1373 * the pointer is the user's responsibility.
1374 */
1375 void
1376 unique();
1377
1378 /**
1379 * @brief Remove consecutive elements satisfying a predicate.
1380 * @tparam _BinaryPredicate Binary predicate function or object.
1381 *
1382 * For each consecutive set of elements [first,last) that
1383 * satisfy predicate(first,i) where i is an iterator in
1384 * [first,last), remove all but the first one. Remaining
1385 * elements stay in list order. Note that this function only
1386 * erases the elements, and that if the elements themselves are
1387 * pointers, the pointed-to memory is not touched in any way.
1388 * Managing the pointer is the user's responsibility.
1389 */
1390 template<typename _BinaryPredicate>
1391 void
1392 unique(_BinaryPredicate);
1393
1394 /**
1395 * @brief Merge sorted lists.
1396 * @param __x Sorted list to merge.
1397 *
1398 * Assumes that both @a __x and this list are sorted according to
1399 * operator<(). Merges elements of @a __x into this list in
1400 * sorted order, leaving @a __x empty when complete. Elements in
1401 * this list precede elements in @a __x that are equal.
1402 */
1403#if __cplusplus >= 201103L
1404 void
1405 merge(list&& __x);
1406
1407 void
1408 merge(list& __x)
1409 { merge(std::move(__x)); }
1410#else
1411 void
1412 merge(list& __x);
1413#endif
1414
1415 /**
1416 * @brief Merge sorted lists according to comparison function.
1417 * @tparam _StrictWeakOrdering Comparison function defining
1418 * sort order.
1419 * @param __x Sorted list to merge.
1420 * @param __comp Comparison functor.
1421 *
1422 * Assumes that both @a __x and this list are sorted according to
1423 * StrictWeakOrdering. Merges elements of @a __x into this list
1424 * in sorted order, leaving @a __x empty when complete. Elements
1425 * in this list precede elements in @a __x that are equivalent
1426 * according to StrictWeakOrdering().
1427 */
1428#if __cplusplus >= 201103L
1429 template<typename _StrictWeakOrdering>
1430 void
1431 merge(list&& __x, _StrictWeakOrdering __comp);
1432
1433 template<typename _StrictWeakOrdering>
1434 void
1435 merge(list& __x, _StrictWeakOrdering __comp)
1436 { merge(std::move(__x), __comp); }
1437#else
1438 template<typename _StrictWeakOrdering>
1439 void
1440 merge(list& __x, _StrictWeakOrdering __comp);
1441#endif
1442
1443 /**
1444 * @brief Reverse the elements in list.
1445 *
1446 * Reverse the order of elements in the list in linear time.
1447 */
1448 void
1449 reverse() _GLIBCXX_NOEXCEPT
1450 { this->_M_impl._M_node._M_reverse(); }
1451
1452 /**
1453 * @brief Sort the elements.
1454 *
1455 * Sorts the elements of this list in NlogN time. Equivalent
1456 * elements remain in list order.
1457 */
1458 void
1459 sort();
1460
1461 /**
1462 * @brief Sort the elements according to comparison function.
1463 *
1464 * Sorts the elements of this list in NlogN time. Equivalent
1465 * elements remain in list order.
1466 */
1467 template<typename _StrictWeakOrdering>
1468 void
1469 sort(_StrictWeakOrdering);
1470
1471 protected:
1472 // Internal constructor functions follow.
1473
1474 // Called by the range constructor to implement [23.1.1]/9
1475
1476 // _GLIBCXX_RESOLVE_LIB_DEFECTS
1477 // 438. Ambiguity in the "do the right thing" clause
1478 template<typename _Integer>
1479 void
1480 _M_initialize_dispatch(_Integer __n, _Integer __x, __true_type)
1481 { _M_fill_initialize(static_cast<size_type>(__n), __x); }
1482
1483 // Called by the range constructor to implement [23.1.1]/9
1484 template<typename _InputIterator>
1485 void
1486 _M_initialize_dispatch(_InputIterator __first, _InputIterator __last,
1487 __false_type)
1488 {
1489 for (; __first != __last; ++__first)
1490#if __cplusplus >= 201103L
1491 emplace_back(*__first);
1492#else
1493 push_back(*__first);
1494#endif
1495 }
1496
1497 // Called by list(n,v,a), and the range constructor when it turns out
1498 // to be the same thing.
1499 void
1500 _M_fill_initialize(size_type __n, const value_type& __x)
1501 {
1502 for (; __n; --__n)
1503 push_back(__x);
1504 }
1505
1506#if __cplusplus >= 201103L
1507 // Called by list(n).
1508 void
1509 _M_default_initialize(size_type __n)
1510 {
1511 for (; __n; --__n)
1512 emplace_back();
1513 }
1514
1515 // Called by resize(sz).
1516 void
1517 _M_default_append(size_type __n);
1518#endif
1519
1520 // Internal assign functions follow.
1521
1522 // Called by the range assign to implement [23.1.1]/9
1523
1524 // _GLIBCXX_RESOLVE_LIB_DEFECTS
1525 // 438. Ambiguity in the "do the right thing" clause
1526 template<typename _Integer>
1527 void
1528 _M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
1529 { _M_fill_assign(__n, __val); }
1530
1531 // Called by the range assign to implement [23.1.1]/9
1532 template<typename _InputIterator>
1533 void
1534 _M_assign_dispatch(_InputIterator __first, _InputIterator __last,
1535 __false_type);
1536
1537 // Called by assign(n,t), and the range assign when it turns out
1538 // to be the same thing.
1539 void
1540 _M_fill_assign(size_type __n, const value_type& __val);
1541
1542
1543 // Moves the elements from [first,last) before position.
1544 void
1545 _M_transfer(iterator __position, iterator __first, iterator __last)
1546 { __position._M_node->_M_transfer(__first._M_node, __last._M_node); }
1547
1548 // Inserts new element at position given and with value given.
1549#if __cplusplus < 201103L
1550 void
1551 _M_insert(iterator __position, const value_type& __x)
1552 {
1553 _Node* __tmp = _M_create_node(__x);
1554 __tmp->_M_hook(__position._M_node);
1555 }
1556#else
1557 template<typename... _Args>
1558 void
1559 _M_insert(iterator __position, _Args&&... __args)
1560 {
1561 _Node* __tmp = _M_create_node(std::forward<_Args>(__args)...);
1562 __tmp->_M_hook(__position._M_node);
1563 }
1564#endif
1565
1566 // Erases element at position given.
1567 void
1568 _M_erase(iterator __position)
1569 {
1570 __position._M_node->_M_unhook();
1571 _Node* __n = static_cast<_Node*>(__position._M_node);
1572#if __cplusplus >= 201103L
1573 _M_get_Node_allocator().destroy(__n);
1574#else
1575 _M_get_Tp_allocator().destroy(std::__addressof(__n->_M_data));
1576#endif
1577 _M_put_node(__n);
1578 }
1579
1580 // To implement the splice (and merge) bits of N1599.
1581 void
1582 _M_check_equal_allocators(list& __x)
1583 {
1584 if (std::__alloc_neq<typename _Base::_Node_alloc_type>::
1585 _S_do_it(_M_get_Node_allocator(), __x._M_get_Node_allocator()))
1586 __throw_runtime_error(__N("list::_M_check_equal_allocators"));
1587 }
1588 };
1589
1590 /**
1591 * @brief List equality comparison.
1592 * @param __x A %list.
1593 * @param __y A %list of the same type as @a __x.
1594 * @return True iff the size and elements of the lists are equal.
1595 *
1596 * This is an equivalence relation. It is linear in the size of
1597 * the lists. Lists are considered equivalent if their sizes are
1598 * equal, and if corresponding elements compare equal.
1599 */
1600 template<typename _Tp, typename _Alloc>
1601 inline bool
1602 operator==(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y)
1603 {
1604 typedef typename list<_Tp, _Alloc>::const_iterator const_iterator;
1605 const_iterator __end1 = __x.end();
1606 const_iterator __end2 = __y.end();
1607
1608 const_iterator __i1 = __x.begin();
1609 const_iterator __i2 = __y.begin();
1610 while (__i1 != __end1 && __i2 != __end2 && *__i1 == *__i2)
1611 {
1612 ++__i1;
1613 ++__i2;
1614 }
1615 return __i1 == __end1 && __i2 == __end2;
1616 }
1617
1618 /**
1619 * @brief List ordering relation.
1620 * @param __x A %list.
1621 * @param __y A %list of the same type as @a __x.
1622 * @return True iff @a __x is lexicographically less than @a __y.
1623 *
1624 * This is a total ordering relation. It is linear in the size of the
1625 * lists. The elements must be comparable with @c <.
1626 *
1627 * See std::lexicographical_compare() for how the determination is made.
1628 */
1629 template<typename _Tp, typename _Alloc>
1630 inline bool
1631 operator<(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y)
1632 { return std::lexicographical_compare(__x.begin(), __x.end(),
1633 __y.begin(), __y.end()); }
1634
1635 /// Based on operator==
1636 template<typename _Tp, typename _Alloc>
1637 inline bool
1638 operator!=(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y)
1639 { return !(__x == __y); }
1640
1641 /// Based on operator<
1642 template<typename _Tp, typename _Alloc>
1643 inline bool
1644 operator>(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y)
1645 { return __y < __x; }
1646
1647 /// Based on operator<
1648 template<typename _Tp, typename _Alloc>
1649 inline bool
1650 operator<=(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y)
1651 { return !(__y < __x); }
1652
1653 /// Based on operator<
1654 template<typename _Tp, typename _Alloc>
1655 inline bool
1656 operator>=(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y)
1657 { return !(__x < __y); }
1658
1659 /// See std::list::swap().
1660 template<typename _Tp, typename _Alloc>
1661 inline void
1662 swap(list<_Tp, _Alloc>& __x, list<_Tp, _Alloc>& __y)
1663 { __x.swap(__y); }
1664
1665_GLIBCXX_END_NAMESPACE_CONTAINER
1666} // namespace std
1667
1668#endif /* _STL_LIST_H */
1669