1// Set implementation -*- C++ -*-
2
3// Copyright (C) 2001-2013 Free Software Foundation, Inc.
4//
5// This file is part of the GNU ISO C++ Library. This library is free
6// software; you can redistribute it and/or modify it under the
7// terms of the GNU General Public License as published by the
8// Free Software Foundation; either version 3, or (at your option)
9// any later version.
10
11// This library is distributed in the hope that it will be useful,
12// but WITHOUT ANY WARRANTY; without even the implied warranty of
13// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14// GNU General Public License for more details.
15
16// Under Section 7 of GPL version 3, you are granted additional
17// permissions described in the GCC Runtime Library Exception, version
18// 3.1, as published by the Free Software Foundation.
19
20// You should have received a copy of the GNU General Public License and
21// a copy of the GCC Runtime Library Exception along with this program;
22// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23// <http://www.gnu.org/licenses/>.
24
25/*
26 *
27 * Copyright (c) 1994
28 * Hewlett-Packard Company
29 *
30 * Permission to use, copy, modify, distribute and sell this software
31 * and its documentation for any purpose is hereby granted without fee,
32 * provided that the above copyright notice appear in all copies and
33 * that both that copyright notice and this permission notice appear
34 * in supporting documentation. Hewlett-Packard Company makes no
35 * representations about the suitability of this software for any
36 * purpose. It is provided "as is" without express or implied warranty.
37 *
38 *
39 * Copyright (c) 1996,1997
40 * Silicon Graphics Computer Systems, Inc.
41 *
42 * Permission to use, copy, modify, distribute and sell this software
43 * and its documentation for any purpose is hereby granted without fee,
44 * provided that the above copyright notice appear in all copies and
45 * that both that copyright notice and this permission notice appear
46 * in supporting documentation. Silicon Graphics makes no
47 * representations about the suitability of this software for any
48 * purpose. It is provided "as is" without express or implied warranty.
49 */
50
51/** @file bits/stl_set.h
52 * This is an internal header file, included by other library headers.
53 * Do not attempt to use it directly. @headername{set}
54 */
55
56#ifndef _STL_SET_H
57#define _STL_SET_H 1
58
59#include <bits/concept_check.h>
60#if __cplusplus >= 201103L
61#include <initializer_list>
62#endif
63
64namespace std _GLIBCXX_VISIBILITY(default)
65{
66_GLIBCXX_BEGIN_NAMESPACE_CONTAINER
67
68 /**
69 * @brief A standard container made up of unique keys, which can be
70 * retrieved in logarithmic time.
71 *
72 * @ingroup associative_containers
73 *
74 * @tparam _Key Type of key objects.
75 * @tparam _Compare Comparison function object type, defaults to less<_Key>.
76 * @tparam _Alloc Allocator type, defaults to allocator<_Key>.
77 *
78 * Meets the requirements of a <a href="tables.html#65">container</a>, a
79 * <a href="tables.html#66">reversible container</a>, and an
80 * <a href="tables.html#69">associative container</a> (using unique keys).
81 *
82 * Sets support bidirectional iterators.
83 *
84 * The private tree data is declared exactly the same way for set and
85 * multiset; the distinction is made entirely in how the tree functions are
86 * called (*_unique versus *_equal, same as the standard).
87 */
88 template<typename _Key, typename _Compare = std::less<_Key>,
89 typename _Alloc = std::allocator<_Key> >
90 class set
91 {
92 // concept requirements
93 typedef typename _Alloc::value_type _Alloc_value_type;
94 __glibcxx_class_requires(_Key, _SGIAssignableConcept)
95 __glibcxx_class_requires4(_Compare, bool, _Key, _Key,
96 _BinaryFunctionConcept)
97 __glibcxx_class_requires2(_Key, _Alloc_value_type, _SameTypeConcept)
98
99 public:
100 // typedefs:
101 //@{
102 /// Public typedefs.
103 typedef _Key key_type;
104 typedef _Key value_type;
105 typedef _Compare key_compare;
106 typedef _Compare value_compare;
107 typedef _Alloc allocator_type;
108 //@}
109
110 private:
111 typedef typename _Alloc::template rebind<_Key>::other _Key_alloc_type;
112
113 typedef _Rb_tree<key_type, value_type, _Identity<value_type>,
114 key_compare, _Key_alloc_type> _Rep_type;
115 _Rep_type _M_t; // Red-black tree representing set.
116
117 public:
118 //@{
119 /// Iterator-related typedefs.
120 typedef typename _Key_alloc_type::pointer pointer;
121 typedef typename _Key_alloc_type::const_pointer const_pointer;
122 typedef typename _Key_alloc_type::reference reference;
123 typedef typename _Key_alloc_type::const_reference const_reference;
124 // _GLIBCXX_RESOLVE_LIB_DEFECTS
125 // DR 103. set::iterator is required to be modifiable,
126 // but this allows modification of keys.
127 typedef typename _Rep_type::const_iterator iterator;
128 typedef typename _Rep_type::const_iterator const_iterator;
129 typedef typename _Rep_type::const_reverse_iterator reverse_iterator;
130 typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator;
131 typedef typename _Rep_type::size_type size_type;
132 typedef typename _Rep_type::difference_type difference_type;
133 //@}
134
135 // allocation/deallocation
136 /**
137 * @brief Default constructor creates no elements.
138 */
139 set()
140 : _M_t() { }
141
142 /**
143 * @brief Creates a %set with no elements.
144 * @param __comp Comparator to use.
145 * @param __a An allocator object.
146 */
147 explicit
148 set(const _Compare& __comp,
149 const allocator_type& __a = allocator_type())
150 : _M_t(__comp, _Key_alloc_type(__a)) { }
151
152 /**
153 * @brief Builds a %set from a range.
154 * @param __first An input iterator.
155 * @param __last An input iterator.
156 *
157 * Create a %set consisting of copies of the elements from
158 * [__first,__last). This is linear in N if the range is
159 * already sorted, and NlogN otherwise (where N is
160 * distance(__first,__last)).
161 */
162 template<typename _InputIterator>
163 set(_InputIterator __first, _InputIterator __last)
164 : _M_t()
165 { _M_t._M_insert_unique(__first, __last); }
166
167 /**
168 * @brief Builds a %set from a range.
169 * @param __first An input iterator.
170 * @param __last An input iterator.
171 * @param __comp A comparison functor.
172 * @param __a An allocator object.
173 *
174 * Create a %set consisting of copies of the elements from
175 * [__first,__last). This is linear in N if the range is
176 * already sorted, and NlogN otherwise (where N is
177 * distance(__first,__last)).
178 */
179 template<typename _InputIterator>
180 set(_InputIterator __first, _InputIterator __last,
181 const _Compare& __comp,
182 const allocator_type& __a = allocator_type())
183 : _M_t(__comp, _Key_alloc_type(__a))
184 { _M_t._M_insert_unique(__first, __last); }
185
186 /**
187 * @brief %Set copy constructor.
188 * @param __x A %set of identical element and allocator types.
189 *
190 * The newly-created %set uses a copy of the allocation object used
191 * by @a __x.
192 */
193 set(const set& __x)
194 : _M_t(__x._M_t) { }
195
196#if __cplusplus >= 201103L
197 /**
198 * @brief %Set move constructor
199 * @param __x A %set of identical element and allocator types.
200 *
201 * The newly-created %set contains the exact contents of @a x.
202 * The contents of @a x are a valid, but unspecified %set.
203 */
204 set(set&& __x)
205 noexcept(is_nothrow_copy_constructible<_Compare>::value)
206 : _M_t(std::move(__x._M_t)) { }
207
208 /**
209 * @brief Builds a %set from an initializer_list.
210 * @param __l An initializer_list.
211 * @param __comp A comparison functor.
212 * @param __a An allocator object.
213 *
214 * Create a %set consisting of copies of the elements in the list.
215 * This is linear in N if the list is already sorted, and NlogN
216 * otherwise (where N is @a __l.size()).
217 */
218 set(initializer_list<value_type> __l,
219 const _Compare& __comp = _Compare(),
220 const allocator_type& __a = allocator_type())
221 : _M_t(__comp, _Key_alloc_type(__a))
222 { _M_t._M_insert_unique(__l.begin(), __l.end()); }
223#endif
224
225 /**
226 * @brief %Set assignment operator.
227 * @param __x A %set of identical element and allocator types.
228 *
229 * All the elements of @a __x are copied, but unlike the copy
230 * constructor, the allocator object is not copied.
231 */
232 set&
233 operator=(const set& __x)
234 {
235 _M_t = __x._M_t;
236 return *this;
237 }
238
239#if __cplusplus >= 201103L
240 /**
241 * @brief %Set move assignment operator.
242 * @param __x A %set of identical element and allocator types.
243 *
244 * The contents of @a __x are moved into this %set (without copying).
245 * @a __x is a valid, but unspecified %set.
246 */
247 set&
248 operator=(set&& __x)
249 {
250 // NB: DR 1204.
251 // NB: DR 675.
252 this->clear();
253 this->swap(__x);
254 return *this;
255 }
256
257 /**
258 * @brief %Set list assignment operator.
259 * @param __l An initializer_list.
260 *
261 * This function fills a %set with copies of the elements in the
262 * initializer list @a __l.
263 *
264 * Note that the assignment completely changes the %set and
265 * that the resulting %set's size is the same as the number
266 * of elements assigned. Old data may be lost.
267 */
268 set&
269 operator=(initializer_list<value_type> __l)
270 {
271 this->clear();
272 this->insert(__l.begin(), __l.end());
273 return *this;
274 }
275#endif
276
277 // accessors:
278
279 /// Returns the comparison object with which the %set was constructed.
280 key_compare
281 key_comp() const
282 { return _M_t.key_comp(); }
283 /// Returns the comparison object with which the %set was constructed.
284 value_compare
285 value_comp() const
286 { return _M_t.key_comp(); }
287 /// Returns the allocator object with which the %set was constructed.
288 allocator_type
289 get_allocator() const _GLIBCXX_NOEXCEPT
290 { return allocator_type(_M_t.get_allocator()); }
291
292 /**
293 * Returns a read-only (constant) iterator that points to the first
294 * element in the %set. Iteration is done in ascending order according
295 * to the keys.
296 */
297 iterator
298 begin() const _GLIBCXX_NOEXCEPT
299 { return _M_t.begin(); }
300
301 /**
302 * Returns a read-only (constant) iterator that points one past the last
303 * element in the %set. Iteration is done in ascending order according
304 * to the keys.
305 */
306 iterator
307 end() const _GLIBCXX_NOEXCEPT
308 { return _M_t.end(); }
309
310 /**
311 * Returns a read-only (constant) iterator that points to the last
312 * element in the %set. Iteration is done in descending order according
313 * to the keys.
314 */
315 reverse_iterator
316 rbegin() const _GLIBCXX_NOEXCEPT
317 { return _M_t.rbegin(); }
318
319 /**
320 * Returns a read-only (constant) reverse iterator that points to the
321 * last pair in the %set. Iteration is done in descending order
322 * according to the keys.
323 */
324 reverse_iterator
325 rend() const _GLIBCXX_NOEXCEPT
326 { return _M_t.rend(); }
327
328#if __cplusplus >= 201103L
329 /**
330 * Returns a read-only (constant) iterator that points to the first
331 * element in the %set. Iteration is done in ascending order according
332 * to the keys.
333 */
334 iterator
335 cbegin() const noexcept
336 { return _M_t.begin(); }
337
338 /**
339 * Returns a read-only (constant) iterator that points one past the last
340 * element in the %set. Iteration is done in ascending order according
341 * to the keys.
342 */
343 iterator
344 cend() const noexcept
345 { return _M_t.end(); }
346
347 /**
348 * Returns a read-only (constant) iterator that points to the last
349 * element in the %set. Iteration is done in descending order according
350 * to the keys.
351 */
352 reverse_iterator
353 crbegin() const noexcept
354 { return _M_t.rbegin(); }
355
356 /**
357 * Returns a read-only (constant) reverse iterator that points to the
358 * last pair in the %set. Iteration is done in descending order
359 * according to the keys.
360 */
361 reverse_iterator
362 crend() const noexcept
363 { return _M_t.rend(); }
364#endif
365
366 /// Returns true if the %set is empty.
367 bool
368 empty() const _GLIBCXX_NOEXCEPT
369 { return _M_t.empty(); }
370
371 /// Returns the size of the %set.
372 size_type
373 size() const _GLIBCXX_NOEXCEPT
374 { return _M_t.size(); }
375
376 /// Returns the maximum size of the %set.
377 size_type
378 max_size() const _GLIBCXX_NOEXCEPT
379 { return _M_t.max_size(); }
380
381 /**
382 * @brief Swaps data with another %set.
383 * @param __x A %set of the same element and allocator types.
384 *
385 * This exchanges the elements between two sets in constant
386 * time. (It is only swapping a pointer, an integer, and an
387 * instance of the @c Compare type (which itself is often
388 * stateless and empty), so it should be quite fast.) Note
389 * that the global std::swap() function is specialized such
390 * that std::swap(s1,s2) will feed to this function.
391 */
392 void
393 swap(set& __x)
394 { _M_t.swap(__x._M_t); }
395
396 // insert/erase
397#if __cplusplus >= 201103L
398 /**
399 * @brief Attempts to build and insert an element into the %set.
400 * @param __args Arguments used to generate an element.
401 * @return A pair, of which the first element is an iterator that points
402 * to the possibly inserted element, and the second is a bool
403 * that is true if the element was actually inserted.
404 *
405 * This function attempts to build and insert an element into the %set.
406 * A %set relies on unique keys and thus an element is only inserted if
407 * it is not already present in the %set.
408 *
409 * Insertion requires logarithmic time.
410 */
411 template<typename... _Args>
412 std::pair<iterator, bool>
413 emplace(_Args&&... __args)
414 { return _M_t._M_emplace_unique(std::forward<_Args>(__args)...); }
415
416 /**
417 * @brief Attempts to insert an element into the %set.
418 * @param __pos An iterator that serves as a hint as to where the
419 * element should be inserted.
420 * @param __args Arguments used to generate the element to be
421 * inserted.
422 * @return An iterator that points to the element with key equivalent to
423 * the one generated from @a __args (may or may not be the
424 * element itself).
425 *
426 * This function is not concerned about whether the insertion took place,
427 * and thus does not return a boolean like the single-argument emplace()
428 * does. Note that the first parameter is only a hint and can
429 * potentially improve the performance of the insertion process. A bad
430 * hint would cause no gains in efficiency.
431 *
432 * For more on @a hinting, see:
433 * http://gcc.gnu.org/onlinedocs/libstdc++/manual/bk01pt07ch17.html
434 *
435 * Insertion requires logarithmic time (if the hint is not taken).
436 */
437 template<typename... _Args>
438 iterator
439 emplace_hint(const_iterator __pos, _Args&&... __args)
440 {
441 return _M_t._M_emplace_hint_unique(__pos,
442 std::forward<_Args>(__args)...);
443 }
444#endif
445
446 /**
447 * @brief Attempts to insert an element into the %set.
448 * @param __x Element to be inserted.
449 * @return A pair, of which the first element is an iterator that points
450 * to the possibly inserted element, and the second is a bool
451 * that is true if the element was actually inserted.
452 *
453 * This function attempts to insert an element into the %set. A %set
454 * relies on unique keys and thus an element is only inserted if it is
455 * not already present in the %set.
456 *
457 * Insertion requires logarithmic time.
458 */
459 std::pair<iterator, bool>
460 insert(const value_type& __x)
461 {
462 std::pair<typename _Rep_type::iterator, bool> __p =
463 _M_t._M_insert_unique(__x);
464 return std::pair<iterator, bool>(__p.first, __p.second);
465 }
466
467#if __cplusplus >= 201103L
468 std::pair<iterator, bool>
469 insert(value_type&& __x)
470 {
471 std::pair<typename _Rep_type::iterator, bool> __p =
472 _M_t._M_insert_unique(std::move(__x));
473 return std::pair<iterator, bool>(__p.first, __p.second);
474 }
475#endif
476
477 /**
478 * @brief Attempts to insert an element into the %set.
479 * @param __position An iterator that serves as a hint as to where the
480 * element should be inserted.
481 * @param __x Element to be inserted.
482 * @return An iterator that points to the element with key of
483 * @a __x (may or may not be the element passed in).
484 *
485 * This function is not concerned about whether the insertion took place,
486 * and thus does not return a boolean like the single-argument insert()
487 * does. Note that the first parameter is only a hint and can
488 * potentially improve the performance of the insertion process. A bad
489 * hint would cause no gains in efficiency.
490 *
491 * For more on @a hinting, see:
492 * http://gcc.gnu.org/onlinedocs/libstdc++/manual/bk01pt07ch17.html
493 *
494 * Insertion requires logarithmic time (if the hint is not taken).
495 */
496 iterator
497 insert(const_iterator __position, const value_type& __x)
498 { return _M_t._M_insert_unique_(__position, __x); }
499
500#if __cplusplus >= 201103L
501 iterator
502 insert(const_iterator __position, value_type&& __x)
503 { return _M_t._M_insert_unique_(__position, std::move(__x)); }
504#endif
505
506 /**
507 * @brief A template function that attempts to insert a range
508 * of elements.
509 * @param __first Iterator pointing to the start of the range to be
510 * inserted.
511 * @param __last Iterator pointing to the end of the range.
512 *
513 * Complexity similar to that of the range constructor.
514 */
515 template<typename _InputIterator>
516 void
517 insert(_InputIterator __first, _InputIterator __last)
518 { _M_t._M_insert_unique(__first, __last); }
519
520#if __cplusplus >= 201103L
521 /**
522 * @brief Attempts to insert a list of elements into the %set.
523 * @param __l A std::initializer_list<value_type> of elements
524 * to be inserted.
525 *
526 * Complexity similar to that of the range constructor.
527 */
528 void
529 insert(initializer_list<value_type> __l)
530 { this->insert(__l.begin(), __l.end()); }
531#endif
532
533#if __cplusplus >= 201103L
534 // _GLIBCXX_RESOLVE_LIB_DEFECTS
535 // DR 130. Associative erase should return an iterator.
536 /**
537 * @brief Erases an element from a %set.
538 * @param __position An iterator pointing to the element to be erased.
539 * @return An iterator pointing to the element immediately following
540 * @a __position prior to the element being erased. If no such
541 * element exists, end() is returned.
542 *
543 * This function erases an element, pointed to by the given iterator,
544 * from a %set. Note that this function only erases the element, and
545 * that if the element is itself a pointer, the pointed-to memory is not
546 * touched in any way. Managing the pointer is the user's
547 * responsibility.
548 */
549 _GLIBCXX_ABI_TAG_CXX11
550 iterator
551 erase(const_iterator __position)
552 { return _M_t.erase(__position); }
553#else
554 /**
555 * @brief Erases an element from a %set.
556 * @param position An iterator pointing to the element to be erased.
557 *
558 * This function erases an element, pointed to by the given iterator,
559 * from a %set. Note that this function only erases the element, and
560 * that if the element is itself a pointer, the pointed-to memory is not
561 * touched in any way. Managing the pointer is the user's
562 * responsibility.
563 */
564 void
565 erase(iterator __position)
566 { _M_t.erase(__position); }
567#endif
568
569 /**
570 * @brief Erases elements according to the provided key.
571 * @param __x Key of element to be erased.
572 * @return The number of elements erased.
573 *
574 * This function erases all the elements located by the given key from
575 * a %set.
576 * Note that this function only erases the element, and that if
577 * the element is itself a pointer, the pointed-to memory is not touched
578 * in any way. Managing the pointer is the user's responsibility.
579 */
580 size_type
581 erase(const key_type& __x)
582 { return _M_t.erase(__x); }
583
584#if __cplusplus >= 201103L
585 // _GLIBCXX_RESOLVE_LIB_DEFECTS
586 // DR 130. Associative erase should return an iterator.
587 /**
588 * @brief Erases a [__first,__last) range of elements from a %set.
589 * @param __first Iterator pointing to the start of the range to be
590 * erased.
591
592 * @param __last Iterator pointing to the end of the range to
593 * be erased.
594 * @return The iterator @a __last.
595 *
596 * This function erases a sequence of elements from a %set.
597 * Note that this function only erases the element, and that if
598 * the element is itself a pointer, the pointed-to memory is not touched
599 * in any way. Managing the pointer is the user's responsibility.
600 */
601 _GLIBCXX_ABI_TAG_CXX11
602 iterator
603 erase(const_iterator __first, const_iterator __last)
604 { return _M_t.erase(__first, __last); }
605#else
606 /**
607 * @brief Erases a [first,last) range of elements from a %set.
608 * @param __first Iterator pointing to the start of the range to be
609 * erased.
610 * @param __last Iterator pointing to the end of the range to
611 * be erased.
612 *
613 * This function erases a sequence of elements from a %set.
614 * Note that this function only erases the element, and that if
615 * the element is itself a pointer, the pointed-to memory is not touched
616 * in any way. Managing the pointer is the user's responsibility.
617 */
618 void
619 erase(iterator __first, iterator __last)
620 { _M_t.erase(__first, __last); }
621#endif
622
623 /**
624 * Erases all elements in a %set. Note that this function only erases
625 * the elements, and that if the elements themselves are pointers, the
626 * pointed-to memory is not touched in any way. Managing the pointer is
627 * the user's responsibility.
628 */
629 void
630 clear() _GLIBCXX_NOEXCEPT
631 { _M_t.clear(); }
632
633 // set operations:
634
635 /**
636 * @brief Finds the number of elements.
637 * @param __x Element to located.
638 * @return Number of elements with specified key.
639 *
640 * This function only makes sense for multisets; for set the result will
641 * either be 0 (not present) or 1 (present).
642 */
643 size_type
644 count(const key_type& __x) const
645 { return _M_t.find(__x) == _M_t.end() ? 0 : 1; }
646
647 // _GLIBCXX_RESOLVE_LIB_DEFECTS
648 // 214. set::find() missing const overload
649 //@{
650 /**
651 * @brief Tries to locate an element in a %set.
652 * @param __x Element to be located.
653 * @return Iterator pointing to sought-after element, or end() if not
654 * found.
655 *
656 * This function takes a key and tries to locate the element with which
657 * the key matches. If successful the function returns an iterator
658 * pointing to the sought after element. If unsuccessful it returns the
659 * past-the-end ( @c end() ) iterator.
660 */
661 iterator
662 find(const key_type& __x)
663 { return _M_t.find(__x); }
664
665 const_iterator
666 find(const key_type& __x) const
667 { return _M_t.find(__x); }
668 //@}
669
670 //@{
671 /**
672 * @brief Finds the beginning of a subsequence matching given key.
673 * @param __x Key to be located.
674 * @return Iterator pointing to first element equal to or greater
675 * than key, or end().
676 *
677 * This function returns the first element of a subsequence of elements
678 * that matches the given key. If unsuccessful it returns an iterator
679 * pointing to the first element that has a greater value than given key
680 * or end() if no such element exists.
681 */
682 iterator
683 lower_bound(const key_type& __x)
684 { return _M_t.lower_bound(__x); }
685
686 const_iterator
687 lower_bound(const key_type& __x) const
688 { return _M_t.lower_bound(__x); }
689 //@}
690
691 //@{
692 /**
693 * @brief Finds the end of a subsequence matching given key.
694 * @param __x Key to be located.
695 * @return Iterator pointing to the first element
696 * greater than key, or end().
697 */
698 iterator
699 upper_bound(const key_type& __x)
700 { return _M_t.upper_bound(__x); }
701
702 const_iterator
703 upper_bound(const key_type& __x) const
704 { return _M_t.upper_bound(__x); }
705 //@}
706
707 //@{
708 /**
709 * @brief Finds a subsequence matching given key.
710 * @param __x Key to be located.
711 * @return Pair of iterators that possibly points to the subsequence
712 * matching given key.
713 *
714 * This function is equivalent to
715 * @code
716 * std::make_pair(c.lower_bound(val),
717 * c.upper_bound(val))
718 * @endcode
719 * (but is faster than making the calls separately).
720 *
721 * This function probably only makes sense for multisets.
722 */
723 std::pair<iterator, iterator>
724 equal_range(const key_type& __x)
725 { return _M_t.equal_range(__x); }
726
727 std::pair<const_iterator, const_iterator>
728 equal_range(const key_type& __x) const
729 { return _M_t.equal_range(__x); }
730 //@}
731
732 template<typename _K1, typename _C1, typename _A1>
733 friend bool
734 operator==(const set<_K1, _C1, _A1>&, const set<_K1, _C1, _A1>&);
735
736 template<typename _K1, typename _C1, typename _A1>
737 friend bool
738 operator<(const set<_K1, _C1, _A1>&, const set<_K1, _C1, _A1>&);
739 };
740
741
742 /**
743 * @brief Set equality comparison.
744 * @param __x A %set.
745 * @param __y A %set of the same type as @a x.
746 * @return True iff the size and elements of the sets are equal.
747 *
748 * This is an equivalence relation. It is linear in the size of the sets.
749 * Sets are considered equivalent if their sizes are equal, and if
750 * corresponding elements compare equal.
751 */
752 template<typename _Key, typename _Compare, typename _Alloc>
753 inline bool
754 operator==(const set<_Key, _Compare, _Alloc>& __x,
755 const set<_Key, _Compare, _Alloc>& __y)
756 { return __x._M_t == __y._M_t; }
757
758 /**
759 * @brief Set ordering relation.
760 * @param __x A %set.
761 * @param __y A %set of the same type as @a x.
762 * @return True iff @a __x is lexicographically less than @a __y.
763 *
764 * This is a total ordering relation. It is linear in the size of the
765 * maps. The elements must be comparable with @c <.
766 *
767 * See std::lexicographical_compare() for how the determination is made.
768 */
769 template<typename _Key, typename _Compare, typename _Alloc>
770 inline bool
771 operator<(const set<_Key, _Compare, _Alloc>& __x,
772 const set<_Key, _Compare, _Alloc>& __y)
773 { return __x._M_t < __y._M_t; }
774
775 /// Returns !(x == y).
776 template<typename _Key, typename _Compare, typename _Alloc>
777 inline bool
778 operator!=(const set<_Key, _Compare, _Alloc>& __x,
779 const set<_Key, _Compare, _Alloc>& __y)
780 { return !(__x == __y); }
781
782 /// Returns y < x.
783 template<typename _Key, typename _Compare, typename _Alloc>
784 inline bool
785 operator>(const set<_Key, _Compare, _Alloc>& __x,
786 const set<_Key, _Compare, _Alloc>& __y)
787 { return __y < __x; }
788
789 /// Returns !(y < x)
790 template<typename _Key, typename _Compare, typename _Alloc>
791 inline bool
792 operator<=(const set<_Key, _Compare, _Alloc>& __x,
793 const set<_Key, _Compare, _Alloc>& __y)
794 { return !(__y < __x); }
795
796 /// Returns !(x < y)
797 template<typename _Key, typename _Compare, typename _Alloc>
798 inline bool
799 operator>=(const set<_Key, _Compare, _Alloc>& __x,
800 const set<_Key, _Compare, _Alloc>& __y)
801 { return !(__x < __y); }
802
803 /// See std::set::swap().
804 template<typename _Key, typename _Compare, typename _Alloc>
805 inline void
806 swap(set<_Key, _Compare, _Alloc>& __x, set<_Key, _Compare, _Alloc>& __y)
807 { __x.swap(__y); }
808
809_GLIBCXX_END_NAMESPACE_CONTAINER
810} //namespace std
811#endif /* _STL_SET_H */
812