Warning: That file was not part of the compilation database. It may have many parsing errors.
1 | //===- llvm/ADT/DenseMap.h - Dense probed hash table ------------*- C++ -*-===// |
---|---|
2 | // |
3 | // The LLVM Compiler Infrastructure |
4 | // |
5 | // This file is distributed under the University of Illinois Open Source |
6 | // License. See LICENSE.TXT for details. |
7 | // |
8 | //===----------------------------------------------------------------------===// |
9 | // |
10 | // This file defines the DenseMap class. |
11 | // |
12 | //===----------------------------------------------------------------------===// |
13 | |
14 | #ifndef LLVM_ADT_DENSEMAP_H |
15 | #define LLVM_ADT_DENSEMAP_H |
16 | |
17 | #include "llvm/ADT/DenseMapInfo.h" |
18 | #include "llvm/ADT/EpochTracker.h" |
19 | #include "llvm/Support/AlignOf.h" |
20 | #include "llvm/Support/Compiler.h" |
21 | #include "llvm/Support/MathExtras.h" |
22 | #include "llvm/Support/ReverseIteration.h" |
23 | #include "llvm/Support/type_traits.h" |
24 | #include <algorithm> |
25 | #include <cassert> |
26 | #include <cstddef> |
27 | #include <cstring> |
28 | #include <iterator> |
29 | #include <new> |
30 | #include <type_traits> |
31 | #include <utility> |
32 | |
33 | namespace llvm { |
34 | |
35 | namespace detail { |
36 | |
37 | // We extend a pair to allow users to override the bucket type with their own |
38 | // implementation without requiring two members. |
39 | template <typename KeyT, typename ValueT> |
40 | struct DenseMapPair : public std::pair<KeyT, ValueT> { |
41 | KeyT &getFirst() { return std::pair<KeyT, ValueT>::first; } |
42 | const KeyT &getFirst() const { return std::pair<KeyT, ValueT>::first; } |
43 | ValueT &getSecond() { return std::pair<KeyT, ValueT>::second; } |
44 | const ValueT &getSecond() const { return std::pair<KeyT, ValueT>::second; } |
45 | }; |
46 | |
47 | } // end namespace detail |
48 | |
49 | template < |
50 | typename KeyT, typename ValueT, typename KeyInfoT = DenseMapInfo<KeyT>, |
51 | typename Bucket = detail::DenseMapPair<KeyT, ValueT>, bool IsConst = false> |
52 | class DenseMapIterator; |
53 | |
54 | template <typename DerivedT, typename KeyT, typename ValueT, typename KeyInfoT, |
55 | typename BucketT> |
56 | class DenseMapBase : public DebugEpochBase { |
57 | template <typename T> |
58 | using const_arg_type_t = typename const_pointer_or_const_ref<T>::type; |
59 | |
60 | public: |
61 | using size_type = unsigned; |
62 | using key_type = KeyT; |
63 | using mapped_type = ValueT; |
64 | using value_type = BucketT; |
65 | |
66 | using iterator = DenseMapIterator<KeyT, ValueT, KeyInfoT, BucketT>; |
67 | using const_iterator = |
68 | DenseMapIterator<KeyT, ValueT, KeyInfoT, BucketT, true>; |
69 | |
70 | inline iterator begin() { |
71 | // When the map is empty, avoid the overhead of advancing/retreating past |
72 | // empty buckets. |
73 | if (empty()) |
74 | return end(); |
75 | if (shouldReverseIterate<KeyT>()) |
76 | return makeIterator(getBucketsEnd() - 1, getBuckets(), *this); |
77 | return makeIterator(getBuckets(), getBucketsEnd(), *this); |
78 | } |
79 | inline iterator end() { |
80 | return makeIterator(getBucketsEnd(), getBucketsEnd(), *this, true); |
81 | } |
82 | inline const_iterator begin() const { |
83 | if (empty()) |
84 | return end(); |
85 | if (shouldReverseIterate<KeyT>()) |
86 | return makeConstIterator(getBucketsEnd() - 1, getBuckets(), *this); |
87 | return makeConstIterator(getBuckets(), getBucketsEnd(), *this); |
88 | } |
89 | inline const_iterator end() const { |
90 | return makeConstIterator(getBucketsEnd(), getBucketsEnd(), *this, true); |
91 | } |
92 | |
93 | LLVM_NODISCARD bool empty() const { |
94 | return getNumEntries() == 0; |
95 | } |
96 | unsigned size() const { return getNumEntries(); } |
97 | |
98 | /// Grow the densemap so that it can contain at least \p NumEntries items |
99 | /// before resizing again. |
100 | void reserve(size_type NumEntries) { |
101 | auto NumBuckets = getMinBucketToReserveForEntries(NumEntries); |
102 | incrementEpoch(); |
103 | if (NumBuckets > getNumBuckets()) |
104 | grow(NumBuckets); |
105 | } |
106 | |
107 | void clear() { |
108 | incrementEpoch(); |
109 | if (getNumEntries() == 0 && getNumTombstones() == 0) return; |
110 | |
111 | // If the capacity of the array is huge, and the # elements used is small, |
112 | // shrink the array. |
113 | if (getNumEntries() * 4 < getNumBuckets() && getNumBuckets() > 64) { |
114 | shrink_and_clear(); |
115 | return; |
116 | } |
117 | |
118 | const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey(); |
119 | if (isPodLike<KeyT>::value && isPodLike<ValueT>::value) { |
120 | // Use a simpler loop when these are trivial types. |
121 | for (BucketT *P = getBuckets(), *E = getBucketsEnd(); P != E; ++P) |
122 | P->getFirst() = EmptyKey; |
123 | } else { |
124 | unsigned NumEntries = getNumEntries(); |
125 | for (BucketT *P = getBuckets(), *E = getBucketsEnd(); P != E; ++P) { |
126 | if (!KeyInfoT::isEqual(P->getFirst(), EmptyKey)) { |
127 | if (!KeyInfoT::isEqual(P->getFirst(), TombstoneKey)) { |
128 | P->getSecond().~ValueT(); |
129 | --NumEntries; |
130 | } |
131 | P->getFirst() = EmptyKey; |
132 | } |
133 | } |
134 | assert(NumEntries == 0 && "Node count imbalance!"); |
135 | } |
136 | setNumEntries(0); |
137 | setNumTombstones(0); |
138 | } |
139 | |
140 | /// Return 1 if the specified key is in the map, 0 otherwise. |
141 | size_type count(const_arg_type_t<KeyT> Val) const { |
142 | const BucketT *TheBucket; |
143 | return LookupBucketFor(Val, TheBucket) ? 1 : 0; |
144 | } |
145 | |
146 | iterator find(const_arg_type_t<KeyT> Val) { |
147 | BucketT *TheBucket; |
148 | if (LookupBucketFor(Val, TheBucket)) |
149 | return makeIterator(TheBucket, getBucketsEnd(), *this, true); |
150 | return end(); |
151 | } |
152 | const_iterator find(const_arg_type_t<KeyT> Val) const { |
153 | const BucketT *TheBucket; |
154 | if (LookupBucketFor(Val, TheBucket)) |
155 | return makeConstIterator(TheBucket, getBucketsEnd(), *this, true); |
156 | return end(); |
157 | } |
158 | |
159 | /// Alternate version of find() which allows a different, and possibly |
160 | /// less expensive, key type. |
161 | /// The DenseMapInfo is responsible for supplying methods |
162 | /// getHashValue(LookupKeyT) and isEqual(LookupKeyT, KeyT) for each key |
163 | /// type used. |
164 | template<class LookupKeyT> |
165 | iterator find_as(const LookupKeyT &Val) { |
166 | BucketT *TheBucket; |
167 | if (LookupBucketFor(Val, TheBucket)) |
168 | return makeIterator(TheBucket, getBucketsEnd(), *this, true); |
169 | return end(); |
170 | } |
171 | template<class LookupKeyT> |
172 | const_iterator find_as(const LookupKeyT &Val) const { |
173 | const BucketT *TheBucket; |
174 | if (LookupBucketFor(Val, TheBucket)) |
175 | return makeConstIterator(TheBucket, getBucketsEnd(), *this, true); |
176 | return end(); |
177 | } |
178 | |
179 | /// lookup - Return the entry for the specified key, or a default |
180 | /// constructed value if no such entry exists. |
181 | ValueT lookup(const_arg_type_t<KeyT> Val) const { |
182 | const BucketT *TheBucket; |
183 | if (LookupBucketFor(Val, TheBucket)) |
184 | return TheBucket->getSecond(); |
185 | return ValueT(); |
186 | } |
187 | |
188 | // Inserts key,value pair into the map if the key isn't already in the map. |
189 | // If the key is already in the map, it returns false and doesn't update the |
190 | // value. |
191 | std::pair<iterator, bool> insert(const std::pair<KeyT, ValueT> &KV) { |
192 | return try_emplace(KV.first, KV.second); |
193 | } |
194 | |
195 | // Inserts key,value pair into the map if the key isn't already in the map. |
196 | // If the key is already in the map, it returns false and doesn't update the |
197 | // value. |
198 | std::pair<iterator, bool> insert(std::pair<KeyT, ValueT> &&KV) { |
199 | return try_emplace(std::move(KV.first), std::move(KV.second)); |
200 | } |
201 | |
202 | // Inserts key,value pair into the map if the key isn't already in the map. |
203 | // The value is constructed in-place if the key is not in the map, otherwise |
204 | // it is not moved. |
205 | template <typename... Ts> |
206 | std::pair<iterator, bool> try_emplace(KeyT &&Key, Ts &&... Args) { |
207 | BucketT *TheBucket; |
208 | if (LookupBucketFor(Key, TheBucket)) |
209 | return std::make_pair( |
210 | makeIterator(TheBucket, getBucketsEnd(), *this, true), |
211 | false); // Already in map. |
212 | |
213 | // Otherwise, insert the new element. |
214 | TheBucket = |
215 | InsertIntoBucket(TheBucket, std::move(Key), std::forward<Ts>(Args)...); |
216 | return std::make_pair( |
217 | makeIterator(TheBucket, getBucketsEnd(), *this, true), |
218 | true); |
219 | } |
220 | |
221 | // Inserts key,value pair into the map if the key isn't already in the map. |
222 | // The value is constructed in-place if the key is not in the map, otherwise |
223 | // it is not moved. |
224 | template <typename... Ts> |
225 | std::pair<iterator, bool> try_emplace(const KeyT &Key, Ts &&... Args) { |
226 | BucketT *TheBucket; |
227 | if (LookupBucketFor(Key, TheBucket)) |
228 | return std::make_pair( |
229 | makeIterator(TheBucket, getBucketsEnd(), *this, true), |
230 | false); // Already in map. |
231 | |
232 | // Otherwise, insert the new element. |
233 | TheBucket = InsertIntoBucket(TheBucket, Key, std::forward<Ts>(Args)...); |
234 | return std::make_pair( |
235 | makeIterator(TheBucket, getBucketsEnd(), *this, true), |
236 | true); |
237 | } |
238 | |
239 | /// Alternate version of insert() which allows a different, and possibly |
240 | /// less expensive, key type. |
241 | /// The DenseMapInfo is responsible for supplying methods |
242 | /// getHashValue(LookupKeyT) and isEqual(LookupKeyT, KeyT) for each key |
243 | /// type used. |
244 | template <typename LookupKeyT> |
245 | std::pair<iterator, bool> insert_as(std::pair<KeyT, ValueT> &&KV, |
246 | const LookupKeyT &Val) { |
247 | BucketT *TheBucket; |
248 | if (LookupBucketFor(Val, TheBucket)) |
249 | return std::make_pair( |
250 | makeIterator(TheBucket, getBucketsEnd(), *this, true), |
251 | false); // Already in map. |
252 | |
253 | // Otherwise, insert the new element. |
254 | TheBucket = InsertIntoBucketWithLookup(TheBucket, std::move(KV.first), |
255 | std::move(KV.second), Val); |
256 | return std::make_pair( |
257 | makeIterator(TheBucket, getBucketsEnd(), *this, true), |
258 | true); |
259 | } |
260 | |
261 | /// insert - Range insertion of pairs. |
262 | template<typename InputIt> |
263 | void insert(InputIt I, InputIt E) { |
264 | for (; I != E; ++I) |
265 | insert(*I); |
266 | } |
267 | |
268 | bool erase(const KeyT &Val) { |
269 | BucketT *TheBucket; |
270 | if (!LookupBucketFor(Val, TheBucket)) |
271 | return false; // not in map. |
272 | |
273 | TheBucket->getSecond().~ValueT(); |
274 | TheBucket->getFirst() = getTombstoneKey(); |
275 | decrementNumEntries(); |
276 | incrementNumTombstones(); |
277 | return true; |
278 | } |
279 | void erase(iterator I) { |
280 | BucketT *TheBucket = &*I; |
281 | TheBucket->getSecond().~ValueT(); |
282 | TheBucket->getFirst() = getTombstoneKey(); |
283 | decrementNumEntries(); |
284 | incrementNumTombstones(); |
285 | } |
286 | |
287 | value_type& FindAndConstruct(const KeyT &Key) { |
288 | BucketT *TheBucket; |
289 | if (LookupBucketFor(Key, TheBucket)) |
290 | return *TheBucket; |
291 | |
292 | return *InsertIntoBucket(TheBucket, Key); |
293 | } |
294 | |
295 | ValueT &operator[](const KeyT &Key) { |
296 | return FindAndConstruct(Key).second; |
297 | } |
298 | |
299 | value_type& FindAndConstruct(KeyT &&Key) { |
300 | BucketT *TheBucket; |
301 | if (LookupBucketFor(Key, TheBucket)) |
302 | return *TheBucket; |
303 | |
304 | return *InsertIntoBucket(TheBucket, std::move(Key)); |
305 | } |
306 | |
307 | ValueT &operator[](KeyT &&Key) { |
308 | return FindAndConstruct(std::move(Key)).second; |
309 | } |
310 | |
311 | /// isPointerIntoBucketsArray - Return true if the specified pointer points |
312 | /// somewhere into the DenseMap's array of buckets (i.e. either to a key or |
313 | /// value in the DenseMap). |
314 | bool isPointerIntoBucketsArray(const void *Ptr) const { |
315 | return Ptr >= getBuckets() && Ptr < getBucketsEnd(); |
316 | } |
317 | |
318 | /// getPointerIntoBucketsArray() - Return an opaque pointer into the buckets |
319 | /// array. In conjunction with the previous method, this can be used to |
320 | /// determine whether an insertion caused the DenseMap to reallocate. |
321 | const void *getPointerIntoBucketsArray() const { return getBuckets(); } |
322 | |
323 | protected: |
324 | DenseMapBase() = default; |
325 | |
326 | void destroyAll() { |
327 | if (getNumBuckets() == 0) // Nothing to do. |
328 | return; |
329 | |
330 | const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey(); |
331 | for (BucketT *P = getBuckets(), *E = getBucketsEnd(); P != E; ++P) { |
332 | if (!KeyInfoT::isEqual(P->getFirst(), EmptyKey) && |
333 | !KeyInfoT::isEqual(P->getFirst(), TombstoneKey)) |
334 | P->getSecond().~ValueT(); |
335 | P->getFirst().~KeyT(); |
336 | } |
337 | } |
338 | |
339 | void initEmpty() { |
340 | setNumEntries(0); |
341 | setNumTombstones(0); |
342 | |
343 | assert((getNumBuckets() & (getNumBuckets()-1)) == 0 && |
344 | "# initial buckets must be a power of two!"); |
345 | const KeyT EmptyKey = getEmptyKey(); |
346 | for (BucketT *B = getBuckets(), *E = getBucketsEnd(); B != E; ++B) |
347 | ::new (&B->getFirst()) KeyT(EmptyKey); |
348 | } |
349 | |
350 | /// Returns the number of buckets to allocate to ensure that the DenseMap can |
351 | /// accommodate \p NumEntries without need to grow(). |
352 | unsigned getMinBucketToReserveForEntries(unsigned NumEntries) { |
353 | // Ensure that "NumEntries * 4 < NumBuckets * 3" |
354 | if (NumEntries == 0) |
355 | return 0; |
356 | // +1 is required because of the strict equality. |
357 | // For example if NumEntries is 48, we need to return 401. |
358 | return NextPowerOf2(NumEntries * 4 / 3 + 1); |
359 | } |
360 | |
361 | void moveFromOldBuckets(BucketT *OldBucketsBegin, BucketT *OldBucketsEnd) { |
362 | initEmpty(); |
363 | |
364 | // Insert all the old elements. |
365 | const KeyT EmptyKey = getEmptyKey(); |
366 | const KeyT TombstoneKey = getTombstoneKey(); |
367 | for (BucketT *B = OldBucketsBegin, *E = OldBucketsEnd; B != E; ++B) { |
368 | if (!KeyInfoT::isEqual(B->getFirst(), EmptyKey) && |
369 | !KeyInfoT::isEqual(B->getFirst(), TombstoneKey)) { |
370 | // Insert the key/value into the new table. |
371 | BucketT *DestBucket; |
372 | bool FoundVal = LookupBucketFor(B->getFirst(), DestBucket); |
373 | (void)FoundVal; // silence warning. |
374 | assert(!FoundVal && "Key already in new map?"); |
375 | DestBucket->getFirst() = std::move(B->getFirst()); |
376 | ::new (&DestBucket->getSecond()) ValueT(std::move(B->getSecond())); |
377 | incrementNumEntries(); |
378 | |
379 | // Free the value. |
380 | B->getSecond().~ValueT(); |
381 | } |
382 | B->getFirst().~KeyT(); |
383 | } |
384 | } |
385 | |
386 | template <typename OtherBaseT> |
387 | void copyFrom( |
388 | const DenseMapBase<OtherBaseT, KeyT, ValueT, KeyInfoT, BucketT> &other) { |
389 | assert(&other != this); |
390 | assert(getNumBuckets() == other.getNumBuckets()); |
391 | |
392 | setNumEntries(other.getNumEntries()); |
393 | setNumTombstones(other.getNumTombstones()); |
394 | |
395 | if (isPodLike<KeyT>::value && isPodLike<ValueT>::value) |
396 | memcpy(getBuckets(), other.getBuckets(), |
397 | getNumBuckets() * sizeof(BucketT)); |
398 | else |
399 | for (size_t i = 0; i < getNumBuckets(); ++i) { |
400 | ::new (&getBuckets()[i].getFirst()) |
401 | KeyT(other.getBuckets()[i].getFirst()); |
402 | if (!KeyInfoT::isEqual(getBuckets()[i].getFirst(), getEmptyKey()) && |
403 | !KeyInfoT::isEqual(getBuckets()[i].getFirst(), getTombstoneKey())) |
404 | ::new (&getBuckets()[i].getSecond()) |
405 | ValueT(other.getBuckets()[i].getSecond()); |
406 | } |
407 | } |
408 | |
409 | static unsigned getHashValue(const KeyT &Val) { |
410 | return KeyInfoT::getHashValue(Val); |
411 | } |
412 | |
413 | template<typename LookupKeyT> |
414 | static unsigned getHashValue(const LookupKeyT &Val) { |
415 | return KeyInfoT::getHashValue(Val); |
416 | } |
417 | |
418 | static const KeyT getEmptyKey() { |
419 | static_assert(std::is_base_of<DenseMapBase, DerivedT>::value, |
420 | "Must pass the derived type to this template!"); |
421 | return KeyInfoT::getEmptyKey(); |
422 | } |
423 | |
424 | static const KeyT getTombstoneKey() { |
425 | return KeyInfoT::getTombstoneKey(); |
426 | } |
427 | |
428 | private: |
429 | iterator makeIterator(BucketT *P, BucketT *E, |
430 | DebugEpochBase &Epoch, |
431 | bool NoAdvance=false) { |
432 | if (shouldReverseIterate<KeyT>()) { |
433 | BucketT *B = P == getBucketsEnd() ? getBuckets() : P + 1; |
434 | return iterator(B, E, Epoch, NoAdvance); |
435 | } |
436 | return iterator(P, E, Epoch, NoAdvance); |
437 | } |
438 | |
439 | const_iterator makeConstIterator(const BucketT *P, const BucketT *E, |
440 | const DebugEpochBase &Epoch, |
441 | const bool NoAdvance=false) const { |
442 | if (shouldReverseIterate<KeyT>()) { |
443 | const BucketT *B = P == getBucketsEnd() ? getBuckets() : P + 1; |
444 | return const_iterator(B, E, Epoch, NoAdvance); |
445 | } |
446 | return const_iterator(P, E, Epoch, NoAdvance); |
447 | } |
448 | |
449 | unsigned getNumEntries() const { |
450 | return static_cast<const DerivedT *>(this)->getNumEntries(); |
451 | } |
452 | |
453 | void setNumEntries(unsigned Num) { |
454 | static_cast<DerivedT *>(this)->setNumEntries(Num); |
455 | } |
456 | |
457 | void incrementNumEntries() { |
458 | setNumEntries(getNumEntries() + 1); |
459 | } |
460 | |
461 | void decrementNumEntries() { |
462 | setNumEntries(getNumEntries() - 1); |
463 | } |
464 | |
465 | unsigned getNumTombstones() const { |
466 | return static_cast<const DerivedT *>(this)->getNumTombstones(); |
467 | } |
468 | |
469 | void setNumTombstones(unsigned Num) { |
470 | static_cast<DerivedT *>(this)->setNumTombstones(Num); |
471 | } |
472 | |
473 | void incrementNumTombstones() { |
474 | setNumTombstones(getNumTombstones() + 1); |
475 | } |
476 | |
477 | void decrementNumTombstones() { |
478 | setNumTombstones(getNumTombstones() - 1); |
479 | } |
480 | |
481 | const BucketT *getBuckets() const { |
482 | return static_cast<const DerivedT *>(this)->getBuckets(); |
483 | } |
484 | |
485 | BucketT *getBuckets() { |
486 | return static_cast<DerivedT *>(this)->getBuckets(); |
487 | } |
488 | |
489 | unsigned getNumBuckets() const { |
490 | return static_cast<const DerivedT *>(this)->getNumBuckets(); |
491 | } |
492 | |
493 | BucketT *getBucketsEnd() { |
494 | return getBuckets() + getNumBuckets(); |
495 | } |
496 | |
497 | const BucketT *getBucketsEnd() const { |
498 | return getBuckets() + getNumBuckets(); |
499 | } |
500 | |
501 | void grow(unsigned AtLeast) { |
502 | static_cast<DerivedT *>(this)->grow(AtLeast); |
503 | } |
504 | |
505 | void shrink_and_clear() { |
506 | static_cast<DerivedT *>(this)->shrink_and_clear(); |
507 | } |
508 | |
509 | template <typename KeyArg, typename... ValueArgs> |
510 | BucketT *InsertIntoBucket(BucketT *TheBucket, KeyArg &&Key, |
511 | ValueArgs &&... Values) { |
512 | TheBucket = InsertIntoBucketImpl(Key, Key, TheBucket); |
513 | |
514 | TheBucket->getFirst() = std::forward<KeyArg>(Key); |
515 | ::new (&TheBucket->getSecond()) ValueT(std::forward<ValueArgs>(Values)...); |
516 | return TheBucket; |
517 | } |
518 | |
519 | template <typename LookupKeyT> |
520 | BucketT *InsertIntoBucketWithLookup(BucketT *TheBucket, KeyT &&Key, |
521 | ValueT &&Value, LookupKeyT &Lookup) { |
522 | TheBucket = InsertIntoBucketImpl(Key, Lookup, TheBucket); |
523 | |
524 | TheBucket->getFirst() = std::move(Key); |
525 | ::new (&TheBucket->getSecond()) ValueT(std::move(Value)); |
526 | return TheBucket; |
527 | } |
528 | |
529 | template <typename LookupKeyT> |
530 | BucketT *InsertIntoBucketImpl(const KeyT &Key, const LookupKeyT &Lookup, |
531 | BucketT *TheBucket) { |
532 | incrementEpoch(); |
533 | |
534 | // If the load of the hash table is more than 3/4, or if fewer than 1/8 of |
535 | // the buckets are empty (meaning that many are filled with tombstones), |
536 | // grow the table. |
537 | // |
538 | // The later case is tricky. For example, if we had one empty bucket with |
539 | // tons of tombstones, failing lookups (e.g. for insertion) would have to |
540 | // probe almost the entire table until it found the empty bucket. If the |
541 | // table completely filled with tombstones, no lookup would ever succeed, |
542 | // causing infinite loops in lookup. |
543 | unsigned NewNumEntries = getNumEntries() + 1; |
544 | unsigned NumBuckets = getNumBuckets(); |
545 | if (LLVM_UNLIKELY(NewNumEntries * 4 >= NumBuckets * 3)) { |
546 | this->grow(NumBuckets * 2); |
547 | LookupBucketFor(Lookup, TheBucket); |
548 | NumBuckets = getNumBuckets(); |
549 | } else if (LLVM_UNLIKELY(NumBuckets-(NewNumEntries+getNumTombstones()) <= |
550 | NumBuckets/8)) { |
551 | this->grow(NumBuckets); |
552 | LookupBucketFor(Lookup, TheBucket); |
553 | } |
554 | assert(TheBucket); |
555 | |
556 | // Only update the state after we've grown our bucket space appropriately |
557 | // so that when growing buckets we have self-consistent entry count. |
558 | incrementNumEntries(); |
559 | |
560 | // If we are writing over a tombstone, remember this. |
561 | const KeyT EmptyKey = getEmptyKey(); |
562 | if (!KeyInfoT::isEqual(TheBucket->getFirst(), EmptyKey)) |
563 | decrementNumTombstones(); |
564 | |
565 | return TheBucket; |
566 | } |
567 | |
568 | /// LookupBucketFor - Lookup the appropriate bucket for Val, returning it in |
569 | /// FoundBucket. If the bucket contains the key and a value, this returns |
570 | /// true, otherwise it returns a bucket with an empty marker or tombstone and |
571 | /// returns false. |
572 | template<typename LookupKeyT> |
573 | bool LookupBucketFor(const LookupKeyT &Val, |
574 | const BucketT *&FoundBucket) const { |
575 | const BucketT *BucketsPtr = getBuckets(); |
576 | const unsigned NumBuckets = getNumBuckets(); |
577 | |
578 | if (NumBuckets == 0) { |
579 | FoundBucket = nullptr; |
580 | return false; |
581 | } |
582 | |
583 | // FoundTombstone - Keep track of whether we find a tombstone while probing. |
584 | const BucketT *FoundTombstone = nullptr; |
585 | const KeyT EmptyKey = getEmptyKey(); |
586 | const KeyT TombstoneKey = getTombstoneKey(); |
587 | assert(!KeyInfoT::isEqual(Val, EmptyKey) && |
588 | !KeyInfoT::isEqual(Val, TombstoneKey) && |
589 | "Empty/Tombstone value shouldn't be inserted into map!"); |
590 | |
591 | unsigned BucketNo = getHashValue(Val) & (NumBuckets-1); |
592 | unsigned ProbeAmt = 1; |
593 | while (true) { |
594 | const BucketT *ThisBucket = BucketsPtr + BucketNo; |
595 | // Found Val's bucket? If so, return it. |
596 | if (LLVM_LIKELY(KeyInfoT::isEqual(Val, ThisBucket->getFirst()))) { |
597 | FoundBucket = ThisBucket; |
598 | return true; |
599 | } |
600 | |
601 | // If we found an empty bucket, the key doesn't exist in the set. |
602 | // Insert it and return the default value. |
603 | if (LLVM_LIKELY(KeyInfoT::isEqual(ThisBucket->getFirst(), EmptyKey))) { |
604 | // If we've already seen a tombstone while probing, fill it in instead |
605 | // of the empty bucket we eventually probed to. |
606 | FoundBucket = FoundTombstone ? FoundTombstone : ThisBucket; |
607 | return false; |
608 | } |
609 | |
610 | // If this is a tombstone, remember it. If Val ends up not in the map, we |
611 | // prefer to return it than something that would require more probing. |
612 | if (KeyInfoT::isEqual(ThisBucket->getFirst(), TombstoneKey) && |
613 | !FoundTombstone) |
614 | FoundTombstone = ThisBucket; // Remember the first tombstone found. |
615 | |
616 | // Otherwise, it's a hash collision or a tombstone, continue quadratic |
617 | // probing. |
618 | BucketNo += ProbeAmt++; |
619 | BucketNo &= (NumBuckets-1); |
620 | } |
621 | } |
622 | |
623 | template <typename LookupKeyT> |
624 | bool LookupBucketFor(const LookupKeyT &Val, BucketT *&FoundBucket) { |
625 | const BucketT *ConstFoundBucket; |
626 | bool Result = const_cast<const DenseMapBase *>(this) |
627 | ->LookupBucketFor(Val, ConstFoundBucket); |
628 | FoundBucket = const_cast<BucketT *>(ConstFoundBucket); |
629 | return Result; |
630 | } |
631 | |
632 | public: |
633 | /// Return the approximate size (in bytes) of the actual map. |
634 | /// This is just the raw memory used by DenseMap. |
635 | /// If entries are pointers to objects, the size of the referenced objects |
636 | /// are not included. |
637 | size_t getMemorySize() const { |
638 | return getNumBuckets() * sizeof(BucketT); |
639 | } |
640 | }; |
641 | |
642 | template <typename KeyT, typename ValueT, |
643 | typename KeyInfoT = DenseMapInfo<KeyT>, |
644 | typename BucketT = detail::DenseMapPair<KeyT, ValueT>> |
645 | class DenseMap : public DenseMapBase<DenseMap<KeyT, ValueT, KeyInfoT, BucketT>, |
646 | KeyT, ValueT, KeyInfoT, BucketT> { |
647 | friend class DenseMapBase<DenseMap, KeyT, ValueT, KeyInfoT, BucketT>; |
648 | |
649 | // Lift some types from the dependent base class into this class for |
650 | // simplicity of referring to them. |
651 | using BaseT = DenseMapBase<DenseMap, KeyT, ValueT, KeyInfoT, BucketT>; |
652 | |
653 | BucketT *Buckets; |
654 | unsigned NumEntries; |
655 | unsigned NumTombstones; |
656 | unsigned NumBuckets; |
657 | |
658 | public: |
659 | /// Create a DenseMap wth an optional \p InitialReserve that guarantee that |
660 | /// this number of elements can be inserted in the map without grow() |
661 | explicit DenseMap(unsigned InitialReserve = 0) { init(InitialReserve); } |
662 | |
663 | DenseMap(const DenseMap &other) : BaseT() { |
664 | init(0); |
665 | copyFrom(other); |
666 | } |
667 | |
668 | DenseMap(DenseMap &&other) : BaseT() { |
669 | init(0); |
670 | swap(other); |
671 | } |
672 | |
673 | template<typename InputIt> |
674 | DenseMap(const InputIt &I, const InputIt &E) { |
675 | init(std::distance(I, E)); |
676 | this->insert(I, E); |
677 | } |
678 | |
679 | ~DenseMap() { |
680 | this->destroyAll(); |
681 | operator delete(Buckets); |
682 | } |
683 | |
684 | void swap(DenseMap& RHS) { |
685 | this->incrementEpoch(); |
686 | RHS.incrementEpoch(); |
687 | std::swap(Buckets, RHS.Buckets); |
688 | std::swap(NumEntries, RHS.NumEntries); |
689 | std::swap(NumTombstones, RHS.NumTombstones); |
690 | std::swap(NumBuckets, RHS.NumBuckets); |
691 | } |
692 | |
693 | DenseMap& operator=(const DenseMap& other) { |
694 | if (&other != this) |
695 | copyFrom(other); |
696 | return *this; |
697 | } |
698 | |
699 | DenseMap& operator=(DenseMap &&other) { |
700 | this->destroyAll(); |
701 | operator delete(Buckets); |
702 | init(0); |
703 | swap(other); |
704 | return *this; |
705 | } |
706 | |
707 | void copyFrom(const DenseMap& other) { |
708 | this->destroyAll(); |
709 | operator delete(Buckets); |
710 | if (allocateBuckets(other.NumBuckets)) { |
711 | this->BaseT::copyFrom(other); |
712 | } else { |
713 | NumEntries = 0; |
714 | NumTombstones = 0; |
715 | } |
716 | } |
717 | |
718 | void init(unsigned InitNumEntries) { |
719 | auto InitBuckets = BaseT::getMinBucketToReserveForEntries(InitNumEntries); |
720 | if (allocateBuckets(InitBuckets)) { |
721 | this->BaseT::initEmpty(); |
722 | } else { |
723 | NumEntries = 0; |
724 | NumTombstones = 0; |
725 | } |
726 | } |
727 | |
728 | void grow(unsigned AtLeast) { |
729 | unsigned OldNumBuckets = NumBuckets; |
730 | BucketT *OldBuckets = Buckets; |
731 | |
732 | allocateBuckets(std::max<unsigned>(64, static_cast<unsigned>(NextPowerOf2(AtLeast-1)))); |
733 | assert(Buckets); |
734 | if (!OldBuckets) { |
735 | this->BaseT::initEmpty(); |
736 | return; |
737 | } |
738 | |
739 | this->moveFromOldBuckets(OldBuckets, OldBuckets+OldNumBuckets); |
740 | |
741 | // Free the old table. |
742 | operator delete(OldBuckets); |
743 | } |
744 | |
745 | void shrink_and_clear() { |
746 | unsigned OldNumEntries = NumEntries; |
747 | this->destroyAll(); |
748 | |
749 | // Reduce the number of buckets. |
750 | unsigned NewNumBuckets = 0; |
751 | if (OldNumEntries) |
752 | NewNumBuckets = std::max(64, 1 << (Log2_32_Ceil(OldNumEntries) + 1)); |
753 | if (NewNumBuckets == NumBuckets) { |
754 | this->BaseT::initEmpty(); |
755 | return; |
756 | } |
757 | |
758 | operator delete(Buckets); |
759 | init(NewNumBuckets); |
760 | } |
761 | |
762 | private: |
763 | unsigned getNumEntries() const { |
764 | return NumEntries; |
765 | } |
766 | |
767 | void setNumEntries(unsigned Num) { |
768 | NumEntries = Num; |
769 | } |
770 | |
771 | unsigned getNumTombstones() const { |
772 | return NumTombstones; |
773 | } |
774 | |
775 | void setNumTombstones(unsigned Num) { |
776 | NumTombstones = Num; |
777 | } |
778 | |
779 | BucketT *getBuckets() const { |
780 | return Buckets; |
781 | } |
782 | |
783 | unsigned getNumBuckets() const { |
784 | return NumBuckets; |
785 | } |
786 | |
787 | bool allocateBuckets(unsigned Num) { |
788 | NumBuckets = Num; |
789 | if (NumBuckets == 0) { |
790 | Buckets = nullptr; |
791 | return false; |
792 | } |
793 | |
794 | Buckets = static_cast<BucketT*>(operator new(sizeof(BucketT) * NumBuckets)); |
795 | return true; |
796 | } |
797 | }; |
798 | |
799 | template <typename KeyT, typename ValueT, unsigned InlineBuckets = 4, |
800 | typename KeyInfoT = DenseMapInfo<KeyT>, |
801 | typename BucketT = detail::DenseMapPair<KeyT, ValueT>> |
802 | class SmallDenseMap |
803 | : public DenseMapBase< |
804 | SmallDenseMap<KeyT, ValueT, InlineBuckets, KeyInfoT, BucketT>, KeyT, |
805 | ValueT, KeyInfoT, BucketT> { |
806 | friend class DenseMapBase<SmallDenseMap, KeyT, ValueT, KeyInfoT, BucketT>; |
807 | |
808 | // Lift some types from the dependent base class into this class for |
809 | // simplicity of referring to them. |
810 | using BaseT = DenseMapBase<SmallDenseMap, KeyT, ValueT, KeyInfoT, BucketT>; |
811 | |
812 | static_assert(isPowerOf2_64(InlineBuckets), |
813 | "InlineBuckets must be a power of 2."); |
814 | |
815 | unsigned Small : 1; |
816 | unsigned NumEntries : 31; |
817 | unsigned NumTombstones; |
818 | |
819 | struct LargeRep { |
820 | BucketT *Buckets; |
821 | unsigned NumBuckets; |
822 | }; |
823 | |
824 | /// A "union" of an inline bucket array and the struct representing |
825 | /// a large bucket. This union will be discriminated by the 'Small' bit. |
826 | AlignedCharArrayUnion<BucketT[InlineBuckets], LargeRep> storage; |
827 | |
828 | public: |
829 | explicit SmallDenseMap(unsigned NumInitBuckets = 0) { |
830 | init(NumInitBuckets); |
831 | } |
832 | |
833 | SmallDenseMap(const SmallDenseMap &other) : BaseT() { |
834 | init(0); |
835 | copyFrom(other); |
836 | } |
837 | |
838 | SmallDenseMap(SmallDenseMap &&other) : BaseT() { |
839 | init(0); |
840 | swap(other); |
841 | } |
842 | |
843 | template<typename InputIt> |
844 | SmallDenseMap(const InputIt &I, const InputIt &E) { |
845 | init(NextPowerOf2(std::distance(I, E))); |
846 | this->insert(I, E); |
847 | } |
848 | |
849 | ~SmallDenseMap() { |
850 | this->destroyAll(); |
851 | deallocateBuckets(); |
852 | } |
853 | |
854 | void swap(SmallDenseMap& RHS) { |
855 | unsigned TmpNumEntries = RHS.NumEntries; |
856 | RHS.NumEntries = NumEntries; |
857 | NumEntries = TmpNumEntries; |
858 | std::swap(NumTombstones, RHS.NumTombstones); |
859 | |
860 | const KeyT EmptyKey = this->getEmptyKey(); |
861 | const KeyT TombstoneKey = this->getTombstoneKey(); |
862 | if (Small && RHS.Small) { |
863 | // If we're swapping inline bucket arrays, we have to cope with some of |
864 | // the tricky bits of DenseMap's storage system: the buckets are not |
865 | // fully initialized. Thus we swap every key, but we may have |
866 | // a one-directional move of the value. |
867 | for (unsigned i = 0, e = InlineBuckets; i != e; ++i) { |
868 | BucketT *LHSB = &getInlineBuckets()[i], |
869 | *RHSB = &RHS.getInlineBuckets()[i]; |
870 | bool hasLHSValue = (!KeyInfoT::isEqual(LHSB->getFirst(), EmptyKey) && |
871 | !KeyInfoT::isEqual(LHSB->getFirst(), TombstoneKey)); |
872 | bool hasRHSValue = (!KeyInfoT::isEqual(RHSB->getFirst(), EmptyKey) && |
873 | !KeyInfoT::isEqual(RHSB->getFirst(), TombstoneKey)); |
874 | if (hasLHSValue && hasRHSValue) { |
875 | // Swap together if we can... |
876 | std::swap(*LHSB, *RHSB); |
877 | continue; |
878 | } |
879 | // Swap separately and handle any assymetry. |
880 | std::swap(LHSB->getFirst(), RHSB->getFirst()); |
881 | if (hasLHSValue) { |
882 | ::new (&RHSB->getSecond()) ValueT(std::move(LHSB->getSecond())); |
883 | LHSB->getSecond().~ValueT(); |
884 | } else if (hasRHSValue) { |
885 | ::new (&LHSB->getSecond()) ValueT(std::move(RHSB->getSecond())); |
886 | RHSB->getSecond().~ValueT(); |
887 | } |
888 | } |
889 | return; |
890 | } |
891 | if (!Small && !RHS.Small) { |
892 | std::swap(getLargeRep()->Buckets, RHS.getLargeRep()->Buckets); |
893 | std::swap(getLargeRep()->NumBuckets, RHS.getLargeRep()->NumBuckets); |
894 | return; |
895 | } |
896 | |
897 | SmallDenseMap &SmallSide = Small ? *this : RHS; |
898 | SmallDenseMap &LargeSide = Small ? RHS : *this; |
899 | |
900 | // First stash the large side's rep and move the small side across. |
901 | LargeRep TmpRep = std::move(*LargeSide.getLargeRep()); |
902 | LargeSide.getLargeRep()->~LargeRep(); |
903 | LargeSide.Small = true; |
904 | // This is similar to the standard move-from-old-buckets, but the bucket |
905 | // count hasn't actually rotated in this case. So we have to carefully |
906 | // move construct the keys and values into their new locations, but there |
907 | // is no need to re-hash things. |
908 | for (unsigned i = 0, e = InlineBuckets; i != e; ++i) { |
909 | BucketT *NewB = &LargeSide.getInlineBuckets()[i], |
910 | *OldB = &SmallSide.getInlineBuckets()[i]; |
911 | ::new (&NewB->getFirst()) KeyT(std::move(OldB->getFirst())); |
912 | OldB->getFirst().~KeyT(); |
913 | if (!KeyInfoT::isEqual(NewB->getFirst(), EmptyKey) && |
914 | !KeyInfoT::isEqual(NewB->getFirst(), TombstoneKey)) { |
915 | ::new (&NewB->getSecond()) ValueT(std::move(OldB->getSecond())); |
916 | OldB->getSecond().~ValueT(); |
917 | } |
918 | } |
919 | |
920 | // The hard part of moving the small buckets across is done, just move |
921 | // the TmpRep into its new home. |
922 | SmallSide.Small = false; |
923 | new (SmallSide.getLargeRep()) LargeRep(std::move(TmpRep)); |
924 | } |
925 | |
926 | SmallDenseMap& operator=(const SmallDenseMap& other) { |
927 | if (&other != this) |
928 | copyFrom(other); |
929 | return *this; |
930 | } |
931 | |
932 | SmallDenseMap& operator=(SmallDenseMap &&other) { |
933 | this->destroyAll(); |
934 | deallocateBuckets(); |
935 | init(0); |
936 | swap(other); |
937 | return *this; |
938 | } |
939 | |
940 | void copyFrom(const SmallDenseMap& other) { |
941 | this->destroyAll(); |
942 | deallocateBuckets(); |
943 | Small = true; |
944 | if (other.getNumBuckets() > InlineBuckets) { |
945 | Small = false; |
946 | new (getLargeRep()) LargeRep(allocateBuckets(other.getNumBuckets())); |
947 | } |
948 | this->BaseT::copyFrom(other); |
949 | } |
950 | |
951 | void init(unsigned InitBuckets) { |
952 | Small = true; |
953 | if (InitBuckets > InlineBuckets) { |
954 | Small = false; |
955 | new (getLargeRep()) LargeRep(allocateBuckets(InitBuckets)); |
956 | } |
957 | this->BaseT::initEmpty(); |
958 | } |
959 | |
960 | void grow(unsigned AtLeast) { |
961 | if (AtLeast >= InlineBuckets) |
962 | AtLeast = std::max<unsigned>(64, NextPowerOf2(AtLeast-1)); |
963 | |
964 | if (Small) { |
965 | if (AtLeast < InlineBuckets) |
966 | return; // Nothing to do. |
967 | |
968 | // First move the inline buckets into a temporary storage. |
969 | AlignedCharArrayUnion<BucketT[InlineBuckets]> TmpStorage; |
970 | BucketT *TmpBegin = reinterpret_cast<BucketT *>(TmpStorage.buffer); |
971 | BucketT *TmpEnd = TmpBegin; |
972 | |
973 | // Loop over the buckets, moving non-empty, non-tombstones into the |
974 | // temporary storage. Have the loop move the TmpEnd forward as it goes. |
975 | const KeyT EmptyKey = this->getEmptyKey(); |
976 | const KeyT TombstoneKey = this->getTombstoneKey(); |
977 | for (BucketT *P = getBuckets(), *E = P + InlineBuckets; P != E; ++P) { |
978 | if (!KeyInfoT::isEqual(P->getFirst(), EmptyKey) && |
979 | !KeyInfoT::isEqual(P->getFirst(), TombstoneKey)) { |
980 | assert(size_t(TmpEnd - TmpBegin) < InlineBuckets && |
981 | "Too many inline buckets!"); |
982 | ::new (&TmpEnd->getFirst()) KeyT(std::move(P->getFirst())); |
983 | ::new (&TmpEnd->getSecond()) ValueT(std::move(P->getSecond())); |
984 | ++TmpEnd; |
985 | P->getSecond().~ValueT(); |
986 | } |
987 | P->getFirst().~KeyT(); |
988 | } |
989 | |
990 | // Now make this map use the large rep, and move all the entries back |
991 | // into it. |
992 | Small = false; |
993 | new (getLargeRep()) LargeRep(allocateBuckets(AtLeast)); |
994 | this->moveFromOldBuckets(TmpBegin, TmpEnd); |
995 | return; |
996 | } |
997 | |
998 | LargeRep OldRep = std::move(*getLargeRep()); |
999 | getLargeRep()->~LargeRep(); |
1000 | if (AtLeast <= InlineBuckets) { |
1001 | Small = true; |
1002 | } else { |
1003 | new (getLargeRep()) LargeRep(allocateBuckets(AtLeast)); |
1004 | } |
1005 | |
1006 | this->moveFromOldBuckets(OldRep.Buckets, OldRep.Buckets+OldRep.NumBuckets); |
1007 | |
1008 | // Free the old table. |
1009 | operator delete(OldRep.Buckets); |
1010 | } |
1011 | |
1012 | void shrink_and_clear() { |
1013 | unsigned OldSize = this->size(); |
1014 | this->destroyAll(); |
1015 | |
1016 | // Reduce the number of buckets. |
1017 | unsigned NewNumBuckets = 0; |
1018 | if (OldSize) { |
1019 | NewNumBuckets = 1 << (Log2_32_Ceil(OldSize) + 1); |
1020 | if (NewNumBuckets > InlineBuckets && NewNumBuckets < 64u) |
1021 | NewNumBuckets = 64; |
1022 | } |
1023 | if ((Small && NewNumBuckets <= InlineBuckets) || |
1024 | (!Small && NewNumBuckets == getLargeRep()->NumBuckets)) { |
1025 | this->BaseT::initEmpty(); |
1026 | return; |
1027 | } |
1028 | |
1029 | deallocateBuckets(); |
1030 | init(NewNumBuckets); |
1031 | } |
1032 | |
1033 | private: |
1034 | unsigned getNumEntries() const { |
1035 | return NumEntries; |
1036 | } |
1037 | |
1038 | void setNumEntries(unsigned Num) { |
1039 | // NumEntries is hardcoded to be 31 bits wide. |
1040 | assert(Num < (1U << 31) && "Cannot support more than 1<<31 entries"); |
1041 | NumEntries = Num; |
1042 | } |
1043 | |
1044 | unsigned getNumTombstones() const { |
1045 | return NumTombstones; |
1046 | } |
1047 | |
1048 | void setNumTombstones(unsigned Num) { |
1049 | NumTombstones = Num; |
1050 | } |
1051 | |
1052 | const BucketT *getInlineBuckets() const { |
1053 | assert(Small); |
1054 | // Note that this cast does not violate aliasing rules as we assert that |
1055 | // the memory's dynamic type is the small, inline bucket buffer, and the |
1056 | // 'storage.buffer' static type is 'char *'. |
1057 | return reinterpret_cast<const BucketT *>(storage.buffer); |
1058 | } |
1059 | |
1060 | BucketT *getInlineBuckets() { |
1061 | return const_cast<BucketT *>( |
1062 | const_cast<const SmallDenseMap *>(this)->getInlineBuckets()); |
1063 | } |
1064 | |
1065 | const LargeRep *getLargeRep() const { |
1066 | assert(!Small); |
1067 | // Note, same rule about aliasing as with getInlineBuckets. |
1068 | return reinterpret_cast<const LargeRep *>(storage.buffer); |
1069 | } |
1070 | |
1071 | LargeRep *getLargeRep() { |
1072 | return const_cast<LargeRep *>( |
1073 | const_cast<const SmallDenseMap *>(this)->getLargeRep()); |
1074 | } |
1075 | |
1076 | const BucketT *getBuckets() const { |
1077 | return Small ? getInlineBuckets() : getLargeRep()->Buckets; |
1078 | } |
1079 | |
1080 | BucketT *getBuckets() { |
1081 | return const_cast<BucketT *>( |
1082 | const_cast<const SmallDenseMap *>(this)->getBuckets()); |
1083 | } |
1084 | |
1085 | unsigned getNumBuckets() const { |
1086 | return Small ? InlineBuckets : getLargeRep()->NumBuckets; |
1087 | } |
1088 | |
1089 | void deallocateBuckets() { |
1090 | if (Small) |
1091 | return; |
1092 | |
1093 | operator delete(getLargeRep()->Buckets); |
1094 | getLargeRep()->~LargeRep(); |
1095 | } |
1096 | |
1097 | LargeRep allocateBuckets(unsigned Num) { |
1098 | assert(Num > InlineBuckets && "Must allocate more buckets than are inline"); |
1099 | LargeRep Rep = { |
1100 | static_cast<BucketT*>(operator new(sizeof(BucketT) * Num)), Num |
1101 | }; |
1102 | return Rep; |
1103 | } |
1104 | }; |
1105 | |
1106 | template <typename KeyT, typename ValueT, typename KeyInfoT, typename Bucket, |
1107 | bool IsConst> |
1108 | class DenseMapIterator : DebugEpochBase::HandleBase { |
1109 | friend class DenseMapIterator<KeyT, ValueT, KeyInfoT, Bucket, true>; |
1110 | friend class DenseMapIterator<KeyT, ValueT, KeyInfoT, Bucket, false>; |
1111 | |
1112 | using ConstIterator = DenseMapIterator<KeyT, ValueT, KeyInfoT, Bucket, true>; |
1113 | |
1114 | public: |
1115 | using difference_type = ptrdiff_t; |
1116 | using value_type = |
1117 | typename std::conditional<IsConst, const Bucket, Bucket>::type; |
1118 | using pointer = value_type *; |
1119 | using reference = value_type &; |
1120 | using iterator_category = std::forward_iterator_tag; |
1121 | |
1122 | private: |
1123 | pointer Ptr = nullptr; |
1124 | pointer End = nullptr; |
1125 | |
1126 | public: |
1127 | DenseMapIterator() = default; |
1128 | |
1129 | DenseMapIterator(pointer Pos, pointer E, const DebugEpochBase &Epoch, |
1130 | bool NoAdvance = false) |
1131 | : DebugEpochBase::HandleBase(&Epoch), Ptr(Pos), End(E) { |
1132 | assert(isHandleInSync() && "invalid construction!"); |
1133 | |
1134 | if (NoAdvance) return; |
1135 | if (shouldReverseIterate<KeyT>()) { |
1136 | RetreatPastEmptyBuckets(); |
1137 | return; |
1138 | } |
1139 | AdvancePastEmptyBuckets(); |
1140 | } |
1141 | |
1142 | // Converting ctor from non-const iterators to const iterators. SFINAE'd out |
1143 | // for const iterator destinations so it doesn't end up as a user defined copy |
1144 | // constructor. |
1145 | template <bool IsConstSrc, |
1146 | typename = typename std::enable_if<!IsConstSrc && IsConst>::type> |
1147 | DenseMapIterator( |
1148 | const DenseMapIterator<KeyT, ValueT, KeyInfoT, Bucket, IsConstSrc> &I) |
1149 | : DebugEpochBase::HandleBase(I), Ptr(I.Ptr), End(I.End) {} |
1150 | |
1151 | reference operator*() const { |
1152 | assert(isHandleInSync() && "invalid iterator access!"); |
1153 | if (shouldReverseIterate<KeyT>()) |
1154 | return Ptr[-1]; |
1155 | return *Ptr; |
1156 | } |
1157 | pointer operator->() const { |
1158 | assert(isHandleInSync() && "invalid iterator access!"); |
1159 | if (shouldReverseIterate<KeyT>()) |
1160 | return &(Ptr[-1]); |
1161 | return Ptr; |
1162 | } |
1163 | |
1164 | bool operator==(const ConstIterator &RHS) const { |
1165 | assert((!Ptr || isHandleInSync()) && "handle not in sync!"); |
1166 | assert((!RHS.Ptr || RHS.isHandleInSync()) && "handle not in sync!"); |
1167 | assert(getEpochAddress() == RHS.getEpochAddress() && |
1168 | "comparing incomparable iterators!"); |
1169 | return Ptr == RHS.Ptr; |
1170 | } |
1171 | bool operator!=(const ConstIterator &RHS) const { |
1172 | assert((!Ptr || isHandleInSync()) && "handle not in sync!"); |
1173 | assert((!RHS.Ptr || RHS.isHandleInSync()) && "handle not in sync!"); |
1174 | assert(getEpochAddress() == RHS.getEpochAddress() && |
1175 | "comparing incomparable iterators!"); |
1176 | return Ptr != RHS.Ptr; |
1177 | } |
1178 | |
1179 | inline DenseMapIterator& operator++() { // Preincrement |
1180 | assert(isHandleInSync() && "invalid iterator access!"); |
1181 | if (shouldReverseIterate<KeyT>()) { |
1182 | --Ptr; |
1183 | RetreatPastEmptyBuckets(); |
1184 | return *this; |
1185 | } |
1186 | ++Ptr; |
1187 | AdvancePastEmptyBuckets(); |
1188 | return *this; |
1189 | } |
1190 | DenseMapIterator operator++(int) { // Postincrement |
1191 | assert(isHandleInSync() && "invalid iterator access!"); |
1192 | DenseMapIterator tmp = *this; ++*this; return tmp; |
1193 | } |
1194 | |
1195 | private: |
1196 | void AdvancePastEmptyBuckets() { |
1197 | assert(Ptr <= End); |
1198 | const KeyT Empty = KeyInfoT::getEmptyKey(); |
1199 | const KeyT Tombstone = KeyInfoT::getTombstoneKey(); |
1200 | |
1201 | while (Ptr != End && (KeyInfoT::isEqual(Ptr->getFirst(), Empty) || |
1202 | KeyInfoT::isEqual(Ptr->getFirst(), Tombstone))) |
1203 | ++Ptr; |
1204 | } |
1205 | |
1206 | void RetreatPastEmptyBuckets() { |
1207 | assert(Ptr >= End); |
1208 | const KeyT Empty = KeyInfoT::getEmptyKey(); |
1209 | const KeyT Tombstone = KeyInfoT::getTombstoneKey(); |
1210 | |
1211 | while (Ptr != End && (KeyInfoT::isEqual(Ptr[-1].getFirst(), Empty) || |
1212 | KeyInfoT::isEqual(Ptr[-1].getFirst(), Tombstone))) |
1213 | --Ptr; |
1214 | } |
1215 | }; |
1216 | |
1217 | template <typename KeyT, typename ValueT, typename KeyInfoT> |
1218 | inline size_t capacity_in_bytes(const DenseMap<KeyT, ValueT, KeyInfoT> &X) { |
1219 | return X.getMemorySize(); |
1220 | } |
1221 | |
1222 | } // end namespace llvm |
1223 | |
1224 | #endif // LLVM_ADT_DENSEMAP_H |
1225 |
Warning: That file was not part of the compilation database. It may have many parsing errors.