Warning: That file was not part of the compilation database. It may have many parsing errors.
1 | //==- llvm/ADT/IntrusiveRefCntPtr.h - Smart Refcounting Pointer --*- C++ -*-==// |
---|---|
2 | // |
3 | // The LLVM Compiler Infrastructure |
4 | // |
5 | // This file is distributed under the University of Illinois Open Source |
6 | // License. See LICENSE.TXT for details. |
7 | // |
8 | //===----------------------------------------------------------------------===// |
9 | // |
10 | // This file defines the RefCountedBase, ThreadSafeRefCountedBase, and |
11 | // IntrusiveRefCntPtr classes. |
12 | // |
13 | // IntrusiveRefCntPtr is a smart pointer to an object which maintains a |
14 | // reference count. (ThreadSafe)RefCountedBase is a mixin class that adds a |
15 | // refcount member variable and methods for updating the refcount. An object |
16 | // that inherits from (ThreadSafe)RefCountedBase deletes itself when its |
17 | // refcount hits zero. |
18 | // |
19 | // For example: |
20 | // |
21 | // class MyClass : public RefCountedBase<MyClass> {}; |
22 | // |
23 | // void foo() { |
24 | // // Constructing an IntrusiveRefCntPtr increases the pointee's refcount by |
25 | // // 1 (from 0 in this case). |
26 | // IntrusiveRefCntPtr<MyClass> Ptr1(new MyClass()); |
27 | // |
28 | // // Copying an IntrusiveRefCntPtr increases the pointee's refcount by 1. |
29 | // IntrusiveRefCntPtr<MyClass> Ptr2(Ptr1); |
30 | // |
31 | // // Constructing an IntrusiveRefCntPtr has no effect on the object's |
32 | // // refcount. After a move, the moved-from pointer is null. |
33 | // IntrusiveRefCntPtr<MyClass> Ptr3(std::move(Ptr1)); |
34 | // assert(Ptr1 == nullptr); |
35 | // |
36 | // // Clearing an IntrusiveRefCntPtr decreases the pointee's refcount by 1. |
37 | // Ptr2.reset(); |
38 | // |
39 | // // The object deletes itself when we return from the function, because |
40 | // // Ptr3's destructor decrements its refcount to 0. |
41 | // } |
42 | // |
43 | // You can use IntrusiveRefCntPtr with isa<T>(), dyn_cast<T>(), etc.: |
44 | // |
45 | // IntrusiveRefCntPtr<MyClass> Ptr(new MyClass()); |
46 | // OtherClass *Other = dyn_cast<OtherClass>(Ptr); // Ptr.get() not required |
47 | // |
48 | // IntrusiveRefCntPtr works with any class that |
49 | // |
50 | // - inherits from (ThreadSafe)RefCountedBase, |
51 | // - has Retain() and Release() methods, or |
52 | // - specializes IntrusiveRefCntPtrInfo. |
53 | // |
54 | //===----------------------------------------------------------------------===// |
55 | |
56 | #ifndef LLVM_ADT_INTRUSIVEREFCNTPTR_H |
57 | #define LLVM_ADT_INTRUSIVEREFCNTPTR_H |
58 | |
59 | #include <atomic> |
60 | #include <cassert> |
61 | #include <cstddef> |
62 | |
63 | namespace llvm { |
64 | |
65 | /// A CRTP mixin class that adds reference counting to a type. |
66 | /// |
67 | /// The lifetime of an object which inherits from RefCountedBase is managed by |
68 | /// calls to Release() and Retain(), which increment and decrement the object's |
69 | /// refcount, respectively. When a Release() call decrements the refcount to 0, |
70 | /// the object deletes itself. |
71 | template <class Derived> class RefCountedBase { |
72 | mutable unsigned RefCount = 0; |
73 | |
74 | public: |
75 | RefCountedBase() = default; |
76 | RefCountedBase(const RefCountedBase &) {} |
77 | |
78 | void Retain() const { ++RefCount; } |
79 | |
80 | void Release() const { |
81 | assert(RefCount > 0 && "Reference count is already zero."); |
82 | if (--RefCount == 0) |
83 | delete static_cast<const Derived *>(this); |
84 | } |
85 | }; |
86 | |
87 | /// A thread-safe version of \c RefCountedBase. |
88 | template <class Derived> class ThreadSafeRefCountedBase { |
89 | mutable std::atomic<int> RefCount; |
90 | |
91 | protected: |
92 | ThreadSafeRefCountedBase() : RefCount(0) {} |
93 | |
94 | public: |
95 | void Retain() const { RefCount.fetch_add(1, std::memory_order_relaxed); } |
96 | |
97 | void Release() const { |
98 | int NewRefCount = RefCount.fetch_sub(1, std::memory_order_acq_rel) - 1; |
99 | assert(NewRefCount >= 0 && "Reference count was already zero."); |
100 | if (NewRefCount == 0) |
101 | delete static_cast<const Derived *>(this); |
102 | } |
103 | }; |
104 | |
105 | /// Class you can specialize to provide custom retain/release functionality for |
106 | /// a type. |
107 | /// |
108 | /// Usually specializing this class is not necessary, as IntrusiveRefCntPtr |
109 | /// works with any type which defines Retain() and Release() functions -- you |
110 | /// can define those functions yourself if RefCountedBase doesn't work for you. |
111 | /// |
112 | /// One case when you might want to specialize this type is if you have |
113 | /// - Foo.h defines type Foo and includes Bar.h, and |
114 | /// - Bar.h uses IntrusiveRefCntPtr<Foo> in inline functions. |
115 | /// |
116 | /// Because Foo.h includes Bar.h, Bar.h can't include Foo.h in order to pull in |
117 | /// the declaration of Foo. Without the declaration of Foo, normally Bar.h |
118 | /// wouldn't be able to use IntrusiveRefCntPtr<Foo>, which wants to call |
119 | /// T::Retain and T::Release. |
120 | /// |
121 | /// To resolve this, Bar.h could include a third header, FooFwd.h, which |
122 | /// forward-declares Foo and specializes IntrusiveRefCntPtrInfo<Foo>. Then |
123 | /// Bar.h could use IntrusiveRefCntPtr<Foo>, although it still couldn't call any |
124 | /// functions on Foo itself, because Foo would be an incomplete type. |
125 | template <typename T> struct IntrusiveRefCntPtrInfo { |
126 | static void retain(T *obj) { obj->Retain(); } |
127 | static void release(T *obj) { obj->Release(); } |
128 | }; |
129 | |
130 | /// A smart pointer to a reference-counted object that inherits from |
131 | /// RefCountedBase or ThreadSafeRefCountedBase. |
132 | /// |
133 | /// This class increments its pointee's reference count when it is created, and |
134 | /// decrements its refcount when it's destroyed (or is changed to point to a |
135 | /// different object). |
136 | template <typename T> class IntrusiveRefCntPtr { |
137 | T *Obj = nullptr; |
138 | |
139 | public: |
140 | using element_type = T; |
141 | |
142 | explicit IntrusiveRefCntPtr() = default; |
143 | IntrusiveRefCntPtr(T *obj) : Obj(obj) { retain(); } |
144 | IntrusiveRefCntPtr(const IntrusiveRefCntPtr &S) : Obj(S.Obj) { retain(); } |
145 | IntrusiveRefCntPtr(IntrusiveRefCntPtr &&S) : Obj(S.Obj) { S.Obj = nullptr; } |
146 | |
147 | template <class X> |
148 | IntrusiveRefCntPtr(IntrusiveRefCntPtr<X> &&S) : Obj(S.get()) { |
149 | S.Obj = nullptr; |
150 | } |
151 | |
152 | template <class X> |
153 | IntrusiveRefCntPtr(const IntrusiveRefCntPtr<X> &S) : Obj(S.get()) { |
154 | retain(); |
155 | } |
156 | |
157 | ~IntrusiveRefCntPtr() { release(); } |
158 | |
159 | IntrusiveRefCntPtr &operator=(IntrusiveRefCntPtr S) { |
160 | swap(S); |
161 | return *this; |
162 | } |
163 | |
164 | T &operator*() const { return *Obj; } |
165 | T *operator->() const { return Obj; } |
166 | T *get() const { return Obj; } |
167 | explicit operator bool() const { return Obj; } |
168 | |
169 | void swap(IntrusiveRefCntPtr &other) { |
170 | T *tmp = other.Obj; |
171 | other.Obj = Obj; |
172 | Obj = tmp; |
173 | } |
174 | |
175 | void reset() { |
176 | release(); |
177 | Obj = nullptr; |
178 | } |
179 | |
180 | void resetWithoutRelease() { Obj = nullptr; } |
181 | |
182 | private: |
183 | void retain() { |
184 | if (Obj) |
185 | IntrusiveRefCntPtrInfo<T>::retain(Obj); |
186 | } |
187 | |
188 | void release() { |
189 | if (Obj) |
190 | IntrusiveRefCntPtrInfo<T>::release(Obj); |
191 | } |
192 | |
193 | template <typename X> friend class IntrusiveRefCntPtr; |
194 | }; |
195 | |
196 | template <class T, class U> |
197 | inline bool operator==(const IntrusiveRefCntPtr<T> &A, |
198 | const IntrusiveRefCntPtr<U> &B) { |
199 | return A.get() == B.get(); |
200 | } |
201 | |
202 | template <class T, class U> |
203 | inline bool operator!=(const IntrusiveRefCntPtr<T> &A, |
204 | const IntrusiveRefCntPtr<U> &B) { |
205 | return A.get() != B.get(); |
206 | } |
207 | |
208 | template <class T, class U> |
209 | inline bool operator==(const IntrusiveRefCntPtr<T> &A, U *B) { |
210 | return A.get() == B; |
211 | } |
212 | |
213 | template <class T, class U> |
214 | inline bool operator!=(const IntrusiveRefCntPtr<T> &A, U *B) { |
215 | return A.get() != B; |
216 | } |
217 | |
218 | template <class T, class U> |
219 | inline bool operator==(T *A, const IntrusiveRefCntPtr<U> &B) { |
220 | return A == B.get(); |
221 | } |
222 | |
223 | template <class T, class U> |
224 | inline bool operator!=(T *A, const IntrusiveRefCntPtr<U> &B) { |
225 | return A != B.get(); |
226 | } |
227 | |
228 | template <class T> |
229 | bool operator==(std::nullptr_t A, const IntrusiveRefCntPtr<T> &B) { |
230 | return !B; |
231 | } |
232 | |
233 | template <class T> |
234 | bool operator==(const IntrusiveRefCntPtr<T> &A, std::nullptr_t B) { |
235 | return B == A; |
236 | } |
237 | |
238 | template <class T> |
239 | bool operator!=(std::nullptr_t A, const IntrusiveRefCntPtr<T> &B) { |
240 | return !(A == B); |
241 | } |
242 | |
243 | template <class T> |
244 | bool operator!=(const IntrusiveRefCntPtr<T> &A, std::nullptr_t B) { |
245 | return !(A == B); |
246 | } |
247 | |
248 | // Make IntrusiveRefCntPtr work with dyn_cast, isa, and the other idioms from |
249 | // Casting.h. |
250 | template <typename From> struct simplify_type; |
251 | |
252 | template <class T> struct simplify_type<IntrusiveRefCntPtr<T>> { |
253 | using SimpleType = T *; |
254 | |
255 | static SimpleType getSimplifiedValue(IntrusiveRefCntPtr<T> &Val) { |
256 | return Val.get(); |
257 | } |
258 | }; |
259 | |
260 | template <class T> struct simplify_type<const IntrusiveRefCntPtr<T>> { |
261 | using SimpleType = /*const*/ T *; |
262 | |
263 | static SimpleType getSimplifiedValue(const IntrusiveRefCntPtr<T> &Val) { |
264 | return Val.get(); |
265 | } |
266 | }; |
267 | |
268 | } // end namespace llvm |
269 | |
270 | #endif // LLVM_ADT_INTRUSIVEREFCNTPTR_H |
271 |
Warning: That file was not part of the compilation database. It may have many parsing errors.