1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _ASM_X86_ELF_H
3#define _ASM_X86_ELF_H
4
5/*
6 * ELF register definitions..
7 */
8#include <linux/thread_info.h>
9
10#include <asm/ptrace.h>
11#include <asm/user.h>
12#include <asm/auxvec.h>
13#include <asm/fsgsbase.h>
14
15typedef unsigned long elf_greg_t;
16
17#define ELF_NGREG (sizeof(struct user_regs_struct) / sizeof(elf_greg_t))
18typedef elf_greg_t elf_gregset_t[ELF_NGREG];
19
20typedef struct user_i387_struct elf_fpregset_t;
21
22#ifdef __i386__
23
24typedef struct user_fxsr_struct elf_fpxregset_t;
25
26#define R_386_NONE 0
27#define R_386_32 1
28#define R_386_PC32 2
29#define R_386_GOT32 3
30#define R_386_PLT32 4
31#define R_386_COPY 5
32#define R_386_GLOB_DAT 6
33#define R_386_JMP_SLOT 7
34#define R_386_RELATIVE 8
35#define R_386_GOTOFF 9
36#define R_386_GOTPC 10
37#define R_386_NUM 11
38
39/*
40 * These are used to set parameters in the core dumps.
41 */
42#define ELF_CLASS ELFCLASS32
43#define ELF_DATA ELFDATA2LSB
44#define ELF_ARCH EM_386
45
46#else
47
48/* x86-64 relocation types */
49#define R_X86_64_NONE 0 /* No reloc */
50#define R_X86_64_64 1 /* Direct 64 bit */
51#define R_X86_64_PC32 2 /* PC relative 32 bit signed */
52#define R_X86_64_GOT32 3 /* 32 bit GOT entry */
53#define R_X86_64_PLT32 4 /* 32 bit PLT address */
54#define R_X86_64_COPY 5 /* Copy symbol at runtime */
55#define R_X86_64_GLOB_DAT 6 /* Create GOT entry */
56#define R_X86_64_JUMP_SLOT 7 /* Create PLT entry */
57#define R_X86_64_RELATIVE 8 /* Adjust by program base */
58#define R_X86_64_GOTPCREL 9 /* 32 bit signed pc relative
59 offset to GOT */
60#define R_X86_64_32 10 /* Direct 32 bit zero extended */
61#define R_X86_64_32S 11 /* Direct 32 bit sign extended */
62#define R_X86_64_16 12 /* Direct 16 bit zero extended */
63#define R_X86_64_PC16 13 /* 16 bit sign extended pc relative */
64#define R_X86_64_8 14 /* Direct 8 bit sign extended */
65#define R_X86_64_PC8 15 /* 8 bit sign extended pc relative */
66#define R_X86_64_PC64 24 /* Place relative 64-bit signed */
67
68/*
69 * These are used to set parameters in the core dumps.
70 */
71#define ELF_CLASS ELFCLASS64
72#define ELF_DATA ELFDATA2LSB
73#define ELF_ARCH EM_X86_64
74
75#endif
76
77#include <asm/vdso.h>
78
79#ifdef CONFIG_X86_64
80extern unsigned int vdso64_enabled;
81#endif
82#if defined(CONFIG_X86_32) || defined(CONFIG_IA32_EMULATION)
83extern unsigned int vdso32_enabled;
84#endif
85
86/*
87 * This is used to ensure we don't load something for the wrong architecture.
88 */
89#define elf_check_arch_ia32(x) \
90 (((x)->e_machine == EM_386) || ((x)->e_machine == EM_486))
91
92#include <asm/processor.h>
93
94#ifdef CONFIG_X86_32
95#include <asm/desc.h>
96
97#define elf_check_arch(x) elf_check_arch_ia32(x)
98
99/* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program starts %edx
100 contains a pointer to a function which might be registered using `atexit'.
101 This provides a mean for the dynamic linker to call DT_FINI functions for
102 shared libraries that have been loaded before the code runs.
103
104 A value of 0 tells we have no such handler.
105
106 We might as well make sure everything else is cleared too (except for %esp),
107 just to make things more deterministic.
108 */
109#define ELF_PLAT_INIT(_r, load_addr) \
110 do { \
111 _r->bx = 0; _r->cx = 0; _r->dx = 0; \
112 _r->si = 0; _r->di = 0; _r->bp = 0; \
113 _r->ax = 0; \
114} while (0)
115
116/*
117 * regs is struct pt_regs, pr_reg is elf_gregset_t (which is
118 * now struct_user_regs, they are different)
119 */
120
121#define ELF_CORE_COPY_REGS_COMMON(pr_reg, regs) \
122do { \
123 pr_reg[0] = regs->bx; \
124 pr_reg[1] = regs->cx; \
125 pr_reg[2] = regs->dx; \
126 pr_reg[3] = regs->si; \
127 pr_reg[4] = regs->di; \
128 pr_reg[5] = regs->bp; \
129 pr_reg[6] = regs->ax; \
130 pr_reg[7] = regs->ds; \
131 pr_reg[8] = regs->es; \
132 pr_reg[9] = regs->fs; \
133 pr_reg[11] = regs->orig_ax; \
134 pr_reg[12] = regs->ip; \
135 pr_reg[13] = regs->cs; \
136 pr_reg[14] = regs->flags; \
137 pr_reg[15] = regs->sp; \
138 pr_reg[16] = regs->ss; \
139} while (0);
140
141#define ELF_CORE_COPY_REGS(pr_reg, regs) \
142do { \
143 ELF_CORE_COPY_REGS_COMMON(pr_reg, regs);\
144 pr_reg[10] = get_user_gs(regs); \
145} while (0);
146
147#define ELF_CORE_COPY_KERNEL_REGS(pr_reg, regs) \
148do { \
149 ELF_CORE_COPY_REGS_COMMON(pr_reg, regs);\
150 savesegment(gs, pr_reg[10]); \
151} while (0);
152
153#define ELF_PLATFORM (utsname()->machine)
154#define set_personality_64bit() do { } while (0)
155
156#else /* CONFIG_X86_32 */
157
158/*
159 * This is used to ensure we don't load something for the wrong architecture.
160 */
161#define elf_check_arch(x) \
162 ((x)->e_machine == EM_X86_64)
163
164#define compat_elf_check_arch(x) \
165 (elf_check_arch_ia32(x) || \
166 (IS_ENABLED(CONFIG_X86_X32_ABI) && (x)->e_machine == EM_X86_64))
167
168#if __USER32_DS != __USER_DS
169# error "The following code assumes __USER32_DS == __USER_DS"
170#endif
171
172static inline void elf_common_init(struct thread_struct *t,
173 struct pt_regs *regs, const u16 ds)
174{
175 /* ax gets execve's return value. */
176 /*regs->ax = */ regs->bx = regs->cx = regs->dx = 0;
177 regs->si = regs->di = regs->bp = 0;
178 regs->r8 = regs->r9 = regs->r10 = regs->r11 = 0;
179 regs->r12 = regs->r13 = regs->r14 = regs->r15 = 0;
180 t->fsbase = t->gsbase = 0;
181 t->fsindex = t->gsindex = 0;
182 t->ds = t->es = ds;
183}
184
185#define ELF_PLAT_INIT(_r, load_addr) \
186 elf_common_init(&current->thread, _r, 0)
187
188#define COMPAT_ELF_PLAT_INIT(regs, load_addr) \
189 elf_common_init(&current->thread, regs, __USER_DS)
190
191void compat_start_thread(struct pt_regs *regs, u32 new_ip, u32 new_sp);
192#define compat_start_thread compat_start_thread
193
194void set_personality_ia32(bool);
195#define COMPAT_SET_PERSONALITY(ex) \
196 set_personality_ia32((ex).e_machine == EM_X86_64)
197
198#define COMPAT_ELF_PLATFORM ("i686")
199
200/*
201 * regs is struct pt_regs, pr_reg is elf_gregset_t (which is
202 * now struct_user_regs, they are different). Assumes current is the process
203 * getting dumped.
204 */
205
206#define ELF_CORE_COPY_REGS(pr_reg, regs) \
207do { \
208 unsigned v; \
209 (pr_reg)[0] = (regs)->r15; \
210 (pr_reg)[1] = (regs)->r14; \
211 (pr_reg)[2] = (regs)->r13; \
212 (pr_reg)[3] = (regs)->r12; \
213 (pr_reg)[4] = (regs)->bp; \
214 (pr_reg)[5] = (regs)->bx; \
215 (pr_reg)[6] = (regs)->r11; \
216 (pr_reg)[7] = (regs)->r10; \
217 (pr_reg)[8] = (regs)->r9; \
218 (pr_reg)[9] = (regs)->r8; \
219 (pr_reg)[10] = (regs)->ax; \
220 (pr_reg)[11] = (regs)->cx; \
221 (pr_reg)[12] = (regs)->dx; \
222 (pr_reg)[13] = (regs)->si; \
223 (pr_reg)[14] = (regs)->di; \
224 (pr_reg)[15] = (regs)->orig_ax; \
225 (pr_reg)[16] = (regs)->ip; \
226 (pr_reg)[17] = (regs)->cs; \
227 (pr_reg)[18] = (regs)->flags; \
228 (pr_reg)[19] = (regs)->sp; \
229 (pr_reg)[20] = (regs)->ss; \
230 (pr_reg)[21] = x86_fsbase_read_cpu(); \
231 (pr_reg)[22] = x86_gsbase_read_cpu_inactive(); \
232 asm("movl %%ds,%0" : "=r" (v)); (pr_reg)[23] = v; \
233 asm("movl %%es,%0" : "=r" (v)); (pr_reg)[24] = v; \
234 asm("movl %%fs,%0" : "=r" (v)); (pr_reg)[25] = v; \
235 asm("movl %%gs,%0" : "=r" (v)); (pr_reg)[26] = v; \
236} while (0);
237
238/* I'm not sure if we can use '-' here */
239#define ELF_PLATFORM ("x86_64")
240extern void set_personality_64bit(void);
241extern unsigned int sysctl_vsyscall32;
242extern int force_personality32;
243
244#endif /* !CONFIG_X86_32 */
245
246#define CORE_DUMP_USE_REGSET
247#define ELF_EXEC_PAGESIZE 4096
248
249/*
250 * This is the base location for PIE (ET_DYN with INTERP) loads. On
251 * 64-bit, this is above 4GB to leave the entire 32-bit address
252 * space open for things that want to use the area for 32-bit pointers.
253 */
254#define ELF_ET_DYN_BASE (mmap_is_ia32() ? 0x000400000UL : \
255 (DEFAULT_MAP_WINDOW / 3 * 2))
256
257/* This yields a mask that user programs can use to figure out what
258 instruction set this CPU supports. This could be done in user space,
259 but it's not easy, and we've already done it here. */
260
261#define ELF_HWCAP (boot_cpu_data.x86_capability[CPUID_1_EDX])
262
263extern u32 elf_hwcap2;
264
265/*
266 * HWCAP2 supplies mask with kernel enabled CPU features, so that
267 * the application can discover that it can safely use them.
268 * The bits are defined in uapi/asm/hwcap2.h.
269 */
270#define ELF_HWCAP2 (elf_hwcap2)
271
272/* This yields a string that ld.so will use to load implementation
273 specific libraries for optimization. This is more specific in
274 intent than poking at uname or /proc/cpuinfo.
275
276 For the moment, we have only optimizations for the Intel generations,
277 but that could change... */
278
279#define SET_PERSONALITY(ex) set_personality_64bit()
280
281/*
282 * An executable for which elf_read_implies_exec() returns TRUE will
283 * have the READ_IMPLIES_EXEC personality flag set automatically.
284 */
285#define elf_read_implies_exec(ex, executable_stack) \
286 (executable_stack != EXSTACK_DISABLE_X)
287
288struct task_struct;
289
290#define ARCH_DLINFO_IA32 \
291do { \
292 if (VDSO_CURRENT_BASE) { \
293 NEW_AUX_ENT(AT_SYSINFO, VDSO_ENTRY); \
294 NEW_AUX_ENT(AT_SYSINFO_EHDR, VDSO_CURRENT_BASE); \
295 } \
296} while (0)
297
298/*
299 * True on X86_32 or when emulating IA32 on X86_64
300 */
301static inline int mmap_is_ia32(void)
302{
303 return IS_ENABLED(CONFIG_X86_32) ||
304 (IS_ENABLED(CONFIG_COMPAT) &&
305 test_thread_flag(TIF_ADDR32));
306}
307
308extern unsigned long task_size_32bit(void);
309extern unsigned long task_size_64bit(int full_addr_space);
310extern unsigned long get_mmap_base(int is_legacy);
311extern bool mmap_address_hint_valid(unsigned long addr, unsigned long len);
312
313#ifdef CONFIG_X86_32
314
315#define __STACK_RND_MASK(is32bit) (0x7ff)
316#define STACK_RND_MASK (0x7ff)
317
318#define ARCH_DLINFO ARCH_DLINFO_IA32
319
320/* update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT entries changes */
321
322#else /* CONFIG_X86_32 */
323
324/* 1GB for 64bit, 8MB for 32bit */
325#define __STACK_RND_MASK(is32bit) ((is32bit) ? 0x7ff : 0x3fffff)
326#define STACK_RND_MASK __STACK_RND_MASK(mmap_is_ia32())
327
328#define ARCH_DLINFO \
329do { \
330 if (vdso64_enabled) \
331 NEW_AUX_ENT(AT_SYSINFO_EHDR, \
332 (unsigned long __force)current->mm->context.vdso); \
333} while (0)
334
335/* As a historical oddity, the x32 and x86_64 vDSOs are controlled together. */
336#define ARCH_DLINFO_X32 \
337do { \
338 if (vdso64_enabled) \
339 NEW_AUX_ENT(AT_SYSINFO_EHDR, \
340 (unsigned long __force)current->mm->context.vdso); \
341} while (0)
342
343#define AT_SYSINFO 32
344
345#define COMPAT_ARCH_DLINFO \
346if (test_thread_flag(TIF_X32)) \
347 ARCH_DLINFO_X32; \
348else \
349 ARCH_DLINFO_IA32
350
351#define COMPAT_ELF_ET_DYN_BASE (TASK_UNMAPPED_BASE + 0x1000000)
352
353#endif /* !CONFIG_X86_32 */
354
355#define VDSO_CURRENT_BASE ((unsigned long)current->mm->context.vdso)
356
357#define VDSO_ENTRY \
358 ((unsigned long)current->mm->context.vdso + \
359 vdso_image_32.sym___kernel_vsyscall)
360
361struct linux_binprm;
362
363#define ARCH_HAS_SETUP_ADDITIONAL_PAGES 1
364extern int arch_setup_additional_pages(struct linux_binprm *bprm,
365 int uses_interp);
366extern int compat_arch_setup_additional_pages(struct linux_binprm *bprm,
367 int uses_interp);
368#define compat_arch_setup_additional_pages compat_arch_setup_additional_pages
369
370/* Do not change the values. See get_align_mask() */
371enum align_flags {
372 ALIGN_VA_32 = BIT(0),
373 ALIGN_VA_64 = BIT(1),
374};
375
376struct va_alignment {
377 int flags;
378 unsigned long mask;
379 unsigned long bits;
380} ____cacheline_aligned;
381
382extern struct va_alignment va_align;
383extern unsigned long align_vdso_addr(unsigned long);
384#endif /* _ASM_X86_ELF_H */
385