Warning: That file was not part of the compilation database. It may have many parsing errors.

1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _ASM_X86_PGTABLE_3LEVEL_H
3#define _ASM_X86_PGTABLE_3LEVEL_H
4
5#include <asm/atomic64_32.h>
6
7/*
8 * Intel Physical Address Extension (PAE) Mode - three-level page
9 * tables on PPro+ CPUs.
10 *
11 * Copyright (C) 1999 Ingo Molnar <mingo@redhat.com>
12 */
13
14#define pte_ERROR(e) \
15 pr_err("%s:%d: bad pte %p(%08lx%08lx)\n", \
16 __FILE__, __LINE__, &(e), (e).pte_high, (e).pte_low)
17#define pmd_ERROR(e) \
18 pr_err("%s:%d: bad pmd %p(%016Lx)\n", \
19 __FILE__, __LINE__, &(e), pmd_val(e))
20#define pgd_ERROR(e) \
21 pr_err("%s:%d: bad pgd %p(%016Lx)\n", \
22 __FILE__, __LINE__, &(e), pgd_val(e))
23
24/* Rules for using set_pte: the pte being assigned *must* be
25 * either not present or in a state where the hardware will
26 * not attempt to update the pte. In places where this is
27 * not possible, use pte_get_and_clear to obtain the old pte
28 * value and then use set_pte to update it. -ben
29 */
30static inline void native_set_pte(pte_t *ptep, pte_t pte)
31{
32 ptep->pte_high = pte.pte_high;
33 smp_wmb();
34 ptep->pte_low = pte.pte_low;
35}
36
37#define pmd_read_atomic pmd_read_atomic
38/*
39 * pte_offset_map_lock on 32bit PAE kernels was reading the pmd_t with
40 * a "*pmdp" dereference done by gcc. Problem is, in certain places
41 * where pte_offset_map_lock is called, concurrent page faults are
42 * allowed, if the mmap_sem is hold for reading. An example is mincore
43 * vs page faults vs MADV_DONTNEED. On the page fault side
44 * pmd_populate rightfully does a set_64bit, but if we're reading the
45 * pmd_t with a "*pmdp" on the mincore side, a SMP race can happen
46 * because gcc will not read the 64bit of the pmd atomically. To fix
47 * this all places running pmd_offset_map_lock() while holding the
48 * mmap_sem in read mode, shall read the pmdp pointer using this
49 * function to know if the pmd is null nor not, and in turn to know if
50 * they can run pmd_offset_map_lock or pmd_trans_huge or other pmd
51 * operations.
52 *
53 * Without THP if the mmap_sem is hold for reading, the pmd can only
54 * transition from null to not null while pmd_read_atomic runs. So
55 * we can always return atomic pmd values with this function.
56 *
57 * With THP if the mmap_sem is hold for reading, the pmd can become
58 * trans_huge or none or point to a pte (and in turn become "stable")
59 * at any time under pmd_read_atomic. We could read it really
60 * atomically here with a atomic64_read for the THP enabled case (and
61 * it would be a whole lot simpler), but to avoid using cmpxchg8b we
62 * only return an atomic pmdval if the low part of the pmdval is later
63 * found stable (i.e. pointing to a pte). And we're returning a none
64 * pmdval if the low part of the pmd is none. In some cases the high
65 * and low part of the pmdval returned may not be consistent if THP is
66 * enabled (the low part may point to previously mapped hugepage,
67 * while the high part may point to a more recently mapped hugepage),
68 * but pmd_none_or_trans_huge_or_clear_bad() only needs the low part
69 * of the pmd to be read atomically to decide if the pmd is unstable
70 * or not, with the only exception of when the low part of the pmd is
71 * zero in which case we return a none pmd.
72 */
73static inline pmd_t pmd_read_atomic(pmd_t *pmdp)
74{
75 pmdval_t ret;
76 u32 *tmp = (u32 *)pmdp;
77
78 ret = (pmdval_t) (*tmp);
79 if (ret) {
80 /*
81 * If the low part is null, we must not read the high part
82 * or we can end up with a partial pmd.
83 */
84 smp_rmb();
85 ret |= ((pmdval_t)*(tmp + 1)) << 32;
86 }
87
88 return (pmd_t) { ret };
89}
90
91static inline void native_set_pte_atomic(pte_t *ptep, pte_t pte)
92{
93 set_64bit((unsigned long long *)(ptep), native_pte_val(pte));
94}
95
96static inline void native_set_pmd(pmd_t *pmdp, pmd_t pmd)
97{
98 set_64bit((unsigned long long *)(pmdp), native_pmd_val(pmd));
99}
100
101static inline void native_set_pud(pud_t *pudp, pud_t pud)
102{
103#ifdef CONFIG_PAGE_TABLE_ISOLATION
104 pud.p4d.pgd = pti_set_user_pgtbl(&pudp->p4d.pgd, pud.p4d.pgd);
105#endif
106 set_64bit((unsigned long long *)(pudp), native_pud_val(pud));
107}
108
109/*
110 * For PTEs and PDEs, we must clear the P-bit first when clearing a page table
111 * entry, so clear the bottom half first and enforce ordering with a compiler
112 * barrier.
113 */
114static inline void native_pte_clear(struct mm_struct *mm, unsigned long addr,
115 pte_t *ptep)
116{
117 ptep->pte_low = 0;
118 smp_wmb();
119 ptep->pte_high = 0;
120}
121
122static inline void native_pmd_clear(pmd_t *pmd)
123{
124 u32 *tmp = (u32 *)pmd;
125 *tmp = 0;
126 smp_wmb();
127 *(tmp + 1) = 0;
128}
129
130static inline void native_pud_clear(pud_t *pudp)
131{
132}
133
134static inline void pud_clear(pud_t *pudp)
135{
136 set_pud(pudp, __pud(0));
137
138 /*
139 * According to Intel App note "TLBs, Paging-Structure Caches,
140 * and Their Invalidation", April 2007, document 317080-001,
141 * section 8.1: in PAE mode we explicitly have to flush the
142 * TLB via cr3 if the top-level pgd is changed...
143 *
144 * Currently all places where pud_clear() is called either have
145 * flush_tlb_mm() followed or don't need TLB flush (x86_64 code or
146 * pud_clear_bad()), so we don't need TLB flush here.
147 */
148}
149
150#ifdef CONFIG_SMP
151static inline pte_t native_ptep_get_and_clear(pte_t *ptep)
152{
153 pte_t res;
154
155 res.pte = (pteval_t)arch_atomic64_xchg((atomic64_t *)ptep, 0);
156
157 return res;
158}
159#else
160#define native_ptep_get_and_clear(xp) native_local_ptep_get_and_clear(xp)
161#endif
162
163union split_pmd {
164 struct {
165 u32 pmd_low;
166 u32 pmd_high;
167 };
168 pmd_t pmd;
169};
170
171#ifdef CONFIG_SMP
172static inline pmd_t native_pmdp_get_and_clear(pmd_t *pmdp)
173{
174 union split_pmd res, *orig = (union split_pmd *)pmdp;
175
176 /* xchg acts as a barrier before setting of the high bits */
177 res.pmd_low = xchg(&orig->pmd_low, 0);
178 res.pmd_high = orig->pmd_high;
179 orig->pmd_high = 0;
180
181 return res.pmd;
182}
183#else
184#define native_pmdp_get_and_clear(xp) native_local_pmdp_get_and_clear(xp)
185#endif
186
187#ifndef pmdp_establish
188#define pmdp_establish pmdp_establish
189static inline pmd_t pmdp_establish(struct vm_area_struct *vma,
190 unsigned long address, pmd_t *pmdp, pmd_t pmd)
191{
192 pmd_t old;
193
194 /*
195 * If pmd has present bit cleared we can get away without expensive
196 * cmpxchg64: we can update pmdp half-by-half without racing with
197 * anybody.
198 */
199 if (!(pmd_val(pmd) & _PAGE_PRESENT)) {
200 union split_pmd old, new, *ptr;
201
202 ptr = (union split_pmd *)pmdp;
203
204 new.pmd = pmd;
205
206 /* xchg acts as a barrier before setting of the high bits */
207 old.pmd_low = xchg(&ptr->pmd_low, new.pmd_low);
208 old.pmd_high = ptr->pmd_high;
209 ptr->pmd_high = new.pmd_high;
210 return old.pmd;
211 }
212
213 do {
214 old = *pmdp;
215 } while (cmpxchg64(&pmdp->pmd, old.pmd, pmd.pmd) != old.pmd);
216
217 return old;
218}
219#endif
220
221#ifdef CONFIG_SMP
222union split_pud {
223 struct {
224 u32 pud_low;
225 u32 pud_high;
226 };
227 pud_t pud;
228};
229
230static inline pud_t native_pudp_get_and_clear(pud_t *pudp)
231{
232 union split_pud res, *orig = (union split_pud *)pudp;
233
234#ifdef CONFIG_PAGE_TABLE_ISOLATION
235 pti_set_user_pgtbl(&pudp->p4d.pgd, __pgd(0));
236#endif
237
238 /* xchg acts as a barrier before setting of the high bits */
239 res.pud_low = xchg(&orig->pud_low, 0);
240 res.pud_high = orig->pud_high;
241 orig->pud_high = 0;
242
243 return res.pud;
244}
245#else
246#define native_pudp_get_and_clear(xp) native_local_pudp_get_and_clear(xp)
247#endif
248
249/* Encode and de-code a swap entry */
250#define SWP_TYPE_BITS 5
251
252#define SWP_OFFSET_FIRST_BIT (_PAGE_BIT_PROTNONE + 1)
253
254/* We always extract/encode the offset by shifting it all the way up, and then down again */
255#define SWP_OFFSET_SHIFT (SWP_OFFSET_FIRST_BIT + SWP_TYPE_BITS)
256
257#define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > 5)
258#define __swp_type(x) (((x).val) & 0x1f)
259#define __swp_offset(x) ((x).val >> 5)
260#define __swp_entry(type, offset) ((swp_entry_t){(type) | (offset) << 5})
261
262/*
263 * Normally, __swp_entry() converts from arch-independent swp_entry_t to
264 * arch-dependent swp_entry_t, and __swp_entry_to_pte() just stores the result
265 * to pte. But here we have 32bit swp_entry_t and 64bit pte, and need to use the
266 * whole 64 bits. Thus, we shift the "real" arch-dependent conversion to
267 * __swp_entry_to_pte() through the following helper macro based on 64bit
268 * __swp_entry().
269 */
270#define __swp_pteval_entry(type, offset) ((pteval_t) { \
271 (~(pteval_t)(offset) << SWP_OFFSET_SHIFT >> SWP_TYPE_BITS) \
272 | ((pteval_t)(type) << (64 - SWP_TYPE_BITS)) })
273
274#define __swp_entry_to_pte(x) ((pte_t){ .pte = \
275 __swp_pteval_entry(__swp_type(x), __swp_offset(x)) })
276/*
277 * Analogically, __pte_to_swp_entry() doesn't just extract the arch-dependent
278 * swp_entry_t, but also has to convert it from 64bit to the 32bit
279 * intermediate representation, using the following macros based on 64bit
280 * __swp_type() and __swp_offset().
281 */
282#define __pteval_swp_type(x) ((unsigned long)((x).pte >> (64 - SWP_TYPE_BITS)))
283#define __pteval_swp_offset(x) ((unsigned long)(~((x).pte) << SWP_TYPE_BITS >> SWP_OFFSET_SHIFT))
284
285#define __pte_to_swp_entry(pte) (__swp_entry(__pteval_swp_type(pte), \
286 __pteval_swp_offset(pte)))
287
288#define gup_get_pte gup_get_pte
289/*
290 * WARNING: only to be used in the get_user_pages_fast() implementation.
291 *
292 * With get_user_pages_fast(), we walk down the pagetables without taking
293 * any locks. For this we would like to load the pointers atomically,
294 * but that is not possible (without expensive cmpxchg8b) on PAE. What
295 * we do have is the guarantee that a PTE will only either go from not
296 * present to present, or present to not present or both -- it will not
297 * switch to a completely different present page without a TLB flush in
298 * between; something that we are blocking by holding interrupts off.
299 *
300 * Setting ptes from not present to present goes:
301 *
302 * ptep->pte_high = h;
303 * smp_wmb();
304 * ptep->pte_low = l;
305 *
306 * And present to not present goes:
307 *
308 * ptep->pte_low = 0;
309 * smp_wmb();
310 * ptep->pte_high = 0;
311 *
312 * We must ensure here that the load of pte_low sees 'l' iff pte_high
313 * sees 'h'. We load pte_high *after* loading pte_low, which ensures we
314 * don't see an older value of pte_high. *Then* we recheck pte_low,
315 * which ensures that we haven't picked up a changed pte high. We might
316 * have gotten rubbish values from pte_low and pte_high, but we are
317 * guaranteed that pte_low will not have the present bit set *unless*
318 * it is 'l'. Because get_user_pages_fast() only operates on present ptes
319 * we're safe.
320 */
321static inline pte_t gup_get_pte(pte_t *ptep)
322{
323 pte_t pte;
324
325 do {
326 pte.pte_low = ptep->pte_low;
327 smp_rmb();
328 pte.pte_high = ptep->pte_high;
329 smp_rmb();
330 } while (unlikely(pte.pte_low != ptep->pte_low));
331
332 return pte;
333}
334
335#include <asm/pgtable-invert.h>
336
337#endif /* _ASM_X86_PGTABLE_3LEVEL_H */
338

Warning: That file was not part of the compilation database. It may have many parsing errors.