1 | /* |
2 | * This file is subject to the terms and conditions of the GNU General Public |
3 | * License. See the file "COPYING" in the main directory of this archive |
4 | * for more details. |
5 | * |
6 | * SGI UV architectural definitions |
7 | * |
8 | * Copyright (C) 2007-2014 Silicon Graphics, Inc. All rights reserved. |
9 | */ |
10 | |
11 | #ifndef _ASM_X86_UV_UV_HUB_H |
12 | #define _ASM_X86_UV_UV_HUB_H |
13 | |
14 | #ifdef CONFIG_X86_64 |
15 | #include <linux/numa.h> |
16 | #include <linux/percpu.h> |
17 | #include <linux/timer.h> |
18 | #include <linux/io.h> |
19 | #include <linux/topology.h> |
20 | #include <asm/types.h> |
21 | #include <asm/percpu.h> |
22 | #include <asm/uv/uv_mmrs.h> |
23 | #include <asm/uv/bios.h> |
24 | #include <asm/irq_vectors.h> |
25 | #include <asm/io_apic.h> |
26 | |
27 | |
28 | /* |
29 | * Addressing Terminology |
30 | * |
31 | * M - The low M bits of a physical address represent the offset |
32 | * into the blade local memory. RAM memory on a blade is physically |
33 | * contiguous (although various IO spaces may punch holes in |
34 | * it).. |
35 | * |
36 | * N - Number of bits in the node portion of a socket physical |
37 | * address. |
38 | * |
39 | * NASID - network ID of a router, Mbrick or Cbrick. Nasid values of |
40 | * routers always have low bit of 1, C/MBricks have low bit |
41 | * equal to 0. Most addressing macros that target UV hub chips |
42 | * right shift the NASID by 1 to exclude the always-zero bit. |
43 | * NASIDs contain up to 15 bits. |
44 | * |
45 | * GNODE - NASID right shifted by 1 bit. Most mmrs contain gnodes instead |
46 | * of nasids. |
47 | * |
48 | * PNODE - the low N bits of the GNODE. The PNODE is the most useful variant |
49 | * of the nasid for socket usage. |
50 | * |
51 | * GPA - (global physical address) a socket physical address converted |
52 | * so that it can be used by the GRU as a global address. Socket |
53 | * physical addresses 1) need additional NASID (node) bits added |
54 | * to the high end of the address, and 2) unaliased if the |
55 | * partition does not have a physical address 0. In addition, on |
56 | * UV2 rev 1, GPAs need the gnode left shifted to bits 39 or 40. |
57 | * |
58 | * |
59 | * NumaLink Global Physical Address Format: |
60 | * +--------------------------------+---------------------+ |
61 | * |00..000| GNODE | NodeOffset | |
62 | * +--------------------------------+---------------------+ |
63 | * |<-------53 - M bits --->|<--------M bits -----> |
64 | * |
65 | * M - number of node offset bits (35 .. 40) |
66 | * |
67 | * |
68 | * Memory/UV-HUB Processor Socket Address Format: |
69 | * +----------------+---------------+---------------------+ |
70 | * |00..000000000000| PNODE | NodeOffset | |
71 | * +----------------+---------------+---------------------+ |
72 | * <--- N bits --->|<--------M bits -----> |
73 | * |
74 | * M - number of node offset bits (35 .. 40) |
75 | * N - number of PNODE bits (0 .. 10) |
76 | * |
77 | * Note: M + N cannot currently exceed 44 (x86_64) or 46 (IA64). |
78 | * The actual values are configuration dependent and are set at |
79 | * boot time. M & N values are set by the hardware/BIOS at boot. |
80 | * |
81 | * |
82 | * APICID format |
83 | * NOTE!!!!!! This is the current format of the APICID. However, code |
84 | * should assume that this will change in the future. Use functions |
85 | * in this file for all APICID bit manipulations and conversion. |
86 | * |
87 | * 1111110000000000 |
88 | * 5432109876543210 |
89 | * pppppppppplc0cch Nehalem-EX (12 bits in hdw reg) |
90 | * ppppppppplcc0cch Westmere-EX (12 bits in hdw reg) |
91 | * pppppppppppcccch SandyBridge (15 bits in hdw reg) |
92 | * sssssssssss |
93 | * |
94 | * p = pnode bits |
95 | * l = socket number on board |
96 | * c = core |
97 | * h = hyperthread |
98 | * s = bits that are in the SOCKET_ID CSR |
99 | * |
100 | * Note: Processor may support fewer bits in the APICID register. The ACPI |
101 | * tables hold all 16 bits. Software needs to be aware of this. |
102 | * |
103 | * Unless otherwise specified, all references to APICID refer to |
104 | * the FULL value contained in ACPI tables, not the subset in the |
105 | * processor APICID register. |
106 | */ |
107 | |
108 | /* |
109 | * Maximum number of bricks in all partitions and in all coherency domains. |
110 | * This is the total number of bricks accessible in the numalink fabric. It |
111 | * includes all C & M bricks. Routers are NOT included. |
112 | * |
113 | * This value is also the value of the maximum number of non-router NASIDs |
114 | * in the numalink fabric. |
115 | * |
116 | * NOTE: a brick may contain 1 or 2 OS nodes. Don't get these confused. |
117 | */ |
118 | #define UV_MAX_NUMALINK_BLADES 16384 |
119 | |
120 | /* |
121 | * Maximum number of C/Mbricks within a software SSI (hardware may support |
122 | * more). |
123 | */ |
124 | #define UV_MAX_SSI_BLADES 256 |
125 | |
126 | /* |
127 | * The largest possible NASID of a C or M brick (+ 2) |
128 | */ |
129 | #define UV_MAX_NASID_VALUE (UV_MAX_NUMALINK_BLADES * 2) |
130 | |
131 | /* System Controller Interface Reg info */ |
132 | struct uv_scir_s { |
133 | struct timer_list timer; |
134 | unsigned long offset; |
135 | unsigned long last; |
136 | unsigned long idle_on; |
137 | unsigned long idle_off; |
138 | unsigned char state; |
139 | unsigned char enabled; |
140 | }; |
141 | |
142 | /* GAM (globally addressed memory) range table */ |
143 | struct uv_gam_range_s { |
144 | u32 limit; /* PA bits 56:26 (GAM_RANGE_SHFT) */ |
145 | u16 nasid; /* node's global physical address */ |
146 | s8 base; /* entry index of node's base addr */ |
147 | u8 reserved; |
148 | }; |
149 | |
150 | /* |
151 | * The following defines attributes of the HUB chip. These attributes are |
152 | * frequently referenced and are kept in a common per hub struct. |
153 | * After setup, the struct is read only, so it should be readily |
154 | * available in the L3 cache on the cpu socket for the node. |
155 | */ |
156 | struct uv_hub_info_s { |
157 | unsigned long global_mmr_base; |
158 | unsigned long global_mmr_shift; |
159 | unsigned long gpa_mask; |
160 | unsigned short *socket_to_node; |
161 | unsigned short *socket_to_pnode; |
162 | unsigned short *pnode_to_socket; |
163 | struct uv_gam_range_s *gr_table; |
164 | unsigned short min_socket; |
165 | unsigned short min_pnode; |
166 | unsigned char m_val; |
167 | unsigned char n_val; |
168 | unsigned char gr_table_len; |
169 | unsigned char hub_revision; |
170 | unsigned char apic_pnode_shift; |
171 | unsigned char gpa_shift; |
172 | unsigned char m_shift; |
173 | unsigned char n_lshift; |
174 | unsigned int ; |
175 | unsigned long gnode_upper; |
176 | unsigned long lowmem_remap_top; |
177 | unsigned long lowmem_remap_base; |
178 | unsigned long global_gru_base; |
179 | unsigned long global_gru_shift; |
180 | unsigned short pnode; |
181 | unsigned short pnode_mask; |
182 | unsigned short coherency_domain_number; |
183 | unsigned short numa_blade_id; |
184 | unsigned short nr_possible_cpus; |
185 | unsigned short nr_online_cpus; |
186 | short memory_nid; |
187 | }; |
188 | |
189 | /* CPU specific info with a pointer to the hub common info struct */ |
190 | struct uv_cpu_info_s { |
191 | void *p_uv_hub_info; |
192 | unsigned char blade_cpu_id; |
193 | struct uv_scir_s scir; |
194 | }; |
195 | DECLARE_PER_CPU(struct uv_cpu_info_s, __uv_cpu_info); |
196 | |
197 | #define uv_cpu_info this_cpu_ptr(&__uv_cpu_info) |
198 | #define uv_cpu_info_per(cpu) (&per_cpu(__uv_cpu_info, cpu)) |
199 | |
200 | #define uv_scir_info (&uv_cpu_info->scir) |
201 | #define uv_cpu_scir_info(cpu) (&uv_cpu_info_per(cpu)->scir) |
202 | |
203 | /* Node specific hub common info struct */ |
204 | extern void **__uv_hub_info_list; |
205 | static inline struct uv_hub_info_s *uv_hub_info_list(int node) |
206 | { |
207 | return (struct uv_hub_info_s *)__uv_hub_info_list[node]; |
208 | } |
209 | |
210 | static inline struct uv_hub_info_s *_uv_hub_info(void) |
211 | { |
212 | return (struct uv_hub_info_s *)uv_cpu_info->p_uv_hub_info; |
213 | } |
214 | #define uv_hub_info _uv_hub_info() |
215 | |
216 | static inline struct uv_hub_info_s *uv_cpu_hub_info(int cpu) |
217 | { |
218 | return (struct uv_hub_info_s *)uv_cpu_info_per(cpu)->p_uv_hub_info; |
219 | } |
220 | |
221 | #define UV_HUB_INFO_VERSION 0x7150 |
222 | extern int uv_hub_info_version(void); |
223 | static inline int uv_hub_info_check(int version) |
224 | { |
225 | if (uv_hub_info_version() == version) |
226 | return 0; |
227 | |
228 | pr_crit("UV: uv_hub_info version(%x) mismatch, expecting(%x)\n" , |
229 | uv_hub_info_version(), version); |
230 | |
231 | BUG(); /* Catastrophic - cannot continue on unknown UV system */ |
232 | } |
233 | #define _uv_hub_info_check() uv_hub_info_check(UV_HUB_INFO_VERSION) |
234 | |
235 | /* |
236 | * HUB revision ranges for each UV HUB architecture. |
237 | * This is a software convention - NOT the hardware revision numbers in |
238 | * the hub chip. |
239 | */ |
240 | #define UV1_HUB_REVISION_BASE 1 |
241 | #define UV2_HUB_REVISION_BASE 3 |
242 | #define UV3_HUB_REVISION_BASE 5 |
243 | #define UV4_HUB_REVISION_BASE 7 |
244 | #define UV4A_HUB_REVISION_BASE 8 /* UV4 (fixed) rev 2 */ |
245 | |
246 | #ifdef UV1_HUB_IS_SUPPORTED |
247 | static inline int is_uv1_hub(void) |
248 | { |
249 | return uv_hub_info->hub_revision < UV2_HUB_REVISION_BASE; |
250 | } |
251 | #else |
252 | static inline int is_uv1_hub(void) |
253 | { |
254 | return 0; |
255 | } |
256 | #endif |
257 | |
258 | #ifdef UV2_HUB_IS_SUPPORTED |
259 | static inline int is_uv2_hub(void) |
260 | { |
261 | return ((uv_hub_info->hub_revision >= UV2_HUB_REVISION_BASE) && |
262 | (uv_hub_info->hub_revision < UV3_HUB_REVISION_BASE)); |
263 | } |
264 | #else |
265 | static inline int is_uv2_hub(void) |
266 | { |
267 | return 0; |
268 | } |
269 | #endif |
270 | |
271 | #ifdef UV3_HUB_IS_SUPPORTED |
272 | static inline int is_uv3_hub(void) |
273 | { |
274 | return ((uv_hub_info->hub_revision >= UV3_HUB_REVISION_BASE) && |
275 | (uv_hub_info->hub_revision < UV4_HUB_REVISION_BASE)); |
276 | } |
277 | #else |
278 | static inline int is_uv3_hub(void) |
279 | { |
280 | return 0; |
281 | } |
282 | #endif |
283 | |
284 | /* First test "is UV4A", then "is UV4" */ |
285 | #ifdef UV4A_HUB_IS_SUPPORTED |
286 | static inline int is_uv4a_hub(void) |
287 | { |
288 | return (uv_hub_info->hub_revision >= UV4A_HUB_REVISION_BASE); |
289 | } |
290 | #else |
291 | static inline int is_uv4a_hub(void) |
292 | { |
293 | return 0; |
294 | } |
295 | #endif |
296 | |
297 | #ifdef UV4_HUB_IS_SUPPORTED |
298 | static inline int is_uv4_hub(void) |
299 | { |
300 | return uv_hub_info->hub_revision >= UV4_HUB_REVISION_BASE; |
301 | } |
302 | #else |
303 | static inline int is_uv4_hub(void) |
304 | { |
305 | return 0; |
306 | } |
307 | #endif |
308 | |
309 | static inline int is_uvx_hub(void) |
310 | { |
311 | if (uv_hub_info->hub_revision >= UV2_HUB_REVISION_BASE) |
312 | return uv_hub_info->hub_revision; |
313 | |
314 | return 0; |
315 | } |
316 | |
317 | static inline int is_uv_hub(void) |
318 | { |
319 | #ifdef UV1_HUB_IS_SUPPORTED |
320 | return uv_hub_info->hub_revision; |
321 | #endif |
322 | return is_uvx_hub(); |
323 | } |
324 | |
325 | union uvh_apicid { |
326 | unsigned long v; |
327 | struct uvh_apicid_s { |
328 | unsigned long local_apic_mask : 24; |
329 | unsigned long local_apic_shift : 5; |
330 | unsigned long unused1 : 3; |
331 | unsigned long pnode_mask : 24; |
332 | unsigned long pnode_shift : 5; |
333 | unsigned long unused2 : 3; |
334 | } s; |
335 | }; |
336 | |
337 | /* |
338 | * Local & Global MMR space macros. |
339 | * Note: macros are intended to be used ONLY by inline functions |
340 | * in this file - not by other kernel code. |
341 | * n - NASID (full 15-bit global nasid) |
342 | * g - GNODE (full 15-bit global nasid, right shifted 1) |
343 | * p - PNODE (local part of nsids, right shifted 1) |
344 | */ |
345 | #define UV_NASID_TO_PNODE(n) (((n) >> 1) & uv_hub_info->pnode_mask) |
346 | #define UV_PNODE_TO_GNODE(p) ((p) |uv_hub_info->gnode_extra) |
347 | #define UV_PNODE_TO_NASID(p) (UV_PNODE_TO_GNODE(p) << 1) |
348 | |
349 | #define UV1_LOCAL_MMR_BASE 0xf4000000UL |
350 | #define UV1_GLOBAL_MMR32_BASE 0xf8000000UL |
351 | #define UV1_LOCAL_MMR_SIZE (64UL * 1024 * 1024) |
352 | #define UV1_GLOBAL_MMR32_SIZE (64UL * 1024 * 1024) |
353 | |
354 | #define UV2_LOCAL_MMR_BASE 0xfa000000UL |
355 | #define UV2_GLOBAL_MMR32_BASE 0xfc000000UL |
356 | #define UV2_LOCAL_MMR_SIZE (32UL * 1024 * 1024) |
357 | #define UV2_GLOBAL_MMR32_SIZE (32UL * 1024 * 1024) |
358 | |
359 | #define UV3_LOCAL_MMR_BASE 0xfa000000UL |
360 | #define UV3_GLOBAL_MMR32_BASE 0xfc000000UL |
361 | #define UV3_LOCAL_MMR_SIZE (32UL * 1024 * 1024) |
362 | #define UV3_GLOBAL_MMR32_SIZE (32UL * 1024 * 1024) |
363 | |
364 | #define UV4_LOCAL_MMR_BASE 0xfa000000UL |
365 | #define UV4_GLOBAL_MMR32_BASE 0xfc000000UL |
366 | #define UV4_LOCAL_MMR_SIZE (32UL * 1024 * 1024) |
367 | #define UV4_GLOBAL_MMR32_SIZE (16UL * 1024 * 1024) |
368 | |
369 | #define UV_LOCAL_MMR_BASE ( \ |
370 | is_uv1_hub() ? UV1_LOCAL_MMR_BASE : \ |
371 | is_uv2_hub() ? UV2_LOCAL_MMR_BASE : \ |
372 | is_uv3_hub() ? UV3_LOCAL_MMR_BASE : \ |
373 | /*is_uv4_hub*/ UV4_LOCAL_MMR_BASE) |
374 | |
375 | #define UV_GLOBAL_MMR32_BASE ( \ |
376 | is_uv1_hub() ? UV1_GLOBAL_MMR32_BASE : \ |
377 | is_uv2_hub() ? UV2_GLOBAL_MMR32_BASE : \ |
378 | is_uv3_hub() ? UV3_GLOBAL_MMR32_BASE : \ |
379 | /*is_uv4_hub*/ UV4_GLOBAL_MMR32_BASE) |
380 | |
381 | #define UV_LOCAL_MMR_SIZE ( \ |
382 | is_uv1_hub() ? UV1_LOCAL_MMR_SIZE : \ |
383 | is_uv2_hub() ? UV2_LOCAL_MMR_SIZE : \ |
384 | is_uv3_hub() ? UV3_LOCAL_MMR_SIZE : \ |
385 | /*is_uv4_hub*/ UV4_LOCAL_MMR_SIZE) |
386 | |
387 | #define UV_GLOBAL_MMR32_SIZE ( \ |
388 | is_uv1_hub() ? UV1_GLOBAL_MMR32_SIZE : \ |
389 | is_uv2_hub() ? UV2_GLOBAL_MMR32_SIZE : \ |
390 | is_uv3_hub() ? UV3_GLOBAL_MMR32_SIZE : \ |
391 | /*is_uv4_hub*/ UV4_GLOBAL_MMR32_SIZE) |
392 | |
393 | #define UV_GLOBAL_MMR64_BASE (uv_hub_info->global_mmr_base) |
394 | |
395 | #define UV_GLOBAL_GRU_MMR_BASE 0x4000000 |
396 | |
397 | #define UV_GLOBAL_MMR32_PNODE_SHIFT 15 |
398 | #define _UV_GLOBAL_MMR64_PNODE_SHIFT 26 |
399 | #define UV_GLOBAL_MMR64_PNODE_SHIFT (uv_hub_info->global_mmr_shift) |
400 | |
401 | #define UV_GLOBAL_MMR32_PNODE_BITS(p) ((p) << (UV_GLOBAL_MMR32_PNODE_SHIFT)) |
402 | |
403 | #define UV_GLOBAL_MMR64_PNODE_BITS(p) \ |
404 | (((unsigned long)(p)) << UV_GLOBAL_MMR64_PNODE_SHIFT) |
405 | |
406 | #define UVH_APICID 0x002D0E00L |
407 | #define UV_APIC_PNODE_SHIFT 6 |
408 | |
409 | #define UV_APICID_HIBIT_MASK 0xffff0000 |
410 | |
411 | /* Local Bus from cpu's perspective */ |
412 | #define LOCAL_BUS_BASE 0x1c00000 |
413 | #define LOCAL_BUS_SIZE (4 * 1024 * 1024) |
414 | |
415 | /* |
416 | * System Controller Interface Reg |
417 | * |
418 | * Note there are NO leds on a UV system. This register is only |
419 | * used by the system controller to monitor system-wide operation. |
420 | * There are 64 regs per node. With Nahelem cpus (2 cores per node, |
421 | * 8 cpus per core, 2 threads per cpu) there are 32 cpu threads on |
422 | * a node. |
423 | * |
424 | * The window is located at top of ACPI MMR space |
425 | */ |
426 | #define SCIR_WINDOW_COUNT 64 |
427 | #define SCIR_LOCAL_MMR_BASE (LOCAL_BUS_BASE + \ |
428 | LOCAL_BUS_SIZE - \ |
429 | SCIR_WINDOW_COUNT) |
430 | |
431 | #define SCIR_CPU_HEARTBEAT 0x01 /* timer interrupt */ |
432 | #define SCIR_CPU_ACTIVITY 0x02 /* not idle */ |
433 | #define SCIR_CPU_HB_INTERVAL (HZ) /* once per second */ |
434 | |
435 | /* Loop through all installed blades */ |
436 | #define for_each_possible_blade(bid) \ |
437 | for ((bid) = 0; (bid) < uv_num_possible_blades(); (bid)++) |
438 | |
439 | /* |
440 | * Macros for converting between kernel virtual addresses, socket local physical |
441 | * addresses, and UV global physical addresses. |
442 | * Note: use the standard __pa() & __va() macros for converting |
443 | * between socket virtual and socket physical addresses. |
444 | */ |
445 | |
446 | /* global bits offset - number of local address bits in gpa for this UV arch */ |
447 | static inline unsigned int uv_gpa_shift(void) |
448 | { |
449 | return uv_hub_info->gpa_shift; |
450 | } |
451 | #define _uv_gpa_shift |
452 | |
453 | /* Find node that has the address range that contains global address */ |
454 | static inline struct uv_gam_range_s *uv_gam_range(unsigned long pa) |
455 | { |
456 | struct uv_gam_range_s *gr = uv_hub_info->gr_table; |
457 | unsigned long pal = (pa & uv_hub_info->gpa_mask) >> UV_GAM_RANGE_SHFT; |
458 | int i, num = uv_hub_info->gr_table_len; |
459 | |
460 | if (gr) { |
461 | for (i = 0; i < num; i++, gr++) { |
462 | if (pal < gr->limit) |
463 | return gr; |
464 | } |
465 | } |
466 | pr_crit("UV: GAM Range for 0x%lx not found at %p!\n" , pa, gr); |
467 | BUG(); |
468 | } |
469 | |
470 | /* Return base address of node that contains global address */ |
471 | static inline unsigned long uv_gam_range_base(unsigned long pa) |
472 | { |
473 | struct uv_gam_range_s *gr = uv_gam_range(pa); |
474 | int base = gr->base; |
475 | |
476 | if (base < 0) |
477 | return 0UL; |
478 | |
479 | return uv_hub_info->gr_table[base].limit; |
480 | } |
481 | |
482 | /* socket phys RAM --> UV global NASID (UV4+) */ |
483 | static inline unsigned long uv_soc_phys_ram_to_nasid(unsigned long paddr) |
484 | { |
485 | return uv_gam_range(paddr)->nasid; |
486 | } |
487 | #define _uv_soc_phys_ram_to_nasid |
488 | |
489 | /* socket virtual --> UV global NASID (UV4+) */ |
490 | static inline unsigned long uv_gpa_nasid(void *v) |
491 | { |
492 | return uv_soc_phys_ram_to_nasid(__pa(v)); |
493 | } |
494 | |
495 | /* socket phys RAM --> UV global physical address */ |
496 | static inline unsigned long uv_soc_phys_ram_to_gpa(unsigned long paddr) |
497 | { |
498 | unsigned int m_val = uv_hub_info->m_val; |
499 | |
500 | if (paddr < uv_hub_info->lowmem_remap_top) |
501 | paddr |= uv_hub_info->lowmem_remap_base; |
502 | |
503 | if (m_val) { |
504 | paddr |= uv_hub_info->gnode_upper; |
505 | paddr = ((paddr << uv_hub_info->m_shift) |
506 | >> uv_hub_info->m_shift) | |
507 | ((paddr >> uv_hub_info->m_val) |
508 | << uv_hub_info->n_lshift); |
509 | } else { |
510 | paddr |= uv_soc_phys_ram_to_nasid(paddr) |
511 | << uv_hub_info->gpa_shift; |
512 | } |
513 | return paddr; |
514 | } |
515 | |
516 | /* socket virtual --> UV global physical address */ |
517 | static inline unsigned long uv_gpa(void *v) |
518 | { |
519 | return uv_soc_phys_ram_to_gpa(__pa(v)); |
520 | } |
521 | |
522 | /* Top two bits indicate the requested address is in MMR space. */ |
523 | static inline int |
524 | uv_gpa_in_mmr_space(unsigned long gpa) |
525 | { |
526 | return (gpa >> 62) == 0x3UL; |
527 | } |
528 | |
529 | /* UV global physical address --> socket phys RAM */ |
530 | static inline unsigned long uv_gpa_to_soc_phys_ram(unsigned long gpa) |
531 | { |
532 | unsigned long paddr; |
533 | unsigned long remap_base = uv_hub_info->lowmem_remap_base; |
534 | unsigned long remap_top = uv_hub_info->lowmem_remap_top; |
535 | unsigned int m_val = uv_hub_info->m_val; |
536 | |
537 | if (m_val) |
538 | gpa = ((gpa << uv_hub_info->m_shift) >> uv_hub_info->m_shift) | |
539 | ((gpa >> uv_hub_info->n_lshift) << uv_hub_info->m_val); |
540 | |
541 | paddr = gpa & uv_hub_info->gpa_mask; |
542 | if (paddr >= remap_base && paddr < remap_base + remap_top) |
543 | paddr -= remap_base; |
544 | return paddr; |
545 | } |
546 | |
547 | /* gpa -> gnode */ |
548 | static inline unsigned long uv_gpa_to_gnode(unsigned long gpa) |
549 | { |
550 | unsigned int n_lshift = uv_hub_info->n_lshift; |
551 | |
552 | if (n_lshift) |
553 | return gpa >> n_lshift; |
554 | |
555 | return uv_gam_range(gpa)->nasid >> 1; |
556 | } |
557 | |
558 | /* gpa -> pnode */ |
559 | static inline int uv_gpa_to_pnode(unsigned long gpa) |
560 | { |
561 | return uv_gpa_to_gnode(gpa) & uv_hub_info->pnode_mask; |
562 | } |
563 | |
564 | /* gpa -> node offset */ |
565 | static inline unsigned long uv_gpa_to_offset(unsigned long gpa) |
566 | { |
567 | unsigned int m_shift = uv_hub_info->m_shift; |
568 | |
569 | if (m_shift) |
570 | return (gpa << m_shift) >> m_shift; |
571 | |
572 | return (gpa & uv_hub_info->gpa_mask) - uv_gam_range_base(gpa); |
573 | } |
574 | |
575 | /* Convert socket to node */ |
576 | static inline int _uv_socket_to_node(int socket, unsigned short *s2nid) |
577 | { |
578 | return s2nid ? s2nid[socket - uv_hub_info->min_socket] : socket; |
579 | } |
580 | |
581 | static inline int uv_socket_to_node(int socket) |
582 | { |
583 | return _uv_socket_to_node(socket, uv_hub_info->socket_to_node); |
584 | } |
585 | |
586 | /* pnode, offset --> socket virtual */ |
587 | static inline void *uv_pnode_offset_to_vaddr(int pnode, unsigned long offset) |
588 | { |
589 | unsigned int m_val = uv_hub_info->m_val; |
590 | unsigned long base; |
591 | unsigned short sockid, node, *p2s; |
592 | |
593 | if (m_val) |
594 | return __va(((unsigned long)pnode << m_val) | offset); |
595 | |
596 | p2s = uv_hub_info->pnode_to_socket; |
597 | sockid = p2s ? p2s[pnode - uv_hub_info->min_pnode] : pnode; |
598 | node = uv_socket_to_node(sockid); |
599 | |
600 | /* limit address of previous socket is our base, except node 0 is 0 */ |
601 | if (!node) |
602 | return __va((unsigned long)offset); |
603 | |
604 | base = (unsigned long)(uv_hub_info->gr_table[node - 1].limit); |
605 | return __va(base << UV_GAM_RANGE_SHFT | offset); |
606 | } |
607 | |
608 | /* Extract/Convert a PNODE from an APICID (full apicid, not processor subset) */ |
609 | static inline int uv_apicid_to_pnode(int apicid) |
610 | { |
611 | int pnode = apicid >> uv_hub_info->apic_pnode_shift; |
612 | unsigned short *s2pn = uv_hub_info->socket_to_pnode; |
613 | |
614 | return s2pn ? s2pn[pnode - uv_hub_info->min_socket] : pnode; |
615 | } |
616 | |
617 | /* Convert an apicid to the socket number on the blade */ |
618 | static inline int uv_apicid_to_socket(int apicid) |
619 | { |
620 | if (is_uv1_hub()) |
621 | return (apicid >> (uv_hub_info->apic_pnode_shift - 1)) & 1; |
622 | else |
623 | return 0; |
624 | } |
625 | |
626 | /* |
627 | * Access global MMRs using the low memory MMR32 space. This region supports |
628 | * faster MMR access but not all MMRs are accessible in this space. |
629 | */ |
630 | static inline unsigned long *uv_global_mmr32_address(int pnode, unsigned long offset) |
631 | { |
632 | return __va(UV_GLOBAL_MMR32_BASE | |
633 | UV_GLOBAL_MMR32_PNODE_BITS(pnode) | offset); |
634 | } |
635 | |
636 | static inline void uv_write_global_mmr32(int pnode, unsigned long offset, unsigned long val) |
637 | { |
638 | writeq(val, uv_global_mmr32_address(pnode, offset)); |
639 | } |
640 | |
641 | static inline unsigned long uv_read_global_mmr32(int pnode, unsigned long offset) |
642 | { |
643 | return readq(uv_global_mmr32_address(pnode, offset)); |
644 | } |
645 | |
646 | /* |
647 | * Access Global MMR space using the MMR space located at the top of physical |
648 | * memory. |
649 | */ |
650 | static inline volatile void __iomem *uv_global_mmr64_address(int pnode, unsigned long offset) |
651 | { |
652 | return __va(UV_GLOBAL_MMR64_BASE | |
653 | UV_GLOBAL_MMR64_PNODE_BITS(pnode) | offset); |
654 | } |
655 | |
656 | static inline void uv_write_global_mmr64(int pnode, unsigned long offset, unsigned long val) |
657 | { |
658 | writeq(val, uv_global_mmr64_address(pnode, offset)); |
659 | } |
660 | |
661 | static inline unsigned long uv_read_global_mmr64(int pnode, unsigned long offset) |
662 | { |
663 | return readq(uv_global_mmr64_address(pnode, offset)); |
664 | } |
665 | |
666 | static inline void uv_write_global_mmr8(int pnode, unsigned long offset, unsigned char val) |
667 | { |
668 | writeb(val, uv_global_mmr64_address(pnode, offset)); |
669 | } |
670 | |
671 | static inline unsigned char uv_read_global_mmr8(int pnode, unsigned long offset) |
672 | { |
673 | return readb(uv_global_mmr64_address(pnode, offset)); |
674 | } |
675 | |
676 | /* |
677 | * Access hub local MMRs. Faster than using global space but only local MMRs |
678 | * are accessible. |
679 | */ |
680 | static inline unsigned long *uv_local_mmr_address(unsigned long offset) |
681 | { |
682 | return __va(UV_LOCAL_MMR_BASE | offset); |
683 | } |
684 | |
685 | static inline unsigned long uv_read_local_mmr(unsigned long offset) |
686 | { |
687 | return readq(uv_local_mmr_address(offset)); |
688 | } |
689 | |
690 | static inline void uv_write_local_mmr(unsigned long offset, unsigned long val) |
691 | { |
692 | writeq(val, uv_local_mmr_address(offset)); |
693 | } |
694 | |
695 | static inline unsigned char uv_read_local_mmr8(unsigned long offset) |
696 | { |
697 | return readb(uv_local_mmr_address(offset)); |
698 | } |
699 | |
700 | static inline void uv_write_local_mmr8(unsigned long offset, unsigned char val) |
701 | { |
702 | writeb(val, uv_local_mmr_address(offset)); |
703 | } |
704 | |
705 | /* Blade-local cpu number of current cpu. Numbered 0 .. <# cpus on the blade> */ |
706 | static inline int uv_blade_processor_id(void) |
707 | { |
708 | return uv_cpu_info->blade_cpu_id; |
709 | } |
710 | |
711 | /* Blade-local cpu number of cpu N. Numbered 0 .. <# cpus on the blade> */ |
712 | static inline int uv_cpu_blade_processor_id(int cpu) |
713 | { |
714 | return uv_cpu_info_per(cpu)->blade_cpu_id; |
715 | } |
716 | #define _uv_cpu_blade_processor_id 1 /* indicate function available */ |
717 | |
718 | /* Blade number to Node number (UV1..UV4 is 1:1) */ |
719 | static inline int uv_blade_to_node(int blade) |
720 | { |
721 | return blade; |
722 | } |
723 | |
724 | /* Blade number of current cpu. Numnbered 0 .. <#blades -1> */ |
725 | static inline int uv_numa_blade_id(void) |
726 | { |
727 | return uv_hub_info->numa_blade_id; |
728 | } |
729 | |
730 | /* |
731 | * Convert linux node number to the UV blade number. |
732 | * .. Currently for UV1 thru UV4 the node and the blade are identical. |
733 | * .. If this changes then you MUST check references to this function! |
734 | */ |
735 | static inline int uv_node_to_blade_id(int nid) |
736 | { |
737 | return nid; |
738 | } |
739 | |
740 | /* Convert a cpu number to the the UV blade number */ |
741 | static inline int uv_cpu_to_blade_id(int cpu) |
742 | { |
743 | return uv_node_to_blade_id(cpu_to_node(cpu)); |
744 | } |
745 | |
746 | /* Convert a blade id to the PNODE of the blade */ |
747 | static inline int uv_blade_to_pnode(int bid) |
748 | { |
749 | return uv_hub_info_list(uv_blade_to_node(bid))->pnode; |
750 | } |
751 | |
752 | /* Nid of memory node on blade. -1 if no blade-local memory */ |
753 | static inline int uv_blade_to_memory_nid(int bid) |
754 | { |
755 | return uv_hub_info_list(uv_blade_to_node(bid))->memory_nid; |
756 | } |
757 | |
758 | /* Determine the number of possible cpus on a blade */ |
759 | static inline int uv_blade_nr_possible_cpus(int bid) |
760 | { |
761 | return uv_hub_info_list(uv_blade_to_node(bid))->nr_possible_cpus; |
762 | } |
763 | |
764 | /* Determine the number of online cpus on a blade */ |
765 | static inline int uv_blade_nr_online_cpus(int bid) |
766 | { |
767 | return uv_hub_info_list(uv_blade_to_node(bid))->nr_online_cpus; |
768 | } |
769 | |
770 | /* Convert a cpu id to the PNODE of the blade containing the cpu */ |
771 | static inline int uv_cpu_to_pnode(int cpu) |
772 | { |
773 | return uv_cpu_hub_info(cpu)->pnode; |
774 | } |
775 | |
776 | /* Convert a linux node number to the PNODE of the blade */ |
777 | static inline int uv_node_to_pnode(int nid) |
778 | { |
779 | return uv_hub_info_list(nid)->pnode; |
780 | } |
781 | |
782 | /* Maximum possible number of blades */ |
783 | extern short uv_possible_blades; |
784 | static inline int uv_num_possible_blades(void) |
785 | { |
786 | return uv_possible_blades; |
787 | } |
788 | |
789 | /* Per Hub NMI support */ |
790 | extern void uv_nmi_setup(void); |
791 | extern void uv_nmi_setup_hubless(void); |
792 | |
793 | /* BIOS/Kernel flags exchange MMR */ |
794 | #define UVH_BIOS_KERNEL_MMR UVH_SCRATCH5 |
795 | #define UVH_BIOS_KERNEL_MMR_ALIAS UVH_SCRATCH5_ALIAS |
796 | #define UVH_BIOS_KERNEL_MMR_ALIAS_2 UVH_SCRATCH5_ALIAS_2 |
797 | |
798 | /* TSC sync valid, set by BIOS */ |
799 | #define UVH_TSC_SYNC_MMR UVH_BIOS_KERNEL_MMR |
800 | #define UVH_TSC_SYNC_SHIFT 10 |
801 | #define UVH_TSC_SYNC_SHIFT_UV2K 16 /* UV2/3k have different bits */ |
802 | #define UVH_TSC_SYNC_MASK 3 /* 0011 */ |
803 | #define UVH_TSC_SYNC_VALID 3 /* 0011 */ |
804 | #define UVH_TSC_SYNC_INVALID 2 /* 0010 */ |
805 | |
806 | /* BMC sets a bit this MMR non-zero before sending an NMI */ |
807 | #define UVH_NMI_MMR UVH_BIOS_KERNEL_MMR |
808 | #define UVH_NMI_MMR_CLEAR UVH_BIOS_KERNEL_MMR_ALIAS |
809 | #define UVH_NMI_MMR_SHIFT 63 |
810 | #define UVH_NMI_MMR_TYPE "SCRATCH5" |
811 | |
812 | /* Newer SMM NMI handler, not present in all systems */ |
813 | #define UVH_NMI_MMRX UVH_EVENT_OCCURRED0 |
814 | #define UVH_NMI_MMRX_CLEAR UVH_EVENT_OCCURRED0_ALIAS |
815 | #define UVH_NMI_MMRX_SHIFT UVH_EVENT_OCCURRED0_EXTIO_INT0_SHFT |
816 | #define UVH_NMI_MMRX_TYPE "EXTIO_INT0" |
817 | |
818 | /* Non-zero indicates newer SMM NMI handler present */ |
819 | #define UVH_NMI_MMRX_SUPPORTED UVH_EXTIO_INT0_BROADCAST |
820 | |
821 | /* Indicates to BIOS that we want to use the newer SMM NMI handler */ |
822 | #define UVH_NMI_MMRX_REQ UVH_BIOS_KERNEL_MMR_ALIAS_2 |
823 | #define UVH_NMI_MMRX_REQ_SHIFT 62 |
824 | |
825 | struct uv_hub_nmi_s { |
826 | raw_spinlock_t nmi_lock; |
827 | atomic_t in_nmi; /* flag this node in UV NMI IRQ */ |
828 | atomic_t cpu_owner; /* last locker of this struct */ |
829 | atomic_t read_mmr_count; /* count of MMR reads */ |
830 | atomic_t nmi_count; /* count of true UV NMIs */ |
831 | unsigned long nmi_value; /* last value read from NMI MMR */ |
832 | bool hub_present; /* false means UV hubless system */ |
833 | bool pch_owner; /* indicates this hub owns PCH */ |
834 | }; |
835 | |
836 | struct uv_cpu_nmi_s { |
837 | struct uv_hub_nmi_s *hub; |
838 | int state; |
839 | int pinging; |
840 | int queries; |
841 | int pings; |
842 | }; |
843 | |
844 | DECLARE_PER_CPU(struct uv_cpu_nmi_s, uv_cpu_nmi); |
845 | |
846 | #define uv_hub_nmi this_cpu_read(uv_cpu_nmi.hub) |
847 | #define uv_cpu_nmi_per(cpu) (per_cpu(uv_cpu_nmi, cpu)) |
848 | #define uv_hub_nmi_per(cpu) (uv_cpu_nmi_per(cpu).hub) |
849 | |
850 | /* uv_cpu_nmi_states */ |
851 | #define UV_NMI_STATE_OUT 0 |
852 | #define UV_NMI_STATE_IN 1 |
853 | #define UV_NMI_STATE_DUMP 2 |
854 | #define UV_NMI_STATE_DUMP_DONE 3 |
855 | |
856 | /* Update SCIR state */ |
857 | static inline void uv_set_scir_bits(unsigned char value) |
858 | { |
859 | if (uv_scir_info->state != value) { |
860 | uv_scir_info->state = value; |
861 | uv_write_local_mmr8(uv_scir_info->offset, value); |
862 | } |
863 | } |
864 | |
865 | static inline unsigned long uv_scir_offset(int apicid) |
866 | { |
867 | return SCIR_LOCAL_MMR_BASE | (apicid & 0x3f); |
868 | } |
869 | |
870 | static inline void uv_set_cpu_scir_bits(int cpu, unsigned char value) |
871 | { |
872 | if (uv_cpu_scir_info(cpu)->state != value) { |
873 | uv_write_global_mmr8(uv_cpu_to_pnode(cpu), |
874 | uv_cpu_scir_info(cpu)->offset, value); |
875 | uv_cpu_scir_info(cpu)->state = value; |
876 | } |
877 | } |
878 | |
879 | extern unsigned int uv_apicid_hibits; |
880 | static unsigned long uv_hub_ipi_value(int apicid, int vector, int mode) |
881 | { |
882 | apicid |= uv_apicid_hibits; |
883 | return (1UL << UVH_IPI_INT_SEND_SHFT) | |
884 | ((apicid) << UVH_IPI_INT_APIC_ID_SHFT) | |
885 | (mode << UVH_IPI_INT_DELIVERY_MODE_SHFT) | |
886 | (vector << UVH_IPI_INT_VECTOR_SHFT); |
887 | } |
888 | |
889 | static inline void uv_hub_send_ipi(int pnode, int apicid, int vector) |
890 | { |
891 | unsigned long val; |
892 | unsigned long dmode = dest_Fixed; |
893 | |
894 | if (vector == NMI_VECTOR) |
895 | dmode = dest_NMI; |
896 | |
897 | val = uv_hub_ipi_value(apicid, vector, dmode); |
898 | uv_write_global_mmr64(pnode, UVH_IPI_INT, val); |
899 | } |
900 | |
901 | /* |
902 | * Get the minimum revision number of the hub chips within the partition. |
903 | * (See UVx_HUB_REVISION_BASE above for specific values.) |
904 | */ |
905 | static inline int uv_get_min_hub_revision_id(void) |
906 | { |
907 | return uv_hub_info->hub_revision; |
908 | } |
909 | |
910 | #endif /* CONFIG_X86_64 */ |
911 | #endif /* _ASM_X86_UV_UV_HUB_H */ |
912 | |