1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * BPF JIT compiler
4 *
5 * Copyright (C) 2011-2013 Eric Dumazet (eric.dumazet@gmail.com)
6 * Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
7 */
8#include <linux/netdevice.h>
9#include <linux/filter.h>
10#include <linux/if_vlan.h>
11#include <linux/bpf.h>
12#include <linux/memory.h>
13#include <linux/sort.h>
14#include <asm/extable.h>
15#include <asm/ftrace.h>
16#include <asm/set_memory.h>
17#include <asm/nospec-branch.h>
18#include <asm/text-patching.h>
19#include <asm/unwind.h>
20
21static bool all_callee_regs_used[4] = {true, true, true, true};
22
23static u8 *emit_code(u8 *ptr, u32 bytes, unsigned int len)
24{
25 if (len == 1)
26 *ptr = bytes;
27 else if (len == 2)
28 *(u16 *)ptr = bytes;
29 else {
30 *(u32 *)ptr = bytes;
31 barrier();
32 }
33 return ptr + len;
34}
35
36#define EMIT(bytes, len) \
37 do { prog = emit_code(prog, bytes, len); } while (0)
38
39#define EMIT1(b1) EMIT(b1, 1)
40#define EMIT2(b1, b2) EMIT((b1) + ((b2) << 8), 2)
41#define EMIT3(b1, b2, b3) EMIT((b1) + ((b2) << 8) + ((b3) << 16), 3)
42#define EMIT4(b1, b2, b3, b4) EMIT((b1) + ((b2) << 8) + ((b3) << 16) + ((b4) << 24), 4)
43
44#define EMIT1_off32(b1, off) \
45 do { EMIT1(b1); EMIT(off, 4); } while (0)
46#define EMIT2_off32(b1, b2, off) \
47 do { EMIT2(b1, b2); EMIT(off, 4); } while (0)
48#define EMIT3_off32(b1, b2, b3, off) \
49 do { EMIT3(b1, b2, b3); EMIT(off, 4); } while (0)
50#define EMIT4_off32(b1, b2, b3, b4, off) \
51 do { EMIT4(b1, b2, b3, b4); EMIT(off, 4); } while (0)
52
53#ifdef CONFIG_X86_KERNEL_IBT
54#define EMIT_ENDBR() EMIT(gen_endbr(), 4)
55#else
56#define EMIT_ENDBR()
57#endif
58
59static bool is_imm8(int value)
60{
61 return value <= 127 && value >= -128;
62}
63
64static bool is_simm32(s64 value)
65{
66 return value == (s64)(s32)value;
67}
68
69static bool is_uimm32(u64 value)
70{
71 return value == (u64)(u32)value;
72}
73
74/* mov dst, src */
75#define EMIT_mov(DST, SRC) \
76 do { \
77 if (DST != SRC) \
78 EMIT3(add_2mod(0x48, DST, SRC), 0x89, add_2reg(0xC0, DST, SRC)); \
79 } while (0)
80
81static int bpf_size_to_x86_bytes(int bpf_size)
82{
83 if (bpf_size == BPF_W)
84 return 4;
85 else if (bpf_size == BPF_H)
86 return 2;
87 else if (bpf_size == BPF_B)
88 return 1;
89 else if (bpf_size == BPF_DW)
90 return 4; /* imm32 */
91 else
92 return 0;
93}
94
95/*
96 * List of x86 cond jumps opcodes (. + s8)
97 * Add 0x10 (and an extra 0x0f) to generate far jumps (. + s32)
98 */
99#define X86_JB 0x72
100#define X86_JAE 0x73
101#define X86_JE 0x74
102#define X86_JNE 0x75
103#define X86_JBE 0x76
104#define X86_JA 0x77
105#define X86_JL 0x7C
106#define X86_JGE 0x7D
107#define X86_JLE 0x7E
108#define X86_JG 0x7F
109
110/* Pick a register outside of BPF range for JIT internal work */
111#define AUX_REG (MAX_BPF_JIT_REG + 1)
112#define X86_REG_R9 (MAX_BPF_JIT_REG + 2)
113
114/*
115 * The following table maps BPF registers to x86-64 registers.
116 *
117 * x86-64 register R12 is unused, since if used as base address
118 * register in load/store instructions, it always needs an
119 * extra byte of encoding and is callee saved.
120 *
121 * x86-64 register R9 is not used by BPF programs, but can be used by BPF
122 * trampoline. x86-64 register R10 is used for blinding (if enabled).
123 */
124static const int reg2hex[] = {
125 [BPF_REG_0] = 0, /* RAX */
126 [BPF_REG_1] = 7, /* RDI */
127 [BPF_REG_2] = 6, /* RSI */
128 [BPF_REG_3] = 2, /* RDX */
129 [BPF_REG_4] = 1, /* RCX */
130 [BPF_REG_5] = 0, /* R8 */
131 [BPF_REG_6] = 3, /* RBX callee saved */
132 [BPF_REG_7] = 5, /* R13 callee saved */
133 [BPF_REG_8] = 6, /* R14 callee saved */
134 [BPF_REG_9] = 7, /* R15 callee saved */
135 [BPF_REG_FP] = 5, /* RBP readonly */
136 [BPF_REG_AX] = 2, /* R10 temp register */
137 [AUX_REG] = 3, /* R11 temp register */
138 [X86_REG_R9] = 1, /* R9 register, 6th function argument */
139};
140
141static const int reg2pt_regs[] = {
142 [BPF_REG_0] = offsetof(struct pt_regs, ax),
143 [BPF_REG_1] = offsetof(struct pt_regs, di),
144 [BPF_REG_2] = offsetof(struct pt_regs, si),
145 [BPF_REG_3] = offsetof(struct pt_regs, dx),
146 [BPF_REG_4] = offsetof(struct pt_regs, cx),
147 [BPF_REG_5] = offsetof(struct pt_regs, r8),
148 [BPF_REG_6] = offsetof(struct pt_regs, bx),
149 [BPF_REG_7] = offsetof(struct pt_regs, r13),
150 [BPF_REG_8] = offsetof(struct pt_regs, r14),
151 [BPF_REG_9] = offsetof(struct pt_regs, r15),
152};
153
154/*
155 * is_ereg() == true if BPF register 'reg' maps to x86-64 r8..r15
156 * which need extra byte of encoding.
157 * rax,rcx,...,rbp have simpler encoding
158 */
159static bool is_ereg(u32 reg)
160{
161 return (1 << reg) & (BIT(BPF_REG_5) |
162 BIT(AUX_REG) |
163 BIT(BPF_REG_7) |
164 BIT(BPF_REG_8) |
165 BIT(BPF_REG_9) |
166 BIT(X86_REG_R9) |
167 BIT(BPF_REG_AX));
168}
169
170/*
171 * is_ereg_8l() == true if BPF register 'reg' is mapped to access x86-64
172 * lower 8-bit registers dil,sil,bpl,spl,r8b..r15b, which need extra byte
173 * of encoding. al,cl,dl,bl have simpler encoding.
174 */
175static bool is_ereg_8l(u32 reg)
176{
177 return is_ereg(reg) ||
178 (1 << reg) & (BIT(BPF_REG_1) |
179 BIT(BPF_REG_2) |
180 BIT(BPF_REG_FP));
181}
182
183static bool is_axreg(u32 reg)
184{
185 return reg == BPF_REG_0;
186}
187
188/* Add modifiers if 'reg' maps to x86-64 registers R8..R15 */
189static u8 add_1mod(u8 byte, u32 reg)
190{
191 if (is_ereg(reg))
192 byte |= 1;
193 return byte;
194}
195
196static u8 add_2mod(u8 byte, u32 r1, u32 r2)
197{
198 if (is_ereg(reg: r1))
199 byte |= 1;
200 if (is_ereg(reg: r2))
201 byte |= 4;
202 return byte;
203}
204
205/* Encode 'dst_reg' register into x86-64 opcode 'byte' */
206static u8 add_1reg(u8 byte, u32 dst_reg)
207{
208 return byte + reg2hex[dst_reg];
209}
210
211/* Encode 'dst_reg' and 'src_reg' registers into x86-64 opcode 'byte' */
212static u8 add_2reg(u8 byte, u32 dst_reg, u32 src_reg)
213{
214 return byte + reg2hex[dst_reg] + (reg2hex[src_reg] << 3);
215}
216
217/* Some 1-byte opcodes for binary ALU operations */
218static u8 simple_alu_opcodes[] = {
219 [BPF_ADD] = 0x01,
220 [BPF_SUB] = 0x29,
221 [BPF_AND] = 0x21,
222 [BPF_OR] = 0x09,
223 [BPF_XOR] = 0x31,
224 [BPF_LSH] = 0xE0,
225 [BPF_RSH] = 0xE8,
226 [BPF_ARSH] = 0xF8,
227};
228
229static void jit_fill_hole(void *area, unsigned int size)
230{
231 /* Fill whole space with INT3 instructions */
232 memset(area, 0xcc, size);
233}
234
235int bpf_arch_text_invalidate(void *dst, size_t len)
236{
237 return IS_ERR_OR_NULL(ptr: text_poke_set(addr: dst, c: 0xcc, len));
238}
239
240struct jit_context {
241 int cleanup_addr; /* Epilogue code offset */
242
243 /*
244 * Program specific offsets of labels in the code; these rely on the
245 * JIT doing at least 2 passes, recording the position on the first
246 * pass, only to generate the correct offset on the second pass.
247 */
248 int tail_call_direct_label;
249 int tail_call_indirect_label;
250};
251
252/* Maximum number of bytes emitted while JITing one eBPF insn */
253#define BPF_MAX_INSN_SIZE 128
254#define BPF_INSN_SAFETY 64
255
256/* Number of bytes emit_patch() needs to generate instructions */
257#define X86_PATCH_SIZE 5
258/* Number of bytes that will be skipped on tailcall */
259#define X86_TAIL_CALL_OFFSET (11 + ENDBR_INSN_SIZE)
260
261static void push_r12(u8 **pprog)
262{
263 u8 *prog = *pprog;
264
265 EMIT2(0x41, 0x54); /* push r12 */
266 *pprog = prog;
267}
268
269static void push_callee_regs(u8 **pprog, bool *callee_regs_used)
270{
271 u8 *prog = *pprog;
272
273 if (callee_regs_used[0])
274 EMIT1(0x53); /* push rbx */
275 if (callee_regs_used[1])
276 EMIT2(0x41, 0x55); /* push r13 */
277 if (callee_regs_used[2])
278 EMIT2(0x41, 0x56); /* push r14 */
279 if (callee_regs_used[3])
280 EMIT2(0x41, 0x57); /* push r15 */
281 *pprog = prog;
282}
283
284static void pop_r12(u8 **pprog)
285{
286 u8 *prog = *pprog;
287
288 EMIT2(0x41, 0x5C); /* pop r12 */
289 *pprog = prog;
290}
291
292static void pop_callee_regs(u8 **pprog, bool *callee_regs_used)
293{
294 u8 *prog = *pprog;
295
296 if (callee_regs_used[3])
297 EMIT2(0x41, 0x5F); /* pop r15 */
298 if (callee_regs_used[2])
299 EMIT2(0x41, 0x5E); /* pop r14 */
300 if (callee_regs_used[1])
301 EMIT2(0x41, 0x5D); /* pop r13 */
302 if (callee_regs_used[0])
303 EMIT1(0x5B); /* pop rbx */
304 *pprog = prog;
305}
306
307/*
308 * Emit x86-64 prologue code for BPF program.
309 * bpf_tail_call helper will skip the first X86_TAIL_CALL_OFFSET bytes
310 * while jumping to another program
311 */
312static void emit_prologue(u8 **pprog, u32 stack_depth, bool ebpf_from_cbpf,
313 bool tail_call_reachable, bool is_subprog,
314 bool is_exception_cb)
315{
316 u8 *prog = *pprog;
317
318 /* BPF trampoline can be made to work without these nops,
319 * but let's waste 5 bytes for now and optimize later
320 */
321 EMIT_ENDBR();
322 memcpy(prog, x86_nops[5], X86_PATCH_SIZE);
323 prog += X86_PATCH_SIZE;
324 if (!ebpf_from_cbpf) {
325 if (tail_call_reachable && !is_subprog)
326 /* When it's the entry of the whole tailcall context,
327 * zeroing rax means initialising tail_call_cnt.
328 */
329 EMIT2(0x31, 0xC0); /* xor eax, eax */
330 else
331 /* Keep the same instruction layout. */
332 EMIT2(0x66, 0x90); /* nop2 */
333 }
334 /* Exception callback receives FP as third parameter */
335 if (is_exception_cb) {
336 EMIT3(0x48, 0x89, 0xF4); /* mov rsp, rsi */
337 EMIT3(0x48, 0x89, 0xD5); /* mov rbp, rdx */
338 /* The main frame must have exception_boundary as true, so we
339 * first restore those callee-saved regs from stack, before
340 * reusing the stack frame.
341 */
342 pop_callee_regs(pprog: &prog, callee_regs_used: all_callee_regs_used);
343 pop_r12(pprog: &prog);
344 /* Reset the stack frame. */
345 EMIT3(0x48, 0x89, 0xEC); /* mov rsp, rbp */
346 } else {
347 EMIT1(0x55); /* push rbp */
348 EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */
349 }
350
351 /* X86_TAIL_CALL_OFFSET is here */
352 EMIT_ENDBR();
353
354 /* sub rsp, rounded_stack_depth */
355 if (stack_depth)
356 EMIT3_off32(0x48, 0x81, 0xEC, round_up(stack_depth, 8));
357 if (tail_call_reachable)
358 EMIT1(0x50); /* push rax */
359 *pprog = prog;
360}
361
362static int emit_patch(u8 **pprog, void *func, void *ip, u8 opcode)
363{
364 u8 *prog = *pprog;
365 s64 offset;
366
367 offset = func - (ip + X86_PATCH_SIZE);
368 if (!is_simm32(value: offset)) {
369 pr_err("Target call %p is out of range\n", func);
370 return -ERANGE;
371 }
372 EMIT1_off32(opcode, offset);
373 *pprog = prog;
374 return 0;
375}
376
377static int emit_call(u8 **pprog, void *func, void *ip)
378{
379 return emit_patch(pprog, func, ip, opcode: 0xE8);
380}
381
382static int emit_rsb_call(u8 **pprog, void *func, void *ip)
383{
384 OPTIMIZER_HIDE_VAR(func);
385 x86_call_depth_emit_accounting(pprog, func);
386 return emit_patch(pprog, func, ip, opcode: 0xE8);
387}
388
389static int emit_jump(u8 **pprog, void *func, void *ip)
390{
391 return emit_patch(pprog, func, ip, opcode: 0xE9);
392}
393
394static int __bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
395 void *old_addr, void *new_addr)
396{
397 const u8 *nop_insn = x86_nops[5];
398 u8 old_insn[X86_PATCH_SIZE];
399 u8 new_insn[X86_PATCH_SIZE];
400 u8 *prog;
401 int ret;
402
403 memcpy(old_insn, nop_insn, X86_PATCH_SIZE);
404 if (old_addr) {
405 prog = old_insn;
406 ret = t == BPF_MOD_CALL ?
407 emit_call(pprog: &prog, func: old_addr, ip) :
408 emit_jump(pprog: &prog, func: old_addr, ip);
409 if (ret)
410 return ret;
411 }
412
413 memcpy(new_insn, nop_insn, X86_PATCH_SIZE);
414 if (new_addr) {
415 prog = new_insn;
416 ret = t == BPF_MOD_CALL ?
417 emit_call(pprog: &prog, func: new_addr, ip) :
418 emit_jump(pprog: &prog, func: new_addr, ip);
419 if (ret)
420 return ret;
421 }
422
423 ret = -EBUSY;
424 mutex_lock(&text_mutex);
425 if (memcmp(p: ip, q: old_insn, X86_PATCH_SIZE))
426 goto out;
427 ret = 1;
428 if (memcmp(p: ip, q: new_insn, X86_PATCH_SIZE)) {
429 text_poke_bp(addr: ip, opcode: new_insn, X86_PATCH_SIZE, NULL);
430 ret = 0;
431 }
432out:
433 mutex_unlock(lock: &text_mutex);
434 return ret;
435}
436
437int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
438 void *old_addr, void *new_addr)
439{
440 if (!is_kernel_text(addr: (long)ip) &&
441 !is_bpf_text_address(addr: (long)ip))
442 /* BPF poking in modules is not supported */
443 return -EINVAL;
444
445 /*
446 * See emit_prologue(), for IBT builds the trampoline hook is preceded
447 * with an ENDBR instruction.
448 */
449 if (is_endbr(val: *(u32 *)ip))
450 ip += ENDBR_INSN_SIZE;
451
452 return __bpf_arch_text_poke(ip, t, old_addr, new_addr);
453}
454
455#define EMIT_LFENCE() EMIT3(0x0F, 0xAE, 0xE8)
456
457static void emit_indirect_jump(u8 **pprog, int reg, u8 *ip)
458{
459 u8 *prog = *pprog;
460
461 if (cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) {
462 EMIT_LFENCE();
463 EMIT2(0xFF, 0xE0 + reg);
464 } else if (cpu_feature_enabled(X86_FEATURE_RETPOLINE)) {
465 OPTIMIZER_HIDE_VAR(reg);
466 if (cpu_feature_enabled(X86_FEATURE_CALL_DEPTH))
467 emit_jump(pprog: &prog, func: &__x86_indirect_jump_thunk_array[reg], ip);
468 else
469 emit_jump(pprog: &prog, func: &__x86_indirect_thunk_array[reg], ip);
470 } else {
471 EMIT2(0xFF, 0xE0 + reg); /* jmp *%\reg */
472 if (IS_ENABLED(CONFIG_RETPOLINE) || IS_ENABLED(CONFIG_SLS))
473 EMIT1(0xCC); /* int3 */
474 }
475
476 *pprog = prog;
477}
478
479static void emit_return(u8 **pprog, u8 *ip)
480{
481 u8 *prog = *pprog;
482
483 if (cpu_feature_enabled(X86_FEATURE_RETHUNK)) {
484 emit_jump(pprog: &prog, func: x86_return_thunk, ip);
485 } else {
486 EMIT1(0xC3); /* ret */
487 if (IS_ENABLED(CONFIG_SLS))
488 EMIT1(0xCC); /* int3 */
489 }
490
491 *pprog = prog;
492}
493
494/*
495 * Generate the following code:
496 *
497 * ... bpf_tail_call(void *ctx, struct bpf_array *array, u64 index) ...
498 * if (index >= array->map.max_entries)
499 * goto out;
500 * if (tail_call_cnt++ >= MAX_TAIL_CALL_CNT)
501 * goto out;
502 * prog = array->ptrs[index];
503 * if (prog == NULL)
504 * goto out;
505 * goto *(prog->bpf_func + prologue_size);
506 * out:
507 */
508static void emit_bpf_tail_call_indirect(struct bpf_prog *bpf_prog,
509 u8 **pprog, bool *callee_regs_used,
510 u32 stack_depth, u8 *ip,
511 struct jit_context *ctx)
512{
513 int tcc_off = -4 - round_up(stack_depth, 8);
514 u8 *prog = *pprog, *start = *pprog;
515 int offset;
516
517 /*
518 * rdi - pointer to ctx
519 * rsi - pointer to bpf_array
520 * rdx - index in bpf_array
521 */
522
523 /*
524 * if (index >= array->map.max_entries)
525 * goto out;
526 */
527 EMIT2(0x89, 0xD2); /* mov edx, edx */
528 EMIT3(0x39, 0x56, /* cmp dword ptr [rsi + 16], edx */
529 offsetof(struct bpf_array, map.max_entries));
530
531 offset = ctx->tail_call_indirect_label - (prog + 2 - start);
532 EMIT2(X86_JBE, offset); /* jbe out */
533
534 /*
535 * if (tail_call_cnt++ >= MAX_TAIL_CALL_CNT)
536 * goto out;
537 */
538 EMIT2_off32(0x8B, 0x85, tcc_off); /* mov eax, dword ptr [rbp - tcc_off] */
539 EMIT3(0x83, 0xF8, MAX_TAIL_CALL_CNT); /* cmp eax, MAX_TAIL_CALL_CNT */
540
541 offset = ctx->tail_call_indirect_label - (prog + 2 - start);
542 EMIT2(X86_JAE, offset); /* jae out */
543 EMIT3(0x83, 0xC0, 0x01); /* add eax, 1 */
544 EMIT2_off32(0x89, 0x85, tcc_off); /* mov dword ptr [rbp - tcc_off], eax */
545
546 /* prog = array->ptrs[index]; */
547 EMIT4_off32(0x48, 0x8B, 0x8C, 0xD6, /* mov rcx, [rsi + rdx * 8 + offsetof(...)] */
548 offsetof(struct bpf_array, ptrs));
549
550 /*
551 * if (prog == NULL)
552 * goto out;
553 */
554 EMIT3(0x48, 0x85, 0xC9); /* test rcx,rcx */
555
556 offset = ctx->tail_call_indirect_label - (prog + 2 - start);
557 EMIT2(X86_JE, offset); /* je out */
558
559 if (bpf_prog->aux->exception_boundary) {
560 pop_callee_regs(pprog: &prog, callee_regs_used: all_callee_regs_used);
561 pop_r12(pprog: &prog);
562 } else {
563 pop_callee_regs(pprog: &prog, callee_regs_used);
564 }
565
566 EMIT1(0x58); /* pop rax */
567 if (stack_depth)
568 EMIT3_off32(0x48, 0x81, 0xC4, /* add rsp, sd */
569 round_up(stack_depth, 8));
570
571 /* goto *(prog->bpf_func + X86_TAIL_CALL_OFFSET); */
572 EMIT4(0x48, 0x8B, 0x49, /* mov rcx, qword ptr [rcx + 32] */
573 offsetof(struct bpf_prog, bpf_func));
574 EMIT4(0x48, 0x83, 0xC1, /* add rcx, X86_TAIL_CALL_OFFSET */
575 X86_TAIL_CALL_OFFSET);
576 /*
577 * Now we're ready to jump into next BPF program
578 * rdi == ctx (1st arg)
579 * rcx == prog->bpf_func + X86_TAIL_CALL_OFFSET
580 */
581 emit_indirect_jump(pprog: &prog, reg: 1 /* rcx */, ip: ip + (prog - start));
582
583 /* out: */
584 ctx->tail_call_indirect_label = prog - start;
585 *pprog = prog;
586}
587
588static void emit_bpf_tail_call_direct(struct bpf_prog *bpf_prog,
589 struct bpf_jit_poke_descriptor *poke,
590 u8 **pprog, u8 *ip,
591 bool *callee_regs_used, u32 stack_depth,
592 struct jit_context *ctx)
593{
594 int tcc_off = -4 - round_up(stack_depth, 8);
595 u8 *prog = *pprog, *start = *pprog;
596 int offset;
597
598 /*
599 * if (tail_call_cnt++ >= MAX_TAIL_CALL_CNT)
600 * goto out;
601 */
602 EMIT2_off32(0x8B, 0x85, tcc_off); /* mov eax, dword ptr [rbp - tcc_off] */
603 EMIT3(0x83, 0xF8, MAX_TAIL_CALL_CNT); /* cmp eax, MAX_TAIL_CALL_CNT */
604
605 offset = ctx->tail_call_direct_label - (prog + 2 - start);
606 EMIT2(X86_JAE, offset); /* jae out */
607 EMIT3(0x83, 0xC0, 0x01); /* add eax, 1 */
608 EMIT2_off32(0x89, 0x85, tcc_off); /* mov dword ptr [rbp - tcc_off], eax */
609
610 poke->tailcall_bypass = ip + (prog - start);
611 poke->adj_off = X86_TAIL_CALL_OFFSET;
612 poke->tailcall_target = ip + ctx->tail_call_direct_label - X86_PATCH_SIZE;
613 poke->bypass_addr = (u8 *)poke->tailcall_target + X86_PATCH_SIZE;
614
615 emit_jump(pprog: &prog, func: (u8 *)poke->tailcall_target + X86_PATCH_SIZE,
616 ip: poke->tailcall_bypass);
617
618 if (bpf_prog->aux->exception_boundary) {
619 pop_callee_regs(pprog: &prog, callee_regs_used: all_callee_regs_used);
620 pop_r12(pprog: &prog);
621 } else {
622 pop_callee_regs(pprog: &prog, callee_regs_used);
623 }
624
625 EMIT1(0x58); /* pop rax */
626 if (stack_depth)
627 EMIT3_off32(0x48, 0x81, 0xC4, round_up(stack_depth, 8));
628
629 memcpy(prog, x86_nops[5], X86_PATCH_SIZE);
630 prog += X86_PATCH_SIZE;
631
632 /* out: */
633 ctx->tail_call_direct_label = prog - start;
634
635 *pprog = prog;
636}
637
638static void bpf_tail_call_direct_fixup(struct bpf_prog *prog)
639{
640 struct bpf_jit_poke_descriptor *poke;
641 struct bpf_array *array;
642 struct bpf_prog *target;
643 int i, ret;
644
645 for (i = 0; i < prog->aux->size_poke_tab; i++) {
646 poke = &prog->aux->poke_tab[i];
647 if (poke->aux && poke->aux != prog->aux)
648 continue;
649
650 WARN_ON_ONCE(READ_ONCE(poke->tailcall_target_stable));
651
652 if (poke->reason != BPF_POKE_REASON_TAIL_CALL)
653 continue;
654
655 array = container_of(poke->tail_call.map, struct bpf_array, map);
656 mutex_lock(&array->aux->poke_mutex);
657 target = array->ptrs[poke->tail_call.key];
658 if (target) {
659 ret = __bpf_arch_text_poke(ip: poke->tailcall_target,
660 t: BPF_MOD_JUMP, NULL,
661 new_addr: (u8 *)target->bpf_func +
662 poke->adj_off);
663 BUG_ON(ret < 0);
664 ret = __bpf_arch_text_poke(ip: poke->tailcall_bypass,
665 t: BPF_MOD_JUMP,
666 old_addr: (u8 *)poke->tailcall_target +
667 X86_PATCH_SIZE, NULL);
668 BUG_ON(ret < 0);
669 }
670 WRITE_ONCE(poke->tailcall_target_stable, true);
671 mutex_unlock(lock: &array->aux->poke_mutex);
672 }
673}
674
675static void emit_mov_imm32(u8 **pprog, bool sign_propagate,
676 u32 dst_reg, const u32 imm32)
677{
678 u8 *prog = *pprog;
679 u8 b1, b2, b3;
680
681 /*
682 * Optimization: if imm32 is positive, use 'mov %eax, imm32'
683 * (which zero-extends imm32) to save 2 bytes.
684 */
685 if (sign_propagate && (s32)imm32 < 0) {
686 /* 'mov %rax, imm32' sign extends imm32 */
687 b1 = add_1mod(byte: 0x48, reg: dst_reg);
688 b2 = 0xC7;
689 b3 = 0xC0;
690 EMIT3_off32(b1, b2, add_1reg(b3, dst_reg), imm32);
691 goto done;
692 }
693
694 /*
695 * Optimization: if imm32 is zero, use 'xor %eax, %eax'
696 * to save 3 bytes.
697 */
698 if (imm32 == 0) {
699 if (is_ereg(reg: dst_reg))
700 EMIT1(add_2mod(0x40, dst_reg, dst_reg));
701 b2 = 0x31; /* xor */
702 b3 = 0xC0;
703 EMIT2(b2, add_2reg(b3, dst_reg, dst_reg));
704 goto done;
705 }
706
707 /* mov %eax, imm32 */
708 if (is_ereg(reg: dst_reg))
709 EMIT1(add_1mod(0x40, dst_reg));
710 EMIT1_off32(add_1reg(0xB8, dst_reg), imm32);
711done:
712 *pprog = prog;
713}
714
715static void emit_mov_imm64(u8 **pprog, u32 dst_reg,
716 const u32 imm32_hi, const u32 imm32_lo)
717{
718 u8 *prog = *pprog;
719
720 if (is_uimm32(value: ((u64)imm32_hi << 32) | (u32)imm32_lo)) {
721 /*
722 * For emitting plain u32, where sign bit must not be
723 * propagated LLVM tends to load imm64 over mov32
724 * directly, so save couple of bytes by just doing
725 * 'mov %eax, imm32' instead.
726 */
727 emit_mov_imm32(pprog: &prog, sign_propagate: false, dst_reg, imm32: imm32_lo);
728 } else {
729 /* movabsq rax, imm64 */
730 EMIT2(add_1mod(0x48, dst_reg), add_1reg(0xB8, dst_reg));
731 EMIT(imm32_lo, 4);
732 EMIT(imm32_hi, 4);
733 }
734
735 *pprog = prog;
736}
737
738static void emit_mov_reg(u8 **pprog, bool is64, u32 dst_reg, u32 src_reg)
739{
740 u8 *prog = *pprog;
741
742 if (is64) {
743 /* mov dst, src */
744 EMIT_mov(dst_reg, src_reg);
745 } else {
746 /* mov32 dst, src */
747 if (is_ereg(reg: dst_reg) || is_ereg(reg: src_reg))
748 EMIT1(add_2mod(0x40, dst_reg, src_reg));
749 EMIT2(0x89, add_2reg(0xC0, dst_reg, src_reg));
750 }
751
752 *pprog = prog;
753}
754
755static void emit_movsx_reg(u8 **pprog, int num_bits, bool is64, u32 dst_reg,
756 u32 src_reg)
757{
758 u8 *prog = *pprog;
759
760 if (is64) {
761 /* movs[b,w,l]q dst, src */
762 if (num_bits == 8)
763 EMIT4(add_2mod(0x48, src_reg, dst_reg), 0x0f, 0xbe,
764 add_2reg(0xC0, src_reg, dst_reg));
765 else if (num_bits == 16)
766 EMIT4(add_2mod(0x48, src_reg, dst_reg), 0x0f, 0xbf,
767 add_2reg(0xC0, src_reg, dst_reg));
768 else if (num_bits == 32)
769 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x63,
770 add_2reg(0xC0, src_reg, dst_reg));
771 } else {
772 /* movs[b,w]l dst, src */
773 if (num_bits == 8) {
774 EMIT4(add_2mod(0x40, src_reg, dst_reg), 0x0f, 0xbe,
775 add_2reg(0xC0, src_reg, dst_reg));
776 } else if (num_bits == 16) {
777 if (is_ereg(reg: dst_reg) || is_ereg(reg: src_reg))
778 EMIT1(add_2mod(0x40, src_reg, dst_reg));
779 EMIT3(add_2mod(0x0f, src_reg, dst_reg), 0xbf,
780 add_2reg(0xC0, src_reg, dst_reg));
781 }
782 }
783
784 *pprog = prog;
785}
786
787/* Emit the suffix (ModR/M etc) for addressing *(ptr_reg + off) and val_reg */
788static void emit_insn_suffix(u8 **pprog, u32 ptr_reg, u32 val_reg, int off)
789{
790 u8 *prog = *pprog;
791
792 if (is_imm8(value: off)) {
793 /* 1-byte signed displacement.
794 *
795 * If off == 0 we could skip this and save one extra byte, but
796 * special case of x86 R13 which always needs an offset is not
797 * worth the hassle
798 */
799 EMIT2(add_2reg(0x40, ptr_reg, val_reg), off);
800 } else {
801 /* 4-byte signed displacement */
802 EMIT1_off32(add_2reg(0x80, ptr_reg, val_reg), off);
803 }
804 *pprog = prog;
805}
806
807/*
808 * Emit a REX byte if it will be necessary to address these registers
809 */
810static void maybe_emit_mod(u8 **pprog, u32 dst_reg, u32 src_reg, bool is64)
811{
812 u8 *prog = *pprog;
813
814 if (is64)
815 EMIT1(add_2mod(0x48, dst_reg, src_reg));
816 else if (is_ereg(reg: dst_reg) || is_ereg(reg: src_reg))
817 EMIT1(add_2mod(0x40, dst_reg, src_reg));
818 *pprog = prog;
819}
820
821/*
822 * Similar version of maybe_emit_mod() for a single register
823 */
824static void maybe_emit_1mod(u8 **pprog, u32 reg, bool is64)
825{
826 u8 *prog = *pprog;
827
828 if (is64)
829 EMIT1(add_1mod(0x48, reg));
830 else if (is_ereg(reg))
831 EMIT1(add_1mod(0x40, reg));
832 *pprog = prog;
833}
834
835/* LDX: dst_reg = *(u8*)(src_reg + off) */
836static void emit_ldx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
837{
838 u8 *prog = *pprog;
839
840 switch (size) {
841 case BPF_B:
842 /* Emit 'movzx rax, byte ptr [rax + off]' */
843 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB6);
844 break;
845 case BPF_H:
846 /* Emit 'movzx rax, word ptr [rax + off]' */
847 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB7);
848 break;
849 case BPF_W:
850 /* Emit 'mov eax, dword ptr [rax+0x14]' */
851 if (is_ereg(reg: dst_reg) || is_ereg(reg: src_reg))
852 EMIT2(add_2mod(0x40, src_reg, dst_reg), 0x8B);
853 else
854 EMIT1(0x8B);
855 break;
856 case BPF_DW:
857 /* Emit 'mov rax, qword ptr [rax+0x14]' */
858 EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x8B);
859 break;
860 }
861 emit_insn_suffix(pprog: &prog, ptr_reg: src_reg, val_reg: dst_reg, off);
862 *pprog = prog;
863}
864
865/* LDSX: dst_reg = *(s8*)(src_reg + off) */
866static void emit_ldsx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
867{
868 u8 *prog = *pprog;
869
870 switch (size) {
871 case BPF_B:
872 /* Emit 'movsx rax, byte ptr [rax + off]' */
873 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xBE);
874 break;
875 case BPF_H:
876 /* Emit 'movsx rax, word ptr [rax + off]' */
877 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xBF);
878 break;
879 case BPF_W:
880 /* Emit 'movsx rax, dword ptr [rax+0x14]' */
881 EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x63);
882 break;
883 }
884 emit_insn_suffix(pprog: &prog, ptr_reg: src_reg, val_reg: dst_reg, off);
885 *pprog = prog;
886}
887
888/* STX: *(u8*)(dst_reg + off) = src_reg */
889static void emit_stx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
890{
891 u8 *prog = *pprog;
892
893 switch (size) {
894 case BPF_B:
895 /* Emit 'mov byte ptr [rax + off], al' */
896 if (is_ereg(reg: dst_reg) || is_ereg_8l(reg: src_reg))
897 /* Add extra byte for eregs or SIL,DIL,BPL in src_reg */
898 EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x88);
899 else
900 EMIT1(0x88);
901 break;
902 case BPF_H:
903 if (is_ereg(reg: dst_reg) || is_ereg(reg: src_reg))
904 EMIT3(0x66, add_2mod(0x40, dst_reg, src_reg), 0x89);
905 else
906 EMIT2(0x66, 0x89);
907 break;
908 case BPF_W:
909 if (is_ereg(reg: dst_reg) || is_ereg(reg: src_reg))
910 EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x89);
911 else
912 EMIT1(0x89);
913 break;
914 case BPF_DW:
915 EMIT2(add_2mod(0x48, dst_reg, src_reg), 0x89);
916 break;
917 }
918 emit_insn_suffix(pprog: &prog, ptr_reg: dst_reg, val_reg: src_reg, off);
919 *pprog = prog;
920}
921
922static int emit_atomic(u8 **pprog, u8 atomic_op,
923 u32 dst_reg, u32 src_reg, s16 off, u8 bpf_size)
924{
925 u8 *prog = *pprog;
926
927 EMIT1(0xF0); /* lock prefix */
928
929 maybe_emit_mod(pprog: &prog, dst_reg, src_reg, is64: bpf_size == BPF_DW);
930
931 /* emit opcode */
932 switch (atomic_op) {
933 case BPF_ADD:
934 case BPF_AND:
935 case BPF_OR:
936 case BPF_XOR:
937 /* lock *(u32/u64*)(dst_reg + off) <op>= src_reg */
938 EMIT1(simple_alu_opcodes[atomic_op]);
939 break;
940 case BPF_ADD | BPF_FETCH:
941 /* src_reg = atomic_fetch_add(dst_reg + off, src_reg); */
942 EMIT2(0x0F, 0xC1);
943 break;
944 case BPF_XCHG:
945 /* src_reg = atomic_xchg(dst_reg + off, src_reg); */
946 EMIT1(0x87);
947 break;
948 case BPF_CMPXCHG:
949 /* r0 = atomic_cmpxchg(dst_reg + off, r0, src_reg); */
950 EMIT2(0x0F, 0xB1);
951 break;
952 default:
953 pr_err("bpf_jit: unknown atomic opcode %02x\n", atomic_op);
954 return -EFAULT;
955 }
956
957 emit_insn_suffix(pprog: &prog, ptr_reg: dst_reg, val_reg: src_reg, off);
958
959 *pprog = prog;
960 return 0;
961}
962
963bool ex_handler_bpf(const struct exception_table_entry *x, struct pt_regs *regs)
964{
965 u32 reg = x->fixup >> 8;
966
967 /* jump over faulting load and clear dest register */
968 *(unsigned long *)((void *)regs + reg) = 0;
969 regs->ip += x->fixup & 0xff;
970 return true;
971}
972
973static void detect_reg_usage(struct bpf_insn *insn, int insn_cnt,
974 bool *regs_used, bool *tail_call_seen)
975{
976 int i;
977
978 for (i = 1; i <= insn_cnt; i++, insn++) {
979 if (insn->code == (BPF_JMP | BPF_TAIL_CALL))
980 *tail_call_seen = true;
981 if (insn->dst_reg == BPF_REG_6 || insn->src_reg == BPF_REG_6)
982 regs_used[0] = true;
983 if (insn->dst_reg == BPF_REG_7 || insn->src_reg == BPF_REG_7)
984 regs_used[1] = true;
985 if (insn->dst_reg == BPF_REG_8 || insn->src_reg == BPF_REG_8)
986 regs_used[2] = true;
987 if (insn->dst_reg == BPF_REG_9 || insn->src_reg == BPF_REG_9)
988 regs_used[3] = true;
989 }
990}
991
992static void emit_nops(u8 **pprog, int len)
993{
994 u8 *prog = *pprog;
995 int i, noplen;
996
997 while (len > 0) {
998 noplen = len;
999
1000 if (noplen > ASM_NOP_MAX)
1001 noplen = ASM_NOP_MAX;
1002
1003 for (i = 0; i < noplen; i++)
1004 EMIT1(x86_nops[noplen][i]);
1005 len -= noplen;
1006 }
1007
1008 *pprog = prog;
1009}
1010
1011/* emit the 3-byte VEX prefix
1012 *
1013 * r: same as rex.r, extra bit for ModRM reg field
1014 * x: same as rex.x, extra bit for SIB index field
1015 * b: same as rex.b, extra bit for ModRM r/m, or SIB base
1016 * m: opcode map select, encoding escape bytes e.g. 0x0f38
1017 * w: same as rex.w (32 bit or 64 bit) or opcode specific
1018 * src_reg2: additional source reg (encoded as BPF reg)
1019 * l: vector length (128 bit or 256 bit) or reserved
1020 * pp: opcode prefix (none, 0x66, 0xf2 or 0xf3)
1021 */
1022static void emit_3vex(u8 **pprog, bool r, bool x, bool b, u8 m,
1023 bool w, u8 src_reg2, bool l, u8 pp)
1024{
1025 u8 *prog = *pprog;
1026 const u8 b0 = 0xc4; /* first byte of 3-byte VEX prefix */
1027 u8 b1, b2;
1028 u8 vvvv = reg2hex[src_reg2];
1029
1030 /* reg2hex gives only the lower 3 bit of vvvv */
1031 if (is_ereg(reg: src_reg2))
1032 vvvv |= 1 << 3;
1033
1034 /*
1035 * 2nd byte of 3-byte VEX prefix
1036 * ~ means bit inverted encoding
1037 *
1038 * 7 0
1039 * +---+---+---+---+---+---+---+---+
1040 * |~R |~X |~B | m |
1041 * +---+---+---+---+---+---+---+---+
1042 */
1043 b1 = (!r << 7) | (!x << 6) | (!b << 5) | (m & 0x1f);
1044 /*
1045 * 3rd byte of 3-byte VEX prefix
1046 *
1047 * 7 0
1048 * +---+---+---+---+---+---+---+---+
1049 * | W | ~vvvv | L | pp |
1050 * +---+---+---+---+---+---+---+---+
1051 */
1052 b2 = (w << 7) | ((~vvvv & 0xf) << 3) | (l << 2) | (pp & 3);
1053
1054 EMIT3(b0, b1, b2);
1055 *pprog = prog;
1056}
1057
1058/* emit BMI2 shift instruction */
1059static void emit_shiftx(u8 **pprog, u32 dst_reg, u8 src_reg, bool is64, u8 op)
1060{
1061 u8 *prog = *pprog;
1062 bool r = is_ereg(reg: dst_reg);
1063 u8 m = 2; /* escape code 0f38 */
1064
1065 emit_3vex(pprog: &prog, r, x: false, b: r, m, w: is64, src_reg2: src_reg, l: false, pp: op);
1066 EMIT2(0xf7, add_2reg(0xC0, dst_reg, dst_reg));
1067 *pprog = prog;
1068}
1069
1070#define INSN_SZ_DIFF (((addrs[i] - addrs[i - 1]) - (prog - temp)))
1071
1072/* mov rax, qword ptr [rbp - rounded_stack_depth - 8] */
1073#define RESTORE_TAIL_CALL_CNT(stack) \
1074 EMIT3_off32(0x48, 0x8B, 0x85, -round_up(stack, 8) - 8)
1075
1076static int do_jit(struct bpf_prog *bpf_prog, int *addrs, u8 *image, u8 *rw_image,
1077 int oldproglen, struct jit_context *ctx, bool jmp_padding)
1078{
1079 bool tail_call_reachable = bpf_prog->aux->tail_call_reachable;
1080 struct bpf_insn *insn = bpf_prog->insnsi;
1081 bool callee_regs_used[4] = {};
1082 int insn_cnt = bpf_prog->len;
1083 bool tail_call_seen = false;
1084 bool seen_exit = false;
1085 u8 temp[BPF_MAX_INSN_SIZE + BPF_INSN_SAFETY];
1086 int i, excnt = 0;
1087 int ilen, proglen = 0;
1088 u8 *prog = temp;
1089 int err;
1090
1091 detect_reg_usage(insn, insn_cnt, regs_used: callee_regs_used,
1092 tail_call_seen: &tail_call_seen);
1093
1094 /* tail call's presence in current prog implies it is reachable */
1095 tail_call_reachable |= tail_call_seen;
1096
1097 emit_prologue(pprog: &prog, stack_depth: bpf_prog->aux->stack_depth,
1098 ebpf_from_cbpf: bpf_prog_was_classic(prog: bpf_prog), tail_call_reachable,
1099 is_subprog: bpf_is_subprog(prog: bpf_prog), is_exception_cb: bpf_prog->aux->exception_cb);
1100 /* Exception callback will clobber callee regs for its own use, and
1101 * restore the original callee regs from main prog's stack frame.
1102 */
1103 if (bpf_prog->aux->exception_boundary) {
1104 /* We also need to save r12, which is not mapped to any BPF
1105 * register, as we throw after entry into the kernel, which may
1106 * overwrite r12.
1107 */
1108 push_r12(pprog: &prog);
1109 push_callee_regs(pprog: &prog, callee_regs_used: all_callee_regs_used);
1110 } else {
1111 push_callee_regs(pprog: &prog, callee_regs_used);
1112 }
1113
1114 ilen = prog - temp;
1115 if (rw_image)
1116 memcpy(rw_image + proglen, temp, ilen);
1117 proglen += ilen;
1118 addrs[0] = proglen;
1119 prog = temp;
1120
1121 for (i = 1; i <= insn_cnt; i++, insn++) {
1122 const s32 imm32 = insn->imm;
1123 u32 dst_reg = insn->dst_reg;
1124 u32 src_reg = insn->src_reg;
1125 u8 b2 = 0, b3 = 0;
1126 u8 *start_of_ldx;
1127 s64 jmp_offset;
1128 s16 insn_off;
1129 u8 jmp_cond;
1130 u8 *func;
1131 int nops;
1132
1133 switch (insn->code) {
1134 /* ALU */
1135 case BPF_ALU | BPF_ADD | BPF_X:
1136 case BPF_ALU | BPF_SUB | BPF_X:
1137 case BPF_ALU | BPF_AND | BPF_X:
1138 case BPF_ALU | BPF_OR | BPF_X:
1139 case BPF_ALU | BPF_XOR | BPF_X:
1140 case BPF_ALU64 | BPF_ADD | BPF_X:
1141 case BPF_ALU64 | BPF_SUB | BPF_X:
1142 case BPF_ALU64 | BPF_AND | BPF_X:
1143 case BPF_ALU64 | BPF_OR | BPF_X:
1144 case BPF_ALU64 | BPF_XOR | BPF_X:
1145 maybe_emit_mod(pprog: &prog, dst_reg, src_reg,
1146 BPF_CLASS(insn->code) == BPF_ALU64);
1147 b2 = simple_alu_opcodes[BPF_OP(insn->code)];
1148 EMIT2(b2, add_2reg(0xC0, dst_reg, src_reg));
1149 break;
1150
1151 case BPF_ALU64 | BPF_MOV | BPF_X:
1152 case BPF_ALU | BPF_MOV | BPF_X:
1153 if (insn->off == 0)
1154 emit_mov_reg(pprog: &prog,
1155 BPF_CLASS(insn->code) == BPF_ALU64,
1156 dst_reg, src_reg);
1157 else
1158 emit_movsx_reg(pprog: &prog, num_bits: insn->off,
1159 BPF_CLASS(insn->code) == BPF_ALU64,
1160 dst_reg, src_reg);
1161 break;
1162
1163 /* neg dst */
1164 case BPF_ALU | BPF_NEG:
1165 case BPF_ALU64 | BPF_NEG:
1166 maybe_emit_1mod(pprog: &prog, reg: dst_reg,
1167 BPF_CLASS(insn->code) == BPF_ALU64);
1168 EMIT2(0xF7, add_1reg(0xD8, dst_reg));
1169 break;
1170
1171 case BPF_ALU | BPF_ADD | BPF_K:
1172 case BPF_ALU | BPF_SUB | BPF_K:
1173 case BPF_ALU | BPF_AND | BPF_K:
1174 case BPF_ALU | BPF_OR | BPF_K:
1175 case BPF_ALU | BPF_XOR | BPF_K:
1176 case BPF_ALU64 | BPF_ADD | BPF_K:
1177 case BPF_ALU64 | BPF_SUB | BPF_K:
1178 case BPF_ALU64 | BPF_AND | BPF_K:
1179 case BPF_ALU64 | BPF_OR | BPF_K:
1180 case BPF_ALU64 | BPF_XOR | BPF_K:
1181 maybe_emit_1mod(pprog: &prog, reg: dst_reg,
1182 BPF_CLASS(insn->code) == BPF_ALU64);
1183
1184 /*
1185 * b3 holds 'normal' opcode, b2 short form only valid
1186 * in case dst is eax/rax.
1187 */
1188 switch (BPF_OP(insn->code)) {
1189 case BPF_ADD:
1190 b3 = 0xC0;
1191 b2 = 0x05;
1192 break;
1193 case BPF_SUB:
1194 b3 = 0xE8;
1195 b2 = 0x2D;
1196 break;
1197 case BPF_AND:
1198 b3 = 0xE0;
1199 b2 = 0x25;
1200 break;
1201 case BPF_OR:
1202 b3 = 0xC8;
1203 b2 = 0x0D;
1204 break;
1205 case BPF_XOR:
1206 b3 = 0xF0;
1207 b2 = 0x35;
1208 break;
1209 }
1210
1211 if (is_imm8(value: imm32))
1212 EMIT3(0x83, add_1reg(b3, dst_reg), imm32);
1213 else if (is_axreg(reg: dst_reg))
1214 EMIT1_off32(b2, imm32);
1215 else
1216 EMIT2_off32(0x81, add_1reg(b3, dst_reg), imm32);
1217 break;
1218
1219 case BPF_ALU64 | BPF_MOV | BPF_K:
1220 case BPF_ALU | BPF_MOV | BPF_K:
1221 emit_mov_imm32(pprog: &prog, BPF_CLASS(insn->code) == BPF_ALU64,
1222 dst_reg, imm32);
1223 break;
1224
1225 case BPF_LD | BPF_IMM | BPF_DW:
1226 emit_mov_imm64(pprog: &prog, dst_reg, imm32_hi: insn[1].imm, imm32_lo: insn[0].imm);
1227 insn++;
1228 i++;
1229 break;
1230
1231 /* dst %= src, dst /= src, dst %= imm32, dst /= imm32 */
1232 case BPF_ALU | BPF_MOD | BPF_X:
1233 case BPF_ALU | BPF_DIV | BPF_X:
1234 case BPF_ALU | BPF_MOD | BPF_K:
1235 case BPF_ALU | BPF_DIV | BPF_K:
1236 case BPF_ALU64 | BPF_MOD | BPF_X:
1237 case BPF_ALU64 | BPF_DIV | BPF_X:
1238 case BPF_ALU64 | BPF_MOD | BPF_K:
1239 case BPF_ALU64 | BPF_DIV | BPF_K: {
1240 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
1241
1242 if (dst_reg != BPF_REG_0)
1243 EMIT1(0x50); /* push rax */
1244 if (dst_reg != BPF_REG_3)
1245 EMIT1(0x52); /* push rdx */
1246
1247 if (BPF_SRC(insn->code) == BPF_X) {
1248 if (src_reg == BPF_REG_0 ||
1249 src_reg == BPF_REG_3) {
1250 /* mov r11, src_reg */
1251 EMIT_mov(AUX_REG, src_reg);
1252 src_reg = AUX_REG;
1253 }
1254 } else {
1255 /* mov r11, imm32 */
1256 EMIT3_off32(0x49, 0xC7, 0xC3, imm32);
1257 src_reg = AUX_REG;
1258 }
1259
1260 if (dst_reg != BPF_REG_0)
1261 /* mov rax, dst_reg */
1262 emit_mov_reg(pprog: &prog, is64, dst_reg: BPF_REG_0, src_reg: dst_reg);
1263
1264 if (insn->off == 0) {
1265 /*
1266 * xor edx, edx
1267 * equivalent to 'xor rdx, rdx', but one byte less
1268 */
1269 EMIT2(0x31, 0xd2);
1270
1271 /* div src_reg */
1272 maybe_emit_1mod(pprog: &prog, reg: src_reg, is64);
1273 EMIT2(0xF7, add_1reg(0xF0, src_reg));
1274 } else {
1275 if (BPF_CLASS(insn->code) == BPF_ALU)
1276 EMIT1(0x99); /* cdq */
1277 else
1278 EMIT2(0x48, 0x99); /* cqo */
1279
1280 /* idiv src_reg */
1281 maybe_emit_1mod(pprog: &prog, reg: src_reg, is64);
1282 EMIT2(0xF7, add_1reg(0xF8, src_reg));
1283 }
1284
1285 if (BPF_OP(insn->code) == BPF_MOD &&
1286 dst_reg != BPF_REG_3)
1287 /* mov dst_reg, rdx */
1288 emit_mov_reg(pprog: &prog, is64, dst_reg, src_reg: BPF_REG_3);
1289 else if (BPF_OP(insn->code) == BPF_DIV &&
1290 dst_reg != BPF_REG_0)
1291 /* mov dst_reg, rax */
1292 emit_mov_reg(pprog: &prog, is64, dst_reg, src_reg: BPF_REG_0);
1293
1294 if (dst_reg != BPF_REG_3)
1295 EMIT1(0x5A); /* pop rdx */
1296 if (dst_reg != BPF_REG_0)
1297 EMIT1(0x58); /* pop rax */
1298 break;
1299 }
1300
1301 case BPF_ALU | BPF_MUL | BPF_K:
1302 case BPF_ALU64 | BPF_MUL | BPF_K:
1303 maybe_emit_mod(pprog: &prog, dst_reg, src_reg: dst_reg,
1304 BPF_CLASS(insn->code) == BPF_ALU64);
1305
1306 if (is_imm8(value: imm32))
1307 /* imul dst_reg, dst_reg, imm8 */
1308 EMIT3(0x6B, add_2reg(0xC0, dst_reg, dst_reg),
1309 imm32);
1310 else
1311 /* imul dst_reg, dst_reg, imm32 */
1312 EMIT2_off32(0x69,
1313 add_2reg(0xC0, dst_reg, dst_reg),
1314 imm32);
1315 break;
1316
1317 case BPF_ALU | BPF_MUL | BPF_X:
1318 case BPF_ALU64 | BPF_MUL | BPF_X:
1319 maybe_emit_mod(pprog: &prog, dst_reg: src_reg, src_reg: dst_reg,
1320 BPF_CLASS(insn->code) == BPF_ALU64);
1321
1322 /* imul dst_reg, src_reg */
1323 EMIT3(0x0F, 0xAF, add_2reg(0xC0, src_reg, dst_reg));
1324 break;
1325
1326 /* Shifts */
1327 case BPF_ALU | BPF_LSH | BPF_K:
1328 case BPF_ALU | BPF_RSH | BPF_K:
1329 case BPF_ALU | BPF_ARSH | BPF_K:
1330 case BPF_ALU64 | BPF_LSH | BPF_K:
1331 case BPF_ALU64 | BPF_RSH | BPF_K:
1332 case BPF_ALU64 | BPF_ARSH | BPF_K:
1333 maybe_emit_1mod(pprog: &prog, reg: dst_reg,
1334 BPF_CLASS(insn->code) == BPF_ALU64);
1335
1336 b3 = simple_alu_opcodes[BPF_OP(insn->code)];
1337 if (imm32 == 1)
1338 EMIT2(0xD1, add_1reg(b3, dst_reg));
1339 else
1340 EMIT3(0xC1, add_1reg(b3, dst_reg), imm32);
1341 break;
1342
1343 case BPF_ALU | BPF_LSH | BPF_X:
1344 case BPF_ALU | BPF_RSH | BPF_X:
1345 case BPF_ALU | BPF_ARSH | BPF_X:
1346 case BPF_ALU64 | BPF_LSH | BPF_X:
1347 case BPF_ALU64 | BPF_RSH | BPF_X:
1348 case BPF_ALU64 | BPF_ARSH | BPF_X:
1349 /* BMI2 shifts aren't better when shift count is already in rcx */
1350 if (boot_cpu_has(X86_FEATURE_BMI2) && src_reg != BPF_REG_4) {
1351 /* shrx/sarx/shlx dst_reg, dst_reg, src_reg */
1352 bool w = (BPF_CLASS(insn->code) == BPF_ALU64);
1353 u8 op;
1354
1355 switch (BPF_OP(insn->code)) {
1356 case BPF_LSH:
1357 op = 1; /* prefix 0x66 */
1358 break;
1359 case BPF_RSH:
1360 op = 3; /* prefix 0xf2 */
1361 break;
1362 case BPF_ARSH:
1363 op = 2; /* prefix 0xf3 */
1364 break;
1365 }
1366
1367 emit_shiftx(pprog: &prog, dst_reg, src_reg, is64: w, op);
1368
1369 break;
1370 }
1371
1372 if (src_reg != BPF_REG_4) { /* common case */
1373 /* Check for bad case when dst_reg == rcx */
1374 if (dst_reg == BPF_REG_4) {
1375 /* mov r11, dst_reg */
1376 EMIT_mov(AUX_REG, dst_reg);
1377 dst_reg = AUX_REG;
1378 } else {
1379 EMIT1(0x51); /* push rcx */
1380 }
1381 /* mov rcx, src_reg */
1382 EMIT_mov(BPF_REG_4, src_reg);
1383 }
1384
1385 /* shl %rax, %cl | shr %rax, %cl | sar %rax, %cl */
1386 maybe_emit_1mod(pprog: &prog, reg: dst_reg,
1387 BPF_CLASS(insn->code) == BPF_ALU64);
1388
1389 b3 = simple_alu_opcodes[BPF_OP(insn->code)];
1390 EMIT2(0xD3, add_1reg(b3, dst_reg));
1391
1392 if (src_reg != BPF_REG_4) {
1393 if (insn->dst_reg == BPF_REG_4)
1394 /* mov dst_reg, r11 */
1395 EMIT_mov(insn->dst_reg, AUX_REG);
1396 else
1397 EMIT1(0x59); /* pop rcx */
1398 }
1399
1400 break;
1401
1402 case BPF_ALU | BPF_END | BPF_FROM_BE:
1403 case BPF_ALU64 | BPF_END | BPF_FROM_LE:
1404 switch (imm32) {
1405 case 16:
1406 /* Emit 'ror %ax, 8' to swap lower 2 bytes */
1407 EMIT1(0x66);
1408 if (is_ereg(reg: dst_reg))
1409 EMIT1(0x41);
1410 EMIT3(0xC1, add_1reg(0xC8, dst_reg), 8);
1411
1412 /* Emit 'movzwl eax, ax' */
1413 if (is_ereg(reg: dst_reg))
1414 EMIT3(0x45, 0x0F, 0xB7);
1415 else
1416 EMIT2(0x0F, 0xB7);
1417 EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
1418 break;
1419 case 32:
1420 /* Emit 'bswap eax' to swap lower 4 bytes */
1421 if (is_ereg(reg: dst_reg))
1422 EMIT2(0x41, 0x0F);
1423 else
1424 EMIT1(0x0F);
1425 EMIT1(add_1reg(0xC8, dst_reg));
1426 break;
1427 case 64:
1428 /* Emit 'bswap rax' to swap 8 bytes */
1429 EMIT3(add_1mod(0x48, dst_reg), 0x0F,
1430 add_1reg(0xC8, dst_reg));
1431 break;
1432 }
1433 break;
1434
1435 case BPF_ALU | BPF_END | BPF_FROM_LE:
1436 switch (imm32) {
1437 case 16:
1438 /*
1439 * Emit 'movzwl eax, ax' to zero extend 16-bit
1440 * into 64 bit
1441 */
1442 if (is_ereg(reg: dst_reg))
1443 EMIT3(0x45, 0x0F, 0xB7);
1444 else
1445 EMIT2(0x0F, 0xB7);
1446 EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
1447 break;
1448 case 32:
1449 /* Emit 'mov eax, eax' to clear upper 32-bits */
1450 if (is_ereg(reg: dst_reg))
1451 EMIT1(0x45);
1452 EMIT2(0x89, add_2reg(0xC0, dst_reg, dst_reg));
1453 break;
1454 case 64:
1455 /* nop */
1456 break;
1457 }
1458 break;
1459
1460 /* speculation barrier */
1461 case BPF_ST | BPF_NOSPEC:
1462 EMIT_LFENCE();
1463 break;
1464
1465 /* ST: *(u8*)(dst_reg + off) = imm */
1466 case BPF_ST | BPF_MEM | BPF_B:
1467 if (is_ereg(reg: dst_reg))
1468 EMIT2(0x41, 0xC6);
1469 else
1470 EMIT1(0xC6);
1471 goto st;
1472 case BPF_ST | BPF_MEM | BPF_H:
1473 if (is_ereg(reg: dst_reg))
1474 EMIT3(0x66, 0x41, 0xC7);
1475 else
1476 EMIT2(0x66, 0xC7);
1477 goto st;
1478 case BPF_ST | BPF_MEM | BPF_W:
1479 if (is_ereg(reg: dst_reg))
1480 EMIT2(0x41, 0xC7);
1481 else
1482 EMIT1(0xC7);
1483 goto st;
1484 case BPF_ST | BPF_MEM | BPF_DW:
1485 EMIT2(add_1mod(0x48, dst_reg), 0xC7);
1486
1487st: if (is_imm8(value: insn->off))
1488 EMIT2(add_1reg(0x40, dst_reg), insn->off);
1489 else
1490 EMIT1_off32(add_1reg(0x80, dst_reg), insn->off);
1491
1492 EMIT(imm32, bpf_size_to_x86_bytes(BPF_SIZE(insn->code)));
1493 break;
1494
1495 /* STX: *(u8*)(dst_reg + off) = src_reg */
1496 case BPF_STX | BPF_MEM | BPF_B:
1497 case BPF_STX | BPF_MEM | BPF_H:
1498 case BPF_STX | BPF_MEM | BPF_W:
1499 case BPF_STX | BPF_MEM | BPF_DW:
1500 emit_stx(pprog: &prog, BPF_SIZE(insn->code), dst_reg, src_reg, off: insn->off);
1501 break;
1502
1503 /* LDX: dst_reg = *(u8*)(src_reg + off) */
1504 case BPF_LDX | BPF_MEM | BPF_B:
1505 case BPF_LDX | BPF_PROBE_MEM | BPF_B:
1506 case BPF_LDX | BPF_MEM | BPF_H:
1507 case BPF_LDX | BPF_PROBE_MEM | BPF_H:
1508 case BPF_LDX | BPF_MEM | BPF_W:
1509 case BPF_LDX | BPF_PROBE_MEM | BPF_W:
1510 case BPF_LDX | BPF_MEM | BPF_DW:
1511 case BPF_LDX | BPF_PROBE_MEM | BPF_DW:
1512 /* LDXS: dst_reg = *(s8*)(src_reg + off) */
1513 case BPF_LDX | BPF_MEMSX | BPF_B:
1514 case BPF_LDX | BPF_MEMSX | BPF_H:
1515 case BPF_LDX | BPF_MEMSX | BPF_W:
1516 case BPF_LDX | BPF_PROBE_MEMSX | BPF_B:
1517 case BPF_LDX | BPF_PROBE_MEMSX | BPF_H:
1518 case BPF_LDX | BPF_PROBE_MEMSX | BPF_W:
1519 insn_off = insn->off;
1520
1521 if (BPF_MODE(insn->code) == BPF_PROBE_MEM ||
1522 BPF_MODE(insn->code) == BPF_PROBE_MEMSX) {
1523 /* Conservatively check that src_reg + insn->off is a kernel address:
1524 * src_reg + insn->off >= TASK_SIZE_MAX + PAGE_SIZE
1525 * src_reg is used as scratch for src_reg += insn->off and restored
1526 * after emit_ldx if necessary
1527 */
1528
1529 u64 limit = TASK_SIZE_MAX + PAGE_SIZE;
1530 u8 *end_of_jmp;
1531
1532 /* At end of these emitted checks, insn->off will have been added
1533 * to src_reg, so no need to do relative load with insn->off offset
1534 */
1535 insn_off = 0;
1536
1537 /* movabsq r11, limit */
1538 EMIT2(add_1mod(0x48, AUX_REG), add_1reg(0xB8, AUX_REG));
1539 EMIT((u32)limit, 4);
1540 EMIT(limit >> 32, 4);
1541
1542 if (insn->off) {
1543 /* add src_reg, insn->off */
1544 maybe_emit_1mod(pprog: &prog, reg: src_reg, is64: true);
1545 EMIT2_off32(0x81, add_1reg(0xC0, src_reg), insn->off);
1546 }
1547
1548 /* cmp src_reg, r11 */
1549 maybe_emit_mod(pprog: &prog, dst_reg: src_reg, AUX_REG, is64: true);
1550 EMIT2(0x39, add_2reg(0xC0, src_reg, AUX_REG));
1551
1552 /* if unsigned '>=', goto load */
1553 EMIT2(X86_JAE, 0);
1554 end_of_jmp = prog;
1555
1556 /* xor dst_reg, dst_reg */
1557 emit_mov_imm32(pprog: &prog, sign_propagate: false, dst_reg, imm32: 0);
1558 /* jmp byte_after_ldx */
1559 EMIT2(0xEB, 0);
1560
1561 /* populate jmp_offset for JAE above to jump to start_of_ldx */
1562 start_of_ldx = prog;
1563 end_of_jmp[-1] = start_of_ldx - end_of_jmp;
1564 }
1565 if (BPF_MODE(insn->code) == BPF_PROBE_MEMSX ||
1566 BPF_MODE(insn->code) == BPF_MEMSX)
1567 emit_ldsx(pprog: &prog, BPF_SIZE(insn->code), dst_reg, src_reg, off: insn_off);
1568 else
1569 emit_ldx(pprog: &prog, BPF_SIZE(insn->code), dst_reg, src_reg, off: insn_off);
1570 if (BPF_MODE(insn->code) == BPF_PROBE_MEM ||
1571 BPF_MODE(insn->code) == BPF_PROBE_MEMSX) {
1572 struct exception_table_entry *ex;
1573 u8 *_insn = image + proglen + (start_of_ldx - temp);
1574 s64 delta;
1575
1576 /* populate jmp_offset for JMP above */
1577 start_of_ldx[-1] = prog - start_of_ldx;
1578
1579 if (insn->off && src_reg != dst_reg) {
1580 /* sub src_reg, insn->off
1581 * Restore src_reg after "add src_reg, insn->off" in prev
1582 * if statement. But if src_reg == dst_reg, emit_ldx
1583 * above already clobbered src_reg, so no need to restore.
1584 * If add src_reg, insn->off was unnecessary, no need to
1585 * restore either.
1586 */
1587 maybe_emit_1mod(pprog: &prog, reg: src_reg, is64: true);
1588 EMIT2_off32(0x81, add_1reg(0xE8, src_reg), insn->off);
1589 }
1590
1591 if (!bpf_prog->aux->extable)
1592 break;
1593
1594 if (excnt >= bpf_prog->aux->num_exentries) {
1595 pr_err("ex gen bug\n");
1596 return -EFAULT;
1597 }
1598 ex = &bpf_prog->aux->extable[excnt++];
1599
1600 delta = _insn - (u8 *)&ex->insn;
1601 if (!is_simm32(value: delta)) {
1602 pr_err("extable->insn doesn't fit into 32-bit\n");
1603 return -EFAULT;
1604 }
1605 /* switch ex to rw buffer for writes */
1606 ex = (void *)rw_image + ((void *)ex - (void *)image);
1607
1608 ex->insn = delta;
1609
1610 ex->data = EX_TYPE_BPF;
1611
1612 if (dst_reg > BPF_REG_9) {
1613 pr_err("verifier error\n");
1614 return -EFAULT;
1615 }
1616 /*
1617 * Compute size of x86 insn and its target dest x86 register.
1618 * ex_handler_bpf() will use lower 8 bits to adjust
1619 * pt_regs->ip to jump over this x86 instruction
1620 * and upper bits to figure out which pt_regs to zero out.
1621 * End result: x86 insn "mov rbx, qword ptr [rax+0x14]"
1622 * of 4 bytes will be ignored and rbx will be zero inited.
1623 */
1624 ex->fixup = (prog - start_of_ldx) | (reg2pt_regs[dst_reg] << 8);
1625 }
1626 break;
1627
1628 case BPF_STX | BPF_ATOMIC | BPF_W:
1629 case BPF_STX | BPF_ATOMIC | BPF_DW:
1630 if (insn->imm == (BPF_AND | BPF_FETCH) ||
1631 insn->imm == (BPF_OR | BPF_FETCH) ||
1632 insn->imm == (BPF_XOR | BPF_FETCH)) {
1633 bool is64 = BPF_SIZE(insn->code) == BPF_DW;
1634 u32 real_src_reg = src_reg;
1635 u32 real_dst_reg = dst_reg;
1636 u8 *branch_target;
1637
1638 /*
1639 * Can't be implemented with a single x86 insn.
1640 * Need to do a CMPXCHG loop.
1641 */
1642
1643 /* Will need RAX as a CMPXCHG operand so save R0 */
1644 emit_mov_reg(pprog: &prog, is64: true, BPF_REG_AX, src_reg: BPF_REG_0);
1645 if (src_reg == BPF_REG_0)
1646 real_src_reg = BPF_REG_AX;
1647 if (dst_reg == BPF_REG_0)
1648 real_dst_reg = BPF_REG_AX;
1649
1650 branch_target = prog;
1651 /* Load old value */
1652 emit_ldx(pprog: &prog, BPF_SIZE(insn->code),
1653 dst_reg: BPF_REG_0, src_reg: real_dst_reg, off: insn->off);
1654 /*
1655 * Perform the (commutative) operation locally,
1656 * put the result in the AUX_REG.
1657 */
1658 emit_mov_reg(pprog: &prog, is64, AUX_REG, src_reg: BPF_REG_0);
1659 maybe_emit_mod(pprog: &prog, AUX_REG, src_reg: real_src_reg, is64);
1660 EMIT2(simple_alu_opcodes[BPF_OP(insn->imm)],
1661 add_2reg(0xC0, AUX_REG, real_src_reg));
1662 /* Attempt to swap in new value */
1663 err = emit_atomic(pprog: &prog, BPF_CMPXCHG,
1664 dst_reg: real_dst_reg, AUX_REG,
1665 off: insn->off,
1666 BPF_SIZE(insn->code));
1667 if (WARN_ON(err))
1668 return err;
1669 /*
1670 * ZF tells us whether we won the race. If it's
1671 * cleared we need to try again.
1672 */
1673 EMIT2(X86_JNE, -(prog - branch_target) - 2);
1674 /* Return the pre-modification value */
1675 emit_mov_reg(pprog: &prog, is64, dst_reg: real_src_reg, src_reg: BPF_REG_0);
1676 /* Restore R0 after clobbering RAX */
1677 emit_mov_reg(pprog: &prog, is64: true, dst_reg: BPF_REG_0, BPF_REG_AX);
1678 break;
1679 }
1680
1681 err = emit_atomic(pprog: &prog, atomic_op: insn->imm, dst_reg, src_reg,
1682 off: insn->off, BPF_SIZE(insn->code));
1683 if (err)
1684 return err;
1685 break;
1686
1687 /* call */
1688 case BPF_JMP | BPF_CALL: {
1689 int offs;
1690
1691 func = (u8 *) __bpf_call_base + imm32;
1692 if (tail_call_reachable) {
1693 RESTORE_TAIL_CALL_CNT(bpf_prog->aux->stack_depth);
1694 if (!imm32)
1695 return -EINVAL;
1696 offs = 7 + x86_call_depth_emit_accounting(pprog: &prog, func);
1697 } else {
1698 if (!imm32)
1699 return -EINVAL;
1700 offs = x86_call_depth_emit_accounting(pprog: &prog, func);
1701 }
1702 if (emit_call(pprog: &prog, func, ip: image + addrs[i - 1] + offs))
1703 return -EINVAL;
1704 break;
1705 }
1706
1707 case BPF_JMP | BPF_TAIL_CALL:
1708 if (imm32)
1709 emit_bpf_tail_call_direct(bpf_prog,
1710 poke: &bpf_prog->aux->poke_tab[imm32 - 1],
1711 pprog: &prog, ip: image + addrs[i - 1],
1712 callee_regs_used,
1713 stack_depth: bpf_prog->aux->stack_depth,
1714 ctx);
1715 else
1716 emit_bpf_tail_call_indirect(bpf_prog,
1717 pprog: &prog,
1718 callee_regs_used,
1719 stack_depth: bpf_prog->aux->stack_depth,
1720 ip: image + addrs[i - 1],
1721 ctx);
1722 break;
1723
1724 /* cond jump */
1725 case BPF_JMP | BPF_JEQ | BPF_X:
1726 case BPF_JMP | BPF_JNE | BPF_X:
1727 case BPF_JMP | BPF_JGT | BPF_X:
1728 case BPF_JMP | BPF_JLT | BPF_X:
1729 case BPF_JMP | BPF_JGE | BPF_X:
1730 case BPF_JMP | BPF_JLE | BPF_X:
1731 case BPF_JMP | BPF_JSGT | BPF_X:
1732 case BPF_JMP | BPF_JSLT | BPF_X:
1733 case BPF_JMP | BPF_JSGE | BPF_X:
1734 case BPF_JMP | BPF_JSLE | BPF_X:
1735 case BPF_JMP32 | BPF_JEQ | BPF_X:
1736 case BPF_JMP32 | BPF_JNE | BPF_X:
1737 case BPF_JMP32 | BPF_JGT | BPF_X:
1738 case BPF_JMP32 | BPF_JLT | BPF_X:
1739 case BPF_JMP32 | BPF_JGE | BPF_X:
1740 case BPF_JMP32 | BPF_JLE | BPF_X:
1741 case BPF_JMP32 | BPF_JSGT | BPF_X:
1742 case BPF_JMP32 | BPF_JSLT | BPF_X:
1743 case BPF_JMP32 | BPF_JSGE | BPF_X:
1744 case BPF_JMP32 | BPF_JSLE | BPF_X:
1745 /* cmp dst_reg, src_reg */
1746 maybe_emit_mod(pprog: &prog, dst_reg, src_reg,
1747 BPF_CLASS(insn->code) == BPF_JMP);
1748 EMIT2(0x39, add_2reg(0xC0, dst_reg, src_reg));
1749 goto emit_cond_jmp;
1750
1751 case BPF_JMP | BPF_JSET | BPF_X:
1752 case BPF_JMP32 | BPF_JSET | BPF_X:
1753 /* test dst_reg, src_reg */
1754 maybe_emit_mod(pprog: &prog, dst_reg, src_reg,
1755 BPF_CLASS(insn->code) == BPF_JMP);
1756 EMIT2(0x85, add_2reg(0xC0, dst_reg, src_reg));
1757 goto emit_cond_jmp;
1758
1759 case BPF_JMP | BPF_JSET | BPF_K:
1760 case BPF_JMP32 | BPF_JSET | BPF_K:
1761 /* test dst_reg, imm32 */
1762 maybe_emit_1mod(pprog: &prog, reg: dst_reg,
1763 BPF_CLASS(insn->code) == BPF_JMP);
1764 EMIT2_off32(0xF7, add_1reg(0xC0, dst_reg), imm32);
1765 goto emit_cond_jmp;
1766
1767 case BPF_JMP | BPF_JEQ | BPF_K:
1768 case BPF_JMP | BPF_JNE | BPF_K:
1769 case BPF_JMP | BPF_JGT | BPF_K:
1770 case BPF_JMP | BPF_JLT | BPF_K:
1771 case BPF_JMP | BPF_JGE | BPF_K:
1772 case BPF_JMP | BPF_JLE | BPF_K:
1773 case BPF_JMP | BPF_JSGT | BPF_K:
1774 case BPF_JMP | BPF_JSLT | BPF_K:
1775 case BPF_JMP | BPF_JSGE | BPF_K:
1776 case BPF_JMP | BPF_JSLE | BPF_K:
1777 case BPF_JMP32 | BPF_JEQ | BPF_K:
1778 case BPF_JMP32 | BPF_JNE | BPF_K:
1779 case BPF_JMP32 | BPF_JGT | BPF_K:
1780 case BPF_JMP32 | BPF_JLT | BPF_K:
1781 case BPF_JMP32 | BPF_JGE | BPF_K:
1782 case BPF_JMP32 | BPF_JLE | BPF_K:
1783 case BPF_JMP32 | BPF_JSGT | BPF_K:
1784 case BPF_JMP32 | BPF_JSLT | BPF_K:
1785 case BPF_JMP32 | BPF_JSGE | BPF_K:
1786 case BPF_JMP32 | BPF_JSLE | BPF_K:
1787 /* test dst_reg, dst_reg to save one extra byte */
1788 if (imm32 == 0) {
1789 maybe_emit_mod(pprog: &prog, dst_reg, src_reg: dst_reg,
1790 BPF_CLASS(insn->code) == BPF_JMP);
1791 EMIT2(0x85, add_2reg(0xC0, dst_reg, dst_reg));
1792 goto emit_cond_jmp;
1793 }
1794
1795 /* cmp dst_reg, imm8/32 */
1796 maybe_emit_1mod(pprog: &prog, reg: dst_reg,
1797 BPF_CLASS(insn->code) == BPF_JMP);
1798
1799 if (is_imm8(value: imm32))
1800 EMIT3(0x83, add_1reg(0xF8, dst_reg), imm32);
1801 else
1802 EMIT2_off32(0x81, add_1reg(0xF8, dst_reg), imm32);
1803
1804emit_cond_jmp: /* Convert BPF opcode to x86 */
1805 switch (BPF_OP(insn->code)) {
1806 case BPF_JEQ:
1807 jmp_cond = X86_JE;
1808 break;
1809 case BPF_JSET:
1810 case BPF_JNE:
1811 jmp_cond = X86_JNE;
1812 break;
1813 case BPF_JGT:
1814 /* GT is unsigned '>', JA in x86 */
1815 jmp_cond = X86_JA;
1816 break;
1817 case BPF_JLT:
1818 /* LT is unsigned '<', JB in x86 */
1819 jmp_cond = X86_JB;
1820 break;
1821 case BPF_JGE:
1822 /* GE is unsigned '>=', JAE in x86 */
1823 jmp_cond = X86_JAE;
1824 break;
1825 case BPF_JLE:
1826 /* LE is unsigned '<=', JBE in x86 */
1827 jmp_cond = X86_JBE;
1828 break;
1829 case BPF_JSGT:
1830 /* Signed '>', GT in x86 */
1831 jmp_cond = X86_JG;
1832 break;
1833 case BPF_JSLT:
1834 /* Signed '<', LT in x86 */
1835 jmp_cond = X86_JL;
1836 break;
1837 case BPF_JSGE:
1838 /* Signed '>=', GE in x86 */
1839 jmp_cond = X86_JGE;
1840 break;
1841 case BPF_JSLE:
1842 /* Signed '<=', LE in x86 */
1843 jmp_cond = X86_JLE;
1844 break;
1845 default: /* to silence GCC warning */
1846 return -EFAULT;
1847 }
1848 jmp_offset = addrs[i + insn->off] - addrs[i];
1849 if (is_imm8(value: jmp_offset)) {
1850 if (jmp_padding) {
1851 /* To keep the jmp_offset valid, the extra bytes are
1852 * padded before the jump insn, so we subtract the
1853 * 2 bytes of jmp_cond insn from INSN_SZ_DIFF.
1854 *
1855 * If the previous pass already emits an imm8
1856 * jmp_cond, then this BPF insn won't shrink, so
1857 * "nops" is 0.
1858 *
1859 * On the other hand, if the previous pass emits an
1860 * imm32 jmp_cond, the extra 4 bytes(*) is padded to
1861 * keep the image from shrinking further.
1862 *
1863 * (*) imm32 jmp_cond is 6 bytes, and imm8 jmp_cond
1864 * is 2 bytes, so the size difference is 4 bytes.
1865 */
1866 nops = INSN_SZ_DIFF - 2;
1867 if (nops != 0 && nops != 4) {
1868 pr_err("unexpected jmp_cond padding: %d bytes\n",
1869 nops);
1870 return -EFAULT;
1871 }
1872 emit_nops(pprog: &prog, len: nops);
1873 }
1874 EMIT2(jmp_cond, jmp_offset);
1875 } else if (is_simm32(value: jmp_offset)) {
1876 EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset);
1877 } else {
1878 pr_err("cond_jmp gen bug %llx\n", jmp_offset);
1879 return -EFAULT;
1880 }
1881
1882 break;
1883
1884 case BPF_JMP | BPF_JA:
1885 case BPF_JMP32 | BPF_JA:
1886 if (BPF_CLASS(insn->code) == BPF_JMP) {
1887 if (insn->off == -1)
1888 /* -1 jmp instructions will always jump
1889 * backwards two bytes. Explicitly handling
1890 * this case avoids wasting too many passes
1891 * when there are long sequences of replaced
1892 * dead code.
1893 */
1894 jmp_offset = -2;
1895 else
1896 jmp_offset = addrs[i + insn->off] - addrs[i];
1897 } else {
1898 if (insn->imm == -1)
1899 jmp_offset = -2;
1900 else
1901 jmp_offset = addrs[i + insn->imm] - addrs[i];
1902 }
1903
1904 if (!jmp_offset) {
1905 /*
1906 * If jmp_padding is enabled, the extra nops will
1907 * be inserted. Otherwise, optimize out nop jumps.
1908 */
1909 if (jmp_padding) {
1910 /* There are 3 possible conditions.
1911 * (1) This BPF_JA is already optimized out in
1912 * the previous run, so there is no need
1913 * to pad any extra byte (0 byte).
1914 * (2) The previous pass emits an imm8 jmp,
1915 * so we pad 2 bytes to match the previous
1916 * insn size.
1917 * (3) Similarly, the previous pass emits an
1918 * imm32 jmp, and 5 bytes is padded.
1919 */
1920 nops = INSN_SZ_DIFF;
1921 if (nops != 0 && nops != 2 && nops != 5) {
1922 pr_err("unexpected nop jump padding: %d bytes\n",
1923 nops);
1924 return -EFAULT;
1925 }
1926 emit_nops(pprog: &prog, len: nops);
1927 }
1928 break;
1929 }
1930emit_jmp:
1931 if (is_imm8(value: jmp_offset)) {
1932 if (jmp_padding) {
1933 /* To avoid breaking jmp_offset, the extra bytes
1934 * are padded before the actual jmp insn, so
1935 * 2 bytes is subtracted from INSN_SZ_DIFF.
1936 *
1937 * If the previous pass already emits an imm8
1938 * jmp, there is nothing to pad (0 byte).
1939 *
1940 * If it emits an imm32 jmp (5 bytes) previously
1941 * and now an imm8 jmp (2 bytes), then we pad
1942 * (5 - 2 = 3) bytes to stop the image from
1943 * shrinking further.
1944 */
1945 nops = INSN_SZ_DIFF - 2;
1946 if (nops != 0 && nops != 3) {
1947 pr_err("unexpected jump padding: %d bytes\n",
1948 nops);
1949 return -EFAULT;
1950 }
1951 emit_nops(pprog: &prog, INSN_SZ_DIFF - 2);
1952 }
1953 EMIT2(0xEB, jmp_offset);
1954 } else if (is_simm32(value: jmp_offset)) {
1955 EMIT1_off32(0xE9, jmp_offset);
1956 } else {
1957 pr_err("jmp gen bug %llx\n", jmp_offset);
1958 return -EFAULT;
1959 }
1960 break;
1961
1962 case BPF_JMP | BPF_EXIT:
1963 if (seen_exit) {
1964 jmp_offset = ctx->cleanup_addr - addrs[i];
1965 goto emit_jmp;
1966 }
1967 seen_exit = true;
1968 /* Update cleanup_addr */
1969 ctx->cleanup_addr = proglen;
1970 if (bpf_prog->aux->exception_boundary) {
1971 pop_callee_regs(pprog: &prog, callee_regs_used: all_callee_regs_used);
1972 pop_r12(pprog: &prog);
1973 } else {
1974 pop_callee_regs(pprog: &prog, callee_regs_used);
1975 }
1976 EMIT1(0xC9); /* leave */
1977 emit_return(pprog: &prog, ip: image + addrs[i - 1] + (prog - temp));
1978 break;
1979
1980 default:
1981 /*
1982 * By design x86-64 JIT should support all BPF instructions.
1983 * This error will be seen if new instruction was added
1984 * to the interpreter, but not to the JIT, or if there is
1985 * junk in bpf_prog.
1986 */
1987 pr_err("bpf_jit: unknown opcode %02x\n", insn->code);
1988 return -EINVAL;
1989 }
1990
1991 ilen = prog - temp;
1992 if (ilen > BPF_MAX_INSN_SIZE) {
1993 pr_err("bpf_jit: fatal insn size error\n");
1994 return -EFAULT;
1995 }
1996
1997 if (image) {
1998 /*
1999 * When populating the image, assert that:
2000 *
2001 * i) We do not write beyond the allocated space, and
2002 * ii) addrs[i] did not change from the prior run, in order
2003 * to validate assumptions made for computing branch
2004 * displacements.
2005 */
2006 if (unlikely(proglen + ilen > oldproglen ||
2007 proglen + ilen != addrs[i])) {
2008 pr_err("bpf_jit: fatal error\n");
2009 return -EFAULT;
2010 }
2011 memcpy(rw_image + proglen, temp, ilen);
2012 }
2013 proglen += ilen;
2014 addrs[i] = proglen;
2015 prog = temp;
2016 }
2017
2018 if (image && excnt != bpf_prog->aux->num_exentries) {
2019 pr_err("extable is not populated\n");
2020 return -EFAULT;
2021 }
2022 return proglen;
2023}
2024
2025static void clean_stack_garbage(const struct btf_func_model *m,
2026 u8 **pprog, int nr_stack_slots,
2027 int stack_size)
2028{
2029 int arg_size, off;
2030 u8 *prog;
2031
2032 /* Generally speaking, the compiler will pass the arguments
2033 * on-stack with "push" instruction, which will take 8-byte
2034 * on the stack. In this case, there won't be garbage values
2035 * while we copy the arguments from origin stack frame to current
2036 * in BPF_DW.
2037 *
2038 * However, sometimes the compiler will only allocate 4-byte on
2039 * the stack for the arguments. For now, this case will only
2040 * happen if there is only one argument on-stack and its size
2041 * not more than 4 byte. In this case, there will be garbage
2042 * values on the upper 4-byte where we store the argument on
2043 * current stack frame.
2044 *
2045 * arguments on origin stack:
2046 *
2047 * stack_arg_1(4-byte) xxx(4-byte)
2048 *
2049 * what we copy:
2050 *
2051 * stack_arg_1(8-byte): stack_arg_1(origin) xxx
2052 *
2053 * and the xxx is the garbage values which we should clean here.
2054 */
2055 if (nr_stack_slots != 1)
2056 return;
2057
2058 /* the size of the last argument */
2059 arg_size = m->arg_size[m->nr_args - 1];
2060 if (arg_size <= 4) {
2061 off = -(stack_size - 4);
2062 prog = *pprog;
2063 /* mov DWORD PTR [rbp + off], 0 */
2064 if (!is_imm8(value: off))
2065 EMIT2_off32(0xC7, 0x85, off);
2066 else
2067 EMIT3(0xC7, 0x45, off);
2068 EMIT(0, 4);
2069 *pprog = prog;
2070 }
2071}
2072
2073/* get the count of the regs that are used to pass arguments */
2074static int get_nr_used_regs(const struct btf_func_model *m)
2075{
2076 int i, arg_regs, nr_used_regs = 0;
2077
2078 for (i = 0; i < min_t(int, m->nr_args, MAX_BPF_FUNC_ARGS); i++) {
2079 arg_regs = (m->arg_size[i] + 7) / 8;
2080 if (nr_used_regs + arg_regs <= 6)
2081 nr_used_regs += arg_regs;
2082
2083 if (nr_used_regs >= 6)
2084 break;
2085 }
2086
2087 return nr_used_regs;
2088}
2089
2090static void save_args(const struct btf_func_model *m, u8 **prog,
2091 int stack_size, bool for_call_origin)
2092{
2093 int arg_regs, first_off = 0, nr_regs = 0, nr_stack_slots = 0;
2094 int i, j;
2095
2096 /* Store function arguments to stack.
2097 * For a function that accepts two pointers the sequence will be:
2098 * mov QWORD PTR [rbp-0x10],rdi
2099 * mov QWORD PTR [rbp-0x8],rsi
2100 */
2101 for (i = 0; i < min_t(int, m->nr_args, MAX_BPF_FUNC_ARGS); i++) {
2102 arg_regs = (m->arg_size[i] + 7) / 8;
2103
2104 /* According to the research of Yonghong, struct members
2105 * should be all in register or all on the stack.
2106 * Meanwhile, the compiler will pass the argument on regs
2107 * if the remaining regs can hold the argument.
2108 *
2109 * Disorder of the args can happen. For example:
2110 *
2111 * struct foo_struct {
2112 * long a;
2113 * int b;
2114 * };
2115 * int foo(char, char, char, char, char, struct foo_struct,
2116 * char);
2117 *
2118 * the arg1-5,arg7 will be passed by regs, and arg6 will
2119 * by stack.
2120 */
2121 if (nr_regs + arg_regs > 6) {
2122 /* copy function arguments from origin stack frame
2123 * into current stack frame.
2124 *
2125 * The starting address of the arguments on-stack
2126 * is:
2127 * rbp + 8(push rbp) +
2128 * 8(return addr of origin call) +
2129 * 8(return addr of the caller)
2130 * which means: rbp + 24
2131 */
2132 for (j = 0; j < arg_regs; j++) {
2133 emit_ldx(pprog: prog, BPF_DW, dst_reg: BPF_REG_0, BPF_REG_FP,
2134 off: nr_stack_slots * 8 + 0x18);
2135 emit_stx(pprog: prog, BPF_DW, BPF_REG_FP, src_reg: BPF_REG_0,
2136 off: -stack_size);
2137
2138 if (!nr_stack_slots)
2139 first_off = stack_size;
2140 stack_size -= 8;
2141 nr_stack_slots++;
2142 }
2143 } else {
2144 /* Only copy the arguments on-stack to current
2145 * 'stack_size' and ignore the regs, used to
2146 * prepare the arguments on-stack for orign call.
2147 */
2148 if (for_call_origin) {
2149 nr_regs += arg_regs;
2150 continue;
2151 }
2152
2153 /* copy the arguments from regs into stack */
2154 for (j = 0; j < arg_regs; j++) {
2155 emit_stx(pprog: prog, BPF_DW, BPF_REG_FP,
2156 src_reg: nr_regs == 5 ? X86_REG_R9 : BPF_REG_1 + nr_regs,
2157 off: -stack_size);
2158 stack_size -= 8;
2159 nr_regs++;
2160 }
2161 }
2162 }
2163
2164 clean_stack_garbage(m, pprog: prog, nr_stack_slots, stack_size: first_off);
2165}
2166
2167static void restore_regs(const struct btf_func_model *m, u8 **prog,
2168 int stack_size)
2169{
2170 int i, j, arg_regs, nr_regs = 0;
2171
2172 /* Restore function arguments from stack.
2173 * For a function that accepts two pointers the sequence will be:
2174 * EMIT4(0x48, 0x8B, 0x7D, 0xF0); mov rdi,QWORD PTR [rbp-0x10]
2175 * EMIT4(0x48, 0x8B, 0x75, 0xF8); mov rsi,QWORD PTR [rbp-0x8]
2176 *
2177 * The logic here is similar to what we do in save_args()
2178 */
2179 for (i = 0; i < min_t(int, m->nr_args, MAX_BPF_FUNC_ARGS); i++) {
2180 arg_regs = (m->arg_size[i] + 7) / 8;
2181 if (nr_regs + arg_regs <= 6) {
2182 for (j = 0; j < arg_regs; j++) {
2183 emit_ldx(pprog: prog, BPF_DW,
2184 dst_reg: nr_regs == 5 ? X86_REG_R9 : BPF_REG_1 + nr_regs,
2185 BPF_REG_FP,
2186 off: -stack_size);
2187 stack_size -= 8;
2188 nr_regs++;
2189 }
2190 } else {
2191 stack_size -= 8 * arg_regs;
2192 }
2193
2194 if (nr_regs >= 6)
2195 break;
2196 }
2197}
2198
2199static int invoke_bpf_prog(const struct btf_func_model *m, u8 **pprog,
2200 struct bpf_tramp_link *l, int stack_size,
2201 int run_ctx_off, bool save_ret)
2202{
2203 u8 *prog = *pprog;
2204 u8 *jmp_insn;
2205 int ctx_cookie_off = offsetof(struct bpf_tramp_run_ctx, bpf_cookie);
2206 struct bpf_prog *p = l->link.prog;
2207 u64 cookie = l->cookie;
2208
2209 /* mov rdi, cookie */
2210 emit_mov_imm64(pprog: &prog, dst_reg: BPF_REG_1, imm32_hi: (long) cookie >> 32, imm32_lo: (u32) (long) cookie);
2211
2212 /* Prepare struct bpf_tramp_run_ctx.
2213 *
2214 * bpf_tramp_run_ctx is already preserved by
2215 * arch_prepare_bpf_trampoline().
2216 *
2217 * mov QWORD PTR [rbp - run_ctx_off + ctx_cookie_off], rdi
2218 */
2219 emit_stx(pprog: &prog, BPF_DW, BPF_REG_FP, src_reg: BPF_REG_1, off: -run_ctx_off + ctx_cookie_off);
2220
2221 /* arg1: mov rdi, progs[i] */
2222 emit_mov_imm64(pprog: &prog, dst_reg: BPF_REG_1, imm32_hi: (long) p >> 32, imm32_lo: (u32) (long) p);
2223 /* arg2: lea rsi, [rbp - ctx_cookie_off] */
2224 if (!is_imm8(value: -run_ctx_off))
2225 EMIT3_off32(0x48, 0x8D, 0xB5, -run_ctx_off);
2226 else
2227 EMIT4(0x48, 0x8D, 0x75, -run_ctx_off);
2228
2229 if (emit_rsb_call(pprog: &prog, func: bpf_trampoline_enter(prog: p), ip: prog))
2230 return -EINVAL;
2231 /* remember prog start time returned by __bpf_prog_enter */
2232 emit_mov_reg(pprog: &prog, is64: true, dst_reg: BPF_REG_6, src_reg: BPF_REG_0);
2233
2234 /* if (__bpf_prog_enter*(prog) == 0)
2235 * goto skip_exec_of_prog;
2236 */
2237 EMIT3(0x48, 0x85, 0xC0); /* test rax,rax */
2238 /* emit 2 nops that will be replaced with JE insn */
2239 jmp_insn = prog;
2240 emit_nops(pprog: &prog, len: 2);
2241
2242 /* arg1: lea rdi, [rbp - stack_size] */
2243 if (!is_imm8(value: -stack_size))
2244 EMIT3_off32(0x48, 0x8D, 0xBD, -stack_size);
2245 else
2246 EMIT4(0x48, 0x8D, 0x7D, -stack_size);
2247 /* arg2: progs[i]->insnsi for interpreter */
2248 if (!p->jited)
2249 emit_mov_imm64(pprog: &prog, dst_reg: BPF_REG_2,
2250 imm32_hi: (long) p->insnsi >> 32,
2251 imm32_lo: (u32) (long) p->insnsi);
2252 /* call JITed bpf program or interpreter */
2253 if (emit_rsb_call(pprog: &prog, func: p->bpf_func, ip: prog))
2254 return -EINVAL;
2255
2256 /*
2257 * BPF_TRAMP_MODIFY_RETURN trampolines can modify the return
2258 * of the previous call which is then passed on the stack to
2259 * the next BPF program.
2260 *
2261 * BPF_TRAMP_FENTRY trampoline may need to return the return
2262 * value of BPF_PROG_TYPE_STRUCT_OPS prog.
2263 */
2264 if (save_ret)
2265 emit_stx(pprog: &prog, BPF_DW, BPF_REG_FP, src_reg: BPF_REG_0, off: -8);
2266
2267 /* replace 2 nops with JE insn, since jmp target is known */
2268 jmp_insn[0] = X86_JE;
2269 jmp_insn[1] = prog - jmp_insn - 2;
2270
2271 /* arg1: mov rdi, progs[i] */
2272 emit_mov_imm64(pprog: &prog, dst_reg: BPF_REG_1, imm32_hi: (long) p >> 32, imm32_lo: (u32) (long) p);
2273 /* arg2: mov rsi, rbx <- start time in nsec */
2274 emit_mov_reg(pprog: &prog, is64: true, dst_reg: BPF_REG_2, src_reg: BPF_REG_6);
2275 /* arg3: lea rdx, [rbp - run_ctx_off] */
2276 if (!is_imm8(value: -run_ctx_off))
2277 EMIT3_off32(0x48, 0x8D, 0x95, -run_ctx_off);
2278 else
2279 EMIT4(0x48, 0x8D, 0x55, -run_ctx_off);
2280 if (emit_rsb_call(pprog: &prog, func: bpf_trampoline_exit(prog: p), ip: prog))
2281 return -EINVAL;
2282
2283 *pprog = prog;
2284 return 0;
2285}
2286
2287static void emit_align(u8 **pprog, u32 align)
2288{
2289 u8 *target, *prog = *pprog;
2290
2291 target = PTR_ALIGN(prog, align);
2292 if (target != prog)
2293 emit_nops(pprog: &prog, len: target - prog);
2294
2295 *pprog = prog;
2296}
2297
2298static int emit_cond_near_jump(u8 **pprog, void *func, void *ip, u8 jmp_cond)
2299{
2300 u8 *prog = *pprog;
2301 s64 offset;
2302
2303 offset = func - (ip + 2 + 4);
2304 if (!is_simm32(value: offset)) {
2305 pr_err("Target %p is out of range\n", func);
2306 return -EINVAL;
2307 }
2308 EMIT2_off32(0x0F, jmp_cond + 0x10, offset);
2309 *pprog = prog;
2310 return 0;
2311}
2312
2313static int invoke_bpf(const struct btf_func_model *m, u8 **pprog,
2314 struct bpf_tramp_links *tl, int stack_size,
2315 int run_ctx_off, bool save_ret)
2316{
2317 int i;
2318 u8 *prog = *pprog;
2319
2320 for (i = 0; i < tl->nr_links; i++) {
2321 if (invoke_bpf_prog(m, pprog: &prog, l: tl->links[i], stack_size,
2322 run_ctx_off, save_ret))
2323 return -EINVAL;
2324 }
2325 *pprog = prog;
2326 return 0;
2327}
2328
2329static int invoke_bpf_mod_ret(const struct btf_func_model *m, u8 **pprog,
2330 struct bpf_tramp_links *tl, int stack_size,
2331 int run_ctx_off, u8 **branches)
2332{
2333 u8 *prog = *pprog;
2334 int i;
2335
2336 /* The first fmod_ret program will receive a garbage return value.
2337 * Set this to 0 to avoid confusing the program.
2338 */
2339 emit_mov_imm32(pprog: &prog, sign_propagate: false, dst_reg: BPF_REG_0, imm32: 0);
2340 emit_stx(pprog: &prog, BPF_DW, BPF_REG_FP, src_reg: BPF_REG_0, off: -8);
2341 for (i = 0; i < tl->nr_links; i++) {
2342 if (invoke_bpf_prog(m, pprog: &prog, l: tl->links[i], stack_size, run_ctx_off, save_ret: true))
2343 return -EINVAL;
2344
2345 /* mod_ret prog stored return value into [rbp - 8]. Emit:
2346 * if (*(u64 *)(rbp - 8) != 0)
2347 * goto do_fexit;
2348 */
2349 /* cmp QWORD PTR [rbp - 0x8], 0x0 */
2350 EMIT4(0x48, 0x83, 0x7d, 0xf8); EMIT1(0x00);
2351
2352 /* Save the location of the branch and Generate 6 nops
2353 * (4 bytes for an offset and 2 bytes for the jump) These nops
2354 * are replaced with a conditional jump once do_fexit (i.e. the
2355 * start of the fexit invocation) is finalized.
2356 */
2357 branches[i] = prog;
2358 emit_nops(pprog: &prog, len: 4 + 2);
2359 }
2360
2361 *pprog = prog;
2362 return 0;
2363}
2364
2365/* Example:
2366 * __be16 eth_type_trans(struct sk_buff *skb, struct net_device *dev);
2367 * its 'struct btf_func_model' will be nr_args=2
2368 * The assembly code when eth_type_trans is executing after trampoline:
2369 *
2370 * push rbp
2371 * mov rbp, rsp
2372 * sub rsp, 16 // space for skb and dev
2373 * push rbx // temp regs to pass start time
2374 * mov qword ptr [rbp - 16], rdi // save skb pointer to stack
2375 * mov qword ptr [rbp - 8], rsi // save dev pointer to stack
2376 * call __bpf_prog_enter // rcu_read_lock and preempt_disable
2377 * mov rbx, rax // remember start time in bpf stats are enabled
2378 * lea rdi, [rbp - 16] // R1==ctx of bpf prog
2379 * call addr_of_jited_FENTRY_prog
2380 * movabsq rdi, 64bit_addr_of_struct_bpf_prog // unused if bpf stats are off
2381 * mov rsi, rbx // prog start time
2382 * call __bpf_prog_exit // rcu_read_unlock, preempt_enable and stats math
2383 * mov rdi, qword ptr [rbp - 16] // restore skb pointer from stack
2384 * mov rsi, qword ptr [rbp - 8] // restore dev pointer from stack
2385 * pop rbx
2386 * leave
2387 * ret
2388 *
2389 * eth_type_trans has 5 byte nop at the beginning. These 5 bytes will be
2390 * replaced with 'call generated_bpf_trampoline'. When it returns
2391 * eth_type_trans will continue executing with original skb and dev pointers.
2392 *
2393 * The assembly code when eth_type_trans is called from trampoline:
2394 *
2395 * push rbp
2396 * mov rbp, rsp
2397 * sub rsp, 24 // space for skb, dev, return value
2398 * push rbx // temp regs to pass start time
2399 * mov qword ptr [rbp - 24], rdi // save skb pointer to stack
2400 * mov qword ptr [rbp - 16], rsi // save dev pointer to stack
2401 * call __bpf_prog_enter // rcu_read_lock and preempt_disable
2402 * mov rbx, rax // remember start time if bpf stats are enabled
2403 * lea rdi, [rbp - 24] // R1==ctx of bpf prog
2404 * call addr_of_jited_FENTRY_prog // bpf prog can access skb and dev
2405 * movabsq rdi, 64bit_addr_of_struct_bpf_prog // unused if bpf stats are off
2406 * mov rsi, rbx // prog start time
2407 * call __bpf_prog_exit // rcu_read_unlock, preempt_enable and stats math
2408 * mov rdi, qword ptr [rbp - 24] // restore skb pointer from stack
2409 * mov rsi, qword ptr [rbp - 16] // restore dev pointer from stack
2410 * call eth_type_trans+5 // execute body of eth_type_trans
2411 * mov qword ptr [rbp - 8], rax // save return value
2412 * call __bpf_prog_enter // rcu_read_lock and preempt_disable
2413 * mov rbx, rax // remember start time in bpf stats are enabled
2414 * lea rdi, [rbp - 24] // R1==ctx of bpf prog
2415 * call addr_of_jited_FEXIT_prog // bpf prog can access skb, dev, return value
2416 * movabsq rdi, 64bit_addr_of_struct_bpf_prog // unused if bpf stats are off
2417 * mov rsi, rbx // prog start time
2418 * call __bpf_prog_exit // rcu_read_unlock, preempt_enable and stats math
2419 * mov rax, qword ptr [rbp - 8] // restore eth_type_trans's return value
2420 * pop rbx
2421 * leave
2422 * add rsp, 8 // skip eth_type_trans's frame
2423 * ret // return to its caller
2424 */
2425int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image, void *image_end,
2426 const struct btf_func_model *m, u32 flags,
2427 struct bpf_tramp_links *tlinks,
2428 void *func_addr)
2429{
2430 int i, ret, nr_regs = m->nr_args, stack_size = 0;
2431 int regs_off, nregs_off, ip_off, run_ctx_off, arg_stack_off, rbx_off;
2432 struct bpf_tramp_links *fentry = &tlinks[BPF_TRAMP_FENTRY];
2433 struct bpf_tramp_links *fexit = &tlinks[BPF_TRAMP_FEXIT];
2434 struct bpf_tramp_links *fmod_ret = &tlinks[BPF_TRAMP_MODIFY_RETURN];
2435 void *orig_call = func_addr;
2436 u8 **branches = NULL;
2437 u8 *prog;
2438 bool save_ret;
2439
2440 /* extra registers for struct arguments */
2441 for (i = 0; i < m->nr_args; i++)
2442 if (m->arg_flags[i] & BTF_FMODEL_STRUCT_ARG)
2443 nr_regs += (m->arg_size[i] + 7) / 8 - 1;
2444
2445 /* x86-64 supports up to MAX_BPF_FUNC_ARGS arguments. 1-6
2446 * are passed through regs, the remains are through stack.
2447 */
2448 if (nr_regs > MAX_BPF_FUNC_ARGS)
2449 return -ENOTSUPP;
2450
2451 /* Generated trampoline stack layout:
2452 *
2453 * RBP + 8 [ return address ]
2454 * RBP + 0 [ RBP ]
2455 *
2456 * RBP - 8 [ return value ] BPF_TRAMP_F_CALL_ORIG or
2457 * BPF_TRAMP_F_RET_FENTRY_RET flags
2458 *
2459 * [ reg_argN ] always
2460 * [ ... ]
2461 * RBP - regs_off [ reg_arg1 ] program's ctx pointer
2462 *
2463 * RBP - nregs_off [ regs count ] always
2464 *
2465 * RBP - ip_off [ traced function ] BPF_TRAMP_F_IP_ARG flag
2466 *
2467 * RBP - rbx_off [ rbx value ] always
2468 *
2469 * RBP - run_ctx_off [ bpf_tramp_run_ctx ]
2470 *
2471 * [ stack_argN ] BPF_TRAMP_F_CALL_ORIG
2472 * [ ... ]
2473 * [ stack_arg2 ]
2474 * RBP - arg_stack_off [ stack_arg1 ]
2475 * RSP [ tail_call_cnt ] BPF_TRAMP_F_TAIL_CALL_CTX
2476 */
2477
2478 /* room for return value of orig_call or fentry prog */
2479 save_ret = flags & (BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_RET_FENTRY_RET);
2480 if (save_ret)
2481 stack_size += 8;
2482
2483 stack_size += nr_regs * 8;
2484 regs_off = stack_size;
2485
2486 /* regs count */
2487 stack_size += 8;
2488 nregs_off = stack_size;
2489
2490 if (flags & BPF_TRAMP_F_IP_ARG)
2491 stack_size += 8; /* room for IP address argument */
2492
2493 ip_off = stack_size;
2494
2495 stack_size += 8;
2496 rbx_off = stack_size;
2497
2498 stack_size += (sizeof(struct bpf_tramp_run_ctx) + 7) & ~0x7;
2499 run_ctx_off = stack_size;
2500
2501 if (nr_regs > 6 && (flags & BPF_TRAMP_F_CALL_ORIG)) {
2502 /* the space that used to pass arguments on-stack */
2503 stack_size += (nr_regs - get_nr_used_regs(m)) * 8;
2504 /* make sure the stack pointer is 16-byte aligned if we
2505 * need pass arguments on stack, which means
2506 * [stack_size + 8(rbp) + 8(rip) + 8(origin rip)]
2507 * should be 16-byte aligned. Following code depend on
2508 * that stack_size is already 8-byte aligned.
2509 */
2510 stack_size += (stack_size % 16) ? 0 : 8;
2511 }
2512
2513 arg_stack_off = stack_size;
2514
2515 if (flags & BPF_TRAMP_F_SKIP_FRAME) {
2516 /* skip patched call instruction and point orig_call to actual
2517 * body of the kernel function.
2518 */
2519 if (is_endbr(val: *(u32 *)orig_call))
2520 orig_call += ENDBR_INSN_SIZE;
2521 orig_call += X86_PATCH_SIZE;
2522 }
2523
2524 prog = image;
2525
2526 EMIT_ENDBR();
2527 /*
2528 * This is the direct-call trampoline, as such it needs accounting
2529 * for the __fentry__ call.
2530 */
2531 x86_call_depth_emit_accounting(pprog: &prog, NULL);
2532 EMIT1(0x55); /* push rbp */
2533 EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */
2534 if (!is_imm8(value: stack_size))
2535 /* sub rsp, stack_size */
2536 EMIT3_off32(0x48, 0x81, 0xEC, stack_size);
2537 else
2538 /* sub rsp, stack_size */
2539 EMIT4(0x48, 0x83, 0xEC, stack_size);
2540 if (flags & BPF_TRAMP_F_TAIL_CALL_CTX)
2541 EMIT1(0x50); /* push rax */
2542 /* mov QWORD PTR [rbp - rbx_off], rbx */
2543 emit_stx(pprog: &prog, BPF_DW, BPF_REG_FP, src_reg: BPF_REG_6, off: -rbx_off);
2544
2545 /* Store number of argument registers of the traced function:
2546 * mov rax, nr_regs
2547 * mov QWORD PTR [rbp - nregs_off], rax
2548 */
2549 emit_mov_imm64(pprog: &prog, dst_reg: BPF_REG_0, imm32_hi: 0, imm32_lo: (u32) nr_regs);
2550 emit_stx(pprog: &prog, BPF_DW, BPF_REG_FP, src_reg: BPF_REG_0, off: -nregs_off);
2551
2552 if (flags & BPF_TRAMP_F_IP_ARG) {
2553 /* Store IP address of the traced function:
2554 * movabsq rax, func_addr
2555 * mov QWORD PTR [rbp - ip_off], rax
2556 */
2557 emit_mov_imm64(pprog: &prog, dst_reg: BPF_REG_0, imm32_hi: (long) func_addr >> 32, imm32_lo: (u32) (long) func_addr);
2558 emit_stx(pprog: &prog, BPF_DW, BPF_REG_FP, src_reg: BPF_REG_0, off: -ip_off);
2559 }
2560
2561 save_args(m, prog: &prog, stack_size: regs_off, for_call_origin: false);
2562
2563 if (flags & BPF_TRAMP_F_CALL_ORIG) {
2564 /* arg1: mov rdi, im */
2565 emit_mov_imm64(pprog: &prog, dst_reg: BPF_REG_1, imm32_hi: (long) im >> 32, imm32_lo: (u32) (long) im);
2566 if (emit_rsb_call(pprog: &prog, func: __bpf_tramp_enter, ip: prog)) {
2567 ret = -EINVAL;
2568 goto cleanup;
2569 }
2570 }
2571
2572 if (fentry->nr_links)
2573 if (invoke_bpf(m, pprog: &prog, tl: fentry, stack_size: regs_off, run_ctx_off,
2574 save_ret: flags & BPF_TRAMP_F_RET_FENTRY_RET))
2575 return -EINVAL;
2576
2577 if (fmod_ret->nr_links) {
2578 branches = kcalloc(n: fmod_ret->nr_links, size: sizeof(u8 *),
2579 GFP_KERNEL);
2580 if (!branches)
2581 return -ENOMEM;
2582
2583 if (invoke_bpf_mod_ret(m, pprog: &prog, tl: fmod_ret, stack_size: regs_off,
2584 run_ctx_off, branches)) {
2585 ret = -EINVAL;
2586 goto cleanup;
2587 }
2588 }
2589
2590 if (flags & BPF_TRAMP_F_CALL_ORIG) {
2591 restore_regs(m, prog: &prog, stack_size: regs_off);
2592 save_args(m, prog: &prog, stack_size: arg_stack_off, for_call_origin: true);
2593
2594 if (flags & BPF_TRAMP_F_TAIL_CALL_CTX)
2595 /* Before calling the original function, restore the
2596 * tail_call_cnt from stack to rax.
2597 */
2598 RESTORE_TAIL_CALL_CNT(stack_size);
2599
2600 if (flags & BPF_TRAMP_F_ORIG_STACK) {
2601 emit_ldx(pprog: &prog, BPF_DW, dst_reg: BPF_REG_6, BPF_REG_FP, off: 8);
2602 EMIT2(0xff, 0xd3); /* call *rbx */
2603 } else {
2604 /* call original function */
2605 if (emit_rsb_call(pprog: &prog, func: orig_call, ip: prog)) {
2606 ret = -EINVAL;
2607 goto cleanup;
2608 }
2609 }
2610 /* remember return value in a stack for bpf prog to access */
2611 emit_stx(pprog: &prog, BPF_DW, BPF_REG_FP, src_reg: BPF_REG_0, off: -8);
2612 im->ip_after_call = prog;
2613 memcpy(prog, x86_nops[5], X86_PATCH_SIZE);
2614 prog += X86_PATCH_SIZE;
2615 }
2616
2617 if (fmod_ret->nr_links) {
2618 /* From Intel 64 and IA-32 Architectures Optimization
2619 * Reference Manual, 3.4.1.4 Code Alignment, Assembly/Compiler
2620 * Coding Rule 11: All branch targets should be 16-byte
2621 * aligned.
2622 */
2623 emit_align(pprog: &prog, align: 16);
2624 /* Update the branches saved in invoke_bpf_mod_ret with the
2625 * aligned address of do_fexit.
2626 */
2627 for (i = 0; i < fmod_ret->nr_links; i++)
2628 emit_cond_near_jump(pprog: &branches[i], func: prog, ip: branches[i],
2629 X86_JNE);
2630 }
2631
2632 if (fexit->nr_links)
2633 if (invoke_bpf(m, pprog: &prog, tl: fexit, stack_size: regs_off, run_ctx_off, save_ret: false)) {
2634 ret = -EINVAL;
2635 goto cleanup;
2636 }
2637
2638 if (flags & BPF_TRAMP_F_RESTORE_REGS)
2639 restore_regs(m, prog: &prog, stack_size: regs_off);
2640
2641 /* This needs to be done regardless. If there were fmod_ret programs,
2642 * the return value is only updated on the stack and still needs to be
2643 * restored to R0.
2644 */
2645 if (flags & BPF_TRAMP_F_CALL_ORIG) {
2646 im->ip_epilogue = prog;
2647 /* arg1: mov rdi, im */
2648 emit_mov_imm64(pprog: &prog, dst_reg: BPF_REG_1, imm32_hi: (long) im >> 32, imm32_lo: (u32) (long) im);
2649 if (emit_rsb_call(pprog: &prog, func: __bpf_tramp_exit, ip: prog)) {
2650 ret = -EINVAL;
2651 goto cleanup;
2652 }
2653 } else if (flags & BPF_TRAMP_F_TAIL_CALL_CTX)
2654 /* Before running the original function, restore the
2655 * tail_call_cnt from stack to rax.
2656 */
2657 RESTORE_TAIL_CALL_CNT(stack_size);
2658
2659 /* restore return value of orig_call or fentry prog back into RAX */
2660 if (save_ret)
2661 emit_ldx(pprog: &prog, BPF_DW, dst_reg: BPF_REG_0, BPF_REG_FP, off: -8);
2662
2663 emit_ldx(pprog: &prog, BPF_DW, dst_reg: BPF_REG_6, BPF_REG_FP, off: -rbx_off);
2664 EMIT1(0xC9); /* leave */
2665 if (flags & BPF_TRAMP_F_SKIP_FRAME)
2666 /* skip our return address and return to parent */
2667 EMIT4(0x48, 0x83, 0xC4, 8); /* add rsp, 8 */
2668 emit_return(pprog: &prog, ip: prog);
2669 /* Make sure the trampoline generation logic doesn't overflow */
2670 if (WARN_ON_ONCE(prog > (u8 *)image_end - BPF_INSN_SAFETY)) {
2671 ret = -EFAULT;
2672 goto cleanup;
2673 }
2674 ret = prog - (u8 *)image;
2675
2676cleanup:
2677 kfree(objp: branches);
2678 return ret;
2679}
2680
2681static int emit_bpf_dispatcher(u8 **pprog, int a, int b, s64 *progs, u8 *image, u8 *buf)
2682{
2683 u8 *jg_reloc, *prog = *pprog;
2684 int pivot, err, jg_bytes = 1;
2685 s64 jg_offset;
2686
2687 if (a == b) {
2688 /* Leaf node of recursion, i.e. not a range of indices
2689 * anymore.
2690 */
2691 EMIT1(add_1mod(0x48, BPF_REG_3)); /* cmp rdx,func */
2692 if (!is_simm32(value: progs[a]))
2693 return -1;
2694 EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3),
2695 progs[a]);
2696 err = emit_cond_near_jump(pprog: &prog, /* je func */
2697 func: (void *)progs[a], ip: image + (prog - buf),
2698 X86_JE);
2699 if (err)
2700 return err;
2701
2702 emit_indirect_jump(pprog: &prog, reg: 2 /* rdx */, ip: image + (prog - buf));
2703
2704 *pprog = prog;
2705 return 0;
2706 }
2707
2708 /* Not a leaf node, so we pivot, and recursively descend into
2709 * the lower and upper ranges.
2710 */
2711 pivot = (b - a) / 2;
2712 EMIT1(add_1mod(0x48, BPF_REG_3)); /* cmp rdx,func */
2713 if (!is_simm32(value: progs[a + pivot]))
2714 return -1;
2715 EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3), progs[a + pivot]);
2716
2717 if (pivot > 2) { /* jg upper_part */
2718 /* Require near jump. */
2719 jg_bytes = 4;
2720 EMIT2_off32(0x0F, X86_JG + 0x10, 0);
2721 } else {
2722 EMIT2(X86_JG, 0);
2723 }
2724 jg_reloc = prog;
2725
2726 err = emit_bpf_dispatcher(pprog: &prog, a, b: a + pivot, /* emit lower_part */
2727 progs, image, buf);
2728 if (err)
2729 return err;
2730
2731 /* From Intel 64 and IA-32 Architectures Optimization
2732 * Reference Manual, 3.4.1.4 Code Alignment, Assembly/Compiler
2733 * Coding Rule 11: All branch targets should be 16-byte
2734 * aligned.
2735 */
2736 emit_align(pprog: &prog, align: 16);
2737 jg_offset = prog - jg_reloc;
2738 emit_code(ptr: jg_reloc - jg_bytes, bytes: jg_offset, len: jg_bytes);
2739
2740 err = emit_bpf_dispatcher(pprog: &prog, a: a + pivot + 1, /* emit upper_part */
2741 b, progs, image, buf);
2742 if (err)
2743 return err;
2744
2745 *pprog = prog;
2746 return 0;
2747}
2748
2749static int cmp_ips(const void *a, const void *b)
2750{
2751 const s64 *ipa = a;
2752 const s64 *ipb = b;
2753
2754 if (*ipa > *ipb)
2755 return 1;
2756 if (*ipa < *ipb)
2757 return -1;
2758 return 0;
2759}
2760
2761int arch_prepare_bpf_dispatcher(void *image, void *buf, s64 *funcs, int num_funcs)
2762{
2763 u8 *prog = buf;
2764
2765 sort(base: funcs, num: num_funcs, size: sizeof(funcs[0]), cmp_func: cmp_ips, NULL);
2766 return emit_bpf_dispatcher(pprog: &prog, a: 0, b: num_funcs - 1, progs: funcs, image, buf);
2767}
2768
2769struct x64_jit_data {
2770 struct bpf_binary_header *rw_header;
2771 struct bpf_binary_header *header;
2772 int *addrs;
2773 u8 *image;
2774 int proglen;
2775 struct jit_context ctx;
2776};
2777
2778#define MAX_PASSES 20
2779#define PADDING_PASSES (MAX_PASSES - 5)
2780
2781struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
2782{
2783 struct bpf_binary_header *rw_header = NULL;
2784 struct bpf_binary_header *header = NULL;
2785 struct bpf_prog *tmp, *orig_prog = prog;
2786 struct x64_jit_data *jit_data;
2787 int proglen, oldproglen = 0;
2788 struct jit_context ctx = {};
2789 bool tmp_blinded = false;
2790 bool extra_pass = false;
2791 bool padding = false;
2792 u8 *rw_image = NULL;
2793 u8 *image = NULL;
2794 int *addrs;
2795 int pass;
2796 int i;
2797
2798 if (!prog->jit_requested)
2799 return orig_prog;
2800
2801 tmp = bpf_jit_blind_constants(fp: prog);
2802 /*
2803 * If blinding was requested and we failed during blinding,
2804 * we must fall back to the interpreter.
2805 */
2806 if (IS_ERR(ptr: tmp))
2807 return orig_prog;
2808 if (tmp != prog) {
2809 tmp_blinded = true;
2810 prog = tmp;
2811 }
2812
2813 jit_data = prog->aux->jit_data;
2814 if (!jit_data) {
2815 jit_data = kzalloc(size: sizeof(*jit_data), GFP_KERNEL);
2816 if (!jit_data) {
2817 prog = orig_prog;
2818 goto out;
2819 }
2820 prog->aux->jit_data = jit_data;
2821 }
2822 addrs = jit_data->addrs;
2823 if (addrs) {
2824 ctx = jit_data->ctx;
2825 oldproglen = jit_data->proglen;
2826 image = jit_data->image;
2827 header = jit_data->header;
2828 rw_header = jit_data->rw_header;
2829 rw_image = (void *)rw_header + ((void *)image - (void *)header);
2830 extra_pass = true;
2831 padding = true;
2832 goto skip_init_addrs;
2833 }
2834 addrs = kvmalloc_array(n: prog->len + 1, size: sizeof(*addrs), GFP_KERNEL);
2835 if (!addrs) {
2836 prog = orig_prog;
2837 goto out_addrs;
2838 }
2839
2840 /*
2841 * Before first pass, make a rough estimation of addrs[]
2842 * each BPF instruction is translated to less than 64 bytes
2843 */
2844 for (proglen = 0, i = 0; i <= prog->len; i++) {
2845 proglen += 64;
2846 addrs[i] = proglen;
2847 }
2848 ctx.cleanup_addr = proglen;
2849skip_init_addrs:
2850
2851 /*
2852 * JITed image shrinks with every pass and the loop iterates
2853 * until the image stops shrinking. Very large BPF programs
2854 * may converge on the last pass. In such case do one more
2855 * pass to emit the final image.
2856 */
2857 for (pass = 0; pass < MAX_PASSES || image; pass++) {
2858 if (!padding && pass >= PADDING_PASSES)
2859 padding = true;
2860 proglen = do_jit(bpf_prog: prog, addrs, image, rw_image, oldproglen, ctx: &ctx, jmp_padding: padding);
2861 if (proglen <= 0) {
2862out_image:
2863 image = NULL;
2864 if (header) {
2865 bpf_arch_text_copy(dst: &header->size, src: &rw_header->size,
2866 len: sizeof(rw_header->size));
2867 bpf_jit_binary_pack_free(ro_header: header, rw_header);
2868 }
2869 /* Fall back to interpreter mode */
2870 prog = orig_prog;
2871 if (extra_pass) {
2872 prog->bpf_func = NULL;
2873 prog->jited = 0;
2874 prog->jited_len = 0;
2875 }
2876 goto out_addrs;
2877 }
2878 if (image) {
2879 if (proglen != oldproglen) {
2880 pr_err("bpf_jit: proglen=%d != oldproglen=%d\n",
2881 proglen, oldproglen);
2882 goto out_image;
2883 }
2884 break;
2885 }
2886 if (proglen == oldproglen) {
2887 /*
2888 * The number of entries in extable is the number of BPF_LDX
2889 * insns that access kernel memory via "pointer to BTF type".
2890 * The verifier changed their opcode from LDX|MEM|size
2891 * to LDX|PROBE_MEM|size to make JITing easier.
2892 */
2893 u32 align = __alignof__(struct exception_table_entry);
2894 u32 extable_size = prog->aux->num_exentries *
2895 sizeof(struct exception_table_entry);
2896
2897 /* allocate module memory for x86 insns and extable */
2898 header = bpf_jit_binary_pack_alloc(roundup(proglen, align) + extable_size,
2899 ro_image: &image, alignment: align, rw_hdr: &rw_header, rw_image: &rw_image,
2900 bpf_fill_ill_insns: jit_fill_hole);
2901 if (!header) {
2902 prog = orig_prog;
2903 goto out_addrs;
2904 }
2905 prog->aux->extable = (void *) image + roundup(proglen, align);
2906 }
2907 oldproglen = proglen;
2908 cond_resched();
2909 }
2910
2911 if (bpf_jit_enable > 1)
2912 bpf_jit_dump(flen: prog->len, proglen, pass: pass + 1, image: rw_image);
2913
2914 if (image) {
2915 if (!prog->is_func || extra_pass) {
2916 /*
2917 * bpf_jit_binary_pack_finalize fails in two scenarios:
2918 * 1) header is not pointing to proper module memory;
2919 * 2) the arch doesn't support bpf_arch_text_copy().
2920 *
2921 * Both cases are serious bugs and justify WARN_ON.
2922 */
2923 if (WARN_ON(bpf_jit_binary_pack_finalize(prog, header, rw_header))) {
2924 /* header has been freed */
2925 header = NULL;
2926 goto out_image;
2927 }
2928
2929 bpf_tail_call_direct_fixup(prog);
2930 } else {
2931 jit_data->addrs = addrs;
2932 jit_data->ctx = ctx;
2933 jit_data->proglen = proglen;
2934 jit_data->image = image;
2935 jit_data->header = header;
2936 jit_data->rw_header = rw_header;
2937 }
2938 prog->bpf_func = (void *)image;
2939 prog->jited = 1;
2940 prog->jited_len = proglen;
2941 } else {
2942 prog = orig_prog;
2943 }
2944
2945 if (!image || !prog->is_func || extra_pass) {
2946 if (image)
2947 bpf_prog_fill_jited_linfo(prog, insn_to_jit_off: addrs + 1);
2948out_addrs:
2949 kvfree(addr: addrs);
2950 kfree(objp: jit_data);
2951 prog->aux->jit_data = NULL;
2952 }
2953out:
2954 if (tmp_blinded)
2955 bpf_jit_prog_release_other(fp: prog, fp_other: prog == orig_prog ?
2956 tmp : orig_prog);
2957 return prog;
2958}
2959
2960bool bpf_jit_supports_kfunc_call(void)
2961{
2962 return true;
2963}
2964
2965void *bpf_arch_text_copy(void *dst, void *src, size_t len)
2966{
2967 if (text_poke_copy(addr: dst, opcode: src, len) == NULL)
2968 return ERR_PTR(error: -EINVAL);
2969 return dst;
2970}
2971
2972/* Indicate the JIT backend supports mixing bpf2bpf and tailcalls. */
2973bool bpf_jit_supports_subprog_tailcalls(void)
2974{
2975 return true;
2976}
2977
2978void bpf_jit_free(struct bpf_prog *prog)
2979{
2980 if (prog->jited) {
2981 struct x64_jit_data *jit_data = prog->aux->jit_data;
2982 struct bpf_binary_header *hdr;
2983
2984 /*
2985 * If we fail the final pass of JIT (from jit_subprogs),
2986 * the program may not be finalized yet. Call finalize here
2987 * before freeing it.
2988 */
2989 if (jit_data) {
2990 bpf_jit_binary_pack_finalize(prog, ro_header: jit_data->header,
2991 rw_header: jit_data->rw_header);
2992 kvfree(addr: jit_data->addrs);
2993 kfree(objp: jit_data);
2994 }
2995 hdr = bpf_jit_binary_pack_hdr(fp: prog);
2996 bpf_jit_binary_pack_free(ro_header: hdr, NULL);
2997 WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(prog));
2998 }
2999
3000 bpf_prog_unlock_free(fp: prog);
3001}
3002
3003bool bpf_jit_supports_exceptions(void)
3004{
3005 /* We unwind through both kernel frames (starting from within bpf_throw
3006 * call) and BPF frames. Therefore we require ORC unwinder to be enabled
3007 * to walk kernel frames and reach BPF frames in the stack trace.
3008 */
3009 return IS_ENABLED(CONFIG_UNWINDER_ORC);
3010}
3011
3012void arch_bpf_stack_walk(bool (*consume_fn)(void *cookie, u64 ip, u64 sp, u64 bp), void *cookie)
3013{
3014#if defined(CONFIG_UNWINDER_ORC)
3015 struct unwind_state state;
3016 unsigned long addr;
3017
3018 for (unwind_start(state: &state, current, NULL, NULL); !unwind_done(state: &state);
3019 unwind_next_frame(state: &state)) {
3020 addr = unwind_get_return_address(state: &state);
3021 if (!addr || !consume_fn(cookie, (u64)addr, (u64)state.sp, (u64)state.bp))
3022 break;
3023 }
3024 return;
3025#endif
3026 WARN(1, "verification of programs using bpf_throw should have failed\n");
3027}
3028

source code of linux/arch/x86/net/bpf_jit_comp.c