1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Common Block IO controller cgroup interface
4 *
5 * Based on ideas and code from CFQ, CFS and BFQ:
6 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
7 *
8 * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
9 * Paolo Valente <paolo.valente@unimore.it>
10 *
11 * Copyright (C) 2009 Vivek Goyal <vgoyal@redhat.com>
12 * Nauman Rafique <nauman@google.com>
13 *
14 * For policy-specific per-blkcg data:
15 * Copyright (C) 2015 Paolo Valente <paolo.valente@unimore.it>
16 * Arianna Avanzini <avanzini.arianna@gmail.com>
17 */
18#include <linux/ioprio.h>
19#include <linux/kdev_t.h>
20#include <linux/module.h>
21#include <linux/sched/signal.h>
22#include <linux/err.h>
23#include <linux/blkdev.h>
24#include <linux/backing-dev.h>
25#include <linux/slab.h>
26#include <linux/delay.h>
27#include <linux/atomic.h>
28#include <linux/ctype.h>
29#include <linux/resume_user_mode.h>
30#include <linux/psi.h>
31#include <linux/part_stat.h>
32#include "blk.h"
33#include "blk-cgroup.h"
34#include "blk-ioprio.h"
35#include "blk-throttle.h"
36
37static void __blkcg_rstat_flush(struct blkcg *blkcg, int cpu);
38
39/*
40 * blkcg_pol_mutex protects blkcg_policy[] and policy [de]activation.
41 * blkcg_pol_register_mutex nests outside of it and synchronizes entire
42 * policy [un]register operations including cgroup file additions /
43 * removals. Putting cgroup file registration outside blkcg_pol_mutex
44 * allows grabbing it from cgroup callbacks.
45 */
46static DEFINE_MUTEX(blkcg_pol_register_mutex);
47static DEFINE_MUTEX(blkcg_pol_mutex);
48
49struct blkcg blkcg_root;
50EXPORT_SYMBOL_GPL(blkcg_root);
51
52struct cgroup_subsys_state * const blkcg_root_css = &blkcg_root.css;
53EXPORT_SYMBOL_GPL(blkcg_root_css);
54
55static struct blkcg_policy *blkcg_policy[BLKCG_MAX_POLS];
56
57static LIST_HEAD(all_blkcgs); /* protected by blkcg_pol_mutex */
58
59bool blkcg_debug_stats = false;
60
61static DEFINE_RAW_SPINLOCK(blkg_stat_lock);
62
63#define BLKG_DESTROY_BATCH_SIZE 64
64
65/*
66 * Lockless lists for tracking IO stats update
67 *
68 * New IO stats are stored in the percpu iostat_cpu within blkcg_gq (blkg).
69 * There are multiple blkg's (one for each block device) attached to each
70 * blkcg. The rstat code keeps track of which cpu has IO stats updated,
71 * but it doesn't know which blkg has the updated stats. If there are many
72 * block devices in a system, the cost of iterating all the blkg's to flush
73 * out the IO stats can be high. To reduce such overhead, a set of percpu
74 * lockless lists (lhead) per blkcg are used to track the set of recently
75 * updated iostat_cpu's since the last flush. An iostat_cpu will be put
76 * onto the lockless list on the update side [blk_cgroup_bio_start()] if
77 * not there yet and then removed when being flushed [blkcg_rstat_flush()].
78 * References to blkg are gotten and then put back in the process to
79 * protect against blkg removal.
80 *
81 * Return: 0 if successful or -ENOMEM if allocation fails.
82 */
83static int init_blkcg_llists(struct blkcg *blkcg)
84{
85 int cpu;
86
87 blkcg->lhead = alloc_percpu_gfp(struct llist_head, GFP_KERNEL);
88 if (!blkcg->lhead)
89 return -ENOMEM;
90
91 for_each_possible_cpu(cpu)
92 init_llist_head(per_cpu_ptr(blkcg->lhead, cpu));
93 return 0;
94}
95
96/**
97 * blkcg_css - find the current css
98 *
99 * Find the css associated with either the kthread or the current task.
100 * This may return a dying css, so it is up to the caller to use tryget logic
101 * to confirm it is alive and well.
102 */
103static struct cgroup_subsys_state *blkcg_css(void)
104{
105 struct cgroup_subsys_state *css;
106
107 css = kthread_blkcg();
108 if (css)
109 return css;
110 return task_css(current, subsys_id: io_cgrp_id);
111}
112
113static bool blkcg_policy_enabled(struct request_queue *q,
114 const struct blkcg_policy *pol)
115{
116 return pol && test_bit(pol->plid, q->blkcg_pols);
117}
118
119static void blkg_free_workfn(struct work_struct *work)
120{
121 struct blkcg_gq *blkg = container_of(work, struct blkcg_gq,
122 free_work);
123 struct request_queue *q = blkg->q;
124 int i;
125
126 /*
127 * pd_free_fn() can also be called from blkcg_deactivate_policy(),
128 * in order to make sure pd_free_fn() is called in order, the deletion
129 * of the list blkg->q_node is delayed to here from blkg_destroy(), and
130 * blkcg_mutex is used to synchronize blkg_free_workfn() and
131 * blkcg_deactivate_policy().
132 */
133 mutex_lock(&q->blkcg_mutex);
134 for (i = 0; i < BLKCG_MAX_POLS; i++)
135 if (blkg->pd[i])
136 blkcg_policy[i]->pd_free_fn(blkg->pd[i]);
137 if (blkg->parent)
138 blkg_put(blkg: blkg->parent);
139 spin_lock_irq(lock: &q->queue_lock);
140 list_del_init(entry: &blkg->q_node);
141 spin_unlock_irq(lock: &q->queue_lock);
142 mutex_unlock(lock: &q->blkcg_mutex);
143
144 blk_put_queue(q);
145 free_percpu(pdata: blkg->iostat_cpu);
146 percpu_ref_exit(ref: &blkg->refcnt);
147 kfree(objp: blkg);
148}
149
150/**
151 * blkg_free - free a blkg
152 * @blkg: blkg to free
153 *
154 * Free @blkg which may be partially allocated.
155 */
156static void blkg_free(struct blkcg_gq *blkg)
157{
158 if (!blkg)
159 return;
160
161 /*
162 * Both ->pd_free_fn() and request queue's release handler may
163 * sleep, so free us by scheduling one work func
164 */
165 INIT_WORK(&blkg->free_work, blkg_free_workfn);
166 schedule_work(work: &blkg->free_work);
167}
168
169static void __blkg_release(struct rcu_head *rcu)
170{
171 struct blkcg_gq *blkg = container_of(rcu, struct blkcg_gq, rcu_head);
172 struct blkcg *blkcg = blkg->blkcg;
173 int cpu;
174
175#ifdef CONFIG_BLK_CGROUP_PUNT_BIO
176 WARN_ON(!bio_list_empty(&blkg->async_bios));
177#endif
178 /*
179 * Flush all the non-empty percpu lockless lists before releasing
180 * us, given these stat belongs to us.
181 *
182 * blkg_stat_lock is for serializing blkg stat update
183 */
184 for_each_possible_cpu(cpu)
185 __blkcg_rstat_flush(blkcg, cpu);
186
187 /* release the blkcg and parent blkg refs this blkg has been holding */
188 css_put(css: &blkg->blkcg->css);
189 blkg_free(blkg);
190}
191
192/*
193 * A group is RCU protected, but having an rcu lock does not mean that one
194 * can access all the fields of blkg and assume these are valid. For
195 * example, don't try to follow throtl_data and request queue links.
196 *
197 * Having a reference to blkg under an rcu allows accesses to only values
198 * local to groups like group stats and group rate limits.
199 */
200static void blkg_release(struct percpu_ref *ref)
201{
202 struct blkcg_gq *blkg = container_of(ref, struct blkcg_gq, refcnt);
203
204 call_rcu(head: &blkg->rcu_head, func: __blkg_release);
205}
206
207#ifdef CONFIG_BLK_CGROUP_PUNT_BIO
208static struct workqueue_struct *blkcg_punt_bio_wq;
209
210static void blkg_async_bio_workfn(struct work_struct *work)
211{
212 struct blkcg_gq *blkg = container_of(work, struct blkcg_gq,
213 async_bio_work);
214 struct bio_list bios = BIO_EMPTY_LIST;
215 struct bio *bio;
216 struct blk_plug plug;
217 bool need_plug = false;
218
219 /* as long as there are pending bios, @blkg can't go away */
220 spin_lock(lock: &blkg->async_bio_lock);
221 bio_list_merge(bl: &bios, bl2: &blkg->async_bios);
222 bio_list_init(bl: &blkg->async_bios);
223 spin_unlock(lock: &blkg->async_bio_lock);
224
225 /* start plug only when bio_list contains at least 2 bios */
226 if (bios.head && bios.head->bi_next) {
227 need_plug = true;
228 blk_start_plug(&plug);
229 }
230 while ((bio = bio_list_pop(bl: &bios)))
231 submit_bio(bio);
232 if (need_plug)
233 blk_finish_plug(&plug);
234}
235
236/*
237 * When a shared kthread issues a bio for a cgroup, doing so synchronously can
238 * lead to priority inversions as the kthread can be trapped waiting for that
239 * cgroup. Use this helper instead of submit_bio to punt the actual issuing to
240 * a dedicated per-blkcg work item to avoid such priority inversions.
241 */
242void blkcg_punt_bio_submit(struct bio *bio)
243{
244 struct blkcg_gq *blkg = bio->bi_blkg;
245
246 if (blkg->parent) {
247 spin_lock(lock: &blkg->async_bio_lock);
248 bio_list_add(bl: &blkg->async_bios, bio);
249 spin_unlock(lock: &blkg->async_bio_lock);
250 queue_work(wq: blkcg_punt_bio_wq, work: &blkg->async_bio_work);
251 } else {
252 /* never bounce for the root cgroup */
253 submit_bio(bio);
254 }
255}
256EXPORT_SYMBOL_GPL(blkcg_punt_bio_submit);
257
258static int __init blkcg_punt_bio_init(void)
259{
260 blkcg_punt_bio_wq = alloc_workqueue(fmt: "blkcg_punt_bio",
261 flags: WQ_MEM_RECLAIM | WQ_FREEZABLE |
262 WQ_UNBOUND | WQ_SYSFS, max_active: 0);
263 if (!blkcg_punt_bio_wq)
264 return -ENOMEM;
265 return 0;
266}
267subsys_initcall(blkcg_punt_bio_init);
268#endif /* CONFIG_BLK_CGROUP_PUNT_BIO */
269
270/**
271 * bio_blkcg_css - return the blkcg CSS associated with a bio
272 * @bio: target bio
273 *
274 * This returns the CSS for the blkcg associated with a bio, or %NULL if not
275 * associated. Callers are expected to either handle %NULL or know association
276 * has been done prior to calling this.
277 */
278struct cgroup_subsys_state *bio_blkcg_css(struct bio *bio)
279{
280 if (!bio || !bio->bi_blkg)
281 return NULL;
282 return &bio->bi_blkg->blkcg->css;
283}
284EXPORT_SYMBOL_GPL(bio_blkcg_css);
285
286/**
287 * blkcg_parent - get the parent of a blkcg
288 * @blkcg: blkcg of interest
289 *
290 * Return the parent blkcg of @blkcg. Can be called anytime.
291 */
292static inline struct blkcg *blkcg_parent(struct blkcg *blkcg)
293{
294 return css_to_blkcg(css: blkcg->css.parent);
295}
296
297/**
298 * blkg_alloc - allocate a blkg
299 * @blkcg: block cgroup the new blkg is associated with
300 * @disk: gendisk the new blkg is associated with
301 * @gfp_mask: allocation mask to use
302 *
303 * Allocate a new blkg assocating @blkcg and @q.
304 */
305static struct blkcg_gq *blkg_alloc(struct blkcg *blkcg, struct gendisk *disk,
306 gfp_t gfp_mask)
307{
308 struct blkcg_gq *blkg;
309 int i, cpu;
310
311 /* alloc and init base part */
312 blkg = kzalloc_node(size: sizeof(*blkg), flags: gfp_mask, node: disk->queue->node);
313 if (!blkg)
314 return NULL;
315 if (percpu_ref_init(ref: &blkg->refcnt, release: blkg_release, flags: 0, gfp: gfp_mask))
316 goto out_free_blkg;
317 blkg->iostat_cpu = alloc_percpu_gfp(struct blkg_iostat_set, gfp_mask);
318 if (!blkg->iostat_cpu)
319 goto out_exit_refcnt;
320 if (!blk_get_queue(disk->queue))
321 goto out_free_iostat;
322
323 blkg->q = disk->queue;
324 INIT_LIST_HEAD(list: &blkg->q_node);
325 blkg->blkcg = blkcg;
326#ifdef CONFIG_BLK_CGROUP_PUNT_BIO
327 spin_lock_init(&blkg->async_bio_lock);
328 bio_list_init(bl: &blkg->async_bios);
329 INIT_WORK(&blkg->async_bio_work, blkg_async_bio_workfn);
330#endif
331
332 u64_stats_init(syncp: &blkg->iostat.sync);
333 for_each_possible_cpu(cpu) {
334 u64_stats_init(syncp: &per_cpu_ptr(blkg->iostat_cpu, cpu)->sync);
335 per_cpu_ptr(blkg->iostat_cpu, cpu)->blkg = blkg;
336 }
337
338 for (i = 0; i < BLKCG_MAX_POLS; i++) {
339 struct blkcg_policy *pol = blkcg_policy[i];
340 struct blkg_policy_data *pd;
341
342 if (!blkcg_policy_enabled(q: disk->queue, pol))
343 continue;
344
345 /* alloc per-policy data and attach it to blkg */
346 pd = pol->pd_alloc_fn(disk, blkcg, gfp_mask);
347 if (!pd)
348 goto out_free_pds;
349 blkg->pd[i] = pd;
350 pd->blkg = blkg;
351 pd->plid = i;
352 pd->online = false;
353 }
354
355 return blkg;
356
357out_free_pds:
358 while (--i >= 0)
359 if (blkg->pd[i])
360 blkcg_policy[i]->pd_free_fn(blkg->pd[i]);
361 blk_put_queue(disk->queue);
362out_free_iostat:
363 free_percpu(pdata: blkg->iostat_cpu);
364out_exit_refcnt:
365 percpu_ref_exit(ref: &blkg->refcnt);
366out_free_blkg:
367 kfree(objp: blkg);
368 return NULL;
369}
370
371/*
372 * If @new_blkg is %NULL, this function tries to allocate a new one as
373 * necessary using %GFP_NOWAIT. @new_blkg is always consumed on return.
374 */
375static struct blkcg_gq *blkg_create(struct blkcg *blkcg, struct gendisk *disk,
376 struct blkcg_gq *new_blkg)
377{
378 struct blkcg_gq *blkg;
379 int i, ret;
380
381 lockdep_assert_held(&disk->queue->queue_lock);
382
383 /* request_queue is dying, do not create/recreate a blkg */
384 if (blk_queue_dying(disk->queue)) {
385 ret = -ENODEV;
386 goto err_free_blkg;
387 }
388
389 /* blkg holds a reference to blkcg */
390 if (!css_tryget_online(css: &blkcg->css)) {
391 ret = -ENODEV;
392 goto err_free_blkg;
393 }
394
395 /* allocate */
396 if (!new_blkg) {
397 new_blkg = blkg_alloc(blkcg, disk, GFP_NOWAIT | __GFP_NOWARN);
398 if (unlikely(!new_blkg)) {
399 ret = -ENOMEM;
400 goto err_put_css;
401 }
402 }
403 blkg = new_blkg;
404
405 /* link parent */
406 if (blkcg_parent(blkcg)) {
407 blkg->parent = blkg_lookup(blkcg: blkcg_parent(blkcg), q: disk->queue);
408 if (WARN_ON_ONCE(!blkg->parent)) {
409 ret = -ENODEV;
410 goto err_put_css;
411 }
412 blkg_get(blkg: blkg->parent);
413 }
414
415 /* invoke per-policy init */
416 for (i = 0; i < BLKCG_MAX_POLS; i++) {
417 struct blkcg_policy *pol = blkcg_policy[i];
418
419 if (blkg->pd[i] && pol->pd_init_fn)
420 pol->pd_init_fn(blkg->pd[i]);
421 }
422
423 /* insert */
424 spin_lock(lock: &blkcg->lock);
425 ret = radix_tree_insert(&blkcg->blkg_tree, index: disk->queue->id, blkg);
426 if (likely(!ret)) {
427 hlist_add_head_rcu(n: &blkg->blkcg_node, h: &blkcg->blkg_list);
428 list_add(new: &blkg->q_node, head: &disk->queue->blkg_list);
429
430 for (i = 0; i < BLKCG_MAX_POLS; i++) {
431 struct blkcg_policy *pol = blkcg_policy[i];
432
433 if (blkg->pd[i]) {
434 if (pol->pd_online_fn)
435 pol->pd_online_fn(blkg->pd[i]);
436 blkg->pd[i]->online = true;
437 }
438 }
439 }
440 blkg->online = true;
441 spin_unlock(lock: &blkcg->lock);
442
443 if (!ret)
444 return blkg;
445
446 /* @blkg failed fully initialized, use the usual release path */
447 blkg_put(blkg);
448 return ERR_PTR(error: ret);
449
450err_put_css:
451 css_put(css: &blkcg->css);
452err_free_blkg:
453 if (new_blkg)
454 blkg_free(blkg: new_blkg);
455 return ERR_PTR(error: ret);
456}
457
458/**
459 * blkg_lookup_create - lookup blkg, try to create one if not there
460 * @blkcg: blkcg of interest
461 * @disk: gendisk of interest
462 *
463 * Lookup blkg for the @blkcg - @disk pair. If it doesn't exist, try to
464 * create one. blkg creation is performed recursively from blkcg_root such
465 * that all non-root blkg's have access to the parent blkg. This function
466 * should be called under RCU read lock and takes @disk->queue->queue_lock.
467 *
468 * Returns the blkg or the closest blkg if blkg_create() fails as it walks
469 * down from root.
470 */
471static struct blkcg_gq *blkg_lookup_create(struct blkcg *blkcg,
472 struct gendisk *disk)
473{
474 struct request_queue *q = disk->queue;
475 struct blkcg_gq *blkg;
476 unsigned long flags;
477
478 WARN_ON_ONCE(!rcu_read_lock_held());
479
480 blkg = blkg_lookup(blkcg, q);
481 if (blkg)
482 return blkg;
483
484 spin_lock_irqsave(&q->queue_lock, flags);
485 blkg = blkg_lookup(blkcg, q);
486 if (blkg) {
487 if (blkcg != &blkcg_root &&
488 blkg != rcu_dereference(blkcg->blkg_hint))
489 rcu_assign_pointer(blkcg->blkg_hint, blkg);
490 goto found;
491 }
492
493 /*
494 * Create blkgs walking down from blkcg_root to @blkcg, so that all
495 * non-root blkgs have access to their parents. Returns the closest
496 * blkg to the intended blkg should blkg_create() fail.
497 */
498 while (true) {
499 struct blkcg *pos = blkcg;
500 struct blkcg *parent = blkcg_parent(blkcg);
501 struct blkcg_gq *ret_blkg = q->root_blkg;
502
503 while (parent) {
504 blkg = blkg_lookup(blkcg: parent, q);
505 if (blkg) {
506 /* remember closest blkg */
507 ret_blkg = blkg;
508 break;
509 }
510 pos = parent;
511 parent = blkcg_parent(blkcg: parent);
512 }
513
514 blkg = blkg_create(blkcg: pos, disk, NULL);
515 if (IS_ERR(ptr: blkg)) {
516 blkg = ret_blkg;
517 break;
518 }
519 if (pos == blkcg)
520 break;
521 }
522
523found:
524 spin_unlock_irqrestore(lock: &q->queue_lock, flags);
525 return blkg;
526}
527
528static void blkg_destroy(struct blkcg_gq *blkg)
529{
530 struct blkcg *blkcg = blkg->blkcg;
531 int i;
532
533 lockdep_assert_held(&blkg->q->queue_lock);
534 lockdep_assert_held(&blkcg->lock);
535
536 /*
537 * blkg stays on the queue list until blkg_free_workfn(), see details in
538 * blkg_free_workfn(), hence this function can be called from
539 * blkcg_destroy_blkgs() first and again from blkg_destroy_all() before
540 * blkg_free_workfn().
541 */
542 if (hlist_unhashed(h: &blkg->blkcg_node))
543 return;
544
545 for (i = 0; i < BLKCG_MAX_POLS; i++) {
546 struct blkcg_policy *pol = blkcg_policy[i];
547
548 if (blkg->pd[i] && blkg->pd[i]->online) {
549 blkg->pd[i]->online = false;
550 if (pol->pd_offline_fn)
551 pol->pd_offline_fn(blkg->pd[i]);
552 }
553 }
554
555 blkg->online = false;
556
557 radix_tree_delete(&blkcg->blkg_tree, blkg->q->id);
558 hlist_del_init_rcu(n: &blkg->blkcg_node);
559
560 /*
561 * Both setting lookup hint to and clearing it from @blkg are done
562 * under queue_lock. If it's not pointing to @blkg now, it never
563 * will. Hint assignment itself can race safely.
564 */
565 if (rcu_access_pointer(blkcg->blkg_hint) == blkg)
566 rcu_assign_pointer(blkcg->blkg_hint, NULL);
567
568 /*
569 * Put the reference taken at the time of creation so that when all
570 * queues are gone, group can be destroyed.
571 */
572 percpu_ref_kill(ref: &blkg->refcnt);
573}
574
575static void blkg_destroy_all(struct gendisk *disk)
576{
577 struct request_queue *q = disk->queue;
578 struct blkcg_gq *blkg, *n;
579 int count = BLKG_DESTROY_BATCH_SIZE;
580
581restart:
582 spin_lock_irq(lock: &q->queue_lock);
583 list_for_each_entry_safe(blkg, n, &q->blkg_list, q_node) {
584 struct blkcg *blkcg = blkg->blkcg;
585
586 if (hlist_unhashed(h: &blkg->blkcg_node))
587 continue;
588
589 spin_lock(lock: &blkcg->lock);
590 blkg_destroy(blkg);
591 spin_unlock(lock: &blkcg->lock);
592
593 /*
594 * in order to avoid holding the spin lock for too long, release
595 * it when a batch of blkgs are destroyed.
596 */
597 if (!(--count)) {
598 count = BLKG_DESTROY_BATCH_SIZE;
599 spin_unlock_irq(lock: &q->queue_lock);
600 cond_resched();
601 goto restart;
602 }
603 }
604
605 q->root_blkg = NULL;
606 spin_unlock_irq(lock: &q->queue_lock);
607}
608
609static int blkcg_reset_stats(struct cgroup_subsys_state *css,
610 struct cftype *cftype, u64 val)
611{
612 struct blkcg *blkcg = css_to_blkcg(css);
613 struct blkcg_gq *blkg;
614 int i, cpu;
615
616 mutex_lock(&blkcg_pol_mutex);
617 spin_lock_irq(lock: &blkcg->lock);
618
619 /*
620 * Note that stat reset is racy - it doesn't synchronize against
621 * stat updates. This is a debug feature which shouldn't exist
622 * anyway. If you get hit by a race, retry.
623 */
624 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
625 for_each_possible_cpu(cpu) {
626 struct blkg_iostat_set *bis =
627 per_cpu_ptr(blkg->iostat_cpu, cpu);
628 memset(bis, 0, sizeof(*bis));
629
630 /* Re-initialize the cleared blkg_iostat_set */
631 u64_stats_init(syncp: &bis->sync);
632 bis->blkg = blkg;
633 }
634 memset(&blkg->iostat, 0, sizeof(blkg->iostat));
635 u64_stats_init(syncp: &blkg->iostat.sync);
636
637 for (i = 0; i < BLKCG_MAX_POLS; i++) {
638 struct blkcg_policy *pol = blkcg_policy[i];
639
640 if (blkg->pd[i] && pol->pd_reset_stats_fn)
641 pol->pd_reset_stats_fn(blkg->pd[i]);
642 }
643 }
644
645 spin_unlock_irq(lock: &blkcg->lock);
646 mutex_unlock(lock: &blkcg_pol_mutex);
647 return 0;
648}
649
650const char *blkg_dev_name(struct blkcg_gq *blkg)
651{
652 if (!blkg->q->disk)
653 return NULL;
654 return bdi_dev_name(bdi: blkg->q->disk->bdi);
655}
656
657/**
658 * blkcg_print_blkgs - helper for printing per-blkg data
659 * @sf: seq_file to print to
660 * @blkcg: blkcg of interest
661 * @prfill: fill function to print out a blkg
662 * @pol: policy in question
663 * @data: data to be passed to @prfill
664 * @show_total: to print out sum of prfill return values or not
665 *
666 * This function invokes @prfill on each blkg of @blkcg if pd for the
667 * policy specified by @pol exists. @prfill is invoked with @sf, the
668 * policy data and @data and the matching queue lock held. If @show_total
669 * is %true, the sum of the return values from @prfill is printed with
670 * "Total" label at the end.
671 *
672 * This is to be used to construct print functions for
673 * cftype->read_seq_string method.
674 */
675void blkcg_print_blkgs(struct seq_file *sf, struct blkcg *blkcg,
676 u64 (*prfill)(struct seq_file *,
677 struct blkg_policy_data *, int),
678 const struct blkcg_policy *pol, int data,
679 bool show_total)
680{
681 struct blkcg_gq *blkg;
682 u64 total = 0;
683
684 rcu_read_lock();
685 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
686 spin_lock_irq(lock: &blkg->q->queue_lock);
687 if (blkcg_policy_enabled(q: blkg->q, pol))
688 total += prfill(sf, blkg->pd[pol->plid], data);
689 spin_unlock_irq(lock: &blkg->q->queue_lock);
690 }
691 rcu_read_unlock();
692
693 if (show_total)
694 seq_printf(m: sf, fmt: "Total %llu\n", (unsigned long long)total);
695}
696EXPORT_SYMBOL_GPL(blkcg_print_blkgs);
697
698/**
699 * __blkg_prfill_u64 - prfill helper for a single u64 value
700 * @sf: seq_file to print to
701 * @pd: policy private data of interest
702 * @v: value to print
703 *
704 * Print @v to @sf for the device associated with @pd.
705 */
706u64 __blkg_prfill_u64(struct seq_file *sf, struct blkg_policy_data *pd, u64 v)
707{
708 const char *dname = blkg_dev_name(blkg: pd->blkg);
709
710 if (!dname)
711 return 0;
712
713 seq_printf(m: sf, fmt: "%s %llu\n", dname, (unsigned long long)v);
714 return v;
715}
716EXPORT_SYMBOL_GPL(__blkg_prfill_u64);
717
718/**
719 * blkg_conf_init - initialize a blkg_conf_ctx
720 * @ctx: blkg_conf_ctx to initialize
721 * @input: input string
722 *
723 * Initialize @ctx which can be used to parse blkg config input string @input.
724 * Once initialized, @ctx can be used with blkg_conf_open_bdev() and
725 * blkg_conf_prep(), and must be cleaned up with blkg_conf_exit().
726 */
727void blkg_conf_init(struct blkg_conf_ctx *ctx, char *input)
728{
729 *ctx = (struct blkg_conf_ctx){ .input = input };
730}
731EXPORT_SYMBOL_GPL(blkg_conf_init);
732
733/**
734 * blkg_conf_open_bdev - parse and open bdev for per-blkg config update
735 * @ctx: blkg_conf_ctx initialized with blkg_conf_init()
736 *
737 * Parse the device node prefix part, MAJ:MIN, of per-blkg config update from
738 * @ctx->input and get and store the matching bdev in @ctx->bdev. @ctx->body is
739 * set to point past the device node prefix.
740 *
741 * This function may be called multiple times on @ctx and the extra calls become
742 * NOOPs. blkg_conf_prep() implicitly calls this function. Use this function
743 * explicitly if bdev access is needed without resolving the blkcg / policy part
744 * of @ctx->input. Returns -errno on error.
745 */
746int blkg_conf_open_bdev(struct blkg_conf_ctx *ctx)
747{
748 char *input = ctx->input;
749 unsigned int major, minor;
750 struct block_device *bdev;
751 int key_len;
752
753 if (ctx->bdev)
754 return 0;
755
756 if (sscanf(input, "%u:%u%n", &major, &minor, &key_len) != 2)
757 return -EINVAL;
758
759 input += key_len;
760 if (!isspace(*input))
761 return -EINVAL;
762 input = skip_spaces(input);
763
764 bdev = blkdev_get_no_open(MKDEV(major, minor));
765 if (!bdev)
766 return -ENODEV;
767 if (bdev_is_partition(bdev)) {
768 blkdev_put_no_open(bdev);
769 return -ENODEV;
770 }
771
772 mutex_lock(&bdev->bd_queue->rq_qos_mutex);
773 if (!disk_live(disk: bdev->bd_disk)) {
774 blkdev_put_no_open(bdev);
775 mutex_unlock(lock: &bdev->bd_queue->rq_qos_mutex);
776 return -ENODEV;
777 }
778
779 ctx->body = input;
780 ctx->bdev = bdev;
781 return 0;
782}
783
784/**
785 * blkg_conf_prep - parse and prepare for per-blkg config update
786 * @blkcg: target block cgroup
787 * @pol: target policy
788 * @ctx: blkg_conf_ctx initialized with blkg_conf_init()
789 *
790 * Parse per-blkg config update from @ctx->input and initialize @ctx
791 * accordingly. On success, @ctx->body points to the part of @ctx->input
792 * following MAJ:MIN, @ctx->bdev points to the target block device and
793 * @ctx->blkg to the blkg being configured.
794 *
795 * blkg_conf_open_bdev() may be called on @ctx beforehand. On success, this
796 * function returns with queue lock held and must be followed by
797 * blkg_conf_exit().
798 */
799int blkg_conf_prep(struct blkcg *blkcg, const struct blkcg_policy *pol,
800 struct blkg_conf_ctx *ctx)
801 __acquires(&bdev->bd_queue->queue_lock)
802{
803 struct gendisk *disk;
804 struct request_queue *q;
805 struct blkcg_gq *blkg;
806 int ret;
807
808 ret = blkg_conf_open_bdev(ctx);
809 if (ret)
810 return ret;
811
812 disk = ctx->bdev->bd_disk;
813 q = disk->queue;
814
815 /*
816 * blkcg_deactivate_policy() requires queue to be frozen, we can grab
817 * q_usage_counter to prevent concurrent with blkcg_deactivate_policy().
818 */
819 ret = blk_queue_enter(q, flags: 0);
820 if (ret)
821 goto fail;
822
823 spin_lock_irq(lock: &q->queue_lock);
824
825 if (!blkcg_policy_enabled(q, pol)) {
826 ret = -EOPNOTSUPP;
827 goto fail_unlock;
828 }
829
830 blkg = blkg_lookup(blkcg, q);
831 if (blkg)
832 goto success;
833
834 /*
835 * Create blkgs walking down from blkcg_root to @blkcg, so that all
836 * non-root blkgs have access to their parents.
837 */
838 while (true) {
839 struct blkcg *pos = blkcg;
840 struct blkcg *parent;
841 struct blkcg_gq *new_blkg;
842
843 parent = blkcg_parent(blkcg);
844 while (parent && !blkg_lookup(blkcg: parent, q)) {
845 pos = parent;
846 parent = blkcg_parent(blkcg: parent);
847 }
848
849 /* Drop locks to do new blkg allocation with GFP_KERNEL. */
850 spin_unlock_irq(lock: &q->queue_lock);
851
852 new_blkg = blkg_alloc(blkcg: pos, disk, GFP_KERNEL);
853 if (unlikely(!new_blkg)) {
854 ret = -ENOMEM;
855 goto fail_exit_queue;
856 }
857
858 if (radix_tree_preload(GFP_KERNEL)) {
859 blkg_free(blkg: new_blkg);
860 ret = -ENOMEM;
861 goto fail_exit_queue;
862 }
863
864 spin_lock_irq(lock: &q->queue_lock);
865
866 if (!blkcg_policy_enabled(q, pol)) {
867 blkg_free(blkg: new_blkg);
868 ret = -EOPNOTSUPP;
869 goto fail_preloaded;
870 }
871
872 blkg = blkg_lookup(blkcg: pos, q);
873 if (blkg) {
874 blkg_free(blkg: new_blkg);
875 } else {
876 blkg = blkg_create(blkcg: pos, disk, new_blkg);
877 if (IS_ERR(ptr: blkg)) {
878 ret = PTR_ERR(ptr: blkg);
879 goto fail_preloaded;
880 }
881 }
882
883 radix_tree_preload_end();
884
885 if (pos == blkcg)
886 goto success;
887 }
888success:
889 blk_queue_exit(q);
890 ctx->blkg = blkg;
891 return 0;
892
893fail_preloaded:
894 radix_tree_preload_end();
895fail_unlock:
896 spin_unlock_irq(lock: &q->queue_lock);
897fail_exit_queue:
898 blk_queue_exit(q);
899fail:
900 /*
901 * If queue was bypassing, we should retry. Do so after a
902 * short msleep(). It isn't strictly necessary but queue
903 * can be bypassing for some time and it's always nice to
904 * avoid busy looping.
905 */
906 if (ret == -EBUSY) {
907 msleep(msecs: 10);
908 ret = restart_syscall();
909 }
910 return ret;
911}
912EXPORT_SYMBOL_GPL(blkg_conf_prep);
913
914/**
915 * blkg_conf_exit - clean up per-blkg config update
916 * @ctx: blkg_conf_ctx initialized with blkg_conf_init()
917 *
918 * Clean up after per-blkg config update. This function must be called on all
919 * blkg_conf_ctx's initialized with blkg_conf_init().
920 */
921void blkg_conf_exit(struct blkg_conf_ctx *ctx)
922 __releases(&ctx->bdev->bd_queue->queue_lock)
923 __releases(&ctx->bdev->bd_queue->rq_qos_mutex)
924{
925 if (ctx->blkg) {
926 spin_unlock_irq(lock: &bdev_get_queue(bdev: ctx->bdev)->queue_lock);
927 ctx->blkg = NULL;
928 }
929
930 if (ctx->bdev) {
931 mutex_unlock(lock: &ctx->bdev->bd_queue->rq_qos_mutex);
932 blkdev_put_no_open(bdev: ctx->bdev);
933 ctx->body = NULL;
934 ctx->bdev = NULL;
935 }
936}
937EXPORT_SYMBOL_GPL(blkg_conf_exit);
938
939static void blkg_iostat_set(struct blkg_iostat *dst, struct blkg_iostat *src)
940{
941 int i;
942
943 for (i = 0; i < BLKG_IOSTAT_NR; i++) {
944 dst->bytes[i] = src->bytes[i];
945 dst->ios[i] = src->ios[i];
946 }
947}
948
949static void blkg_iostat_add(struct blkg_iostat *dst, struct blkg_iostat *src)
950{
951 int i;
952
953 for (i = 0; i < BLKG_IOSTAT_NR; i++) {
954 dst->bytes[i] += src->bytes[i];
955 dst->ios[i] += src->ios[i];
956 }
957}
958
959static void blkg_iostat_sub(struct blkg_iostat *dst, struct blkg_iostat *src)
960{
961 int i;
962
963 for (i = 0; i < BLKG_IOSTAT_NR; i++) {
964 dst->bytes[i] -= src->bytes[i];
965 dst->ios[i] -= src->ios[i];
966 }
967}
968
969static void blkcg_iostat_update(struct blkcg_gq *blkg, struct blkg_iostat *cur,
970 struct blkg_iostat *last)
971{
972 struct blkg_iostat delta;
973 unsigned long flags;
974
975 /* propagate percpu delta to global */
976 flags = u64_stats_update_begin_irqsave(syncp: &blkg->iostat.sync);
977 blkg_iostat_set(dst: &delta, src: cur);
978 blkg_iostat_sub(dst: &delta, src: last);
979 blkg_iostat_add(dst: &blkg->iostat.cur, src: &delta);
980 blkg_iostat_add(dst: last, src: &delta);
981 u64_stats_update_end_irqrestore(syncp: &blkg->iostat.sync, flags);
982}
983
984static void __blkcg_rstat_flush(struct blkcg *blkcg, int cpu)
985{
986 struct llist_head *lhead = per_cpu_ptr(blkcg->lhead, cpu);
987 struct llist_node *lnode;
988 struct blkg_iostat_set *bisc, *next_bisc;
989 unsigned long flags;
990
991 rcu_read_lock();
992
993 lnode = llist_del_all(head: lhead);
994 if (!lnode)
995 goto out;
996
997 /*
998 * For covering concurrent parent blkg update from blkg_release().
999 *
1000 * When flushing from cgroup, cgroup_rstat_lock is always held, so
1001 * this lock won't cause contention most of time.
1002 */
1003 raw_spin_lock_irqsave(&blkg_stat_lock, flags);
1004
1005 /*
1006 * Iterate only the iostat_cpu's queued in the lockless list.
1007 */
1008 llist_for_each_entry_safe(bisc, next_bisc, lnode, lnode) {
1009 struct blkcg_gq *blkg = bisc->blkg;
1010 struct blkcg_gq *parent = blkg->parent;
1011 struct blkg_iostat cur;
1012 unsigned int seq;
1013
1014 WRITE_ONCE(bisc->lqueued, false);
1015
1016 /* fetch the current per-cpu values */
1017 do {
1018 seq = u64_stats_fetch_begin(syncp: &bisc->sync);
1019 blkg_iostat_set(dst: &cur, src: &bisc->cur);
1020 } while (u64_stats_fetch_retry(syncp: &bisc->sync, start: seq));
1021
1022 blkcg_iostat_update(blkg, cur: &cur, last: &bisc->last);
1023
1024 /* propagate global delta to parent (unless that's root) */
1025 if (parent && parent->parent)
1026 blkcg_iostat_update(blkg: parent, cur: &blkg->iostat.cur,
1027 last: &blkg->iostat.last);
1028 }
1029 raw_spin_unlock_irqrestore(&blkg_stat_lock, flags);
1030out:
1031 rcu_read_unlock();
1032}
1033
1034static void blkcg_rstat_flush(struct cgroup_subsys_state *css, int cpu)
1035{
1036 /* Root-level stats are sourced from system-wide IO stats */
1037 if (cgroup_parent(cgrp: css->cgroup))
1038 __blkcg_rstat_flush(blkcg: css_to_blkcg(css), cpu);
1039}
1040
1041/*
1042 * We source root cgroup stats from the system-wide stats to avoid
1043 * tracking the same information twice and incurring overhead when no
1044 * cgroups are defined. For that reason, cgroup_rstat_flush in
1045 * blkcg_print_stat does not actually fill out the iostat in the root
1046 * cgroup's blkcg_gq.
1047 *
1048 * However, we would like to re-use the printing code between the root and
1049 * non-root cgroups to the extent possible. For that reason, we simulate
1050 * flushing the root cgroup's stats by explicitly filling in the iostat
1051 * with disk level statistics.
1052 */
1053static void blkcg_fill_root_iostats(void)
1054{
1055 struct class_dev_iter iter;
1056 struct device *dev;
1057
1058 class_dev_iter_init(iter: &iter, class: &block_class, NULL, type: &disk_type);
1059 while ((dev = class_dev_iter_next(iter: &iter))) {
1060 struct block_device *bdev = dev_to_bdev(dev);
1061 struct blkcg_gq *blkg = bdev->bd_disk->queue->root_blkg;
1062 struct blkg_iostat tmp;
1063 int cpu;
1064 unsigned long flags;
1065
1066 memset(&tmp, 0, sizeof(tmp));
1067 for_each_possible_cpu(cpu) {
1068 struct disk_stats *cpu_dkstats;
1069
1070 cpu_dkstats = per_cpu_ptr(bdev->bd_stats, cpu);
1071 tmp.ios[BLKG_IOSTAT_READ] +=
1072 cpu_dkstats->ios[STAT_READ];
1073 tmp.ios[BLKG_IOSTAT_WRITE] +=
1074 cpu_dkstats->ios[STAT_WRITE];
1075 tmp.ios[BLKG_IOSTAT_DISCARD] +=
1076 cpu_dkstats->ios[STAT_DISCARD];
1077 // convert sectors to bytes
1078 tmp.bytes[BLKG_IOSTAT_READ] +=
1079 cpu_dkstats->sectors[STAT_READ] << 9;
1080 tmp.bytes[BLKG_IOSTAT_WRITE] +=
1081 cpu_dkstats->sectors[STAT_WRITE] << 9;
1082 tmp.bytes[BLKG_IOSTAT_DISCARD] +=
1083 cpu_dkstats->sectors[STAT_DISCARD] << 9;
1084 }
1085
1086 flags = u64_stats_update_begin_irqsave(syncp: &blkg->iostat.sync);
1087 blkg_iostat_set(dst: &blkg->iostat.cur, src: &tmp);
1088 u64_stats_update_end_irqrestore(syncp: &blkg->iostat.sync, flags);
1089 }
1090}
1091
1092static void blkcg_print_one_stat(struct blkcg_gq *blkg, struct seq_file *s)
1093{
1094 struct blkg_iostat_set *bis = &blkg->iostat;
1095 u64 rbytes, wbytes, rios, wios, dbytes, dios;
1096 const char *dname;
1097 unsigned seq;
1098 int i;
1099
1100 if (!blkg->online)
1101 return;
1102
1103 dname = blkg_dev_name(blkg);
1104 if (!dname)
1105 return;
1106
1107 seq_printf(m: s, fmt: "%s ", dname);
1108
1109 do {
1110 seq = u64_stats_fetch_begin(syncp: &bis->sync);
1111
1112 rbytes = bis->cur.bytes[BLKG_IOSTAT_READ];
1113 wbytes = bis->cur.bytes[BLKG_IOSTAT_WRITE];
1114 dbytes = bis->cur.bytes[BLKG_IOSTAT_DISCARD];
1115 rios = bis->cur.ios[BLKG_IOSTAT_READ];
1116 wios = bis->cur.ios[BLKG_IOSTAT_WRITE];
1117 dios = bis->cur.ios[BLKG_IOSTAT_DISCARD];
1118 } while (u64_stats_fetch_retry(syncp: &bis->sync, start: seq));
1119
1120 if (rbytes || wbytes || rios || wios) {
1121 seq_printf(m: s, fmt: "rbytes=%llu wbytes=%llu rios=%llu wios=%llu dbytes=%llu dios=%llu",
1122 rbytes, wbytes, rios, wios,
1123 dbytes, dios);
1124 }
1125
1126 if (blkcg_debug_stats && atomic_read(v: &blkg->use_delay)) {
1127 seq_printf(m: s, fmt: " use_delay=%d delay_nsec=%llu",
1128 atomic_read(v: &blkg->use_delay),
1129 atomic64_read(v: &blkg->delay_nsec));
1130 }
1131
1132 for (i = 0; i < BLKCG_MAX_POLS; i++) {
1133 struct blkcg_policy *pol = blkcg_policy[i];
1134
1135 if (!blkg->pd[i] || !pol->pd_stat_fn)
1136 continue;
1137
1138 pol->pd_stat_fn(blkg->pd[i], s);
1139 }
1140
1141 seq_puts(m: s, s: "\n");
1142}
1143
1144static int blkcg_print_stat(struct seq_file *sf, void *v)
1145{
1146 struct blkcg *blkcg = css_to_blkcg(css: seq_css(seq: sf));
1147 struct blkcg_gq *blkg;
1148
1149 if (!seq_css(seq: sf)->parent)
1150 blkcg_fill_root_iostats();
1151 else
1152 cgroup_rstat_flush(cgrp: blkcg->css.cgroup);
1153
1154 rcu_read_lock();
1155 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
1156 spin_lock_irq(lock: &blkg->q->queue_lock);
1157 blkcg_print_one_stat(blkg, s: sf);
1158 spin_unlock_irq(lock: &blkg->q->queue_lock);
1159 }
1160 rcu_read_unlock();
1161 return 0;
1162}
1163
1164static struct cftype blkcg_files[] = {
1165 {
1166 .name = "stat",
1167 .seq_show = blkcg_print_stat,
1168 },
1169 { } /* terminate */
1170};
1171
1172static struct cftype blkcg_legacy_files[] = {
1173 {
1174 .name = "reset_stats",
1175 .write_u64 = blkcg_reset_stats,
1176 },
1177 { } /* terminate */
1178};
1179
1180#ifdef CONFIG_CGROUP_WRITEBACK
1181struct list_head *blkcg_get_cgwb_list(struct cgroup_subsys_state *css)
1182{
1183 return &css_to_blkcg(css)->cgwb_list;
1184}
1185#endif
1186
1187/*
1188 * blkcg destruction is a three-stage process.
1189 *
1190 * 1. Destruction starts. The blkcg_css_offline() callback is invoked
1191 * which offlines writeback. Here we tie the next stage of blkg destruction
1192 * to the completion of writeback associated with the blkcg. This lets us
1193 * avoid punting potentially large amounts of outstanding writeback to root
1194 * while maintaining any ongoing policies. The next stage is triggered when
1195 * the nr_cgwbs count goes to zero.
1196 *
1197 * 2. When the nr_cgwbs count goes to zero, blkcg_destroy_blkgs() is called
1198 * and handles the destruction of blkgs. Here the css reference held by
1199 * the blkg is put back eventually allowing blkcg_css_free() to be called.
1200 * This work may occur in cgwb_release_workfn() on the cgwb_release
1201 * workqueue. Any submitted ios that fail to get the blkg ref will be
1202 * punted to the root_blkg.
1203 *
1204 * 3. Once the blkcg ref count goes to zero, blkcg_css_free() is called.
1205 * This finally frees the blkcg.
1206 */
1207
1208/**
1209 * blkcg_destroy_blkgs - responsible for shooting down blkgs
1210 * @blkcg: blkcg of interest
1211 *
1212 * blkgs should be removed while holding both q and blkcg locks. As blkcg lock
1213 * is nested inside q lock, this function performs reverse double lock dancing.
1214 * Destroying the blkgs releases the reference held on the blkcg's css allowing
1215 * blkcg_css_free to eventually be called.
1216 *
1217 * This is the blkcg counterpart of ioc_release_fn().
1218 */
1219static void blkcg_destroy_blkgs(struct blkcg *blkcg)
1220{
1221 might_sleep();
1222
1223 spin_lock_irq(lock: &blkcg->lock);
1224
1225 while (!hlist_empty(h: &blkcg->blkg_list)) {
1226 struct blkcg_gq *blkg = hlist_entry(blkcg->blkg_list.first,
1227 struct blkcg_gq, blkcg_node);
1228 struct request_queue *q = blkg->q;
1229
1230 if (need_resched() || !spin_trylock(lock: &q->queue_lock)) {
1231 /*
1232 * Given that the system can accumulate a huge number
1233 * of blkgs in pathological cases, check to see if we
1234 * need to rescheduling to avoid softlockup.
1235 */
1236 spin_unlock_irq(lock: &blkcg->lock);
1237 cond_resched();
1238 spin_lock_irq(lock: &blkcg->lock);
1239 continue;
1240 }
1241
1242 blkg_destroy(blkg);
1243 spin_unlock(lock: &q->queue_lock);
1244 }
1245
1246 spin_unlock_irq(lock: &blkcg->lock);
1247}
1248
1249/**
1250 * blkcg_pin_online - pin online state
1251 * @blkcg_css: blkcg of interest
1252 *
1253 * While pinned, a blkcg is kept online. This is primarily used to
1254 * impedance-match blkg and cgwb lifetimes so that blkg doesn't go offline
1255 * while an associated cgwb is still active.
1256 */
1257void blkcg_pin_online(struct cgroup_subsys_state *blkcg_css)
1258{
1259 refcount_inc(r: &css_to_blkcg(css: blkcg_css)->online_pin);
1260}
1261
1262/**
1263 * blkcg_unpin_online - unpin online state
1264 * @blkcg_css: blkcg of interest
1265 *
1266 * This is primarily used to impedance-match blkg and cgwb lifetimes so
1267 * that blkg doesn't go offline while an associated cgwb is still active.
1268 * When this count goes to zero, all active cgwbs have finished so the
1269 * blkcg can continue destruction by calling blkcg_destroy_blkgs().
1270 */
1271void blkcg_unpin_online(struct cgroup_subsys_state *blkcg_css)
1272{
1273 struct blkcg *blkcg = css_to_blkcg(css: blkcg_css);
1274
1275 do {
1276 if (!refcount_dec_and_test(r: &blkcg->online_pin))
1277 break;
1278 blkcg_destroy_blkgs(blkcg);
1279 blkcg = blkcg_parent(blkcg);
1280 } while (blkcg);
1281}
1282
1283/**
1284 * blkcg_css_offline - cgroup css_offline callback
1285 * @css: css of interest
1286 *
1287 * This function is called when @css is about to go away. Here the cgwbs are
1288 * offlined first and only once writeback associated with the blkcg has
1289 * finished do we start step 2 (see above).
1290 */
1291static void blkcg_css_offline(struct cgroup_subsys_state *css)
1292{
1293 /* this prevents anyone from attaching or migrating to this blkcg */
1294 wb_blkcg_offline(css);
1295
1296 /* put the base online pin allowing step 2 to be triggered */
1297 blkcg_unpin_online(blkcg_css: css);
1298}
1299
1300static void blkcg_css_free(struct cgroup_subsys_state *css)
1301{
1302 struct blkcg *blkcg = css_to_blkcg(css);
1303 int i;
1304
1305 mutex_lock(&blkcg_pol_mutex);
1306
1307 list_del(entry: &blkcg->all_blkcgs_node);
1308
1309 for (i = 0; i < BLKCG_MAX_POLS; i++)
1310 if (blkcg->cpd[i])
1311 blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]);
1312
1313 mutex_unlock(lock: &blkcg_pol_mutex);
1314
1315 free_percpu(pdata: blkcg->lhead);
1316 kfree(objp: blkcg);
1317}
1318
1319static struct cgroup_subsys_state *
1320blkcg_css_alloc(struct cgroup_subsys_state *parent_css)
1321{
1322 struct blkcg *blkcg;
1323 int i;
1324
1325 mutex_lock(&blkcg_pol_mutex);
1326
1327 if (!parent_css) {
1328 blkcg = &blkcg_root;
1329 } else {
1330 blkcg = kzalloc(size: sizeof(*blkcg), GFP_KERNEL);
1331 if (!blkcg)
1332 goto unlock;
1333 }
1334
1335 if (init_blkcg_llists(blkcg))
1336 goto free_blkcg;
1337
1338 for (i = 0; i < BLKCG_MAX_POLS ; i++) {
1339 struct blkcg_policy *pol = blkcg_policy[i];
1340 struct blkcg_policy_data *cpd;
1341
1342 /*
1343 * If the policy hasn't been attached yet, wait for it
1344 * to be attached before doing anything else. Otherwise,
1345 * check if the policy requires any specific per-cgroup
1346 * data: if it does, allocate and initialize it.
1347 */
1348 if (!pol || !pol->cpd_alloc_fn)
1349 continue;
1350
1351 cpd = pol->cpd_alloc_fn(GFP_KERNEL);
1352 if (!cpd)
1353 goto free_pd_blkcg;
1354
1355 blkcg->cpd[i] = cpd;
1356 cpd->blkcg = blkcg;
1357 cpd->plid = i;
1358 }
1359
1360 spin_lock_init(&blkcg->lock);
1361 refcount_set(r: &blkcg->online_pin, n: 1);
1362 INIT_RADIX_TREE(&blkcg->blkg_tree, GFP_NOWAIT | __GFP_NOWARN);
1363 INIT_HLIST_HEAD(&blkcg->blkg_list);
1364#ifdef CONFIG_CGROUP_WRITEBACK
1365 INIT_LIST_HEAD(list: &blkcg->cgwb_list);
1366#endif
1367 list_add_tail(new: &blkcg->all_blkcgs_node, head: &all_blkcgs);
1368
1369 mutex_unlock(lock: &blkcg_pol_mutex);
1370 return &blkcg->css;
1371
1372free_pd_blkcg:
1373 for (i--; i >= 0; i--)
1374 if (blkcg->cpd[i])
1375 blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]);
1376 free_percpu(pdata: blkcg->lhead);
1377free_blkcg:
1378 if (blkcg != &blkcg_root)
1379 kfree(objp: blkcg);
1380unlock:
1381 mutex_unlock(lock: &blkcg_pol_mutex);
1382 return ERR_PTR(error: -ENOMEM);
1383}
1384
1385static int blkcg_css_online(struct cgroup_subsys_state *css)
1386{
1387 struct blkcg *parent = blkcg_parent(blkcg: css_to_blkcg(css));
1388
1389 /*
1390 * blkcg_pin_online() is used to delay blkcg offline so that blkgs
1391 * don't go offline while cgwbs are still active on them. Pin the
1392 * parent so that offline always happens towards the root.
1393 */
1394 if (parent)
1395 blkcg_pin_online(blkcg_css: &parent->css);
1396 return 0;
1397}
1398
1399int blkcg_init_disk(struct gendisk *disk)
1400{
1401 struct request_queue *q = disk->queue;
1402 struct blkcg_gq *new_blkg, *blkg;
1403 bool preloaded;
1404 int ret;
1405
1406 INIT_LIST_HEAD(list: &q->blkg_list);
1407 mutex_init(&q->blkcg_mutex);
1408
1409 new_blkg = blkg_alloc(blkcg: &blkcg_root, disk, GFP_KERNEL);
1410 if (!new_blkg)
1411 return -ENOMEM;
1412
1413 preloaded = !radix_tree_preload(GFP_KERNEL);
1414
1415 /* Make sure the root blkg exists. */
1416 /* spin_lock_irq can serve as RCU read-side critical section. */
1417 spin_lock_irq(lock: &q->queue_lock);
1418 blkg = blkg_create(blkcg: &blkcg_root, disk, new_blkg);
1419 if (IS_ERR(ptr: blkg))
1420 goto err_unlock;
1421 q->root_blkg = blkg;
1422 spin_unlock_irq(lock: &q->queue_lock);
1423
1424 if (preloaded)
1425 radix_tree_preload_end();
1426
1427 ret = blk_ioprio_init(disk);
1428 if (ret)
1429 goto err_destroy_all;
1430
1431 ret = blk_throtl_init(disk);
1432 if (ret)
1433 goto err_ioprio_exit;
1434
1435 return 0;
1436
1437err_ioprio_exit:
1438 blk_ioprio_exit(disk);
1439err_destroy_all:
1440 blkg_destroy_all(disk);
1441 return ret;
1442err_unlock:
1443 spin_unlock_irq(lock: &q->queue_lock);
1444 if (preloaded)
1445 radix_tree_preload_end();
1446 return PTR_ERR(ptr: blkg);
1447}
1448
1449void blkcg_exit_disk(struct gendisk *disk)
1450{
1451 blkg_destroy_all(disk);
1452 blk_throtl_exit(disk);
1453}
1454
1455static void blkcg_exit(struct task_struct *tsk)
1456{
1457 if (tsk->throttle_disk)
1458 put_disk(disk: tsk->throttle_disk);
1459 tsk->throttle_disk = NULL;
1460}
1461
1462struct cgroup_subsys io_cgrp_subsys = {
1463 .css_alloc = blkcg_css_alloc,
1464 .css_online = blkcg_css_online,
1465 .css_offline = blkcg_css_offline,
1466 .css_free = blkcg_css_free,
1467 .css_rstat_flush = blkcg_rstat_flush,
1468 .dfl_cftypes = blkcg_files,
1469 .legacy_cftypes = blkcg_legacy_files,
1470 .legacy_name = "blkio",
1471 .exit = blkcg_exit,
1472#ifdef CONFIG_MEMCG
1473 /*
1474 * This ensures that, if available, memcg is automatically enabled
1475 * together on the default hierarchy so that the owner cgroup can
1476 * be retrieved from writeback pages.
1477 */
1478 .depends_on = 1 << memory_cgrp_id,
1479#endif
1480};
1481EXPORT_SYMBOL_GPL(io_cgrp_subsys);
1482
1483/**
1484 * blkcg_activate_policy - activate a blkcg policy on a gendisk
1485 * @disk: gendisk of interest
1486 * @pol: blkcg policy to activate
1487 *
1488 * Activate @pol on @disk. Requires %GFP_KERNEL context. @disk goes through
1489 * bypass mode to populate its blkgs with policy_data for @pol.
1490 *
1491 * Activation happens with @disk bypassed, so nobody would be accessing blkgs
1492 * from IO path. Update of each blkg is protected by both queue and blkcg
1493 * locks so that holding either lock and testing blkcg_policy_enabled() is
1494 * always enough for dereferencing policy data.
1495 *
1496 * The caller is responsible for synchronizing [de]activations and policy
1497 * [un]registerations. Returns 0 on success, -errno on failure.
1498 */
1499int blkcg_activate_policy(struct gendisk *disk, const struct blkcg_policy *pol)
1500{
1501 struct request_queue *q = disk->queue;
1502 struct blkg_policy_data *pd_prealloc = NULL;
1503 struct blkcg_gq *blkg, *pinned_blkg = NULL;
1504 int ret;
1505
1506 if (blkcg_policy_enabled(q, pol))
1507 return 0;
1508
1509 if (queue_is_mq(q))
1510 blk_mq_freeze_queue(q);
1511retry:
1512 spin_lock_irq(lock: &q->queue_lock);
1513
1514 /* blkg_list is pushed at the head, reverse walk to initialize parents first */
1515 list_for_each_entry_reverse(blkg, &q->blkg_list, q_node) {
1516 struct blkg_policy_data *pd;
1517
1518 if (blkg->pd[pol->plid])
1519 continue;
1520
1521 /* If prealloc matches, use it; otherwise try GFP_NOWAIT */
1522 if (blkg == pinned_blkg) {
1523 pd = pd_prealloc;
1524 pd_prealloc = NULL;
1525 } else {
1526 pd = pol->pd_alloc_fn(disk, blkg->blkcg,
1527 GFP_NOWAIT | __GFP_NOWARN);
1528 }
1529
1530 if (!pd) {
1531 /*
1532 * GFP_NOWAIT failed. Free the existing one and
1533 * prealloc for @blkg w/ GFP_KERNEL.
1534 */
1535 if (pinned_blkg)
1536 blkg_put(blkg: pinned_blkg);
1537 blkg_get(blkg);
1538 pinned_blkg = blkg;
1539
1540 spin_unlock_irq(lock: &q->queue_lock);
1541
1542 if (pd_prealloc)
1543 pol->pd_free_fn(pd_prealloc);
1544 pd_prealloc = pol->pd_alloc_fn(disk, blkg->blkcg,
1545 GFP_KERNEL);
1546 if (pd_prealloc)
1547 goto retry;
1548 else
1549 goto enomem;
1550 }
1551
1552 spin_lock(lock: &blkg->blkcg->lock);
1553
1554 pd->blkg = blkg;
1555 pd->plid = pol->plid;
1556 blkg->pd[pol->plid] = pd;
1557
1558 if (pol->pd_init_fn)
1559 pol->pd_init_fn(pd);
1560
1561 if (pol->pd_online_fn)
1562 pol->pd_online_fn(pd);
1563 pd->online = true;
1564
1565 spin_unlock(lock: &blkg->blkcg->lock);
1566 }
1567
1568 __set_bit(pol->plid, q->blkcg_pols);
1569 ret = 0;
1570
1571 spin_unlock_irq(lock: &q->queue_lock);
1572out:
1573 if (queue_is_mq(q))
1574 blk_mq_unfreeze_queue(q);
1575 if (pinned_blkg)
1576 blkg_put(blkg: pinned_blkg);
1577 if (pd_prealloc)
1578 pol->pd_free_fn(pd_prealloc);
1579 return ret;
1580
1581enomem:
1582 /* alloc failed, take down everything */
1583 spin_lock_irq(lock: &q->queue_lock);
1584 list_for_each_entry(blkg, &q->blkg_list, q_node) {
1585 struct blkcg *blkcg = blkg->blkcg;
1586 struct blkg_policy_data *pd;
1587
1588 spin_lock(lock: &blkcg->lock);
1589 pd = blkg->pd[pol->plid];
1590 if (pd) {
1591 if (pd->online && pol->pd_offline_fn)
1592 pol->pd_offline_fn(pd);
1593 pd->online = false;
1594 pol->pd_free_fn(pd);
1595 blkg->pd[pol->plid] = NULL;
1596 }
1597 spin_unlock(lock: &blkcg->lock);
1598 }
1599 spin_unlock_irq(lock: &q->queue_lock);
1600 ret = -ENOMEM;
1601 goto out;
1602}
1603EXPORT_SYMBOL_GPL(blkcg_activate_policy);
1604
1605/**
1606 * blkcg_deactivate_policy - deactivate a blkcg policy on a gendisk
1607 * @disk: gendisk of interest
1608 * @pol: blkcg policy to deactivate
1609 *
1610 * Deactivate @pol on @disk. Follows the same synchronization rules as
1611 * blkcg_activate_policy().
1612 */
1613void blkcg_deactivate_policy(struct gendisk *disk,
1614 const struct blkcg_policy *pol)
1615{
1616 struct request_queue *q = disk->queue;
1617 struct blkcg_gq *blkg;
1618
1619 if (!blkcg_policy_enabled(q, pol))
1620 return;
1621
1622 if (queue_is_mq(q))
1623 blk_mq_freeze_queue(q);
1624
1625 mutex_lock(&q->blkcg_mutex);
1626 spin_lock_irq(lock: &q->queue_lock);
1627
1628 __clear_bit(pol->plid, q->blkcg_pols);
1629
1630 list_for_each_entry(blkg, &q->blkg_list, q_node) {
1631 struct blkcg *blkcg = blkg->blkcg;
1632
1633 spin_lock(lock: &blkcg->lock);
1634 if (blkg->pd[pol->plid]) {
1635 if (blkg->pd[pol->plid]->online && pol->pd_offline_fn)
1636 pol->pd_offline_fn(blkg->pd[pol->plid]);
1637 pol->pd_free_fn(blkg->pd[pol->plid]);
1638 blkg->pd[pol->plid] = NULL;
1639 }
1640 spin_unlock(lock: &blkcg->lock);
1641 }
1642
1643 spin_unlock_irq(lock: &q->queue_lock);
1644 mutex_unlock(lock: &q->blkcg_mutex);
1645
1646 if (queue_is_mq(q))
1647 blk_mq_unfreeze_queue(q);
1648}
1649EXPORT_SYMBOL_GPL(blkcg_deactivate_policy);
1650
1651static void blkcg_free_all_cpd(struct blkcg_policy *pol)
1652{
1653 struct blkcg *blkcg;
1654
1655 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1656 if (blkcg->cpd[pol->plid]) {
1657 pol->cpd_free_fn(blkcg->cpd[pol->plid]);
1658 blkcg->cpd[pol->plid] = NULL;
1659 }
1660 }
1661}
1662
1663/**
1664 * blkcg_policy_register - register a blkcg policy
1665 * @pol: blkcg policy to register
1666 *
1667 * Register @pol with blkcg core. Might sleep and @pol may be modified on
1668 * successful registration. Returns 0 on success and -errno on failure.
1669 */
1670int blkcg_policy_register(struct blkcg_policy *pol)
1671{
1672 struct blkcg *blkcg;
1673 int i, ret;
1674
1675 mutex_lock(&blkcg_pol_register_mutex);
1676 mutex_lock(&blkcg_pol_mutex);
1677
1678 /* find an empty slot */
1679 ret = -ENOSPC;
1680 for (i = 0; i < BLKCG_MAX_POLS; i++)
1681 if (!blkcg_policy[i])
1682 break;
1683 if (i >= BLKCG_MAX_POLS) {
1684 pr_warn("blkcg_policy_register: BLKCG_MAX_POLS too small\n");
1685 goto err_unlock;
1686 }
1687
1688 /* Make sure cpd/pd_alloc_fn and cpd/pd_free_fn in pairs */
1689 if ((!pol->cpd_alloc_fn ^ !pol->cpd_free_fn) ||
1690 (!pol->pd_alloc_fn ^ !pol->pd_free_fn))
1691 goto err_unlock;
1692
1693 /* register @pol */
1694 pol->plid = i;
1695 blkcg_policy[pol->plid] = pol;
1696
1697 /* allocate and install cpd's */
1698 if (pol->cpd_alloc_fn) {
1699 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1700 struct blkcg_policy_data *cpd;
1701
1702 cpd = pol->cpd_alloc_fn(GFP_KERNEL);
1703 if (!cpd)
1704 goto err_free_cpds;
1705
1706 blkcg->cpd[pol->plid] = cpd;
1707 cpd->blkcg = blkcg;
1708 cpd->plid = pol->plid;
1709 }
1710 }
1711
1712 mutex_unlock(lock: &blkcg_pol_mutex);
1713
1714 /* everything is in place, add intf files for the new policy */
1715 if (pol->dfl_cftypes)
1716 WARN_ON(cgroup_add_dfl_cftypes(&io_cgrp_subsys,
1717 pol->dfl_cftypes));
1718 if (pol->legacy_cftypes)
1719 WARN_ON(cgroup_add_legacy_cftypes(&io_cgrp_subsys,
1720 pol->legacy_cftypes));
1721 mutex_unlock(lock: &blkcg_pol_register_mutex);
1722 return 0;
1723
1724err_free_cpds:
1725 if (pol->cpd_free_fn)
1726 blkcg_free_all_cpd(pol);
1727
1728 blkcg_policy[pol->plid] = NULL;
1729err_unlock:
1730 mutex_unlock(lock: &blkcg_pol_mutex);
1731 mutex_unlock(lock: &blkcg_pol_register_mutex);
1732 return ret;
1733}
1734EXPORT_SYMBOL_GPL(blkcg_policy_register);
1735
1736/**
1737 * blkcg_policy_unregister - unregister a blkcg policy
1738 * @pol: blkcg policy to unregister
1739 *
1740 * Undo blkcg_policy_register(@pol). Might sleep.
1741 */
1742void blkcg_policy_unregister(struct blkcg_policy *pol)
1743{
1744 mutex_lock(&blkcg_pol_register_mutex);
1745
1746 if (WARN_ON(blkcg_policy[pol->plid] != pol))
1747 goto out_unlock;
1748
1749 /* kill the intf files first */
1750 if (pol->dfl_cftypes)
1751 cgroup_rm_cftypes(cfts: pol->dfl_cftypes);
1752 if (pol->legacy_cftypes)
1753 cgroup_rm_cftypes(cfts: pol->legacy_cftypes);
1754
1755 /* remove cpds and unregister */
1756 mutex_lock(&blkcg_pol_mutex);
1757
1758 if (pol->cpd_free_fn)
1759 blkcg_free_all_cpd(pol);
1760
1761 blkcg_policy[pol->plid] = NULL;
1762
1763 mutex_unlock(lock: &blkcg_pol_mutex);
1764out_unlock:
1765 mutex_unlock(lock: &blkcg_pol_register_mutex);
1766}
1767EXPORT_SYMBOL_GPL(blkcg_policy_unregister);
1768
1769/*
1770 * Scale the accumulated delay based on how long it has been since we updated
1771 * the delay. We only call this when we are adding delay, in case it's been a
1772 * while since we added delay, and when we are checking to see if we need to
1773 * delay a task, to account for any delays that may have occurred.
1774 */
1775static void blkcg_scale_delay(struct blkcg_gq *blkg, u64 now)
1776{
1777 u64 old = atomic64_read(v: &blkg->delay_start);
1778
1779 /* negative use_delay means no scaling, see blkcg_set_delay() */
1780 if (atomic_read(v: &blkg->use_delay) < 0)
1781 return;
1782
1783 /*
1784 * We only want to scale down every second. The idea here is that we
1785 * want to delay people for min(delay_nsec, NSEC_PER_SEC) in a certain
1786 * time window. We only want to throttle tasks for recent delay that
1787 * has occurred, in 1 second time windows since that's the maximum
1788 * things can be throttled. We save the current delay window in
1789 * blkg->last_delay so we know what amount is still left to be charged
1790 * to the blkg from this point onward. blkg->last_use keeps track of
1791 * the use_delay counter. The idea is if we're unthrottling the blkg we
1792 * are ok with whatever is happening now, and we can take away more of
1793 * the accumulated delay as we've already throttled enough that
1794 * everybody is happy with their IO latencies.
1795 */
1796 if (time_before64(old + NSEC_PER_SEC, now) &&
1797 atomic64_try_cmpxchg(v: &blkg->delay_start, old: &old, new: now)) {
1798 u64 cur = atomic64_read(v: &blkg->delay_nsec);
1799 u64 sub = min_t(u64, blkg->last_delay, now - old);
1800 int cur_use = atomic_read(v: &blkg->use_delay);
1801
1802 /*
1803 * We've been unthrottled, subtract a larger chunk of our
1804 * accumulated delay.
1805 */
1806 if (cur_use < blkg->last_use)
1807 sub = max_t(u64, sub, blkg->last_delay >> 1);
1808
1809 /*
1810 * This shouldn't happen, but handle it anyway. Our delay_nsec
1811 * should only ever be growing except here where we subtract out
1812 * min(last_delay, 1 second), but lord knows bugs happen and I'd
1813 * rather not end up with negative numbers.
1814 */
1815 if (unlikely(cur < sub)) {
1816 atomic64_set(v: &blkg->delay_nsec, i: 0);
1817 blkg->last_delay = 0;
1818 } else {
1819 atomic64_sub(i: sub, v: &blkg->delay_nsec);
1820 blkg->last_delay = cur - sub;
1821 }
1822 blkg->last_use = cur_use;
1823 }
1824}
1825
1826/*
1827 * This is called when we want to actually walk up the hierarchy and check to
1828 * see if we need to throttle, and then actually throttle if there is some
1829 * accumulated delay. This should only be called upon return to user space so
1830 * we're not holding some lock that would induce a priority inversion.
1831 */
1832static void blkcg_maybe_throttle_blkg(struct blkcg_gq *blkg, bool use_memdelay)
1833{
1834 unsigned long pflags;
1835 bool clamp;
1836 u64 now = ktime_to_ns(kt: ktime_get());
1837 u64 exp;
1838 u64 delay_nsec = 0;
1839 int tok;
1840
1841 while (blkg->parent) {
1842 int use_delay = atomic_read(v: &blkg->use_delay);
1843
1844 if (use_delay) {
1845 u64 this_delay;
1846
1847 blkcg_scale_delay(blkg, now);
1848 this_delay = atomic64_read(v: &blkg->delay_nsec);
1849 if (this_delay > delay_nsec) {
1850 delay_nsec = this_delay;
1851 clamp = use_delay > 0;
1852 }
1853 }
1854 blkg = blkg->parent;
1855 }
1856
1857 if (!delay_nsec)
1858 return;
1859
1860 /*
1861 * Let's not sleep for all eternity if we've amassed a huge delay.
1862 * Swapping or metadata IO can accumulate 10's of seconds worth of
1863 * delay, and we want userspace to be able to do _something_ so cap the
1864 * delays at 0.25s. If there's 10's of seconds worth of delay then the
1865 * tasks will be delayed for 0.25 second for every syscall. If
1866 * blkcg_set_delay() was used as indicated by negative use_delay, the
1867 * caller is responsible for regulating the range.
1868 */
1869 if (clamp)
1870 delay_nsec = min_t(u64, delay_nsec, 250 * NSEC_PER_MSEC);
1871
1872 if (use_memdelay)
1873 psi_memstall_enter(flags: &pflags);
1874
1875 exp = ktime_add_ns(now, delay_nsec);
1876 tok = io_schedule_prepare();
1877 do {
1878 __set_current_state(TASK_KILLABLE);
1879 if (!schedule_hrtimeout(expires: &exp, mode: HRTIMER_MODE_ABS))
1880 break;
1881 } while (!fatal_signal_pending(current));
1882 io_schedule_finish(token: tok);
1883
1884 if (use_memdelay)
1885 psi_memstall_leave(flags: &pflags);
1886}
1887
1888/**
1889 * blkcg_maybe_throttle_current - throttle the current task if it has been marked
1890 *
1891 * This is only called if we've been marked with set_notify_resume(). Obviously
1892 * we can be set_notify_resume() for reasons other than blkcg throttling, so we
1893 * check to see if current->throttle_disk is set and if not this doesn't do
1894 * anything. This should only ever be called by the resume code, it's not meant
1895 * to be called by people willy-nilly as it will actually do the work to
1896 * throttle the task if it is setup for throttling.
1897 */
1898void blkcg_maybe_throttle_current(void)
1899{
1900 struct gendisk *disk = current->throttle_disk;
1901 struct blkcg *blkcg;
1902 struct blkcg_gq *blkg;
1903 bool use_memdelay = current->use_memdelay;
1904
1905 if (!disk)
1906 return;
1907
1908 current->throttle_disk = NULL;
1909 current->use_memdelay = false;
1910
1911 rcu_read_lock();
1912 blkcg = css_to_blkcg(css: blkcg_css());
1913 if (!blkcg)
1914 goto out;
1915 blkg = blkg_lookup(blkcg, q: disk->queue);
1916 if (!blkg)
1917 goto out;
1918 if (!blkg_tryget(blkg))
1919 goto out;
1920 rcu_read_unlock();
1921
1922 blkcg_maybe_throttle_blkg(blkg, use_memdelay);
1923 blkg_put(blkg);
1924 put_disk(disk);
1925 return;
1926out:
1927 rcu_read_unlock();
1928}
1929
1930/**
1931 * blkcg_schedule_throttle - this task needs to check for throttling
1932 * @disk: disk to throttle
1933 * @use_memdelay: do we charge this to memory delay for PSI
1934 *
1935 * This is called by the IO controller when we know there's delay accumulated
1936 * for the blkg for this task. We do not pass the blkg because there are places
1937 * we call this that may not have that information, the swapping code for
1938 * instance will only have a block_device at that point. This set's the
1939 * notify_resume for the task to check and see if it requires throttling before
1940 * returning to user space.
1941 *
1942 * We will only schedule once per syscall. You can call this over and over
1943 * again and it will only do the check once upon return to user space, and only
1944 * throttle once. If the task needs to be throttled again it'll need to be
1945 * re-set at the next time we see the task.
1946 */
1947void blkcg_schedule_throttle(struct gendisk *disk, bool use_memdelay)
1948{
1949 if (unlikely(current->flags & PF_KTHREAD))
1950 return;
1951
1952 if (current->throttle_disk != disk) {
1953 if (test_bit(GD_DEAD, &disk->state))
1954 return;
1955 get_device(disk_to_dev(disk));
1956
1957 if (current->throttle_disk)
1958 put_disk(current->throttle_disk);
1959 current->throttle_disk = disk;
1960 }
1961
1962 if (use_memdelay)
1963 current->use_memdelay = use_memdelay;
1964 set_notify_resume(current);
1965}
1966
1967/**
1968 * blkcg_add_delay - add delay to this blkg
1969 * @blkg: blkg of interest
1970 * @now: the current time in nanoseconds
1971 * @delta: how many nanoseconds of delay to add
1972 *
1973 * Charge @delta to the blkg's current delay accumulation. This is used to
1974 * throttle tasks if an IO controller thinks we need more throttling.
1975 */
1976void blkcg_add_delay(struct blkcg_gq *blkg, u64 now, u64 delta)
1977{
1978 if (WARN_ON_ONCE(atomic_read(&blkg->use_delay) < 0))
1979 return;
1980 blkcg_scale_delay(blkg, now);
1981 atomic64_add(i: delta, v: &blkg->delay_nsec);
1982}
1983
1984/**
1985 * blkg_tryget_closest - try and get a blkg ref on the closet blkg
1986 * @bio: target bio
1987 * @css: target css
1988 *
1989 * As the failure mode here is to walk up the blkg tree, this ensure that the
1990 * blkg->parent pointers are always valid. This returns the blkg that it ended
1991 * up taking a reference on or %NULL if no reference was taken.
1992 */
1993static inline struct blkcg_gq *blkg_tryget_closest(struct bio *bio,
1994 struct cgroup_subsys_state *css)
1995{
1996 struct blkcg_gq *blkg, *ret_blkg = NULL;
1997
1998 rcu_read_lock();
1999 blkg = blkg_lookup_create(blkcg: css_to_blkcg(css), disk: bio->bi_bdev->bd_disk);
2000 while (blkg) {
2001 if (blkg_tryget(blkg)) {
2002 ret_blkg = blkg;
2003 break;
2004 }
2005 blkg = blkg->parent;
2006 }
2007 rcu_read_unlock();
2008
2009 return ret_blkg;
2010}
2011
2012/**
2013 * bio_associate_blkg_from_css - associate a bio with a specified css
2014 * @bio: target bio
2015 * @css: target css
2016 *
2017 * Associate @bio with the blkg found by combining the css's blkg and the
2018 * request_queue of the @bio. An association failure is handled by walking up
2019 * the blkg tree. Therefore, the blkg associated can be anything between @blkg
2020 * and q->root_blkg. This situation only happens when a cgroup is dying and
2021 * then the remaining bios will spill to the closest alive blkg.
2022 *
2023 * A reference will be taken on the blkg and will be released when @bio is
2024 * freed.
2025 */
2026void bio_associate_blkg_from_css(struct bio *bio,
2027 struct cgroup_subsys_state *css)
2028{
2029 if (bio->bi_blkg)
2030 blkg_put(blkg: bio->bi_blkg);
2031
2032 if (css && css->parent) {
2033 bio->bi_blkg = blkg_tryget_closest(bio, css);
2034 } else {
2035 blkg_get(blkg: bdev_get_queue(bdev: bio->bi_bdev)->root_blkg);
2036 bio->bi_blkg = bdev_get_queue(bdev: bio->bi_bdev)->root_blkg;
2037 }
2038}
2039EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css);
2040
2041/**
2042 * bio_associate_blkg - associate a bio with a blkg
2043 * @bio: target bio
2044 *
2045 * Associate @bio with the blkg found from the bio's css and request_queue.
2046 * If one is not found, bio_lookup_blkg() creates the blkg. If a blkg is
2047 * already associated, the css is reused and association redone as the
2048 * request_queue may have changed.
2049 */
2050void bio_associate_blkg(struct bio *bio)
2051{
2052 struct cgroup_subsys_state *css;
2053
2054 rcu_read_lock();
2055
2056 if (bio->bi_blkg)
2057 css = bio_blkcg_css(bio);
2058 else
2059 css = blkcg_css();
2060
2061 bio_associate_blkg_from_css(bio, css);
2062
2063 rcu_read_unlock();
2064}
2065EXPORT_SYMBOL_GPL(bio_associate_blkg);
2066
2067/**
2068 * bio_clone_blkg_association - clone blkg association from src to dst bio
2069 * @dst: destination bio
2070 * @src: source bio
2071 */
2072void bio_clone_blkg_association(struct bio *dst, struct bio *src)
2073{
2074 if (src->bi_blkg)
2075 bio_associate_blkg_from_css(dst, bio_blkcg_css(src));
2076}
2077EXPORT_SYMBOL_GPL(bio_clone_blkg_association);
2078
2079static int blk_cgroup_io_type(struct bio *bio)
2080{
2081 if (op_is_discard(op: bio->bi_opf))
2082 return BLKG_IOSTAT_DISCARD;
2083 if (op_is_write(op: bio->bi_opf))
2084 return BLKG_IOSTAT_WRITE;
2085 return BLKG_IOSTAT_READ;
2086}
2087
2088void blk_cgroup_bio_start(struct bio *bio)
2089{
2090 struct blkcg *blkcg = bio->bi_blkg->blkcg;
2091 int rwd = blk_cgroup_io_type(bio), cpu;
2092 struct blkg_iostat_set *bis;
2093 unsigned long flags;
2094
2095 if (!cgroup_subsys_on_dfl(io_cgrp_subsys))
2096 return;
2097
2098 /* Root-level stats are sourced from system-wide IO stats */
2099 if (!cgroup_parent(cgrp: blkcg->css.cgroup))
2100 return;
2101
2102 cpu = get_cpu();
2103 bis = per_cpu_ptr(bio->bi_blkg->iostat_cpu, cpu);
2104 flags = u64_stats_update_begin_irqsave(syncp: &bis->sync);
2105
2106 /*
2107 * If the bio is flagged with BIO_CGROUP_ACCT it means this is a split
2108 * bio and we would have already accounted for the size of the bio.
2109 */
2110 if (!bio_flagged(bio, bit: BIO_CGROUP_ACCT)) {
2111 bio_set_flag(bio, bit: BIO_CGROUP_ACCT);
2112 bis->cur.bytes[rwd] += bio->bi_iter.bi_size;
2113 }
2114 bis->cur.ios[rwd]++;
2115
2116 /*
2117 * If the iostat_cpu isn't in a lockless list, put it into the
2118 * list to indicate that a stat update is pending.
2119 */
2120 if (!READ_ONCE(bis->lqueued)) {
2121 struct llist_head *lhead = this_cpu_ptr(blkcg->lhead);
2122
2123 llist_add(new: &bis->lnode, head: lhead);
2124 WRITE_ONCE(bis->lqueued, true);
2125 }
2126
2127 u64_stats_update_end_irqrestore(syncp: &bis->sync, flags);
2128 cgroup_rstat_updated(cgrp: blkcg->css.cgroup, cpu);
2129 put_cpu();
2130}
2131
2132bool blk_cgroup_congested(void)
2133{
2134 struct cgroup_subsys_state *css;
2135 bool ret = false;
2136
2137 rcu_read_lock();
2138 for (css = blkcg_css(); css; css = css->parent) {
2139 if (atomic_read(v: &css->cgroup->congestion_count)) {
2140 ret = true;
2141 break;
2142 }
2143 }
2144 rcu_read_unlock();
2145 return ret;
2146}
2147
2148module_param(blkcg_debug_stats, bool, 0644);
2149MODULE_PARM_DESC(blkcg_debug_stats, "True if you want debug stats, false if not");
2150

source code of linux/block/blk-cgroup.c