1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * acpi_osl.c - OS-dependent functions ($Revision: 83 $)
4 *
5 * Copyright (C) 2000 Andrew Henroid
6 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
7 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
8 * Copyright (c) 2008 Intel Corporation
9 * Author: Matthew Wilcox <willy@linux.intel.com>
10 */
11
12#define pr_fmt(fmt) "ACPI: OSL: " fmt
13
14#include <linux/module.h>
15#include <linux/kernel.h>
16#include <linux/slab.h>
17#include <linux/mm.h>
18#include <linux/highmem.h>
19#include <linux/lockdep.h>
20#include <linux/pci.h>
21#include <linux/interrupt.h>
22#include <linux/kmod.h>
23#include <linux/delay.h>
24#include <linux/workqueue.h>
25#include <linux/nmi.h>
26#include <linux/acpi.h>
27#include <linux/efi.h>
28#include <linux/ioport.h>
29#include <linux/list.h>
30#include <linux/jiffies.h>
31#include <linux/semaphore.h>
32#include <linux/security.h>
33
34#include <asm/io.h>
35#include <linux/uaccess.h>
36#include <linux/io-64-nonatomic-lo-hi.h>
37
38#include "acpica/accommon.h"
39#include "internal.h"
40
41/* Definitions for ACPI_DEBUG_PRINT() */
42#define _COMPONENT ACPI_OS_SERVICES
43ACPI_MODULE_NAME("osl");
44
45struct acpi_os_dpc {
46 acpi_osd_exec_callback function;
47 void *context;
48 struct work_struct work;
49};
50
51#ifdef ENABLE_DEBUGGER
52#include <linux/kdb.h>
53
54/* stuff for debugger support */
55int acpi_in_debugger;
56EXPORT_SYMBOL(acpi_in_debugger);
57#endif /*ENABLE_DEBUGGER */
58
59static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
60 u32 pm1b_ctrl);
61static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a,
62 u32 val_b);
63
64static acpi_osd_handler acpi_irq_handler;
65static void *acpi_irq_context;
66static struct workqueue_struct *kacpid_wq;
67static struct workqueue_struct *kacpi_notify_wq;
68static struct workqueue_struct *kacpi_hotplug_wq;
69static bool acpi_os_initialized;
70unsigned int acpi_sci_irq = INVALID_ACPI_IRQ;
71bool acpi_permanent_mmap = false;
72
73/*
74 * This list of permanent mappings is for memory that may be accessed from
75 * interrupt context, where we can't do the ioremap().
76 */
77struct acpi_ioremap {
78 struct list_head list;
79 void __iomem *virt;
80 acpi_physical_address phys;
81 acpi_size size;
82 union {
83 unsigned long refcount;
84 struct rcu_work rwork;
85 } track;
86};
87
88static LIST_HEAD(acpi_ioremaps);
89static DEFINE_MUTEX(acpi_ioremap_lock);
90#define acpi_ioremap_lock_held() lock_is_held(&acpi_ioremap_lock.dep_map)
91
92static void __init acpi_request_region (struct acpi_generic_address *gas,
93 unsigned int length, char *desc)
94{
95 u64 addr;
96
97 /* Handle possible alignment issues */
98 memcpy(&addr, &gas->address, sizeof(addr));
99 if (!addr || !length)
100 return;
101
102 /* Resources are never freed */
103 if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
104 request_region(addr, length, desc);
105 else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
106 request_mem_region(addr, length, desc);
107}
108
109static int __init acpi_reserve_resources(void)
110{
111 acpi_request_region(gas: &acpi_gbl_FADT.xpm1a_event_block, length: acpi_gbl_FADT.pm1_event_length,
112 desc: "ACPI PM1a_EVT_BLK");
113
114 acpi_request_region(gas: &acpi_gbl_FADT.xpm1b_event_block, length: acpi_gbl_FADT.pm1_event_length,
115 desc: "ACPI PM1b_EVT_BLK");
116
117 acpi_request_region(gas: &acpi_gbl_FADT.xpm1a_control_block, length: acpi_gbl_FADT.pm1_control_length,
118 desc: "ACPI PM1a_CNT_BLK");
119
120 acpi_request_region(gas: &acpi_gbl_FADT.xpm1b_control_block, length: acpi_gbl_FADT.pm1_control_length,
121 desc: "ACPI PM1b_CNT_BLK");
122
123 if (acpi_gbl_FADT.pm_timer_length == 4)
124 acpi_request_region(gas: &acpi_gbl_FADT.xpm_timer_block, length: 4, desc: "ACPI PM_TMR");
125
126 acpi_request_region(gas: &acpi_gbl_FADT.xpm2_control_block, length: acpi_gbl_FADT.pm2_control_length,
127 desc: "ACPI PM2_CNT_BLK");
128
129 /* Length of GPE blocks must be a non-negative multiple of 2 */
130
131 if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
132 acpi_request_region(gas: &acpi_gbl_FADT.xgpe0_block,
133 length: acpi_gbl_FADT.gpe0_block_length, desc: "ACPI GPE0_BLK");
134
135 if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
136 acpi_request_region(gas: &acpi_gbl_FADT.xgpe1_block,
137 length: acpi_gbl_FADT.gpe1_block_length, desc: "ACPI GPE1_BLK");
138
139 return 0;
140}
141fs_initcall_sync(acpi_reserve_resources);
142
143void acpi_os_printf(const char *fmt, ...)
144{
145 va_list args;
146 va_start(args, fmt);
147 acpi_os_vprintf(format: fmt, args);
148 va_end(args);
149}
150EXPORT_SYMBOL(acpi_os_printf);
151
152void __printf(1, 0) acpi_os_vprintf(const char *fmt, va_list args)
153{
154 static char buffer[512];
155
156 vsprintf(buf: buffer, fmt, args);
157
158#ifdef ENABLE_DEBUGGER
159 if (acpi_in_debugger) {
160 kdb_printf("%s", buffer);
161 } else {
162 if (printk_get_level(buffer))
163 printk("%s", buffer);
164 else
165 printk(KERN_CONT "%s", buffer);
166 }
167#else
168 if (acpi_debugger_write_log(msg: buffer) < 0) {
169 if (printk_get_level(buffer))
170 printk("%s", buffer);
171 else
172 printk(KERN_CONT "%s", buffer);
173 }
174#endif
175}
176
177#ifdef CONFIG_KEXEC
178static unsigned long acpi_rsdp;
179static int __init setup_acpi_rsdp(char *arg)
180{
181 return kstrtoul(s: arg, base: 16, res: &acpi_rsdp);
182}
183early_param("acpi_rsdp", setup_acpi_rsdp);
184#endif
185
186acpi_physical_address __init acpi_os_get_root_pointer(void)
187{
188 acpi_physical_address pa;
189
190#ifdef CONFIG_KEXEC
191 /*
192 * We may have been provided with an RSDP on the command line,
193 * but if a malicious user has done so they may be pointing us
194 * at modified ACPI tables that could alter kernel behaviour -
195 * so, we check the lockdown status before making use of
196 * it. If we trust it then also stash it in an architecture
197 * specific location (if appropriate) so it can be carried
198 * over further kexec()s.
199 */
200 if (acpi_rsdp && !security_locked_down(what: LOCKDOWN_ACPI_TABLES)) {
201 acpi_arch_set_root_pointer(addr: acpi_rsdp);
202 return acpi_rsdp;
203 }
204#endif
205 pa = acpi_arch_get_root_pointer();
206 if (pa)
207 return pa;
208
209 if (efi_enabled(EFI_CONFIG_TABLES)) {
210 if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
211 return efi.acpi20;
212 if (efi.acpi != EFI_INVALID_TABLE_ADDR)
213 return efi.acpi;
214 pr_err("System description tables not found\n");
215 } else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) {
216 acpi_find_root_pointer(rsdp_address: &pa);
217 }
218
219 return pa;
220}
221
222/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
223static struct acpi_ioremap *
224acpi_map_lookup(acpi_physical_address phys, acpi_size size)
225{
226 struct acpi_ioremap *map;
227
228 list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
229 if (map->phys <= phys &&
230 phys + size <= map->phys + map->size)
231 return map;
232
233 return NULL;
234}
235
236/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
237static void __iomem *
238acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
239{
240 struct acpi_ioremap *map;
241
242 map = acpi_map_lookup(phys, size);
243 if (map)
244 return map->virt + (phys - map->phys);
245
246 return NULL;
247}
248
249void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
250{
251 struct acpi_ioremap *map;
252 void __iomem *virt = NULL;
253
254 mutex_lock(&acpi_ioremap_lock);
255 map = acpi_map_lookup(phys, size);
256 if (map) {
257 virt = map->virt + (phys - map->phys);
258 map->track.refcount++;
259 }
260 mutex_unlock(lock: &acpi_ioremap_lock);
261 return virt;
262}
263EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
264
265/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
266static struct acpi_ioremap *
267acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
268{
269 struct acpi_ioremap *map;
270
271 list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
272 if (map->virt <= virt &&
273 virt + size <= map->virt + map->size)
274 return map;
275
276 return NULL;
277}
278
279#if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
280/* ioremap will take care of cache attributes */
281#define should_use_kmap(pfn) 0
282#else
283#define should_use_kmap(pfn) page_is_ram(pfn)
284#endif
285
286static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
287{
288 unsigned long pfn;
289
290 pfn = pg_off >> PAGE_SHIFT;
291 if (should_use_kmap(pfn)) {
292 if (pg_sz > PAGE_SIZE)
293 return NULL;
294 return (void __iomem __force *)kmap(pfn_to_page(pfn));
295 } else
296 return acpi_os_ioremap(phys: pg_off, size: pg_sz);
297}
298
299static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
300{
301 unsigned long pfn;
302
303 pfn = pg_off >> PAGE_SHIFT;
304 if (should_use_kmap(pfn))
305 kunmap(pfn_to_page(pfn));
306 else
307 iounmap(addr: vaddr);
308}
309
310/**
311 * acpi_os_map_iomem - Get a virtual address for a given physical address range.
312 * @phys: Start of the physical address range to map.
313 * @size: Size of the physical address range to map.
314 *
315 * Look up the given physical address range in the list of existing ACPI memory
316 * mappings. If found, get a reference to it and return a pointer to it (its
317 * virtual address). If not found, map it, add it to that list and return a
318 * pointer to it.
319 *
320 * During early init (when acpi_permanent_mmap has not been set yet) this
321 * routine simply calls __acpi_map_table() to get the job done.
322 */
323void __iomem __ref
324*acpi_os_map_iomem(acpi_physical_address phys, acpi_size size)
325{
326 struct acpi_ioremap *map;
327 void __iomem *virt;
328 acpi_physical_address pg_off;
329 acpi_size pg_sz;
330
331 if (phys > ULONG_MAX) {
332 pr_err("Cannot map memory that high: 0x%llx\n", phys);
333 return NULL;
334 }
335
336 if (!acpi_permanent_mmap)
337 return __acpi_map_table(phys: (unsigned long)phys, size);
338
339 mutex_lock(&acpi_ioremap_lock);
340 /* Check if there's a suitable mapping already. */
341 map = acpi_map_lookup(phys, size);
342 if (map) {
343 map->track.refcount++;
344 goto out;
345 }
346
347 map = kzalloc(size: sizeof(*map), GFP_KERNEL);
348 if (!map) {
349 mutex_unlock(lock: &acpi_ioremap_lock);
350 return NULL;
351 }
352
353 pg_off = round_down(phys, PAGE_SIZE);
354 pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
355 virt = acpi_map(pg_off: phys, pg_sz: size);
356 if (!virt) {
357 mutex_unlock(lock: &acpi_ioremap_lock);
358 kfree(objp: map);
359 return NULL;
360 }
361
362 INIT_LIST_HEAD(list: &map->list);
363 map->virt = (void __iomem __force *)((unsigned long)virt & PAGE_MASK);
364 map->phys = pg_off;
365 map->size = pg_sz;
366 map->track.refcount = 1;
367
368 list_add_tail_rcu(new: &map->list, head: &acpi_ioremaps);
369
370out:
371 mutex_unlock(lock: &acpi_ioremap_lock);
372 return map->virt + (phys - map->phys);
373}
374EXPORT_SYMBOL_GPL(acpi_os_map_iomem);
375
376void *__ref acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
377{
378 return (void *)acpi_os_map_iomem(phys, size);
379}
380EXPORT_SYMBOL_GPL(acpi_os_map_memory);
381
382static void acpi_os_map_remove(struct work_struct *work)
383{
384 struct acpi_ioremap *map = container_of(to_rcu_work(work),
385 struct acpi_ioremap,
386 track.rwork);
387
388 acpi_unmap(pg_off: map->phys, vaddr: map->virt);
389 kfree(objp: map);
390}
391
392/* Must be called with mutex_lock(&acpi_ioremap_lock) */
393static void acpi_os_drop_map_ref(struct acpi_ioremap *map)
394{
395 if (--map->track.refcount)
396 return;
397
398 list_del_rcu(entry: &map->list);
399
400 INIT_RCU_WORK(&map->track.rwork, acpi_os_map_remove);
401 queue_rcu_work(wq: system_wq, rwork: &map->track.rwork);
402}
403
404/**
405 * acpi_os_unmap_iomem - Drop a memory mapping reference.
406 * @virt: Start of the address range to drop a reference to.
407 * @size: Size of the address range to drop a reference to.
408 *
409 * Look up the given virtual address range in the list of existing ACPI memory
410 * mappings, drop a reference to it and if there are no more active references
411 * to it, queue it up for later removal.
412 *
413 * During early init (when acpi_permanent_mmap has not been set yet) this
414 * routine simply calls __acpi_unmap_table() to get the job done. Since
415 * __acpi_unmap_table() is an __init function, the __ref annotation is needed
416 * here.
417 */
418void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size)
419{
420 struct acpi_ioremap *map;
421
422 if (!acpi_permanent_mmap) {
423 __acpi_unmap_table(map: virt, size);
424 return;
425 }
426
427 mutex_lock(&acpi_ioremap_lock);
428
429 map = acpi_map_lookup_virt(virt, size);
430 if (!map) {
431 mutex_unlock(lock: &acpi_ioremap_lock);
432 WARN(true, "ACPI: %s: bad address %p\n", __func__, virt);
433 return;
434 }
435 acpi_os_drop_map_ref(map);
436
437 mutex_unlock(lock: &acpi_ioremap_lock);
438}
439EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem);
440
441/**
442 * acpi_os_unmap_memory - Drop a memory mapping reference.
443 * @virt: Start of the address range to drop a reference to.
444 * @size: Size of the address range to drop a reference to.
445 */
446void __ref acpi_os_unmap_memory(void *virt, acpi_size size)
447{
448 acpi_os_unmap_iomem((void __iomem *)virt, size);
449}
450EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
451
452void __iomem *acpi_os_map_generic_address(struct acpi_generic_address *gas)
453{
454 u64 addr;
455
456 if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
457 return NULL;
458
459 /* Handle possible alignment issues */
460 memcpy(&addr, &gas->address, sizeof(addr));
461 if (!addr || !gas->bit_width)
462 return NULL;
463
464 return acpi_os_map_iomem(addr, gas->bit_width / 8);
465}
466EXPORT_SYMBOL(acpi_os_map_generic_address);
467
468void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
469{
470 u64 addr;
471 struct acpi_ioremap *map;
472
473 if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
474 return;
475
476 /* Handle possible alignment issues */
477 memcpy(&addr, &gas->address, sizeof(addr));
478 if (!addr || !gas->bit_width)
479 return;
480
481 mutex_lock(&acpi_ioremap_lock);
482
483 map = acpi_map_lookup(phys: addr, size: gas->bit_width / 8);
484 if (!map) {
485 mutex_unlock(lock: &acpi_ioremap_lock);
486 return;
487 }
488 acpi_os_drop_map_ref(map);
489
490 mutex_unlock(lock: &acpi_ioremap_lock);
491}
492EXPORT_SYMBOL(acpi_os_unmap_generic_address);
493
494#ifdef ACPI_FUTURE_USAGE
495acpi_status
496acpi_os_get_physical_address(void *virt, acpi_physical_address *phys)
497{
498 if (!phys || !virt)
499 return AE_BAD_PARAMETER;
500
501 *phys = virt_to_phys(virt);
502
503 return AE_OK;
504}
505#endif
506
507#ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE
508static bool acpi_rev_override;
509
510int __init acpi_rev_override_setup(char *str)
511{
512 acpi_rev_override = true;
513 return 1;
514}
515__setup("acpi_rev_override", acpi_rev_override_setup);
516#else
517#define acpi_rev_override false
518#endif
519
520#define ACPI_MAX_OVERRIDE_LEN 100
521
522static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
523
524acpi_status
525acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
526 acpi_string *new_val)
527{
528 if (!init_val || !new_val)
529 return AE_BAD_PARAMETER;
530
531 *new_val = NULL;
532 if (!memcmp(p: init_val->name, q: "_OS_", size: 4) && strlen(acpi_os_name)) {
533 pr_info("Overriding _OS definition to '%s'\n", acpi_os_name);
534 *new_val = acpi_os_name;
535 }
536
537 if (!memcmp(p: init_val->name, q: "_REV", size: 4) && acpi_rev_override) {
538 pr_info("Overriding _REV return value to 5\n");
539 *new_val = (char *)5;
540 }
541
542 return AE_OK;
543}
544
545static irqreturn_t acpi_irq(int irq, void *dev_id)
546{
547 u32 handled;
548
549 handled = (*acpi_irq_handler) (acpi_irq_context);
550
551 if (handled) {
552 acpi_irq_handled++;
553 return IRQ_HANDLED;
554 } else {
555 acpi_irq_not_handled++;
556 return IRQ_NONE;
557 }
558}
559
560acpi_status
561acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
562 void *context)
563{
564 unsigned int irq;
565
566 acpi_irq_stats_init();
567
568 /*
569 * ACPI interrupts different from the SCI in our copy of the FADT are
570 * not supported.
571 */
572 if (gsi != acpi_gbl_FADT.sci_interrupt)
573 return AE_BAD_PARAMETER;
574
575 if (acpi_irq_handler)
576 return AE_ALREADY_ACQUIRED;
577
578 if (acpi_gsi_to_irq(gsi, irq: &irq) < 0) {
579 pr_err("SCI (ACPI GSI %d) not registered\n", gsi);
580 return AE_OK;
581 }
582
583 acpi_irq_handler = handler;
584 acpi_irq_context = context;
585 if (request_irq(irq, handler: acpi_irq, IRQF_SHARED, name: "acpi", dev: acpi_irq)) {
586 pr_err("SCI (IRQ%d) allocation failed\n", irq);
587 acpi_irq_handler = NULL;
588 return AE_NOT_ACQUIRED;
589 }
590 acpi_sci_irq = irq;
591
592 return AE_OK;
593}
594
595acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler)
596{
597 if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid())
598 return AE_BAD_PARAMETER;
599
600 free_irq(acpi_sci_irq, acpi_irq);
601 acpi_irq_handler = NULL;
602 acpi_sci_irq = INVALID_ACPI_IRQ;
603
604 return AE_OK;
605}
606
607/*
608 * Running in interpreter thread context, safe to sleep
609 */
610
611void acpi_os_sleep(u64 ms)
612{
613 msleep(msecs: ms);
614}
615
616void acpi_os_stall(u32 us)
617{
618 while (us) {
619 u32 delay = 1000;
620
621 if (delay > us)
622 delay = us;
623 udelay(delay);
624 touch_nmi_watchdog();
625 us -= delay;
626 }
627}
628
629/*
630 * Support ACPI 3.0 AML Timer operand. Returns a 64-bit free-running,
631 * monotonically increasing timer with 100ns granularity. Do not use
632 * ktime_get() to implement this function because this function may get
633 * called after timekeeping has been suspended. Note: calling this function
634 * after timekeeping has been suspended may lead to unexpected results
635 * because when timekeeping is suspended the jiffies counter is not
636 * incremented. See also timekeeping_suspend().
637 */
638u64 acpi_os_get_timer(void)
639{
640 return (get_jiffies_64() - INITIAL_JIFFIES) *
641 (ACPI_100NSEC_PER_SEC / HZ);
642}
643
644acpi_status acpi_os_read_port(acpi_io_address port, u32 *value, u32 width)
645{
646 u32 dummy;
647
648 if (value)
649 *value = 0;
650 else
651 value = &dummy;
652
653 if (width <= 8) {
654 *value = inb(port);
655 } else if (width <= 16) {
656 *value = inw(port);
657 } else if (width <= 32) {
658 *value = inl(port);
659 } else {
660 pr_debug("%s: Access width %d not supported\n", __func__, width);
661 return AE_BAD_PARAMETER;
662 }
663
664 return AE_OK;
665}
666
667EXPORT_SYMBOL(acpi_os_read_port);
668
669acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
670{
671 if (width <= 8) {
672 outb(value, port);
673 } else if (width <= 16) {
674 outw(value, port);
675 } else if (width <= 32) {
676 outl(value, port);
677 } else {
678 pr_debug("%s: Access width %d not supported\n", __func__, width);
679 return AE_BAD_PARAMETER;
680 }
681
682 return AE_OK;
683}
684
685EXPORT_SYMBOL(acpi_os_write_port);
686
687int acpi_os_read_iomem(void __iomem *virt_addr, u64 *value, u32 width)
688{
689
690 switch (width) {
691 case 8:
692 *(u8 *) value = readb(addr: virt_addr);
693 break;
694 case 16:
695 *(u16 *) value = readw(addr: virt_addr);
696 break;
697 case 32:
698 *(u32 *) value = readl(addr: virt_addr);
699 break;
700 case 64:
701 *(u64 *) value = readq(addr: virt_addr);
702 break;
703 default:
704 return -EINVAL;
705 }
706
707 return 0;
708}
709
710acpi_status
711acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
712{
713 void __iomem *virt_addr;
714 unsigned int size = width / 8;
715 bool unmap = false;
716 u64 dummy;
717 int error;
718
719 rcu_read_lock();
720 virt_addr = acpi_map_vaddr_lookup(phys: phys_addr, size);
721 if (!virt_addr) {
722 rcu_read_unlock();
723 virt_addr = acpi_os_ioremap(phys: phys_addr, size);
724 if (!virt_addr)
725 return AE_BAD_ADDRESS;
726 unmap = true;
727 }
728
729 if (!value)
730 value = &dummy;
731
732 error = acpi_os_read_iomem(virt_addr, value, width);
733 BUG_ON(error);
734
735 if (unmap)
736 iounmap(addr: virt_addr);
737 else
738 rcu_read_unlock();
739
740 return AE_OK;
741}
742
743acpi_status
744acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
745{
746 void __iomem *virt_addr;
747 unsigned int size = width / 8;
748 bool unmap = false;
749
750 rcu_read_lock();
751 virt_addr = acpi_map_vaddr_lookup(phys: phys_addr, size);
752 if (!virt_addr) {
753 rcu_read_unlock();
754 virt_addr = acpi_os_ioremap(phys: phys_addr, size);
755 if (!virt_addr)
756 return AE_BAD_ADDRESS;
757 unmap = true;
758 }
759
760 switch (width) {
761 case 8:
762 writeb(val: value, addr: virt_addr);
763 break;
764 case 16:
765 writew(val: value, addr: virt_addr);
766 break;
767 case 32:
768 writel(val: value, addr: virt_addr);
769 break;
770 case 64:
771 writeq(val: value, addr: virt_addr);
772 break;
773 default:
774 BUG();
775 }
776
777 if (unmap)
778 iounmap(addr: virt_addr);
779 else
780 rcu_read_unlock();
781
782 return AE_OK;
783}
784
785#ifdef CONFIG_PCI
786acpi_status
787acpi_os_read_pci_configuration(struct acpi_pci_id *pci_id, u32 reg,
788 u64 *value, u32 width)
789{
790 int result, size;
791 u32 value32;
792
793 if (!value)
794 return AE_BAD_PARAMETER;
795
796 switch (width) {
797 case 8:
798 size = 1;
799 break;
800 case 16:
801 size = 2;
802 break;
803 case 32:
804 size = 4;
805 break;
806 default:
807 return AE_ERROR;
808 }
809
810 result = raw_pci_read(domain: pci_id->segment, bus: pci_id->bus,
811 PCI_DEVFN(pci_id->device, pci_id->function),
812 reg, len: size, val: &value32);
813 *value = value32;
814
815 return (result ? AE_ERROR : AE_OK);
816}
817
818acpi_status
819acpi_os_write_pci_configuration(struct acpi_pci_id *pci_id, u32 reg,
820 u64 value, u32 width)
821{
822 int result, size;
823
824 switch (width) {
825 case 8:
826 size = 1;
827 break;
828 case 16:
829 size = 2;
830 break;
831 case 32:
832 size = 4;
833 break;
834 default:
835 return AE_ERROR;
836 }
837
838 result = raw_pci_write(domain: pci_id->segment, bus: pci_id->bus,
839 PCI_DEVFN(pci_id->device, pci_id->function),
840 reg, len: size, val: value);
841
842 return (result ? AE_ERROR : AE_OK);
843}
844#endif
845
846static void acpi_os_execute_deferred(struct work_struct *work)
847{
848 struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
849
850 dpc->function(dpc->context);
851 kfree(objp: dpc);
852}
853
854#ifdef CONFIG_ACPI_DEBUGGER
855static struct acpi_debugger acpi_debugger;
856static bool acpi_debugger_initialized;
857
858int acpi_register_debugger(struct module *owner,
859 const struct acpi_debugger_ops *ops)
860{
861 int ret = 0;
862
863 mutex_lock(&acpi_debugger.lock);
864 if (acpi_debugger.ops) {
865 ret = -EBUSY;
866 goto err_lock;
867 }
868
869 acpi_debugger.owner = owner;
870 acpi_debugger.ops = ops;
871
872err_lock:
873 mutex_unlock(lock: &acpi_debugger.lock);
874 return ret;
875}
876EXPORT_SYMBOL(acpi_register_debugger);
877
878void acpi_unregister_debugger(const struct acpi_debugger_ops *ops)
879{
880 mutex_lock(&acpi_debugger.lock);
881 if (ops == acpi_debugger.ops) {
882 acpi_debugger.ops = NULL;
883 acpi_debugger.owner = NULL;
884 }
885 mutex_unlock(lock: &acpi_debugger.lock);
886}
887EXPORT_SYMBOL(acpi_unregister_debugger);
888
889int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context)
890{
891 int ret;
892 int (*func)(acpi_osd_exec_callback, void *);
893 struct module *owner;
894
895 if (!acpi_debugger_initialized)
896 return -ENODEV;
897 mutex_lock(&acpi_debugger.lock);
898 if (!acpi_debugger.ops) {
899 ret = -ENODEV;
900 goto err_lock;
901 }
902 if (!try_module_get(module: acpi_debugger.owner)) {
903 ret = -ENODEV;
904 goto err_lock;
905 }
906 func = acpi_debugger.ops->create_thread;
907 owner = acpi_debugger.owner;
908 mutex_unlock(lock: &acpi_debugger.lock);
909
910 ret = func(function, context);
911
912 mutex_lock(&acpi_debugger.lock);
913 module_put(module: owner);
914err_lock:
915 mutex_unlock(lock: &acpi_debugger.lock);
916 return ret;
917}
918
919ssize_t acpi_debugger_write_log(const char *msg)
920{
921 ssize_t ret;
922 ssize_t (*func)(const char *);
923 struct module *owner;
924
925 if (!acpi_debugger_initialized)
926 return -ENODEV;
927 mutex_lock(&acpi_debugger.lock);
928 if (!acpi_debugger.ops) {
929 ret = -ENODEV;
930 goto err_lock;
931 }
932 if (!try_module_get(module: acpi_debugger.owner)) {
933 ret = -ENODEV;
934 goto err_lock;
935 }
936 func = acpi_debugger.ops->write_log;
937 owner = acpi_debugger.owner;
938 mutex_unlock(lock: &acpi_debugger.lock);
939
940 ret = func(msg);
941
942 mutex_lock(&acpi_debugger.lock);
943 module_put(module: owner);
944err_lock:
945 mutex_unlock(lock: &acpi_debugger.lock);
946 return ret;
947}
948
949ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length)
950{
951 ssize_t ret;
952 ssize_t (*func)(char *, size_t);
953 struct module *owner;
954
955 if (!acpi_debugger_initialized)
956 return -ENODEV;
957 mutex_lock(&acpi_debugger.lock);
958 if (!acpi_debugger.ops) {
959 ret = -ENODEV;
960 goto err_lock;
961 }
962 if (!try_module_get(module: acpi_debugger.owner)) {
963 ret = -ENODEV;
964 goto err_lock;
965 }
966 func = acpi_debugger.ops->read_cmd;
967 owner = acpi_debugger.owner;
968 mutex_unlock(lock: &acpi_debugger.lock);
969
970 ret = func(buffer, buffer_length);
971
972 mutex_lock(&acpi_debugger.lock);
973 module_put(module: owner);
974err_lock:
975 mutex_unlock(lock: &acpi_debugger.lock);
976 return ret;
977}
978
979int acpi_debugger_wait_command_ready(void)
980{
981 int ret;
982 int (*func)(bool, char *, size_t);
983 struct module *owner;
984
985 if (!acpi_debugger_initialized)
986 return -ENODEV;
987 mutex_lock(&acpi_debugger.lock);
988 if (!acpi_debugger.ops) {
989 ret = -ENODEV;
990 goto err_lock;
991 }
992 if (!try_module_get(module: acpi_debugger.owner)) {
993 ret = -ENODEV;
994 goto err_lock;
995 }
996 func = acpi_debugger.ops->wait_command_ready;
997 owner = acpi_debugger.owner;
998 mutex_unlock(lock: &acpi_debugger.lock);
999
1000 ret = func(acpi_gbl_method_executing,
1001 acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE);
1002
1003 mutex_lock(&acpi_debugger.lock);
1004 module_put(module: owner);
1005err_lock:
1006 mutex_unlock(lock: &acpi_debugger.lock);
1007 return ret;
1008}
1009
1010int acpi_debugger_notify_command_complete(void)
1011{
1012 int ret;
1013 int (*func)(void);
1014 struct module *owner;
1015
1016 if (!acpi_debugger_initialized)
1017 return -ENODEV;
1018 mutex_lock(&acpi_debugger.lock);
1019 if (!acpi_debugger.ops) {
1020 ret = -ENODEV;
1021 goto err_lock;
1022 }
1023 if (!try_module_get(module: acpi_debugger.owner)) {
1024 ret = -ENODEV;
1025 goto err_lock;
1026 }
1027 func = acpi_debugger.ops->notify_command_complete;
1028 owner = acpi_debugger.owner;
1029 mutex_unlock(lock: &acpi_debugger.lock);
1030
1031 ret = func();
1032
1033 mutex_lock(&acpi_debugger.lock);
1034 module_put(module: owner);
1035err_lock:
1036 mutex_unlock(lock: &acpi_debugger.lock);
1037 return ret;
1038}
1039
1040int __init acpi_debugger_init(void)
1041{
1042 mutex_init(&acpi_debugger.lock);
1043 acpi_debugger_initialized = true;
1044 return 0;
1045}
1046#endif
1047
1048/*******************************************************************************
1049 *
1050 * FUNCTION: acpi_os_execute
1051 *
1052 * PARAMETERS: Type - Type of the callback
1053 * Function - Function to be executed
1054 * Context - Function parameters
1055 *
1056 * RETURN: Status
1057 *
1058 * DESCRIPTION: Depending on type, either queues function for deferred execution or
1059 * immediately executes function on a separate thread.
1060 *
1061 ******************************************************************************/
1062
1063acpi_status acpi_os_execute(acpi_execute_type type,
1064 acpi_osd_exec_callback function, void *context)
1065{
1066 acpi_status status = AE_OK;
1067 struct acpi_os_dpc *dpc;
1068 struct workqueue_struct *queue;
1069 int ret;
1070
1071 ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1072 "Scheduling function [%p(%p)] for deferred execution.\n",
1073 function, context));
1074
1075 if (type == OSL_DEBUGGER_MAIN_THREAD) {
1076 ret = acpi_debugger_create_thread(function, context);
1077 if (ret) {
1078 pr_err("Kernel thread creation failed\n");
1079 status = AE_ERROR;
1080 }
1081 goto out_thread;
1082 }
1083
1084 /*
1085 * Allocate/initialize DPC structure. Note that this memory will be
1086 * freed by the callee. The kernel handles the work_struct list in a
1087 * way that allows us to also free its memory inside the callee.
1088 * Because we may want to schedule several tasks with different
1089 * parameters we can't use the approach some kernel code uses of
1090 * having a static work_struct.
1091 */
1092
1093 dpc = kzalloc(size: sizeof(struct acpi_os_dpc), GFP_ATOMIC);
1094 if (!dpc)
1095 return AE_NO_MEMORY;
1096
1097 dpc->function = function;
1098 dpc->context = context;
1099
1100 /*
1101 * To prevent lockdep from complaining unnecessarily, make sure that
1102 * there is a different static lockdep key for each workqueue by using
1103 * INIT_WORK() for each of them separately.
1104 */
1105 if (type == OSL_NOTIFY_HANDLER) {
1106 queue = kacpi_notify_wq;
1107 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1108 } else if (type == OSL_GPE_HANDLER) {
1109 queue = kacpid_wq;
1110 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1111 } else {
1112 pr_err("Unsupported os_execute type %d.\n", type);
1113 status = AE_ERROR;
1114 }
1115
1116 if (ACPI_FAILURE(status))
1117 goto err_workqueue;
1118
1119 /*
1120 * On some machines, a software-initiated SMI causes corruption unless
1121 * the SMI runs on CPU 0. An SMI can be initiated by any AML, but
1122 * typically it's done in GPE-related methods that are run via
1123 * workqueues, so we can avoid the known corruption cases by always
1124 * queueing on CPU 0.
1125 */
1126 ret = queue_work_on(cpu: 0, wq: queue, work: &dpc->work);
1127 if (!ret) {
1128 pr_err("Unable to queue work\n");
1129 status = AE_ERROR;
1130 }
1131err_workqueue:
1132 if (ACPI_FAILURE(status))
1133 kfree(objp: dpc);
1134out_thread:
1135 return status;
1136}
1137EXPORT_SYMBOL(acpi_os_execute);
1138
1139void acpi_os_wait_events_complete(void)
1140{
1141 /*
1142 * Make sure the GPE handler or the fixed event handler is not used
1143 * on another CPU after removal.
1144 */
1145 if (acpi_sci_irq_valid())
1146 synchronize_hardirq(irq: acpi_sci_irq);
1147 flush_workqueue(kacpid_wq);
1148 flush_workqueue(kacpi_notify_wq);
1149}
1150EXPORT_SYMBOL(acpi_os_wait_events_complete);
1151
1152struct acpi_hp_work {
1153 struct work_struct work;
1154 struct acpi_device *adev;
1155 u32 src;
1156};
1157
1158static void acpi_hotplug_work_fn(struct work_struct *work)
1159{
1160 struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work);
1161
1162 acpi_os_wait_events_complete();
1163 acpi_device_hotplug(adev: hpw->adev, src: hpw->src);
1164 kfree(objp: hpw);
1165}
1166
1167acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src)
1168{
1169 struct acpi_hp_work *hpw;
1170
1171 acpi_handle_debug(adev->handle,
1172 "Scheduling hotplug event %u for deferred handling\n",
1173 src);
1174
1175 hpw = kmalloc(size: sizeof(*hpw), GFP_KERNEL);
1176 if (!hpw)
1177 return AE_NO_MEMORY;
1178
1179 INIT_WORK(&hpw->work, acpi_hotplug_work_fn);
1180 hpw->adev = adev;
1181 hpw->src = src;
1182 /*
1183 * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because
1184 * the hotplug code may call driver .remove() functions, which may
1185 * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush
1186 * these workqueues.
1187 */
1188 if (!queue_work(wq: kacpi_hotplug_wq, work: &hpw->work)) {
1189 kfree(objp: hpw);
1190 return AE_ERROR;
1191 }
1192 return AE_OK;
1193}
1194
1195bool acpi_queue_hotplug_work(struct work_struct *work)
1196{
1197 return queue_work(wq: kacpi_hotplug_wq, work);
1198}
1199
1200acpi_status
1201acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle *handle)
1202{
1203 struct semaphore *sem = NULL;
1204
1205 sem = acpi_os_allocate_zeroed(size: sizeof(struct semaphore));
1206 if (!sem)
1207 return AE_NO_MEMORY;
1208
1209 sema_init(sem, val: initial_units);
1210
1211 *handle = (acpi_handle *) sem;
1212
1213 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1214 *handle, initial_units));
1215
1216 return AE_OK;
1217}
1218
1219/*
1220 * TODO: A better way to delete semaphores? Linux doesn't have a
1221 * 'delete_semaphore()' function -- may result in an invalid
1222 * pointer dereference for non-synchronized consumers. Should
1223 * we at least check for blocked threads and signal/cancel them?
1224 */
1225
1226acpi_status acpi_os_delete_semaphore(acpi_handle handle)
1227{
1228 struct semaphore *sem = (struct semaphore *)handle;
1229
1230 if (!sem)
1231 return AE_BAD_PARAMETER;
1232
1233 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1234
1235 BUG_ON(!list_empty(&sem->wait_list));
1236 kfree(objp: sem);
1237 sem = NULL;
1238
1239 return AE_OK;
1240}
1241
1242/*
1243 * TODO: Support for units > 1?
1244 */
1245acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
1246{
1247 acpi_status status = AE_OK;
1248 struct semaphore *sem = (struct semaphore *)handle;
1249 long jiffies;
1250 int ret = 0;
1251
1252 if (!acpi_os_initialized)
1253 return AE_OK;
1254
1255 if (!sem || (units < 1))
1256 return AE_BAD_PARAMETER;
1257
1258 if (units > 1)
1259 return AE_SUPPORT;
1260
1261 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1262 handle, units, timeout));
1263
1264 if (timeout == ACPI_WAIT_FOREVER)
1265 jiffies = MAX_SCHEDULE_TIMEOUT;
1266 else
1267 jiffies = msecs_to_jiffies(m: timeout);
1268
1269 ret = down_timeout(sem, jiffies);
1270 if (ret)
1271 status = AE_TIME;
1272
1273 if (ACPI_FAILURE(status)) {
1274 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1275 "Failed to acquire semaphore[%p|%d|%d], %s",
1276 handle, units, timeout,
1277 acpi_format_exception(status)));
1278 } else {
1279 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1280 "Acquired semaphore[%p|%d|%d]", handle,
1281 units, timeout));
1282 }
1283
1284 return status;
1285}
1286
1287/*
1288 * TODO: Support for units > 1?
1289 */
1290acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1291{
1292 struct semaphore *sem = (struct semaphore *)handle;
1293
1294 if (!acpi_os_initialized)
1295 return AE_OK;
1296
1297 if (!sem || (units < 1))
1298 return AE_BAD_PARAMETER;
1299
1300 if (units > 1)
1301 return AE_SUPPORT;
1302
1303 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1304 units));
1305
1306 up(sem);
1307
1308 return AE_OK;
1309}
1310
1311acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read)
1312{
1313#ifdef ENABLE_DEBUGGER
1314 if (acpi_in_debugger) {
1315 u32 chars;
1316
1317 kdb_read(buffer, buffer_length);
1318
1319 /* remove the CR kdb includes */
1320 chars = strlen(buffer) - 1;
1321 buffer[chars] = '\0';
1322 }
1323#else
1324 int ret;
1325
1326 ret = acpi_debugger_read_cmd(buffer, buffer_length);
1327 if (ret < 0)
1328 return AE_ERROR;
1329 if (bytes_read)
1330 *bytes_read = ret;
1331#endif
1332
1333 return AE_OK;
1334}
1335EXPORT_SYMBOL(acpi_os_get_line);
1336
1337acpi_status acpi_os_wait_command_ready(void)
1338{
1339 int ret;
1340
1341 ret = acpi_debugger_wait_command_ready();
1342 if (ret < 0)
1343 return AE_ERROR;
1344 return AE_OK;
1345}
1346
1347acpi_status acpi_os_notify_command_complete(void)
1348{
1349 int ret;
1350
1351 ret = acpi_debugger_notify_command_complete();
1352 if (ret < 0)
1353 return AE_ERROR;
1354 return AE_OK;
1355}
1356
1357acpi_status acpi_os_signal(u32 function, void *info)
1358{
1359 switch (function) {
1360 case ACPI_SIGNAL_FATAL:
1361 pr_err("Fatal opcode executed\n");
1362 break;
1363 case ACPI_SIGNAL_BREAKPOINT:
1364 /*
1365 * AML Breakpoint
1366 * ACPI spec. says to treat it as a NOP unless
1367 * you are debugging. So if/when we integrate
1368 * AML debugger into the kernel debugger its
1369 * hook will go here. But until then it is
1370 * not useful to print anything on breakpoints.
1371 */
1372 break;
1373 default:
1374 break;
1375 }
1376
1377 return AE_OK;
1378}
1379
1380static int __init acpi_os_name_setup(char *str)
1381{
1382 char *p = acpi_os_name;
1383 int count = ACPI_MAX_OVERRIDE_LEN - 1;
1384
1385 if (!str || !*str)
1386 return 0;
1387
1388 for (; count-- && *str; str++) {
1389 if (isalnum(*str) || *str == ' ' || *str == ':')
1390 *p++ = *str;
1391 else if (*str == '\'' || *str == '"')
1392 continue;
1393 else
1394 break;
1395 }
1396 *p = 0;
1397
1398 return 1;
1399
1400}
1401
1402__setup("acpi_os_name=", acpi_os_name_setup);
1403
1404/*
1405 * Disable the auto-serialization of named objects creation methods.
1406 *
1407 * This feature is enabled by default. It marks the AML control methods
1408 * that contain the opcodes to create named objects as "Serialized".
1409 */
1410static int __init acpi_no_auto_serialize_setup(char *str)
1411{
1412 acpi_gbl_auto_serialize_methods = FALSE;
1413 pr_info("Auto-serialization disabled\n");
1414
1415 return 1;
1416}
1417
1418__setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup);
1419
1420/* Check of resource interference between native drivers and ACPI
1421 * OperationRegions (SystemIO and System Memory only).
1422 * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1423 * in arbitrary AML code and can interfere with legacy drivers.
1424 * acpi_enforce_resources= can be set to:
1425 *
1426 * - strict (default) (2)
1427 * -> further driver trying to access the resources will not load
1428 * - lax (1)
1429 * -> further driver trying to access the resources will load, but you
1430 * get a system message that something might go wrong...
1431 *
1432 * - no (0)
1433 * -> ACPI Operation Region resources will not be registered
1434 *
1435 */
1436#define ENFORCE_RESOURCES_STRICT 2
1437#define ENFORCE_RESOURCES_LAX 1
1438#define ENFORCE_RESOURCES_NO 0
1439
1440static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1441
1442static int __init acpi_enforce_resources_setup(char *str)
1443{
1444 if (str == NULL || *str == '\0')
1445 return 0;
1446
1447 if (!strcmp("strict", str))
1448 acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1449 else if (!strcmp("lax", str))
1450 acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1451 else if (!strcmp("no", str))
1452 acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1453
1454 return 1;
1455}
1456
1457__setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1458
1459/* Check for resource conflicts between ACPI OperationRegions and native
1460 * drivers */
1461int acpi_check_resource_conflict(const struct resource *res)
1462{
1463 acpi_adr_space_type space_id;
1464
1465 if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1466 return 0;
1467
1468 if (res->flags & IORESOURCE_IO)
1469 space_id = ACPI_ADR_SPACE_SYSTEM_IO;
1470 else if (res->flags & IORESOURCE_MEM)
1471 space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
1472 else
1473 return 0;
1474
1475 if (!acpi_check_address_range(space_id, address: res->start, length: resource_size(res), warn: 1))
1476 return 0;
1477
1478 pr_info("Resource conflict; ACPI support missing from driver?\n");
1479
1480 if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1481 return -EBUSY;
1482
1483 if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1484 pr_notice("Resource conflict: System may be unstable or behave erratically\n");
1485
1486 return 0;
1487}
1488EXPORT_SYMBOL(acpi_check_resource_conflict);
1489
1490int acpi_check_region(resource_size_t start, resource_size_t n,
1491 const char *name)
1492{
1493 struct resource res = DEFINE_RES_IO_NAMED(start, n, name);
1494
1495 return acpi_check_resource_conflict(&res);
1496}
1497EXPORT_SYMBOL(acpi_check_region);
1498
1499/*
1500 * Let drivers know whether the resource checks are effective
1501 */
1502int acpi_resources_are_enforced(void)
1503{
1504 return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1505}
1506EXPORT_SYMBOL(acpi_resources_are_enforced);
1507
1508/*
1509 * Deallocate the memory for a spinlock.
1510 */
1511void acpi_os_delete_lock(acpi_spinlock handle)
1512{
1513 ACPI_FREE(handle);
1514}
1515
1516/*
1517 * Acquire a spinlock.
1518 *
1519 * handle is a pointer to the spinlock_t.
1520 */
1521
1522acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1523 __acquires(lockp)
1524{
1525 acpi_cpu_flags flags;
1526
1527 spin_lock_irqsave(lockp, flags);
1528 return flags;
1529}
1530
1531/*
1532 * Release a spinlock. See above.
1533 */
1534
1535void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
1536 __releases(lockp)
1537{
1538 spin_unlock_irqrestore(lock: lockp, flags);
1539}
1540
1541#ifndef ACPI_USE_LOCAL_CACHE
1542
1543/*******************************************************************************
1544 *
1545 * FUNCTION: acpi_os_create_cache
1546 *
1547 * PARAMETERS: name - Ascii name for the cache
1548 * size - Size of each cached object
1549 * depth - Maximum depth of the cache (in objects) <ignored>
1550 * cache - Where the new cache object is returned
1551 *
1552 * RETURN: status
1553 *
1554 * DESCRIPTION: Create a cache object
1555 *
1556 ******************************************************************************/
1557
1558acpi_status
1559acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t **cache)
1560{
1561 *cache = kmem_cache_create(name, size, align: 0, flags: 0, NULL);
1562 if (*cache == NULL)
1563 return AE_ERROR;
1564 else
1565 return AE_OK;
1566}
1567
1568/*******************************************************************************
1569 *
1570 * FUNCTION: acpi_os_purge_cache
1571 *
1572 * PARAMETERS: Cache - Handle to cache object
1573 *
1574 * RETURN: Status
1575 *
1576 * DESCRIPTION: Free all objects within the requested cache.
1577 *
1578 ******************************************************************************/
1579
1580acpi_status acpi_os_purge_cache(acpi_cache_t *cache)
1581{
1582 kmem_cache_shrink(s: cache);
1583 return AE_OK;
1584}
1585
1586/*******************************************************************************
1587 *
1588 * FUNCTION: acpi_os_delete_cache
1589 *
1590 * PARAMETERS: Cache - Handle to cache object
1591 *
1592 * RETURN: Status
1593 *
1594 * DESCRIPTION: Free all objects within the requested cache and delete the
1595 * cache object.
1596 *
1597 ******************************************************************************/
1598
1599acpi_status acpi_os_delete_cache(acpi_cache_t *cache)
1600{
1601 kmem_cache_destroy(s: cache);
1602 return AE_OK;
1603}
1604
1605/*******************************************************************************
1606 *
1607 * FUNCTION: acpi_os_release_object
1608 *
1609 * PARAMETERS: Cache - Handle to cache object
1610 * Object - The object to be released
1611 *
1612 * RETURN: None
1613 *
1614 * DESCRIPTION: Release an object to the specified cache. If cache is full,
1615 * the object is deleted.
1616 *
1617 ******************************************************************************/
1618
1619acpi_status acpi_os_release_object(acpi_cache_t *cache, void *object)
1620{
1621 kmem_cache_free(s: cache, objp: object);
1622 return AE_OK;
1623}
1624#endif
1625
1626static int __init acpi_no_static_ssdt_setup(char *s)
1627{
1628 acpi_gbl_disable_ssdt_table_install = TRUE;
1629 pr_info("Static SSDT installation disabled\n");
1630
1631 return 0;
1632}
1633
1634early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup);
1635
1636static int __init acpi_disable_return_repair(char *s)
1637{
1638 pr_notice("Predefined validation mechanism disabled\n");
1639 acpi_gbl_disable_auto_repair = TRUE;
1640
1641 return 1;
1642}
1643
1644__setup("acpica_no_return_repair", acpi_disable_return_repair);
1645
1646acpi_status __init acpi_os_initialize(void)
1647{
1648 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1649 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1650
1651 acpi_gbl_xgpe0_block_logical_address =
1652 (unsigned long)acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1653 acpi_gbl_xgpe1_block_logical_address =
1654 (unsigned long)acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1655
1656 if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) {
1657 /*
1658 * Use acpi_os_map_generic_address to pre-map the reset
1659 * register if it's in system memory.
1660 */
1661 void *rv;
1662
1663 rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register);
1664 pr_debug("%s: Reset register mapping %s\n", __func__,
1665 rv ? "successful" : "failed");
1666 }
1667 acpi_os_initialized = true;
1668
1669 return AE_OK;
1670}
1671
1672acpi_status __init acpi_os_initialize1(void)
1673{
1674 kacpid_wq = alloc_workqueue(fmt: "kacpid", flags: 0, max_active: 1);
1675 kacpi_notify_wq = alloc_workqueue(fmt: "kacpi_notify", flags: 0, max_active: 1);
1676 kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0);
1677 BUG_ON(!kacpid_wq);
1678 BUG_ON(!kacpi_notify_wq);
1679 BUG_ON(!kacpi_hotplug_wq);
1680 acpi_osi_init();
1681 return AE_OK;
1682}
1683
1684acpi_status acpi_os_terminate(void)
1685{
1686 if (acpi_irq_handler) {
1687 acpi_os_remove_interrupt_handler(gsi: acpi_gbl_FADT.sci_interrupt,
1688 handler: acpi_irq_handler);
1689 }
1690
1691 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1692 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1693 acpi_gbl_xgpe0_block_logical_address = 0UL;
1694 acpi_gbl_xgpe1_block_logical_address = 0UL;
1695
1696 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1697 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1698
1699 if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER)
1700 acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register);
1701
1702 destroy_workqueue(wq: kacpid_wq);
1703 destroy_workqueue(wq: kacpi_notify_wq);
1704 destroy_workqueue(wq: kacpi_hotplug_wq);
1705
1706 return AE_OK;
1707}
1708
1709acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
1710 u32 pm1b_control)
1711{
1712 int rc = 0;
1713
1714 if (__acpi_os_prepare_sleep)
1715 rc = __acpi_os_prepare_sleep(sleep_state,
1716 pm1a_control, pm1b_control);
1717 if (rc < 0)
1718 return AE_ERROR;
1719 else if (rc > 0)
1720 return AE_CTRL_TERMINATE;
1721
1722 return AE_OK;
1723}
1724
1725void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
1726 u32 pm1a_ctrl, u32 pm1b_ctrl))
1727{
1728 __acpi_os_prepare_sleep = func;
1729}
1730
1731#if (ACPI_REDUCED_HARDWARE)
1732acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1733 u32 val_b)
1734{
1735 int rc = 0;
1736
1737 if (__acpi_os_prepare_extended_sleep)
1738 rc = __acpi_os_prepare_extended_sleep(sleep_state,
1739 val_a, val_b);
1740 if (rc < 0)
1741 return AE_ERROR;
1742 else if (rc > 0)
1743 return AE_CTRL_TERMINATE;
1744
1745 return AE_OK;
1746}
1747#else
1748acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1749 u32 val_b)
1750{
1751 return AE_OK;
1752}
1753#endif
1754
1755void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state,
1756 u32 val_a, u32 val_b))
1757{
1758 __acpi_os_prepare_extended_sleep = func;
1759}
1760
1761acpi_status acpi_os_enter_sleep(u8 sleep_state,
1762 u32 reg_a_value, u32 reg_b_value)
1763{
1764 acpi_status status;
1765
1766 if (acpi_gbl_reduced_hardware)
1767 status = acpi_os_prepare_extended_sleep(sleep_state,
1768 val_a: reg_a_value,
1769 val_b: reg_b_value);
1770 else
1771 status = acpi_os_prepare_sleep(sleep_state,
1772 pm1a_control: reg_a_value, pm1b_control: reg_b_value);
1773 return status;
1774}
1775

source code of linux/drivers/acpi/osl.c