1/* lanai.c -- Copyright 1999-2003 by Mitchell Blank Jr <mitch@sfgoth.com>
2 *
3 * This program is free software; you can redistribute it and/or
4 * modify it under the terms of the GNU General Public License
5 * as published by the Free Software Foundation; either version
6 * 2 of the License, or (at your option) any later version.
7 *
8 * This driver supports ATM cards based on the Efficient "Lanai"
9 * chipset such as the Speedstream 3010 and the ENI-25p. The
10 * Speedstream 3060 is currently not supported since we don't
11 * have the code to drive the on-board Alcatel DSL chipset (yet).
12 *
13 * Thanks to Efficient for supporting this project with hardware,
14 * documentation, and by answering my questions.
15 *
16 * Things not working yet:
17 *
18 * o We don't support the Speedstream 3060 yet - this card has
19 * an on-board DSL modem chip by Alcatel and the driver will
20 * need some extra code added to handle it
21 *
22 * o Note that due to limitations of the Lanai only one VCC can be
23 * in CBR at once
24 *
25 * o We don't currently parse the EEPROM at all. The code is all
26 * there as per the spec, but it doesn't actually work. I think
27 * there may be some issues with the docs. Anyway, do NOT
28 * enable it yet - bugs in that code may actually damage your
29 * hardware! Because of this you should hardware an ESI before
30 * trying to use this in a LANE or MPOA environment.
31 *
32 * o AAL0 is stubbed in but the actual rx/tx path isn't written yet:
33 * vcc_tx_aal0() needs to send or queue a SKB
34 * vcc_tx_unqueue_aal0() needs to attempt to send queued SKBs
35 * vcc_rx_aal0() needs to handle AAL0 interrupts
36 * This isn't too much work - I just wanted to get other things
37 * done first.
38 *
39 * o lanai_change_qos() isn't written yet
40 *
41 * o There aren't any ioctl's yet -- I'd like to eventually support
42 * setting loopback and LED modes that way.
43 *
44 * o If the segmentation engine or DMA gets shut down we should restart
45 * card as per section 17.0i. (see lanai_reset)
46 *
47 * o setsockopt(SO_CIRANGE) isn't done (although despite what the
48 * API says it isn't exactly commonly implemented)
49 */
50
51/* Version history:
52 * v.1.00 -- 26-JUL-2003 -- PCI/DMA updates
53 * v.0.02 -- 11-JAN-2000 -- Endian fixes
54 * v.0.01 -- 30-NOV-1999 -- Initial release
55 */
56
57#include <linux/module.h>
58#include <linux/slab.h>
59#include <linux/mm.h>
60#include <linux/atmdev.h>
61#include <asm/io.h>
62#include <asm/byteorder.h>
63#include <linux/spinlock.h>
64#include <linux/pci.h>
65#include <linux/dma-mapping.h>
66#include <linux/init.h>
67#include <linux/delay.h>
68#include <linux/interrupt.h>
69
70/* -------------------- TUNABLE PARAMATERS: */
71
72/*
73 * Maximum number of VCIs per card. Setting it lower could theoretically
74 * save some memory, but since we allocate our vcc list with get_free_pages,
75 * it's not really likely for most architectures
76 */
77#define NUM_VCI (1024)
78
79/*
80 * Enable extra debugging
81 */
82#define DEBUG
83/*
84 * Debug _all_ register operations with card, except the memory test.
85 * Also disables the timed poll to prevent extra chattiness. This
86 * isn't for normal use
87 */
88#undef DEBUG_RW
89
90/*
91 * The programming guide specifies a full test of the on-board SRAM
92 * at initialization time. Undefine to remove this
93 */
94#define FULL_MEMORY_TEST
95
96/*
97 * This is the number of (4 byte) service entries that we will
98 * try to allocate at startup. Note that we will end up with
99 * one PAGE_SIZE's worth regardless of what this is set to
100 */
101#define SERVICE_ENTRIES (1024)
102/* TODO: make above a module load-time option */
103
104/*
105 * We normally read the onboard EEPROM in order to discover our MAC
106 * address. Undefine to _not_ do this
107 */
108/* #define READ_EEPROM */ /* ***DONT ENABLE YET*** */
109/* TODO: make above a module load-time option (also) */
110
111/*
112 * Depth of TX fifo (in 128 byte units; range 2-31)
113 * Smaller numbers are better for network latency
114 * Larger numbers are better for PCI latency
115 * I'm really sure where the best tradeoff is, but the BSD driver uses
116 * 7 and it seems to work ok.
117 */
118#define TX_FIFO_DEPTH (7)
119/* TODO: make above a module load-time option */
120
121/*
122 * How often (in jiffies) we will try to unstick stuck connections -
123 * shouldn't need to happen much
124 */
125#define LANAI_POLL_PERIOD (10*HZ)
126/* TODO: make above a module load-time option */
127
128/*
129 * When allocating an AAL5 receiving buffer, try to make it at least
130 * large enough to hold this many max_sdu sized PDUs
131 */
132#define AAL5_RX_MULTIPLIER (3)
133/* TODO: make above a module load-time option */
134
135/*
136 * Same for transmitting buffer
137 */
138#define AAL5_TX_MULTIPLIER (3)
139/* TODO: make above a module load-time option */
140
141/*
142 * When allocating an AAL0 transmiting buffer, how many cells should fit.
143 * Remember we'll end up with a PAGE_SIZE of them anyway, so this isn't
144 * really critical
145 */
146#define AAL0_TX_MULTIPLIER (40)
147/* TODO: make above a module load-time option */
148
149/*
150 * How large should we make the AAL0 receiving buffer. Remember that this
151 * is shared between all AAL0 VC's
152 */
153#define AAL0_RX_BUFFER_SIZE (PAGE_SIZE)
154/* TODO: make above a module load-time option */
155
156/*
157 * Should we use Lanai's "powerdown" feature when no vcc's are bound?
158 */
159/* #define USE_POWERDOWN */
160/* TODO: make above a module load-time option (also) */
161
162/* -------------------- DEBUGGING AIDS: */
163
164#define DEV_LABEL "lanai"
165
166#ifdef DEBUG
167
168#define DPRINTK(format, args...) \
169 printk(KERN_DEBUG DEV_LABEL ": " format, ##args)
170#define APRINTK(truth, format, args...) \
171 do { \
172 if (unlikely(!(truth))) \
173 printk(KERN_ERR DEV_LABEL ": " format, ##args); \
174 } while (0)
175
176#else /* !DEBUG */
177
178#define DPRINTK(format, args...)
179#define APRINTK(truth, format, args...)
180
181#endif /* DEBUG */
182
183#ifdef DEBUG_RW
184#define RWDEBUG(format, args...) \
185 printk(KERN_DEBUG DEV_LABEL ": " format, ##args)
186#else /* !DEBUG_RW */
187#define RWDEBUG(format, args...)
188#endif
189
190/* -------------------- DATA DEFINITIONS: */
191
192#define LANAI_MAPPING_SIZE (0x40000)
193#define LANAI_EEPROM_SIZE (128)
194
195typedef int vci_t;
196typedef void __iomem *bus_addr_t;
197
198/* DMA buffer in host memory for TX, RX, or service list. */
199struct lanai_buffer {
200 u32 *start; /* From get_free_pages */
201 u32 *end; /* One past last byte */
202 u32 *ptr; /* Pointer to current host location */
203 dma_addr_t dmaaddr;
204};
205
206struct lanai_vcc_stats {
207 unsigned rx_nomem;
208 union {
209 struct {
210 unsigned rx_badlen;
211 unsigned service_trash;
212 unsigned service_stream;
213 unsigned service_rxcrc;
214 } aal5;
215 struct {
216 } aal0;
217 } x;
218};
219
220struct lanai_dev; /* Forward declaration */
221
222/*
223 * This is the card-specific per-vcc data. Note that unlike some other
224 * drivers there is NOT a 1-to-1 correspondance between these and
225 * atm_vcc's - each one of these represents an actual 2-way vcc, but
226 * an atm_vcc can be 1-way and share with a 1-way vcc in the other
227 * direction. To make it weirder, there can even be 0-way vccs
228 * bound to us, waiting to do a change_qos
229 */
230struct lanai_vcc {
231 bus_addr_t vbase; /* Base of VCC's registers */
232 struct lanai_vcc_stats stats;
233 int nref; /* # of atm_vcc's who reference us */
234 vci_t vci;
235 struct {
236 struct lanai_buffer buf;
237 struct atm_vcc *atmvcc; /* atm_vcc who is receiver */
238 } rx;
239 struct {
240 struct lanai_buffer buf;
241 struct atm_vcc *atmvcc; /* atm_vcc who is transmitter */
242 int endptr; /* last endptr from service entry */
243 struct sk_buff_head backlog;
244 void (*unqueue)(struct lanai_dev *, struct lanai_vcc *, int);
245 } tx;
246};
247
248enum lanai_type {
249 lanai2 = PCI_DEVICE_ID_EF_ATM_LANAI2,
250 lanaihb = PCI_DEVICE_ID_EF_ATM_LANAIHB
251};
252
253struct lanai_dev_stats {
254 unsigned ovfl_trash; /* # of cells dropped - buffer overflow */
255 unsigned vci_trash; /* # of cells dropped - closed vci */
256 unsigned hec_err; /* # of cells dropped - bad HEC */
257 unsigned atm_ovfl; /* # of cells dropped - rx fifo overflow */
258 unsigned pcierr_parity_detect;
259 unsigned pcierr_serr_set;
260 unsigned pcierr_master_abort;
261 unsigned pcierr_m_target_abort;
262 unsigned pcierr_s_target_abort;
263 unsigned pcierr_master_parity;
264 unsigned service_notx;
265 unsigned service_norx;
266 unsigned service_rxnotaal5;
267 unsigned dma_reenable;
268 unsigned card_reset;
269};
270
271struct lanai_dev {
272 bus_addr_t base;
273 struct lanai_dev_stats stats;
274 struct lanai_buffer service;
275 struct lanai_vcc **vccs;
276#ifdef USE_POWERDOWN
277 int nbound; /* number of bound vccs */
278#endif
279 enum lanai_type type;
280 vci_t num_vci; /* Currently just NUM_VCI */
281 u8 eeprom[LANAI_EEPROM_SIZE];
282 u32 serialno, magicno;
283 struct pci_dev *pci;
284 DECLARE_BITMAP(backlog_vccs, NUM_VCI); /* VCCs with tx backlog */
285 DECLARE_BITMAP(transmit_ready, NUM_VCI); /* VCCs with transmit space */
286 struct timer_list timer;
287 int naal0;
288 struct lanai_buffer aal0buf; /* AAL0 RX buffers */
289 u32 conf1, conf2; /* CONFIG[12] registers */
290 u32 status; /* STATUS register */
291 spinlock_t endtxlock;
292 spinlock_t servicelock;
293 struct atm_vcc *cbrvcc;
294 int number;
295 int board_rev;
296/* TODO - look at race conditions with maintence of conf1/conf2 */
297/* TODO - transmit locking: should we use _irq not _irqsave? */
298/* TODO - organize above in some rational fashion (see <asm/cache.h>) */
299};
300
301/*
302 * Each device has two bitmaps for each VCC (baclog_vccs and transmit_ready)
303 * This function iterates one of these, calling a given function for each
304 * vci with their bit set
305 */
306static void vci_bitfield_iterate(struct lanai_dev *lanai,
307 const unsigned long *lp,
308 void (*func)(struct lanai_dev *,vci_t vci))
309{
310 vci_t vci;
311
312 for_each_set_bit(vci, lp, NUM_VCI)
313 func(lanai, vci);
314}
315
316/* -------------------- BUFFER UTILITIES: */
317
318/*
319 * Lanai needs DMA buffers aligned to 256 bytes of at least 1024 bytes -
320 * usually any page allocation will do. Just to be safe in case
321 * PAGE_SIZE is insanely tiny, though...
322 */
323#define LANAI_PAGE_SIZE ((PAGE_SIZE >= 1024) ? PAGE_SIZE : 1024)
324
325/*
326 * Allocate a buffer in host RAM for service list, RX, or TX
327 * Returns buf->start==NULL if no memory
328 * Note that the size will be rounded up 2^n bytes, and
329 * if we can't allocate that we'll settle for something smaller
330 * until minbytes
331 */
332static void lanai_buf_allocate(struct lanai_buffer *buf,
333 size_t bytes, size_t minbytes, struct pci_dev *pci)
334{
335 int size;
336
337 if (bytes > (128 * 1024)) /* max lanai buffer size */
338 bytes = 128 * 1024;
339 for (size = LANAI_PAGE_SIZE; size < bytes; size *= 2)
340 ;
341 if (minbytes < LANAI_PAGE_SIZE)
342 minbytes = LANAI_PAGE_SIZE;
343 do {
344 /*
345 * Technically we could use non-consistent mappings for
346 * everything, but the way the lanai uses DMA memory would
347 * make that a terrific pain. This is much simpler.
348 */
349 buf->start = dma_alloc_coherent(&pci->dev,
350 size, &buf->dmaaddr, GFP_KERNEL);
351 if (buf->start != NULL) { /* Success */
352 /* Lanai requires 256-byte alignment of DMA bufs */
353 APRINTK((buf->dmaaddr & ~0xFFFFFF00) == 0,
354 "bad dmaaddr: 0x%lx\n",
355 (unsigned long) buf->dmaaddr);
356 buf->ptr = buf->start;
357 buf->end = (u32 *)
358 (&((unsigned char *) buf->start)[size]);
359 memset(buf->start, 0, size);
360 break;
361 }
362 size /= 2;
363 } while (size >= minbytes);
364}
365
366/* size of buffer in bytes */
367static inline size_t lanai_buf_size(const struct lanai_buffer *buf)
368{
369 return ((unsigned long) buf->end) - ((unsigned long) buf->start);
370}
371
372static void lanai_buf_deallocate(struct lanai_buffer *buf,
373 struct pci_dev *pci)
374{
375 if (buf->start != NULL) {
376 dma_free_coherent(&pci->dev, lanai_buf_size(buf),
377 buf->start, buf->dmaaddr);
378 buf->start = buf->end = buf->ptr = NULL;
379 }
380}
381
382/* size of buffer as "card order" (0=1k .. 7=128k) */
383static int lanai_buf_size_cardorder(const struct lanai_buffer *buf)
384{
385 int order = get_order(lanai_buf_size(buf)) + (PAGE_SHIFT - 10);
386
387 /* This can only happen if PAGE_SIZE is gigantic, but just in case */
388 if (order > 7)
389 order = 7;
390 return order;
391}
392
393/* -------------------- PORT I/O UTILITIES: */
394
395/* Registers (and their bit-fields) */
396enum lanai_register {
397 Reset_Reg = 0x00, /* Reset; read for chip type; bits: */
398#define RESET_GET_BOARD_REV(x) (((x)>> 0)&0x03) /* Board revision */
399#define RESET_GET_BOARD_ID(x) (((x)>> 2)&0x03) /* Board ID */
400#define BOARD_ID_LANAI256 (0) /* 25.6M adapter card */
401 Endian_Reg = 0x04, /* Endian setting */
402 IntStatus_Reg = 0x08, /* Interrupt status */
403 IntStatusMasked_Reg = 0x0C, /* Interrupt status (masked) */
404 IntAck_Reg = 0x10, /* Interrupt acknowledge */
405 IntAckMasked_Reg = 0x14, /* Interrupt acknowledge (masked) */
406 IntStatusSet_Reg = 0x18, /* Get status + enable/disable */
407 IntStatusSetMasked_Reg = 0x1C, /* Get status + en/di (masked) */
408 IntControlEna_Reg = 0x20, /* Interrupt control enable */
409 IntControlDis_Reg = 0x24, /* Interrupt control disable */
410 Status_Reg = 0x28, /* Status */
411#define STATUS_PROMDATA (0x00000001) /* PROM_DATA pin */
412#define STATUS_WAITING (0x00000002) /* Interrupt being delayed */
413#define STATUS_SOOL (0x00000004) /* SOOL alarm */
414#define STATUS_LOCD (0x00000008) /* LOCD alarm */
415#define STATUS_LED (0x00000010) /* LED (HAPPI) output */
416#define STATUS_GPIN (0x00000020) /* GPIN pin */
417#define STATUS_BUTTBUSY (0x00000040) /* Butt register is pending */
418 Config1_Reg = 0x2C, /* Config word 1; bits: */
419#define CONFIG1_PROMDATA (0x00000001) /* PROM_DATA pin */
420#define CONFIG1_PROMCLK (0x00000002) /* PROM_CLK pin */
421#define CONFIG1_SET_READMODE(x) ((x)*0x004) /* PCI BM reads; values: */
422#define READMODE_PLAIN (0) /* Plain memory read */
423#define READMODE_LINE (2) /* Memory read line */
424#define READMODE_MULTIPLE (3) /* Memory read multiple */
425#define CONFIG1_DMA_ENABLE (0x00000010) /* Turn on DMA */
426#define CONFIG1_POWERDOWN (0x00000020) /* Turn off clocks */
427#define CONFIG1_SET_LOOPMODE(x) ((x)*0x080) /* Clock&loop mode; values: */
428#define LOOPMODE_NORMAL (0) /* Normal - no loop */
429#define LOOPMODE_TIME (1)
430#define LOOPMODE_DIAG (2)
431#define LOOPMODE_LINE (3)
432#define CONFIG1_MASK_LOOPMODE (0x00000180)
433#define CONFIG1_SET_LEDMODE(x) ((x)*0x0200) /* Mode of LED; values: */
434#define LEDMODE_NOT_SOOL (0) /* !SOOL */
435#define LEDMODE_OFF (1) /* 0 */
436#define LEDMODE_ON (2) /* 1 */
437#define LEDMODE_NOT_LOCD (3) /* !LOCD */
438#define LEDMORE_GPIN (4) /* GPIN */
439#define LEDMODE_NOT_GPIN (7) /* !GPIN */
440#define CONFIG1_MASK_LEDMODE (0x00000E00)
441#define CONFIG1_GPOUT1 (0x00001000) /* Toggle for reset */
442#define CONFIG1_GPOUT2 (0x00002000) /* Loopback PHY */
443#define CONFIG1_GPOUT3 (0x00004000) /* Loopback lanai */
444 Config2_Reg = 0x30, /* Config word 2; bits: */
445#define CONFIG2_HOWMANY (0x00000001) /* >512 VCIs? */
446#define CONFIG2_PTI7_MODE (0x00000002) /* Make PTI=7 RM, not OAM */
447#define CONFIG2_VPI_CHK_DIS (0x00000004) /* Ignore RX VPI value */
448#define CONFIG2_HEC_DROP (0x00000008) /* Drop cells w/ HEC errors */
449#define CONFIG2_VCI0_NORMAL (0x00000010) /* Treat VCI=0 normally */
450#define CONFIG2_CBR_ENABLE (0x00000020) /* Deal with CBR traffic */
451#define CONFIG2_TRASH_ALL (0x00000040) /* Trashing incoming cells */
452#define CONFIG2_TX_DISABLE (0x00000080) /* Trashing outgoing cells */
453#define CONFIG2_SET_TRASH (0x00000100) /* Turn trashing on */
454 Statistics_Reg = 0x34, /* Statistics; bits: */
455#define STATS_GET_FIFO_OVFL(x) (((x)>> 0)&0xFF) /* FIFO overflowed */
456#define STATS_GET_HEC_ERR(x) (((x)>> 8)&0xFF) /* HEC was bad */
457#define STATS_GET_BAD_VCI(x) (((x)>>16)&0xFF) /* VCI not open */
458#define STATS_GET_BUF_OVFL(x) (((x)>>24)&0xFF) /* VCC buffer full */
459 ServiceStuff_Reg = 0x38, /* Service stuff; bits: */
460#define SSTUFF_SET_SIZE(x) ((x)*0x20000000) /* size of service buffer */
461#define SSTUFF_SET_ADDR(x) ((x)>>8) /* set address of buffer */
462 ServWrite_Reg = 0x3C, /* ServWrite Pointer */
463 ServRead_Reg = 0x40, /* ServRead Pointer */
464 TxDepth_Reg = 0x44, /* FIFO Transmit Depth */
465 Butt_Reg = 0x48, /* Butt register */
466 CBR_ICG_Reg = 0x50,
467 CBR_PTR_Reg = 0x54,
468 PingCount_Reg = 0x58, /* Ping count */
469 DMA_Addr_Reg = 0x5C /* DMA address */
470};
471
472static inline bus_addr_t reg_addr(const struct lanai_dev *lanai,
473 enum lanai_register reg)
474{
475 return lanai->base + reg;
476}
477
478static inline u32 reg_read(const struct lanai_dev *lanai,
479 enum lanai_register reg)
480{
481 u32 t;
482 t = readl(reg_addr(lanai, reg));
483 RWDEBUG("R [0x%08X] 0x%02X = 0x%08X\n", (unsigned int) lanai->base,
484 (int) reg, t);
485 return t;
486}
487
488static inline void reg_write(const struct lanai_dev *lanai, u32 val,
489 enum lanai_register reg)
490{
491 RWDEBUG("W [0x%08X] 0x%02X < 0x%08X\n", (unsigned int) lanai->base,
492 (int) reg, val);
493 writel(val, reg_addr(lanai, reg));
494}
495
496static inline void conf1_write(const struct lanai_dev *lanai)
497{
498 reg_write(lanai, lanai->conf1, Config1_Reg);
499}
500
501static inline void conf2_write(const struct lanai_dev *lanai)
502{
503 reg_write(lanai, lanai->conf2, Config2_Reg);
504}
505
506/* Same as conf2_write(), but defers I/O if we're powered down */
507static inline void conf2_write_if_powerup(const struct lanai_dev *lanai)
508{
509#ifdef USE_POWERDOWN
510 if (unlikely((lanai->conf1 & CONFIG1_POWERDOWN) != 0))
511 return;
512#endif /* USE_POWERDOWN */
513 conf2_write(lanai);
514}
515
516static inline void reset_board(const struct lanai_dev *lanai)
517{
518 DPRINTK("about to reset board\n");
519 reg_write(lanai, 0, Reset_Reg);
520 /*
521 * If we don't delay a little while here then we can end up
522 * leaving the card in a VERY weird state and lock up the
523 * PCI bus. This isn't documented anywhere but I've convinced
524 * myself after a lot of painful experimentation
525 */
526 udelay(5);
527}
528
529/* -------------------- CARD SRAM UTILITIES: */
530
531/* The SRAM is mapped into normal PCI memory space - the only catch is
532 * that it is only 16-bits wide but must be accessed as 32-bit. The
533 * 16 high bits will be zero. We don't hide this, since they get
534 * programmed mostly like discrete registers anyway
535 */
536#define SRAM_START (0x20000)
537#define SRAM_BYTES (0x20000) /* Again, half don't really exist */
538
539static inline bus_addr_t sram_addr(const struct lanai_dev *lanai, int offset)
540{
541 return lanai->base + SRAM_START + offset;
542}
543
544static inline u32 sram_read(const struct lanai_dev *lanai, int offset)
545{
546 return readl(sram_addr(lanai, offset));
547}
548
549static inline void sram_write(const struct lanai_dev *lanai,
550 u32 val, int offset)
551{
552 writel(val, sram_addr(lanai, offset));
553}
554
555static int sram_test_word(const struct lanai_dev *lanai, int offset,
556 u32 pattern)
557{
558 u32 readback;
559 sram_write(lanai, pattern, offset);
560 readback = sram_read(lanai, offset);
561 if (likely(readback == pattern))
562 return 0;
563 printk(KERN_ERR DEV_LABEL
564 "(itf %d): SRAM word at %d bad: wrote 0x%X, read 0x%X\n",
565 lanai->number, offset,
566 (unsigned int) pattern, (unsigned int) readback);
567 return -EIO;
568}
569
570static int sram_test_pass(const struct lanai_dev *lanai, u32 pattern)
571{
572 int offset, result = 0;
573 for (offset = 0; offset < SRAM_BYTES && result == 0; offset += 4)
574 result = sram_test_word(lanai, offset, pattern);
575 return result;
576}
577
578static int sram_test_and_clear(const struct lanai_dev *lanai)
579{
580#ifdef FULL_MEMORY_TEST
581 int result;
582 DPRINTK("testing SRAM\n");
583 if ((result = sram_test_pass(lanai, 0x5555)) != 0)
584 return result;
585 if ((result = sram_test_pass(lanai, 0xAAAA)) != 0)
586 return result;
587#endif
588 DPRINTK("clearing SRAM\n");
589 return sram_test_pass(lanai, 0x0000);
590}
591
592/* -------------------- CARD-BASED VCC TABLE UTILITIES: */
593
594/* vcc table */
595enum lanai_vcc_offset {
596 vcc_rxaddr1 = 0x00, /* Location1, plus bits: */
597#define RXADDR1_SET_SIZE(x) ((x)*0x0000100) /* size of RX buffer */
598#define RXADDR1_SET_RMMODE(x) ((x)*0x00800) /* RM cell action; values: */
599#define RMMODE_TRASH (0) /* discard */
600#define RMMODE_PRESERVE (1) /* input as AAL0 */
601#define RMMODE_PIPE (2) /* pipe to coscheduler */
602#define RMMODE_PIPEALL (3) /* pipe non-RM too */
603#define RXADDR1_OAM_PRESERVE (0x00002000) /* Input OAM cells as AAL0 */
604#define RXADDR1_SET_MODE(x) ((x)*0x0004000) /* Reassembly mode */
605#define RXMODE_TRASH (0) /* discard */
606#define RXMODE_AAL0 (1) /* non-AAL5 mode */
607#define RXMODE_AAL5 (2) /* AAL5, intr. each PDU */
608#define RXMODE_AAL5_STREAM (3) /* AAL5 w/o per-PDU intr */
609 vcc_rxaddr2 = 0x04, /* Location2 */
610 vcc_rxcrc1 = 0x08, /* RX CRC claculation space */
611 vcc_rxcrc2 = 0x0C,
612 vcc_rxwriteptr = 0x10, /* RX writeptr, plus bits: */
613#define RXWRITEPTR_LASTEFCI (0x00002000) /* Last PDU had EFCI bit */
614#define RXWRITEPTR_DROPPING (0x00004000) /* Had error, dropping */
615#define RXWRITEPTR_TRASHING (0x00008000) /* Trashing */
616 vcc_rxbufstart = 0x14, /* RX bufstart, plus bits: */
617#define RXBUFSTART_CLP (0x00004000)
618#define RXBUFSTART_CI (0x00008000)
619 vcc_rxreadptr = 0x18, /* RX readptr */
620 vcc_txicg = 0x1C, /* TX ICG */
621 vcc_txaddr1 = 0x20, /* Location1, plus bits: */
622#define TXADDR1_SET_SIZE(x) ((x)*0x0000100) /* size of TX buffer */
623#define TXADDR1_ABR (0x00008000) /* use ABR (doesn't work) */
624 vcc_txaddr2 = 0x24, /* Location2 */
625 vcc_txcrc1 = 0x28, /* TX CRC claculation space */
626 vcc_txcrc2 = 0x2C,
627 vcc_txreadptr = 0x30, /* TX Readptr, plus bits: */
628#define TXREADPTR_GET_PTR(x) ((x)&0x01FFF)
629#define TXREADPTR_MASK_DELTA (0x0000E000) /* ? */
630 vcc_txendptr = 0x34, /* TX Endptr, plus bits: */
631#define TXENDPTR_CLP (0x00002000)
632#define TXENDPTR_MASK_PDUMODE (0x0000C000) /* PDU mode; values: */
633#define PDUMODE_AAL0 (0*0x04000)
634#define PDUMODE_AAL5 (2*0x04000)
635#define PDUMODE_AAL5STREAM (3*0x04000)
636 vcc_txwriteptr = 0x38, /* TX Writeptr */
637#define TXWRITEPTR_GET_PTR(x) ((x)&0x1FFF)
638 vcc_txcbr_next = 0x3C /* # of next CBR VCI in ring */
639#define TXCBR_NEXT_BOZO (0x00008000) /* "bozo bit" */
640};
641
642#define CARDVCC_SIZE (0x40)
643
644static inline bus_addr_t cardvcc_addr(const struct lanai_dev *lanai,
645 vci_t vci)
646{
647 return sram_addr(lanai, vci * CARDVCC_SIZE);
648}
649
650static inline u32 cardvcc_read(const struct lanai_vcc *lvcc,
651 enum lanai_vcc_offset offset)
652{
653 u32 val;
654 APRINTK(lvcc->vbase != NULL, "cardvcc_read: unbound vcc!\n");
655 val= readl(lvcc->vbase + offset);
656 RWDEBUG("VR vci=%04d 0x%02X = 0x%08X\n",
657 lvcc->vci, (int) offset, val);
658 return val;
659}
660
661static inline void cardvcc_write(const struct lanai_vcc *lvcc,
662 u32 val, enum lanai_vcc_offset offset)
663{
664 APRINTK(lvcc->vbase != NULL, "cardvcc_write: unbound vcc!\n");
665 APRINTK((val & ~0xFFFF) == 0,
666 "cardvcc_write: bad val 0x%X (vci=%d, addr=0x%02X)\n",
667 (unsigned int) val, lvcc->vci, (unsigned int) offset);
668 RWDEBUG("VW vci=%04d 0x%02X > 0x%08X\n",
669 lvcc->vci, (unsigned int) offset, (unsigned int) val);
670 writel(val, lvcc->vbase + offset);
671}
672
673/* -------------------- COMPUTE SIZE OF AN AAL5 PDU: */
674
675/* How many bytes will an AAL5 PDU take to transmit - remember that:
676 * o we need to add 8 bytes for length, CPI, UU, and CRC
677 * o we need to round up to 48 bytes for cells
678 */
679static inline int aal5_size(int size)
680{
681 int cells = (size + 8 + 47) / 48;
682 return cells * 48;
683}
684
685/* -------------------- FREE AN ATM SKB: */
686
687static inline void lanai_free_skb(struct atm_vcc *atmvcc, struct sk_buff *skb)
688{
689 if (atmvcc->pop != NULL)
690 atmvcc->pop(atmvcc, skb);
691 else
692 dev_kfree_skb_any(skb);
693}
694
695/* -------------------- TURN VCCS ON AND OFF: */
696
697static void host_vcc_start_rx(const struct lanai_vcc *lvcc)
698{
699 u32 addr1;
700 if (lvcc->rx.atmvcc->qos.aal == ATM_AAL5) {
701 dma_addr_t dmaaddr = lvcc->rx.buf.dmaaddr;
702 cardvcc_write(lvcc, 0xFFFF, vcc_rxcrc1);
703 cardvcc_write(lvcc, 0xFFFF, vcc_rxcrc2);
704 cardvcc_write(lvcc, 0, vcc_rxwriteptr);
705 cardvcc_write(lvcc, 0, vcc_rxbufstart);
706 cardvcc_write(lvcc, 0, vcc_rxreadptr);
707 cardvcc_write(lvcc, (dmaaddr >> 16) & 0xFFFF, vcc_rxaddr2);
708 addr1 = ((dmaaddr >> 8) & 0xFF) |
709 RXADDR1_SET_SIZE(lanai_buf_size_cardorder(&lvcc->rx.buf))|
710 RXADDR1_SET_RMMODE(RMMODE_TRASH) | /* ??? */
711 /* RXADDR1_OAM_PRESERVE | --- no OAM support yet */
712 RXADDR1_SET_MODE(RXMODE_AAL5);
713 } else
714 addr1 = RXADDR1_SET_RMMODE(RMMODE_PRESERVE) | /* ??? */
715 RXADDR1_OAM_PRESERVE | /* ??? */
716 RXADDR1_SET_MODE(RXMODE_AAL0);
717 /* This one must be last! */
718 cardvcc_write(lvcc, addr1, vcc_rxaddr1);
719}
720
721static void host_vcc_start_tx(const struct lanai_vcc *lvcc)
722{
723 dma_addr_t dmaaddr = lvcc->tx.buf.dmaaddr;
724 cardvcc_write(lvcc, 0, vcc_txicg);
725 cardvcc_write(lvcc, 0xFFFF, vcc_txcrc1);
726 cardvcc_write(lvcc, 0xFFFF, vcc_txcrc2);
727 cardvcc_write(lvcc, 0, vcc_txreadptr);
728 cardvcc_write(lvcc, 0, vcc_txendptr);
729 cardvcc_write(lvcc, 0, vcc_txwriteptr);
730 cardvcc_write(lvcc,
731 (lvcc->tx.atmvcc->qos.txtp.traffic_class == ATM_CBR) ?
732 TXCBR_NEXT_BOZO | lvcc->vci : 0, vcc_txcbr_next);
733 cardvcc_write(lvcc, (dmaaddr >> 16) & 0xFFFF, vcc_txaddr2);
734 cardvcc_write(lvcc,
735 ((dmaaddr >> 8) & 0xFF) |
736 TXADDR1_SET_SIZE(lanai_buf_size_cardorder(&lvcc->tx.buf)),
737 vcc_txaddr1);
738}
739
740/* Shutdown receiving on card */
741static void lanai_shutdown_rx_vci(const struct lanai_vcc *lvcc)
742{
743 if (lvcc->vbase == NULL) /* We were never bound to a VCI */
744 return;
745 /* 15.1.1 - set to trashing, wait one cell time (15us) */
746 cardvcc_write(lvcc,
747 RXADDR1_SET_RMMODE(RMMODE_TRASH) |
748 RXADDR1_SET_MODE(RXMODE_TRASH), vcc_rxaddr1);
749 udelay(15);
750 /* 15.1.2 - clear rest of entries */
751 cardvcc_write(lvcc, 0, vcc_rxaddr2);
752 cardvcc_write(lvcc, 0, vcc_rxcrc1);
753 cardvcc_write(lvcc, 0, vcc_rxcrc2);
754 cardvcc_write(lvcc, 0, vcc_rxwriteptr);
755 cardvcc_write(lvcc, 0, vcc_rxbufstart);
756 cardvcc_write(lvcc, 0, vcc_rxreadptr);
757}
758
759/* Shutdown transmitting on card.
760 * Unfortunately the lanai needs us to wait until all the data
761 * drains out of the buffer before we can dealloc it, so this
762 * can take awhile -- up to 370ms for a full 128KB buffer
763 * assuming everone else is quiet. In theory the time is
764 * boundless if there's a CBR VCC holding things up.
765 */
766static void lanai_shutdown_tx_vci(struct lanai_dev *lanai,
767 struct lanai_vcc *lvcc)
768{
769 struct sk_buff *skb;
770 unsigned long flags, timeout;
771 int read, write, lastread = -1;
772 APRINTK(!in_interrupt(),
773 "lanai_shutdown_tx_vci called w/o process context!\n");
774 if (lvcc->vbase == NULL) /* We were never bound to a VCI */
775 return;
776 /* 15.2.1 - wait for queue to drain */
777 while ((skb = skb_dequeue(&lvcc->tx.backlog)) != NULL)
778 lanai_free_skb(lvcc->tx.atmvcc, skb);
779 read_lock_irqsave(&vcc_sklist_lock, flags);
780 __clear_bit(lvcc->vci, lanai->backlog_vccs);
781 read_unlock_irqrestore(&vcc_sklist_lock, flags);
782 /*
783 * We need to wait for the VCC to drain but don't wait forever. We
784 * give each 1K of buffer size 1/128th of a second to clear out.
785 * TODO: maybe disable CBR if we're about to timeout?
786 */
787 timeout = jiffies +
788 (((lanai_buf_size(&lvcc->tx.buf) / 1024) * HZ) >> 7);
789 write = TXWRITEPTR_GET_PTR(cardvcc_read(lvcc, vcc_txwriteptr));
790 for (;;) {
791 read = TXREADPTR_GET_PTR(cardvcc_read(lvcc, vcc_txreadptr));
792 if (read == write && /* Is TX buffer empty? */
793 (lvcc->tx.atmvcc->qos.txtp.traffic_class != ATM_CBR ||
794 (cardvcc_read(lvcc, vcc_txcbr_next) &
795 TXCBR_NEXT_BOZO) == 0))
796 break;
797 if (read != lastread) { /* Has there been any progress? */
798 lastread = read;
799 timeout += HZ / 10;
800 }
801 if (unlikely(time_after(jiffies, timeout))) {
802 printk(KERN_ERR DEV_LABEL "(itf %d): Timed out on "
803 "backlog closing vci %d\n",
804 lvcc->tx.atmvcc->dev->number, lvcc->vci);
805 DPRINTK("read, write = %d, %d\n", read, write);
806 break;
807 }
808 msleep(40);
809 }
810 /* 15.2.2 - clear out all tx registers */
811 cardvcc_write(lvcc, 0, vcc_txreadptr);
812 cardvcc_write(lvcc, 0, vcc_txwriteptr);
813 cardvcc_write(lvcc, 0, vcc_txendptr);
814 cardvcc_write(lvcc, 0, vcc_txcrc1);
815 cardvcc_write(lvcc, 0, vcc_txcrc2);
816 cardvcc_write(lvcc, 0, vcc_txaddr2);
817 cardvcc_write(lvcc, 0, vcc_txaddr1);
818}
819
820/* -------------------- MANAGING AAL0 RX BUFFER: */
821
822static inline int aal0_buffer_allocate(struct lanai_dev *lanai)
823{
824 DPRINTK("aal0_buffer_allocate: allocating AAL0 RX buffer\n");
825 lanai_buf_allocate(&lanai->aal0buf, AAL0_RX_BUFFER_SIZE, 80,
826 lanai->pci);
827 return (lanai->aal0buf.start == NULL) ? -ENOMEM : 0;
828}
829
830static inline void aal0_buffer_free(struct lanai_dev *lanai)
831{
832 DPRINTK("aal0_buffer_allocate: freeing AAL0 RX buffer\n");
833 lanai_buf_deallocate(&lanai->aal0buf, lanai->pci);
834}
835
836/* -------------------- EEPROM UTILITIES: */
837
838/* Offsets of data in the EEPROM */
839#define EEPROM_COPYRIGHT (0)
840#define EEPROM_COPYRIGHT_LEN (44)
841#define EEPROM_CHECKSUM (62)
842#define EEPROM_CHECKSUM_REV (63)
843#define EEPROM_MAC (64)
844#define EEPROM_MAC_REV (70)
845#define EEPROM_SERIAL (112)
846#define EEPROM_SERIAL_REV (116)
847#define EEPROM_MAGIC (120)
848#define EEPROM_MAGIC_REV (124)
849
850#define EEPROM_MAGIC_VALUE (0x5AB478D2)
851
852#ifndef READ_EEPROM
853
854/* Stub functions to use if EEPROM reading is disabled */
855static int eeprom_read(struct lanai_dev *lanai)
856{
857 printk(KERN_INFO DEV_LABEL "(itf %d): *NOT* reading EEPROM\n",
858 lanai->number);
859 memset(&lanai->eeprom[EEPROM_MAC], 0, 6);
860 return 0;
861}
862
863static int eeprom_validate(struct lanai_dev *lanai)
864{
865 lanai->serialno = 0;
866 lanai->magicno = EEPROM_MAGIC_VALUE;
867 return 0;
868}
869
870#else /* READ_EEPROM */
871
872static int eeprom_read(struct lanai_dev *lanai)
873{
874 int i, address;
875 u8 data;
876 u32 tmp;
877#define set_config1(x) do { lanai->conf1 = x; conf1_write(lanai); \
878 } while (0)
879#define clock_h() set_config1(lanai->conf1 | CONFIG1_PROMCLK)
880#define clock_l() set_config1(lanai->conf1 &~ CONFIG1_PROMCLK)
881#define data_h() set_config1(lanai->conf1 | CONFIG1_PROMDATA)
882#define data_l() set_config1(lanai->conf1 &~ CONFIG1_PROMDATA)
883#define pre_read() do { data_h(); clock_h(); udelay(5); } while (0)
884#define read_pin() (reg_read(lanai, Status_Reg) & STATUS_PROMDATA)
885#define send_stop() do { data_l(); udelay(5); clock_h(); udelay(5); \
886 data_h(); udelay(5); } while (0)
887 /* start with both clock and data high */
888 data_h(); clock_h(); udelay(5);
889 for (address = 0; address < LANAI_EEPROM_SIZE; address++) {
890 data = (address << 1) | 1; /* Command=read + address */
891 /* send start bit */
892 data_l(); udelay(5);
893 clock_l(); udelay(5);
894 for (i = 128; i != 0; i >>= 1) { /* write command out */
895 tmp = (lanai->conf1 & ~CONFIG1_PROMDATA) |
896 ((data & i) ? CONFIG1_PROMDATA : 0);
897 if (lanai->conf1 != tmp) {
898 set_config1(tmp);
899 udelay(5); /* Let new data settle */
900 }
901 clock_h(); udelay(5); clock_l(); udelay(5);
902 }
903 /* look for ack */
904 data_h(); clock_h(); udelay(5);
905 if (read_pin() != 0)
906 goto error; /* No ack seen */
907 clock_l(); udelay(5);
908 /* read back result */
909 for (data = 0, i = 7; i >= 0; i--) {
910 data_h(); clock_h(); udelay(5);
911 data = (data << 1) | !!read_pin();
912 clock_l(); udelay(5);
913 }
914 /* look again for ack */
915 data_h(); clock_h(); udelay(5);
916 if (read_pin() == 0)
917 goto error; /* Spurious ack */
918 clock_l(); udelay(5);
919 send_stop();
920 lanai->eeprom[address] = data;
921 DPRINTK("EEPROM 0x%04X %02X\n",
922 (unsigned int) address, (unsigned int) data);
923 }
924 return 0;
925 error:
926 clock_l(); udelay(5); /* finish read */
927 send_stop();
928 printk(KERN_ERR DEV_LABEL "(itf %d): error reading EEPROM byte %d\n",
929 lanai->number, address);
930 return -EIO;
931#undef set_config1
932#undef clock_h
933#undef clock_l
934#undef data_h
935#undef data_l
936#undef pre_read
937#undef read_pin
938#undef send_stop
939}
940
941/* read a big-endian 4-byte value out of eeprom */
942static inline u32 eeprom_be4(const struct lanai_dev *lanai, int address)
943{
944 return be32_to_cpup((const u32 *) &lanai->eeprom[address]);
945}
946
947/* Checksum/validate EEPROM contents */
948static int eeprom_validate(struct lanai_dev *lanai)
949{
950 int i, s;
951 u32 v;
952 const u8 *e = lanai->eeprom;
953#ifdef DEBUG
954 /* First, see if we can get an ASCIIZ string out of the copyright */
955 for (i = EEPROM_COPYRIGHT;
956 i < (EEPROM_COPYRIGHT + EEPROM_COPYRIGHT_LEN); i++)
957 if (e[i] < 0x20 || e[i] > 0x7E)
958 break;
959 if ( i != EEPROM_COPYRIGHT &&
960 i != EEPROM_COPYRIGHT + EEPROM_COPYRIGHT_LEN && e[i] == '\0')
961 DPRINTK("eeprom: copyright = \"%s\"\n",
962 (char *) &e[EEPROM_COPYRIGHT]);
963 else
964 DPRINTK("eeprom: copyright not found\n");
965#endif
966 /* Validate checksum */
967 for (i = s = 0; i < EEPROM_CHECKSUM; i++)
968 s += e[i];
969 s &= 0xFF;
970 if (s != e[EEPROM_CHECKSUM]) {
971 printk(KERN_ERR DEV_LABEL "(itf %d): EEPROM checksum bad "
972 "(wanted 0x%02X, got 0x%02X)\n", lanai->number,
973 (unsigned int) s, (unsigned int) e[EEPROM_CHECKSUM]);
974 return -EIO;
975 }
976 s ^= 0xFF;
977 if (s != e[EEPROM_CHECKSUM_REV]) {
978 printk(KERN_ERR DEV_LABEL "(itf %d): EEPROM inverse checksum "
979 "bad (wanted 0x%02X, got 0x%02X)\n", lanai->number,
980 (unsigned int) s, (unsigned int) e[EEPROM_CHECKSUM_REV]);
981 return -EIO;
982 }
983 /* Verify MAC address */
984 for (i = 0; i < 6; i++)
985 if ((e[EEPROM_MAC + i] ^ e[EEPROM_MAC_REV + i]) != 0xFF) {
986 printk(KERN_ERR DEV_LABEL
987 "(itf %d) : EEPROM MAC addresses don't match "
988 "(0x%02X, inverse 0x%02X)\n", lanai->number,
989 (unsigned int) e[EEPROM_MAC + i],
990 (unsigned int) e[EEPROM_MAC_REV + i]);
991 return -EIO;
992 }
993 DPRINTK("eeprom: MAC address = %pM\n", &e[EEPROM_MAC]);
994 /* Verify serial number */
995 lanai->serialno = eeprom_be4(lanai, EEPROM_SERIAL);
996 v = eeprom_be4(lanai, EEPROM_SERIAL_REV);
997 if ((lanai->serialno ^ v) != 0xFFFFFFFF) {
998 printk(KERN_ERR DEV_LABEL "(itf %d): EEPROM serial numbers "
999 "don't match (0x%08X, inverse 0x%08X)\n", lanai->number,
1000 (unsigned int) lanai->serialno, (unsigned int) v);
1001 return -EIO;
1002 }
1003 DPRINTK("eeprom: Serial number = %d\n", (unsigned int) lanai->serialno);
1004 /* Verify magic number */
1005 lanai->magicno = eeprom_be4(lanai, EEPROM_MAGIC);
1006 v = eeprom_be4(lanai, EEPROM_MAGIC_REV);
1007 if ((lanai->magicno ^ v) != 0xFFFFFFFF) {
1008 printk(KERN_ERR DEV_LABEL "(itf %d): EEPROM magic numbers "
1009 "don't match (0x%08X, inverse 0x%08X)\n", lanai->number,
1010 lanai->magicno, v);
1011 return -EIO;
1012 }
1013 DPRINTK("eeprom: Magic number = 0x%08X\n", lanai->magicno);
1014 if (lanai->magicno != EEPROM_MAGIC_VALUE)
1015 printk(KERN_WARNING DEV_LABEL "(itf %d): warning - EEPROM "
1016 "magic not what expected (got 0x%08X, not 0x%08X)\n",
1017 lanai->number, (unsigned int) lanai->magicno,
1018 (unsigned int) EEPROM_MAGIC_VALUE);
1019 return 0;
1020}
1021
1022#endif /* READ_EEPROM */
1023
1024static inline const u8 *eeprom_mac(const struct lanai_dev *lanai)
1025{
1026 return &lanai->eeprom[EEPROM_MAC];
1027}
1028
1029/* -------------------- INTERRUPT HANDLING UTILITIES: */
1030
1031/* Interrupt types */
1032#define INT_STATS (0x00000002) /* Statistics counter overflow */
1033#define INT_SOOL (0x00000004) /* SOOL changed state */
1034#define INT_LOCD (0x00000008) /* LOCD changed state */
1035#define INT_LED (0x00000010) /* LED (HAPPI) changed state */
1036#define INT_GPIN (0x00000020) /* GPIN changed state */
1037#define INT_PING (0x00000040) /* PING_COUNT fulfilled */
1038#define INT_WAKE (0x00000080) /* Lanai wants bus */
1039#define INT_CBR0 (0x00000100) /* CBR sched hit VCI 0 */
1040#define INT_LOCK (0x00000200) /* Service list overflow */
1041#define INT_MISMATCH (0x00000400) /* TX magic list mismatch */
1042#define INT_AAL0_STR (0x00000800) /* Non-AAL5 buffer half filled */
1043#define INT_AAL0 (0x00001000) /* Non-AAL5 data available */
1044#define INT_SERVICE (0x00002000) /* Service list entries available */
1045#define INT_TABORTSENT (0x00004000) /* Target abort sent by lanai */
1046#define INT_TABORTBM (0x00008000) /* Abort rcv'd as bus master */
1047#define INT_TIMEOUTBM (0x00010000) /* No response to bus master */
1048#define INT_PCIPARITY (0x00020000) /* Parity error on PCI */
1049
1050/* Sets of the above */
1051#define INT_ALL (0x0003FFFE) /* All interrupts */
1052#define INT_STATUS (0x0000003C) /* Some status pin changed */
1053#define INT_DMASHUT (0x00038000) /* DMA engine got shut down */
1054#define INT_SEGSHUT (0x00000700) /* Segmentation got shut down */
1055
1056static inline u32 intr_pending(const struct lanai_dev *lanai)
1057{
1058 return reg_read(lanai, IntStatusMasked_Reg);
1059}
1060
1061static inline void intr_enable(const struct lanai_dev *lanai, u32 i)
1062{
1063 reg_write(lanai, i, IntControlEna_Reg);
1064}
1065
1066static inline void intr_disable(const struct lanai_dev *lanai, u32 i)
1067{
1068 reg_write(lanai, i, IntControlDis_Reg);
1069}
1070
1071/* -------------------- CARD/PCI STATUS: */
1072
1073static void status_message(int itf, const char *name, int status)
1074{
1075 static const char *onoff[2] = { "off to on", "on to off" };
1076 printk(KERN_INFO DEV_LABEL "(itf %d): %s changed from %s\n",
1077 itf, name, onoff[!status]);
1078}
1079
1080static void lanai_check_status(struct lanai_dev *lanai)
1081{
1082 u32 new = reg_read(lanai, Status_Reg);
1083 u32 changes = new ^ lanai->status;
1084 lanai->status = new;
1085#define e(flag, name) \
1086 if (changes & flag) \
1087 status_message(lanai->number, name, new & flag)
1088 e(STATUS_SOOL, "SOOL");
1089 e(STATUS_LOCD, "LOCD");
1090 e(STATUS_LED, "LED");
1091 e(STATUS_GPIN, "GPIN");
1092#undef e
1093}
1094
1095static void pcistatus_got(int itf, const char *name)
1096{
1097 printk(KERN_INFO DEV_LABEL "(itf %d): PCI got %s error\n", itf, name);
1098}
1099
1100static void pcistatus_check(struct lanai_dev *lanai, int clearonly)
1101{
1102 u16 s;
1103 int result;
1104 result = pci_read_config_word(lanai->pci, PCI_STATUS, &s);
1105 if (result != PCIBIOS_SUCCESSFUL) {
1106 printk(KERN_ERR DEV_LABEL "(itf %d): can't read PCI_STATUS: "
1107 "%d\n", lanai->number, result);
1108 return;
1109 }
1110 s &= PCI_STATUS_DETECTED_PARITY | PCI_STATUS_SIG_SYSTEM_ERROR |
1111 PCI_STATUS_REC_MASTER_ABORT | PCI_STATUS_REC_TARGET_ABORT |
1112 PCI_STATUS_SIG_TARGET_ABORT | PCI_STATUS_PARITY;
1113 if (s == 0)
1114 return;
1115 result = pci_write_config_word(lanai->pci, PCI_STATUS, s);
1116 if (result != PCIBIOS_SUCCESSFUL)
1117 printk(KERN_ERR DEV_LABEL "(itf %d): can't write PCI_STATUS: "
1118 "%d\n", lanai->number, result);
1119 if (clearonly)
1120 return;
1121#define e(flag, name, stat) \
1122 if (s & flag) { \
1123 pcistatus_got(lanai->number, name); \
1124 ++lanai->stats.pcierr_##stat; \
1125 }
1126 e(PCI_STATUS_DETECTED_PARITY, "parity", parity_detect);
1127 e(PCI_STATUS_SIG_SYSTEM_ERROR, "signalled system", serr_set);
1128 e(PCI_STATUS_REC_MASTER_ABORT, "master", master_abort);
1129 e(PCI_STATUS_REC_TARGET_ABORT, "master target", m_target_abort);
1130 e(PCI_STATUS_SIG_TARGET_ABORT, "slave", s_target_abort);
1131 e(PCI_STATUS_PARITY, "master parity", master_parity);
1132#undef e
1133}
1134
1135/* -------------------- VCC TX BUFFER UTILITIES: */
1136
1137/* space left in tx buffer in bytes */
1138static inline int vcc_tx_space(const struct lanai_vcc *lvcc, int endptr)
1139{
1140 int r;
1141 r = endptr * 16;
1142 r -= ((unsigned long) lvcc->tx.buf.ptr) -
1143 ((unsigned long) lvcc->tx.buf.start);
1144 r -= 16; /* Leave "bubble" - if start==end it looks empty */
1145 if (r < 0)
1146 r += lanai_buf_size(&lvcc->tx.buf);
1147 return r;
1148}
1149
1150/* test if VCC is currently backlogged */
1151static inline int vcc_is_backlogged(const struct lanai_vcc *lvcc)
1152{
1153 return !skb_queue_empty(&lvcc->tx.backlog);
1154}
1155
1156/* Bit fields in the segmentation buffer descriptor */
1157#define DESCRIPTOR_MAGIC (0xD0000000)
1158#define DESCRIPTOR_AAL5 (0x00008000)
1159#define DESCRIPTOR_AAL5_STREAM (0x00004000)
1160#define DESCRIPTOR_CLP (0x00002000)
1161
1162/* Add 32-bit descriptor with its padding */
1163static inline void vcc_tx_add_aal5_descriptor(struct lanai_vcc *lvcc,
1164 u32 flags, int len)
1165{
1166 int pos;
1167 APRINTK((((unsigned long) lvcc->tx.buf.ptr) & 15) == 0,
1168 "vcc_tx_add_aal5_descriptor: bad ptr=%p\n", lvcc->tx.buf.ptr);
1169 lvcc->tx.buf.ptr += 4; /* Hope the values REALLY don't matter */
1170 pos = ((unsigned char *) lvcc->tx.buf.ptr) -
1171 (unsigned char *) lvcc->tx.buf.start;
1172 APRINTK((pos & ~0x0001FFF0) == 0,
1173 "vcc_tx_add_aal5_descriptor: bad pos (%d) before, vci=%d, "
1174 "start,ptr,end=%p,%p,%p\n", pos, lvcc->vci,
1175 lvcc->tx.buf.start, lvcc->tx.buf.ptr, lvcc->tx.buf.end);
1176 pos = (pos + len) & (lanai_buf_size(&lvcc->tx.buf) - 1);
1177 APRINTK((pos & ~0x0001FFF0) == 0,
1178 "vcc_tx_add_aal5_descriptor: bad pos (%d) after, vci=%d, "
1179 "start,ptr,end=%p,%p,%p\n", pos, lvcc->vci,
1180 lvcc->tx.buf.start, lvcc->tx.buf.ptr, lvcc->tx.buf.end);
1181 lvcc->tx.buf.ptr[-1] =
1182 cpu_to_le32(DESCRIPTOR_MAGIC | DESCRIPTOR_AAL5 |
1183 ((lvcc->tx.atmvcc->atm_options & ATM_ATMOPT_CLP) ?
1184 DESCRIPTOR_CLP : 0) | flags | pos >> 4);
1185 if (lvcc->tx.buf.ptr >= lvcc->tx.buf.end)
1186 lvcc->tx.buf.ptr = lvcc->tx.buf.start;
1187}
1188
1189/* Add 32-bit AAL5 trailer and leave room for its CRC */
1190static inline void vcc_tx_add_aal5_trailer(struct lanai_vcc *lvcc,
1191 int len, int cpi, int uu)
1192{
1193 APRINTK((((unsigned long) lvcc->tx.buf.ptr) & 15) == 8,
1194 "vcc_tx_add_aal5_trailer: bad ptr=%p\n", lvcc->tx.buf.ptr);
1195 lvcc->tx.buf.ptr += 2;
1196 lvcc->tx.buf.ptr[-2] = cpu_to_be32((uu << 24) | (cpi << 16) | len);
1197 if (lvcc->tx.buf.ptr >= lvcc->tx.buf.end)
1198 lvcc->tx.buf.ptr = lvcc->tx.buf.start;
1199}
1200
1201static inline void vcc_tx_memcpy(struct lanai_vcc *lvcc,
1202 const unsigned char *src, int n)
1203{
1204 unsigned char *e;
1205 int m;
1206 e = ((unsigned char *) lvcc->tx.buf.ptr) + n;
1207 m = e - (unsigned char *) lvcc->tx.buf.end;
1208 if (m < 0)
1209 m = 0;
1210 memcpy(lvcc->tx.buf.ptr, src, n - m);
1211 if (m != 0) {
1212 memcpy(lvcc->tx.buf.start, src + n - m, m);
1213 e = ((unsigned char *) lvcc->tx.buf.start) + m;
1214 }
1215 lvcc->tx.buf.ptr = (u32 *) e;
1216}
1217
1218static inline void vcc_tx_memzero(struct lanai_vcc *lvcc, int n)
1219{
1220 unsigned char *e;
1221 int m;
1222 if (n == 0)
1223 return;
1224 e = ((unsigned char *) lvcc->tx.buf.ptr) + n;
1225 m = e - (unsigned char *) lvcc->tx.buf.end;
1226 if (m < 0)
1227 m = 0;
1228 memset(lvcc->tx.buf.ptr, 0, n - m);
1229 if (m != 0) {
1230 memset(lvcc->tx.buf.start, 0, m);
1231 e = ((unsigned char *) lvcc->tx.buf.start) + m;
1232 }
1233 lvcc->tx.buf.ptr = (u32 *) e;
1234}
1235
1236/* Update "butt" register to specify new WritePtr */
1237static inline void lanai_endtx(struct lanai_dev *lanai,
1238 const struct lanai_vcc *lvcc)
1239{
1240 int i, ptr = ((unsigned char *) lvcc->tx.buf.ptr) -
1241 (unsigned char *) lvcc->tx.buf.start;
1242 APRINTK((ptr & ~0x0001FFF0) == 0,
1243 "lanai_endtx: bad ptr (%d), vci=%d, start,ptr,end=%p,%p,%p\n",
1244 ptr, lvcc->vci, lvcc->tx.buf.start, lvcc->tx.buf.ptr,
1245 lvcc->tx.buf.end);
1246
1247 /*
1248 * Since the "butt register" is a shared resounce on the card we
1249 * serialize all accesses to it through this spinlock. This is
1250 * mostly just paranoia since the register is rarely "busy" anyway
1251 * but is needed for correctness.
1252 */
1253 spin_lock(&lanai->endtxlock);
1254 /*
1255 * We need to check if the "butt busy" bit is set before
1256 * updating the butt register. In theory this should
1257 * never happen because the ATM card is plenty fast at
1258 * updating the register. Still, we should make sure
1259 */
1260 for (i = 0; reg_read(lanai, Status_Reg) & STATUS_BUTTBUSY; i++) {
1261 if (unlikely(i > 50)) {
1262 printk(KERN_ERR DEV_LABEL "(itf %d): butt register "
1263 "always busy!\n", lanai->number);
1264 break;
1265 }
1266 udelay(5);
1267 }
1268 /*
1269 * Before we tall the card to start work we need to be sure 100% of
1270 * the info in the service buffer has been written before we tell
1271 * the card about it
1272 */
1273 wmb();
1274 reg_write(lanai, (ptr << 12) | lvcc->vci, Butt_Reg);
1275 spin_unlock(&lanai->endtxlock);
1276}
1277
1278/*
1279 * Add one AAL5 PDU to lvcc's transmit buffer. Caller garauntees there's
1280 * space available. "pdusize" is the number of bytes the PDU will take
1281 */
1282static void lanai_send_one_aal5(struct lanai_dev *lanai,
1283 struct lanai_vcc *lvcc, struct sk_buff *skb, int pdusize)
1284{
1285 int pad;
1286 APRINTK(pdusize == aal5_size(skb->len),
1287 "lanai_send_one_aal5: wrong size packet (%d != %d)\n",
1288 pdusize, aal5_size(skb->len));
1289 vcc_tx_add_aal5_descriptor(lvcc, 0, pdusize);
1290 pad = pdusize - skb->len - 8;
1291 APRINTK(pad >= 0, "pad is negative (%d)\n", pad);
1292 APRINTK(pad < 48, "pad is too big (%d)\n", pad);
1293 vcc_tx_memcpy(lvcc, skb->data, skb->len);
1294 vcc_tx_memzero(lvcc, pad);
1295 vcc_tx_add_aal5_trailer(lvcc, skb->len, 0, 0);
1296 lanai_endtx(lanai, lvcc);
1297 lanai_free_skb(lvcc->tx.atmvcc, skb);
1298 atomic_inc(&lvcc->tx.atmvcc->stats->tx);
1299}
1300
1301/* Try to fill the buffer - don't call unless there is backlog */
1302static void vcc_tx_unqueue_aal5(struct lanai_dev *lanai,
1303 struct lanai_vcc *lvcc, int endptr)
1304{
1305 int n;
1306 struct sk_buff *skb;
1307 int space = vcc_tx_space(lvcc, endptr);
1308 APRINTK(vcc_is_backlogged(lvcc),
1309 "vcc_tx_unqueue() called with empty backlog (vci=%d)\n",
1310 lvcc->vci);
1311 while (space >= 64) {
1312 skb = skb_dequeue(&lvcc->tx.backlog);
1313 if (skb == NULL)
1314 goto no_backlog;
1315 n = aal5_size(skb->len);
1316 if (n + 16 > space) {
1317 /* No room for this packet - put it back on queue */
1318 skb_queue_head(&lvcc->tx.backlog, skb);
1319 return;
1320 }
1321 lanai_send_one_aal5(lanai, lvcc, skb, n);
1322 space -= n + 16;
1323 }
1324 if (!vcc_is_backlogged(lvcc)) {
1325 no_backlog:
1326 __clear_bit(lvcc->vci, lanai->backlog_vccs);
1327 }
1328}
1329
1330/* Given an skb that we want to transmit either send it now or queue */
1331static void vcc_tx_aal5(struct lanai_dev *lanai, struct lanai_vcc *lvcc,
1332 struct sk_buff *skb)
1333{
1334 int space, n;
1335 if (vcc_is_backlogged(lvcc)) /* Already backlogged */
1336 goto queue_it;
1337 space = vcc_tx_space(lvcc,
1338 TXREADPTR_GET_PTR(cardvcc_read(lvcc, vcc_txreadptr)));
1339 n = aal5_size(skb->len);
1340 APRINTK(n + 16 >= 64, "vcc_tx_aal5: n too small (%d)\n", n);
1341 if (space < n + 16) { /* No space for this PDU */
1342 __set_bit(lvcc->vci, lanai->backlog_vccs);
1343 queue_it:
1344 skb_queue_tail(&lvcc->tx.backlog, skb);
1345 return;
1346 }
1347 lanai_send_one_aal5(lanai, lvcc, skb, n);
1348}
1349
1350static void vcc_tx_unqueue_aal0(struct lanai_dev *lanai,
1351 struct lanai_vcc *lvcc, int endptr)
1352{
1353 printk(KERN_INFO DEV_LABEL
1354 ": vcc_tx_unqueue_aal0: not implemented\n");
1355}
1356
1357static void vcc_tx_aal0(struct lanai_dev *lanai, struct lanai_vcc *lvcc,
1358 struct sk_buff *skb)
1359{
1360 printk(KERN_INFO DEV_LABEL ": vcc_tx_aal0: not implemented\n");
1361 /* Remember to increment lvcc->tx.atmvcc->stats->tx */
1362 lanai_free_skb(lvcc->tx.atmvcc, skb);
1363}
1364
1365/* -------------------- VCC RX BUFFER UTILITIES: */
1366
1367/* unlike the _tx_ cousins, this doesn't update ptr */
1368static inline void vcc_rx_memcpy(unsigned char *dest,
1369 const struct lanai_vcc *lvcc, int n)
1370{
1371 int m = ((const unsigned char *) lvcc->rx.buf.ptr) + n -
1372 ((const unsigned char *) (lvcc->rx.buf.end));
1373 if (m < 0)
1374 m = 0;
1375 memcpy(dest, lvcc->rx.buf.ptr, n - m);
1376 memcpy(dest + n - m, lvcc->rx.buf.start, m);
1377 /* Make sure that these copies don't get reordered */
1378 barrier();
1379}
1380
1381/* Receive AAL5 data on a VCC with a particular endptr */
1382static void vcc_rx_aal5(struct lanai_vcc *lvcc, int endptr)
1383{
1384 int size;
1385 struct sk_buff *skb;
1386 const u32 *x;
1387 u32 *end = &lvcc->rx.buf.start[endptr * 4];
1388 int n = ((unsigned long) end) - ((unsigned long) lvcc->rx.buf.ptr);
1389 if (n < 0)
1390 n += lanai_buf_size(&lvcc->rx.buf);
1391 APRINTK(n >= 0 && n < lanai_buf_size(&lvcc->rx.buf) && !(n & 15),
1392 "vcc_rx_aal5: n out of range (%d/%zu)\n",
1393 n, lanai_buf_size(&lvcc->rx.buf));
1394 /* Recover the second-to-last word to get true pdu length */
1395 if ((x = &end[-2]) < lvcc->rx.buf.start)
1396 x = &lvcc->rx.buf.end[-2];
1397 /*
1398 * Before we actually read from the buffer, make sure the memory
1399 * changes have arrived
1400 */
1401 rmb();
1402 size = be32_to_cpup(x) & 0xffff;
1403 if (unlikely(n != aal5_size(size))) {
1404 /* Make sure size matches padding */
1405 printk(KERN_INFO DEV_LABEL "(itf %d): Got bad AAL5 length "
1406 "on vci=%d - size=%d n=%d\n",
1407 lvcc->rx.atmvcc->dev->number, lvcc->vci, size, n);
1408 lvcc->stats.x.aal5.rx_badlen++;
1409 goto out;
1410 }
1411 skb = atm_alloc_charge(lvcc->rx.atmvcc, size, GFP_ATOMIC);
1412 if (unlikely(skb == NULL)) {
1413 lvcc->stats.rx_nomem++;
1414 goto out;
1415 }
1416 skb_put(skb, size);
1417 vcc_rx_memcpy(skb->data, lvcc, size);
1418 ATM_SKB(skb)->vcc = lvcc->rx.atmvcc;
1419 __net_timestamp(skb);
1420 lvcc->rx.atmvcc->push(lvcc->rx.atmvcc, skb);
1421 atomic_inc(&lvcc->rx.atmvcc->stats->rx);
1422 out:
1423 lvcc->rx.buf.ptr = end;
1424 cardvcc_write(lvcc, endptr, vcc_rxreadptr);
1425}
1426
1427static void vcc_rx_aal0(struct lanai_dev *lanai)
1428{
1429 printk(KERN_INFO DEV_LABEL ": vcc_rx_aal0: not implemented\n");
1430 /* Remember to get read_lock(&vcc_sklist_lock) while looking up VC */
1431 /* Remember to increment lvcc->rx.atmvcc->stats->rx */
1432}
1433
1434/* -------------------- MANAGING HOST-BASED VCC TABLE: */
1435
1436/* Decide whether to use vmalloc or get_zeroed_page for VCC table */
1437#if (NUM_VCI * BITS_PER_LONG) <= PAGE_SIZE
1438#define VCCTABLE_GETFREEPAGE
1439#else
1440#include <linux/vmalloc.h>
1441#endif
1442
1443static int vcc_table_allocate(struct lanai_dev *lanai)
1444{
1445#ifdef VCCTABLE_GETFREEPAGE
1446 APRINTK((lanai->num_vci) * sizeof(struct lanai_vcc *) <= PAGE_SIZE,
1447 "vcc table > PAGE_SIZE!");
1448 lanai->vccs = (struct lanai_vcc **) get_zeroed_page(GFP_KERNEL);
1449 return (lanai->vccs == NULL) ? -ENOMEM : 0;
1450#else
1451 int bytes = (lanai->num_vci) * sizeof(struct lanai_vcc *);
1452 lanai->vccs = vzalloc(bytes);
1453 if (unlikely(lanai->vccs == NULL))
1454 return -ENOMEM;
1455 return 0;
1456#endif
1457}
1458
1459static inline void vcc_table_deallocate(const struct lanai_dev *lanai)
1460{
1461#ifdef VCCTABLE_GETFREEPAGE
1462 free_page((unsigned long) lanai->vccs);
1463#else
1464 vfree(lanai->vccs);
1465#endif
1466}
1467
1468/* Allocate a fresh lanai_vcc, with the appropriate things cleared */
1469static inline struct lanai_vcc *new_lanai_vcc(void)
1470{
1471 struct lanai_vcc *lvcc;
1472 lvcc = kzalloc(sizeof(*lvcc), GFP_KERNEL);
1473 if (likely(lvcc != NULL)) {
1474 skb_queue_head_init(&lvcc->tx.backlog);
1475#ifdef DEBUG
1476 lvcc->vci = -1;
1477#endif
1478 }
1479 return lvcc;
1480}
1481
1482static int lanai_get_sized_buffer(struct lanai_dev *lanai,
1483 struct lanai_buffer *buf, int max_sdu, int multiplier,
1484 const char *name)
1485{
1486 int size;
1487 if (unlikely(max_sdu < 1))
1488 max_sdu = 1;
1489 max_sdu = aal5_size(max_sdu);
1490 size = (max_sdu + 16) * multiplier + 16;
1491 lanai_buf_allocate(buf, size, max_sdu + 32, lanai->pci);
1492 if (unlikely(buf->start == NULL))
1493 return -ENOMEM;
1494 if (unlikely(lanai_buf_size(buf) < size))
1495 printk(KERN_WARNING DEV_LABEL "(itf %d): wanted %d bytes "
1496 "for %s buffer, got only %zu\n", lanai->number, size,
1497 name, lanai_buf_size(buf));
1498 DPRINTK("Allocated %zu byte %s buffer\n", lanai_buf_size(buf), name);
1499 return 0;
1500}
1501
1502/* Setup a RX buffer for a currently unbound AAL5 vci */
1503static inline int lanai_setup_rx_vci_aal5(struct lanai_dev *lanai,
1504 struct lanai_vcc *lvcc, const struct atm_qos *qos)
1505{
1506 return lanai_get_sized_buffer(lanai, &lvcc->rx.buf,
1507 qos->rxtp.max_sdu, AAL5_RX_MULTIPLIER, "RX");
1508}
1509
1510/* Setup a TX buffer for a currently unbound AAL5 vci */
1511static int lanai_setup_tx_vci(struct lanai_dev *lanai, struct lanai_vcc *lvcc,
1512 const struct atm_qos *qos)
1513{
1514 int max_sdu, multiplier;
1515 if (qos->aal == ATM_AAL0) {
1516 lvcc->tx.unqueue = vcc_tx_unqueue_aal0;
1517 max_sdu = ATM_CELL_SIZE - 1;
1518 multiplier = AAL0_TX_MULTIPLIER;
1519 } else {
1520 lvcc->tx.unqueue = vcc_tx_unqueue_aal5;
1521 max_sdu = qos->txtp.max_sdu;
1522 multiplier = AAL5_TX_MULTIPLIER;
1523 }
1524 return lanai_get_sized_buffer(lanai, &lvcc->tx.buf, max_sdu,
1525 multiplier, "TX");
1526}
1527
1528static inline void host_vcc_bind(struct lanai_dev *lanai,
1529 struct lanai_vcc *lvcc, vci_t vci)
1530{
1531 if (lvcc->vbase != NULL)
1532 return; /* We already were bound in the other direction */
1533 DPRINTK("Binding vci %d\n", vci);
1534#ifdef USE_POWERDOWN
1535 if (lanai->nbound++ == 0) {
1536 DPRINTK("Coming out of powerdown\n");
1537 lanai->conf1 &= ~CONFIG1_POWERDOWN;
1538 conf1_write(lanai);
1539 conf2_write(lanai);
1540 }
1541#endif
1542 lvcc->vbase = cardvcc_addr(lanai, vci);
1543 lanai->vccs[lvcc->vci = vci] = lvcc;
1544}
1545
1546static inline void host_vcc_unbind(struct lanai_dev *lanai,
1547 struct lanai_vcc *lvcc)
1548{
1549 if (lvcc->vbase == NULL)
1550 return; /* This vcc was never bound */
1551 DPRINTK("Unbinding vci %d\n", lvcc->vci);
1552 lvcc->vbase = NULL;
1553 lanai->vccs[lvcc->vci] = NULL;
1554#ifdef USE_POWERDOWN
1555 if (--lanai->nbound == 0) {
1556 DPRINTK("Going into powerdown\n");
1557 lanai->conf1 |= CONFIG1_POWERDOWN;
1558 conf1_write(lanai);
1559 }
1560#endif
1561}
1562
1563/* -------------------- RESET CARD: */
1564
1565static void lanai_reset(struct lanai_dev *lanai)
1566{
1567 printk(KERN_CRIT DEV_LABEL "(itf %d): *NOT* resetting - not "
1568 "implemented\n", lanai->number);
1569 /* TODO */
1570 /* The following is just a hack until we write the real
1571 * resetter - at least ack whatever interrupt sent us
1572 * here
1573 */
1574 reg_write(lanai, INT_ALL, IntAck_Reg);
1575 lanai->stats.card_reset++;
1576}
1577
1578/* -------------------- SERVICE LIST UTILITIES: */
1579
1580/*
1581 * Allocate service buffer and tell card about it
1582 */
1583static int service_buffer_allocate(struct lanai_dev *lanai)
1584{
1585 lanai_buf_allocate(&lanai->service, SERVICE_ENTRIES * 4, 8,
1586 lanai->pci);
1587 if (unlikely(lanai->service.start == NULL))
1588 return -ENOMEM;
1589 DPRINTK("allocated service buffer at %p, size %zu(%d)\n",
1590 lanai->service.start,
1591 lanai_buf_size(&lanai->service),
1592 lanai_buf_size_cardorder(&lanai->service));
1593 /* Clear ServWrite register to be safe */
1594 reg_write(lanai, 0, ServWrite_Reg);
1595 /* ServiceStuff register contains size and address of buffer */
1596 reg_write(lanai,
1597 SSTUFF_SET_SIZE(lanai_buf_size_cardorder(&lanai->service)) |
1598 SSTUFF_SET_ADDR(lanai->service.dmaaddr),
1599 ServiceStuff_Reg);
1600 return 0;
1601}
1602
1603static inline void service_buffer_deallocate(struct lanai_dev *lanai)
1604{
1605 lanai_buf_deallocate(&lanai->service, lanai->pci);
1606}
1607
1608/* Bitfields in service list */
1609#define SERVICE_TX (0x80000000) /* Was from transmission */
1610#define SERVICE_TRASH (0x40000000) /* RXed PDU was trashed */
1611#define SERVICE_CRCERR (0x20000000) /* RXed PDU had CRC error */
1612#define SERVICE_CI (0x10000000) /* RXed PDU had CI set */
1613#define SERVICE_CLP (0x08000000) /* RXed PDU had CLP set */
1614#define SERVICE_STREAM (0x04000000) /* RX Stream mode */
1615#define SERVICE_GET_VCI(x) (((x)>>16)&0x3FF)
1616#define SERVICE_GET_END(x) ((x)&0x1FFF)
1617
1618/* Handle one thing from the service list - returns true if it marked a
1619 * VCC ready for xmit
1620 */
1621static int handle_service(struct lanai_dev *lanai, u32 s)
1622{
1623 vci_t vci = SERVICE_GET_VCI(s);
1624 struct lanai_vcc *lvcc;
1625 read_lock(&vcc_sklist_lock);
1626 lvcc = lanai->vccs[vci];
1627 if (unlikely(lvcc == NULL)) {
1628 read_unlock(&vcc_sklist_lock);
1629 DPRINTK("(itf %d) got service entry 0x%X for nonexistent "
1630 "vcc %d\n", lanai->number, (unsigned int) s, vci);
1631 if (s & SERVICE_TX)
1632 lanai->stats.service_notx++;
1633 else
1634 lanai->stats.service_norx++;
1635 return 0;
1636 }
1637 if (s & SERVICE_TX) { /* segmentation interrupt */
1638 if (unlikely(lvcc->tx.atmvcc == NULL)) {
1639 read_unlock(&vcc_sklist_lock);
1640 DPRINTK("(itf %d) got service entry 0x%X for non-TX "
1641 "vcc %d\n", lanai->number, (unsigned int) s, vci);
1642 lanai->stats.service_notx++;
1643 return 0;
1644 }
1645 __set_bit(vci, lanai->transmit_ready);
1646 lvcc->tx.endptr = SERVICE_GET_END(s);
1647 read_unlock(&vcc_sklist_lock);
1648 return 1;
1649 }
1650 if (unlikely(lvcc->rx.atmvcc == NULL)) {
1651 read_unlock(&vcc_sklist_lock);
1652 DPRINTK("(itf %d) got service entry 0x%X for non-RX "
1653 "vcc %d\n", lanai->number, (unsigned int) s, vci);
1654 lanai->stats.service_norx++;
1655 return 0;
1656 }
1657 if (unlikely(lvcc->rx.atmvcc->qos.aal != ATM_AAL5)) {
1658 read_unlock(&vcc_sklist_lock);
1659 DPRINTK("(itf %d) got RX service entry 0x%X for non-AAL5 "
1660 "vcc %d\n", lanai->number, (unsigned int) s, vci);
1661 lanai->stats.service_rxnotaal5++;
1662 atomic_inc(&lvcc->rx.atmvcc->stats->rx_err);
1663 return 0;
1664 }
1665 if (likely(!(s & (SERVICE_TRASH | SERVICE_STREAM | SERVICE_CRCERR)))) {
1666 vcc_rx_aal5(lvcc, SERVICE_GET_END(s));
1667 read_unlock(&vcc_sklist_lock);
1668 return 0;
1669 }
1670 if (s & SERVICE_TRASH) {
1671 int bytes;
1672 read_unlock(&vcc_sklist_lock);
1673 DPRINTK("got trashed rx pdu on vci %d\n", vci);
1674 atomic_inc(&lvcc->rx.atmvcc->stats->rx_err);
1675 lvcc->stats.x.aal5.service_trash++;
1676 bytes = (SERVICE_GET_END(s) * 16) -
1677 (((unsigned long) lvcc->rx.buf.ptr) -
1678 ((unsigned long) lvcc->rx.buf.start)) + 47;
1679 if (bytes < 0)
1680 bytes += lanai_buf_size(&lvcc->rx.buf);
1681 lanai->stats.ovfl_trash += (bytes / 48);
1682 return 0;
1683 }
1684 if (s & SERVICE_STREAM) {
1685 read_unlock(&vcc_sklist_lock);
1686 atomic_inc(&lvcc->rx.atmvcc->stats->rx_err);
1687 lvcc->stats.x.aal5.service_stream++;
1688 printk(KERN_ERR DEV_LABEL "(itf %d): Got AAL5 stream "
1689 "PDU on VCI %d!\n", lanai->number, vci);
1690 lanai_reset(lanai);
1691 return 0;
1692 }
1693 DPRINTK("got rx crc error on vci %d\n", vci);
1694 atomic_inc(&lvcc->rx.atmvcc->stats->rx_err);
1695 lvcc->stats.x.aal5.service_rxcrc++;
1696 lvcc->rx.buf.ptr = &lvcc->rx.buf.start[SERVICE_GET_END(s) * 4];
1697 cardvcc_write(lvcc, SERVICE_GET_END(s), vcc_rxreadptr);
1698 read_unlock(&vcc_sklist_lock);
1699 return 0;
1700}
1701
1702/* Try transmitting on all VCIs that we marked ready to serve */
1703static void iter_transmit(struct lanai_dev *lanai, vci_t vci)
1704{
1705 struct lanai_vcc *lvcc = lanai->vccs[vci];
1706 if (vcc_is_backlogged(lvcc))
1707 lvcc->tx.unqueue(lanai, lvcc, lvcc->tx.endptr);
1708}
1709
1710/* Run service queue -- called from interrupt context or with
1711 * interrupts otherwise disabled and with the lanai->servicelock
1712 * lock held
1713 */
1714static void run_service(struct lanai_dev *lanai)
1715{
1716 int ntx = 0;
1717 u32 wreg = reg_read(lanai, ServWrite_Reg);
1718 const u32 *end = lanai->service.start + wreg;
1719 while (lanai->service.ptr != end) {
1720 ntx += handle_service(lanai,
1721 le32_to_cpup(lanai->service.ptr++));
1722 if (lanai->service.ptr >= lanai->service.end)
1723 lanai->service.ptr = lanai->service.start;
1724 }
1725 reg_write(lanai, wreg, ServRead_Reg);
1726 if (ntx != 0) {
1727 read_lock(&vcc_sklist_lock);
1728 vci_bitfield_iterate(lanai, lanai->transmit_ready,
1729 iter_transmit);
1730 bitmap_zero(lanai->transmit_ready, NUM_VCI);
1731 read_unlock(&vcc_sklist_lock);
1732 }
1733}
1734
1735/* -------------------- GATHER STATISTICS: */
1736
1737static void get_statistics(struct lanai_dev *lanai)
1738{
1739 u32 statreg = reg_read(lanai, Statistics_Reg);
1740 lanai->stats.atm_ovfl += STATS_GET_FIFO_OVFL(statreg);
1741 lanai->stats.hec_err += STATS_GET_HEC_ERR(statreg);
1742 lanai->stats.vci_trash += STATS_GET_BAD_VCI(statreg);
1743 lanai->stats.ovfl_trash += STATS_GET_BUF_OVFL(statreg);
1744}
1745
1746/* -------------------- POLLING TIMER: */
1747
1748#ifndef DEBUG_RW
1749/* Try to undequeue 1 backlogged vcc */
1750static void iter_dequeue(struct lanai_dev *lanai, vci_t vci)
1751{
1752 struct lanai_vcc *lvcc = lanai->vccs[vci];
1753 int endptr;
1754 if (lvcc == NULL || lvcc->tx.atmvcc == NULL ||
1755 !vcc_is_backlogged(lvcc)) {
1756 __clear_bit(vci, lanai->backlog_vccs);
1757 return;
1758 }
1759 endptr = TXREADPTR_GET_PTR(cardvcc_read(lvcc, vcc_txreadptr));
1760 lvcc->tx.unqueue(lanai, lvcc, endptr);
1761}
1762#endif /* !DEBUG_RW */
1763
1764static void lanai_timed_poll(struct timer_list *t)
1765{
1766 struct lanai_dev *lanai = from_timer(lanai, t, timer);
1767#ifndef DEBUG_RW
1768 unsigned long flags;
1769#ifdef USE_POWERDOWN
1770 if (lanai->conf1 & CONFIG1_POWERDOWN)
1771 return;
1772#endif /* USE_POWERDOWN */
1773 local_irq_save(flags);
1774 /* If we can grab the spinlock, check if any services need to be run */
1775 if (spin_trylock(&lanai->servicelock)) {
1776 run_service(lanai);
1777 spin_unlock(&lanai->servicelock);
1778 }
1779 /* ...and see if any backlogged VCs can make progress */
1780 /* unfortunately linux has no read_trylock() currently */
1781 read_lock(&vcc_sklist_lock);
1782 vci_bitfield_iterate(lanai, lanai->backlog_vccs, iter_dequeue);
1783 read_unlock(&vcc_sklist_lock);
1784 local_irq_restore(flags);
1785
1786 get_statistics(lanai);
1787#endif /* !DEBUG_RW */
1788 mod_timer(&lanai->timer, jiffies + LANAI_POLL_PERIOD);
1789}
1790
1791static inline void lanai_timed_poll_start(struct lanai_dev *lanai)
1792{
1793 timer_setup(&lanai->timer, lanai_timed_poll, 0);
1794 lanai->timer.expires = jiffies + LANAI_POLL_PERIOD;
1795 add_timer(&lanai->timer);
1796}
1797
1798static inline void lanai_timed_poll_stop(struct lanai_dev *lanai)
1799{
1800 del_timer_sync(&lanai->timer);
1801}
1802
1803/* -------------------- INTERRUPT SERVICE: */
1804
1805static inline void lanai_int_1(struct lanai_dev *lanai, u32 reason)
1806{
1807 u32 ack = 0;
1808 if (reason & INT_SERVICE) {
1809 ack = INT_SERVICE;
1810 spin_lock(&lanai->servicelock);
1811 run_service(lanai);
1812 spin_unlock(&lanai->servicelock);
1813 }
1814 if (reason & (INT_AAL0_STR | INT_AAL0)) {
1815 ack |= reason & (INT_AAL0_STR | INT_AAL0);
1816 vcc_rx_aal0(lanai);
1817 }
1818 /* The rest of the interrupts are pretty rare */
1819 if (ack == reason)
1820 goto done;
1821 if (reason & INT_STATS) {
1822 reason &= ~INT_STATS; /* No need to ack */
1823 get_statistics(lanai);
1824 }
1825 if (reason & INT_STATUS) {
1826 ack |= reason & INT_STATUS;
1827 lanai_check_status(lanai);
1828 }
1829 if (unlikely(reason & INT_DMASHUT)) {
1830 printk(KERN_ERR DEV_LABEL "(itf %d): driver error - DMA "
1831 "shutdown, reason=0x%08X, address=0x%08X\n",
1832 lanai->number, (unsigned int) (reason & INT_DMASHUT),
1833 (unsigned int) reg_read(lanai, DMA_Addr_Reg));
1834 if (reason & INT_TABORTBM) {
1835 lanai_reset(lanai);
1836 return;
1837 }
1838 ack |= (reason & INT_DMASHUT);
1839 printk(KERN_ERR DEV_LABEL "(itf %d): re-enabling DMA\n",
1840 lanai->number);
1841 conf1_write(lanai);
1842 lanai->stats.dma_reenable++;
1843 pcistatus_check(lanai, 0);
1844 }
1845 if (unlikely(reason & INT_TABORTSENT)) {
1846 ack |= (reason & INT_TABORTSENT);
1847 printk(KERN_ERR DEV_LABEL "(itf %d): sent PCI target abort\n",
1848 lanai->number);
1849 pcistatus_check(lanai, 0);
1850 }
1851 if (unlikely(reason & INT_SEGSHUT)) {
1852 printk(KERN_ERR DEV_LABEL "(itf %d): driver error - "
1853 "segmentation shutdown, reason=0x%08X\n", lanai->number,
1854 (unsigned int) (reason & INT_SEGSHUT));
1855 lanai_reset(lanai);
1856 return;
1857 }
1858 if (unlikely(reason & (INT_PING | INT_WAKE))) {
1859 printk(KERN_ERR DEV_LABEL "(itf %d): driver error - "
1860 "unexpected interrupt 0x%08X, resetting\n",
1861 lanai->number,
1862 (unsigned int) (reason & (INT_PING | INT_WAKE)));
1863 lanai_reset(lanai);
1864 return;
1865 }
1866#ifdef DEBUG
1867 if (unlikely(ack != reason)) {
1868 DPRINTK("unacked ints: 0x%08X\n",
1869 (unsigned int) (reason & ~ack));
1870 ack = reason;
1871 }
1872#endif
1873 done:
1874 if (ack != 0)
1875 reg_write(lanai, ack, IntAck_Reg);
1876}
1877
1878static irqreturn_t lanai_int(int irq, void *devid)
1879{
1880 struct lanai_dev *lanai = devid;
1881 u32 reason;
1882
1883#ifdef USE_POWERDOWN
1884 /*
1885 * If we're powered down we shouldn't be generating any interrupts -
1886 * so assume that this is a shared interrupt line and it's for someone
1887 * else
1888 */
1889 if (unlikely(lanai->conf1 & CONFIG1_POWERDOWN))
1890 return IRQ_NONE;
1891#endif
1892
1893 reason = intr_pending(lanai);
1894 if (reason == 0)
1895 return IRQ_NONE; /* Must be for someone else */
1896
1897 do {
1898 if (unlikely(reason == 0xFFFFFFFF))
1899 break; /* Maybe we've been unplugged? */
1900 lanai_int_1(lanai, reason);
1901 reason = intr_pending(lanai);
1902 } while (reason != 0);
1903
1904 return IRQ_HANDLED;
1905}
1906
1907/* TODO - it would be nice if we could use the "delayed interrupt" system
1908 * to some advantage
1909 */
1910
1911/* -------------------- CHECK BOARD ID/REV: */
1912
1913/*
1914 * The board id and revision are stored both in the reset register and
1915 * in the PCI configuration space - the documentation says to check
1916 * each of them. If revp!=NULL we store the revision there
1917 */
1918static int check_board_id_and_rev(const char *name, u32 val, int *revp)
1919{
1920 DPRINTK("%s says board_id=%d, board_rev=%d\n", name,
1921 (int) RESET_GET_BOARD_ID(val),
1922 (int) RESET_GET_BOARD_REV(val));
1923 if (RESET_GET_BOARD_ID(val) != BOARD_ID_LANAI256) {
1924 printk(KERN_ERR DEV_LABEL ": Found %s board-id %d -- not a "
1925 "Lanai 25.6\n", name, (int) RESET_GET_BOARD_ID(val));
1926 return -ENODEV;
1927 }
1928 if (revp != NULL)
1929 *revp = RESET_GET_BOARD_REV(val);
1930 return 0;
1931}
1932
1933/* -------------------- PCI INITIALIZATION/SHUTDOWN: */
1934
1935static int lanai_pci_start(struct lanai_dev *lanai)
1936{
1937 struct pci_dev *pci = lanai->pci;
1938 int result;
1939
1940 if (pci_enable_device(pci) != 0) {
1941 printk(KERN_ERR DEV_LABEL "(itf %d): can't enable "
1942 "PCI device", lanai->number);
1943 return -ENXIO;
1944 }
1945 pci_set_master(pci);
1946 if (dma_set_mask_and_coherent(&pci->dev, DMA_BIT_MASK(32)) != 0) {
1947 printk(KERN_WARNING DEV_LABEL
1948 "(itf %d): No suitable DMA available.\n", lanai->number);
1949 return -EBUSY;
1950 }
1951 result = check_board_id_and_rev("PCI", pci->subsystem_device, NULL);
1952 if (result != 0)
1953 return result;
1954 /* Set latency timer to zero as per lanai docs */
1955 result = pci_write_config_byte(pci, PCI_LATENCY_TIMER, 0);
1956 if (result != PCIBIOS_SUCCESSFUL) {
1957 printk(KERN_ERR DEV_LABEL "(itf %d): can't write "
1958 "PCI_LATENCY_TIMER: %d\n", lanai->number, result);
1959 return -EINVAL;
1960 }
1961 pcistatus_check(lanai, 1);
1962 pcistatus_check(lanai, 0);
1963 return 0;
1964}
1965
1966/* -------------------- VPI/VCI ALLOCATION: */
1967
1968/*
1969 * We _can_ use VCI==0 for normal traffic, but only for UBR (or we'll
1970 * get a CBRZERO interrupt), and we can use it only if no one is receiving
1971 * AAL0 traffic (since they will use the same queue) - according to the
1972 * docs we shouldn't even use it for AAL0 traffic
1973 */
1974static inline int vci0_is_ok(struct lanai_dev *lanai,
1975 const struct atm_qos *qos)
1976{
1977 if (qos->txtp.traffic_class == ATM_CBR || qos->aal == ATM_AAL0)
1978 return 0;
1979 if (qos->rxtp.traffic_class != ATM_NONE) {
1980 if (lanai->naal0 != 0)
1981 return 0;
1982 lanai->conf2 |= CONFIG2_VCI0_NORMAL;
1983 conf2_write_if_powerup(lanai);
1984 }
1985 return 1;
1986}
1987
1988/* return true if vci is currently unused, or if requested qos is
1989 * compatible
1990 */
1991static int vci_is_ok(struct lanai_dev *lanai, vci_t vci,
1992 const struct atm_vcc *atmvcc)
1993{
1994 const struct atm_qos *qos = &atmvcc->qos;
1995 const struct lanai_vcc *lvcc = lanai->vccs[vci];
1996 if (vci == 0 && !vci0_is_ok(lanai, qos))
1997 return 0;
1998 if (unlikely(lvcc != NULL)) {
1999 if (qos->rxtp.traffic_class != ATM_NONE &&
2000 lvcc->rx.atmvcc != NULL && lvcc->rx.atmvcc != atmvcc)
2001 return 0;
2002 if (qos->txtp.traffic_class != ATM_NONE &&
2003 lvcc->tx.atmvcc != NULL && lvcc->tx.atmvcc != atmvcc)
2004 return 0;
2005 if (qos->txtp.traffic_class == ATM_CBR &&
2006 lanai->cbrvcc != NULL && lanai->cbrvcc != atmvcc)
2007 return 0;
2008 }
2009 if (qos->aal == ATM_AAL0 && lanai->naal0 == 0 &&
2010 qos->rxtp.traffic_class != ATM_NONE) {
2011 const struct lanai_vcc *vci0 = lanai->vccs[0];
2012 if (vci0 != NULL && vci0->rx.atmvcc != NULL)
2013 return 0;
2014 lanai->conf2 &= ~CONFIG2_VCI0_NORMAL;
2015 conf2_write_if_powerup(lanai);
2016 }
2017 return 1;
2018}
2019
2020static int lanai_normalize_ci(struct lanai_dev *lanai,
2021 const struct atm_vcc *atmvcc, short *vpip, vci_t *vcip)
2022{
2023 switch (*vpip) {
2024 case ATM_VPI_ANY:
2025 *vpip = 0;
2026 /* FALLTHROUGH */
2027 case 0:
2028 break;
2029 default:
2030 return -EADDRINUSE;
2031 }
2032 switch (*vcip) {
2033 case ATM_VCI_ANY:
2034 for (*vcip = ATM_NOT_RSV_VCI; *vcip < lanai->num_vci;
2035 (*vcip)++)
2036 if (vci_is_ok(lanai, *vcip, atmvcc))
2037 return 0;
2038 return -EADDRINUSE;
2039 default:
2040 if (*vcip >= lanai->num_vci || *vcip < 0 ||
2041 !vci_is_ok(lanai, *vcip, atmvcc))
2042 return -EADDRINUSE;
2043 }
2044 return 0;
2045}
2046
2047/* -------------------- MANAGE CBR: */
2048
2049/*
2050 * CBR ICG is stored as a fixed-point number with 4 fractional bits.
2051 * Note that storing a number greater than 2046.0 will result in
2052 * incorrect shaping
2053 */
2054#define CBRICG_FRAC_BITS (4)
2055#define CBRICG_MAX (2046 << CBRICG_FRAC_BITS)
2056
2057/*
2058 * ICG is related to PCR with the formula PCR = MAXPCR / (ICG + 1)
2059 * where MAXPCR is (according to the docs) 25600000/(54*8),
2060 * which is equal to (3125<<9)/27.
2061 *
2062 * Solving for ICG, we get:
2063 * ICG = MAXPCR/PCR - 1
2064 * ICG = (3125<<9)/(27*PCR) - 1
2065 * ICG = ((3125<<9) - (27*PCR)) / (27*PCR)
2066 *
2067 * The end result is supposed to be a fixed-point number with FRAC_BITS
2068 * bits of a fractional part, so we keep everything in the numerator
2069 * shifted by that much as we compute
2070 *
2071 */
2072static int pcr_to_cbricg(const struct atm_qos *qos)
2073{
2074 int rounddown = 0; /* 1 = Round PCR down, i.e. round ICG _up_ */
2075 int x, icg, pcr = atm_pcr_goal(&qos->txtp);
2076 if (pcr == 0) /* Use maximum bandwidth */
2077 return 0;
2078 if (pcr < 0) {
2079 rounddown = 1;
2080 pcr = -pcr;
2081 }
2082 x = pcr * 27;
2083 icg = (3125 << (9 + CBRICG_FRAC_BITS)) - (x << CBRICG_FRAC_BITS);
2084 if (rounddown)
2085 icg += x - 1;
2086 icg /= x;
2087 if (icg > CBRICG_MAX)
2088 icg = CBRICG_MAX;
2089 DPRINTK("pcr_to_cbricg: pcr=%d rounddown=%c icg=%d\n",
2090 pcr, rounddown ? 'Y' : 'N', icg);
2091 return icg;
2092}
2093
2094static inline void lanai_cbr_setup(struct lanai_dev *lanai)
2095{
2096 reg_write(lanai, pcr_to_cbricg(&lanai->cbrvcc->qos), CBR_ICG_Reg);
2097 reg_write(lanai, lanai->cbrvcc->vci, CBR_PTR_Reg);
2098 lanai->conf2 |= CONFIG2_CBR_ENABLE;
2099 conf2_write(lanai);
2100}
2101
2102static inline void lanai_cbr_shutdown(struct lanai_dev *lanai)
2103{
2104 lanai->conf2 &= ~CONFIG2_CBR_ENABLE;
2105 conf2_write(lanai);
2106}
2107
2108/* -------------------- OPERATIONS: */
2109
2110/* setup a newly detected device */
2111static int lanai_dev_open(struct atm_dev *atmdev)
2112{
2113 struct lanai_dev *lanai = (struct lanai_dev *) atmdev->dev_data;
2114 unsigned long raw_base;
2115 int result;
2116
2117 DPRINTK("In lanai_dev_open()\n");
2118 /* Basic device fields */
2119 lanai->number = atmdev->number;
2120 lanai->num_vci = NUM_VCI;
2121 bitmap_zero(lanai->backlog_vccs, NUM_VCI);
2122 bitmap_zero(lanai->transmit_ready, NUM_VCI);
2123 lanai->naal0 = 0;
2124#ifdef USE_POWERDOWN
2125 lanai->nbound = 0;
2126#endif
2127 lanai->cbrvcc = NULL;
2128 memset(&lanai->stats, 0, sizeof lanai->stats);
2129 spin_lock_init(&lanai->endtxlock);
2130 spin_lock_init(&lanai->servicelock);
2131 atmdev->ci_range.vpi_bits = 0;
2132 atmdev->ci_range.vci_bits = 0;
2133 while (1 << atmdev->ci_range.vci_bits < lanai->num_vci)
2134 atmdev->ci_range.vci_bits++;
2135 atmdev->link_rate = ATM_25_PCR;
2136
2137 /* 3.2: PCI initialization */
2138 if ((result = lanai_pci_start(lanai)) != 0)
2139 goto error;
2140 raw_base = lanai->pci->resource[0].start;
2141 lanai->base = (bus_addr_t) ioremap(raw_base, LANAI_MAPPING_SIZE);
2142 if (lanai->base == NULL) {
2143 printk(KERN_ERR DEV_LABEL ": couldn't remap I/O space\n");
2144 result = -ENOMEM;
2145 goto error_pci;
2146 }
2147 /* 3.3: Reset lanai and PHY */
2148 reset_board(lanai);
2149 lanai->conf1 = reg_read(lanai, Config1_Reg);
2150 lanai->conf1 &= ~(CONFIG1_GPOUT1 | CONFIG1_POWERDOWN |
2151 CONFIG1_MASK_LEDMODE);
2152 lanai->conf1 |= CONFIG1_SET_LEDMODE(LEDMODE_NOT_SOOL);
2153 reg_write(lanai, lanai->conf1 | CONFIG1_GPOUT1, Config1_Reg);
2154 udelay(1000);
2155 conf1_write(lanai);
2156
2157 /*
2158 * 3.4: Turn on endian mode for big-endian hardware
2159 * We don't actually want to do this - the actual bit fields
2160 * in the endian register are not documented anywhere.
2161 * Instead we do the bit-flipping ourselves on big-endian
2162 * hardware.
2163 *
2164 * 3.5: get the board ID/rev by reading the reset register
2165 */
2166 result = check_board_id_and_rev("register",
2167 reg_read(lanai, Reset_Reg), &lanai->board_rev);
2168 if (result != 0)
2169 goto error_unmap;
2170
2171 /* 3.6: read EEPROM */
2172 if ((result = eeprom_read(lanai)) != 0)
2173 goto error_unmap;
2174 if ((result = eeprom_validate(lanai)) != 0)
2175 goto error_unmap;
2176
2177 /* 3.7: re-reset PHY, do loopback tests, setup PHY */
2178 reg_write(lanai, lanai->conf1 | CONFIG1_GPOUT1, Config1_Reg);
2179 udelay(1000);
2180 conf1_write(lanai);
2181 /* TODO - loopback tests */
2182 lanai->conf1 |= (CONFIG1_GPOUT2 | CONFIG1_GPOUT3 | CONFIG1_DMA_ENABLE);
2183 conf1_write(lanai);
2184
2185 /* 3.8/3.9: test and initialize card SRAM */
2186 if ((result = sram_test_and_clear(lanai)) != 0)
2187 goto error_unmap;
2188
2189 /* 3.10: initialize lanai registers */
2190 lanai->conf1 |= CONFIG1_DMA_ENABLE;
2191 conf1_write(lanai);
2192 if ((result = service_buffer_allocate(lanai)) != 0)
2193 goto error_unmap;
2194 if ((result = vcc_table_allocate(lanai)) != 0)
2195 goto error_service;
2196 lanai->conf2 = (lanai->num_vci >= 512 ? CONFIG2_HOWMANY : 0) |
2197 CONFIG2_HEC_DROP | /* ??? */ CONFIG2_PTI7_MODE;
2198 conf2_write(lanai);
2199 reg_write(lanai, TX_FIFO_DEPTH, TxDepth_Reg);
2200 reg_write(lanai, 0, CBR_ICG_Reg); /* CBR defaults to no limit */
2201 if ((result = request_irq(lanai->pci->irq, lanai_int, IRQF_SHARED,
2202 DEV_LABEL, lanai)) != 0) {
2203 printk(KERN_ERR DEV_LABEL ": can't allocate interrupt\n");
2204 goto error_vcctable;
2205 }
2206 mb(); /* Make sure that all that made it */
2207 intr_enable(lanai, INT_ALL & ~(INT_PING | INT_WAKE));
2208 /* 3.11: initialize loop mode (i.e. turn looping off) */
2209 lanai->conf1 = (lanai->conf1 & ~CONFIG1_MASK_LOOPMODE) |
2210 CONFIG1_SET_LOOPMODE(LOOPMODE_NORMAL) |
2211 CONFIG1_GPOUT2 | CONFIG1_GPOUT3;
2212 conf1_write(lanai);
2213 lanai->status = reg_read(lanai, Status_Reg);
2214 /* We're now done initializing this card */
2215#ifdef USE_POWERDOWN
2216 lanai->conf1 |= CONFIG1_POWERDOWN;
2217 conf1_write(lanai);
2218#endif
2219 memcpy(atmdev->esi, eeprom_mac(lanai), ESI_LEN);
2220 lanai_timed_poll_start(lanai);
2221 printk(KERN_NOTICE DEV_LABEL "(itf %d): rev.%d, base=%p, irq=%u "
2222 "(%pMF)\n", lanai->number, (int) lanai->pci->revision,
2223 lanai->base, lanai->pci->irq, atmdev->esi);
2224 printk(KERN_NOTICE DEV_LABEL "(itf %d): LANAI%s, serialno=%u(0x%X), "
2225 "board_rev=%d\n", lanai->number,
2226 lanai->type==lanai2 ? "2" : "HB", (unsigned int) lanai->serialno,
2227 (unsigned int) lanai->serialno, lanai->board_rev);
2228 return 0;
2229
2230 error_vcctable:
2231 vcc_table_deallocate(lanai);
2232 error_service:
2233 service_buffer_deallocate(lanai);
2234 error_unmap:
2235 reset_board(lanai);
2236#ifdef USE_POWERDOWN
2237 lanai->conf1 = reg_read(lanai, Config1_Reg) | CONFIG1_POWERDOWN;
2238 conf1_write(lanai);
2239#endif
2240 iounmap(lanai->base);
2241 error_pci:
2242 pci_disable_device(lanai->pci);
2243 error:
2244 return result;
2245}
2246
2247/* called when device is being shutdown, and all vcc's are gone - higher
2248 * levels will deallocate the atm device for us
2249 */
2250static void lanai_dev_close(struct atm_dev *atmdev)
2251{
2252 struct lanai_dev *lanai = (struct lanai_dev *) atmdev->dev_data;
2253 printk(KERN_INFO DEV_LABEL "(itf %d): shutting down interface\n",
2254 lanai->number);
2255 lanai_timed_poll_stop(lanai);
2256#ifdef USE_POWERDOWN
2257 lanai->conf1 = reg_read(lanai, Config1_Reg) & ~CONFIG1_POWERDOWN;
2258 conf1_write(lanai);
2259#endif
2260 intr_disable(lanai, INT_ALL);
2261 free_irq(lanai->pci->irq, lanai);
2262 reset_board(lanai);
2263#ifdef USE_POWERDOWN
2264 lanai->conf1 |= CONFIG1_POWERDOWN;
2265 conf1_write(lanai);
2266#endif
2267 pci_disable_device(lanai->pci);
2268 vcc_table_deallocate(lanai);
2269 service_buffer_deallocate(lanai);
2270 iounmap(lanai->base);
2271 kfree(lanai);
2272}
2273
2274/* close a vcc */
2275static void lanai_close(struct atm_vcc *atmvcc)
2276{
2277 struct lanai_vcc *lvcc = (struct lanai_vcc *) atmvcc->dev_data;
2278 struct lanai_dev *lanai = (struct lanai_dev *) atmvcc->dev->dev_data;
2279 if (lvcc == NULL)
2280 return;
2281 clear_bit(ATM_VF_READY, &atmvcc->flags);
2282 clear_bit(ATM_VF_PARTIAL, &atmvcc->flags);
2283 if (lvcc->rx.atmvcc == atmvcc) {
2284 lanai_shutdown_rx_vci(lvcc);
2285 if (atmvcc->qos.aal == ATM_AAL0) {
2286 if (--lanai->naal0 <= 0)
2287 aal0_buffer_free(lanai);
2288 } else
2289 lanai_buf_deallocate(&lvcc->rx.buf, lanai->pci);
2290 lvcc->rx.atmvcc = NULL;
2291 }
2292 if (lvcc->tx.atmvcc == atmvcc) {
2293 if (atmvcc == lanai->cbrvcc) {
2294 if (lvcc->vbase != NULL)
2295 lanai_cbr_shutdown(lanai);
2296 lanai->cbrvcc = NULL;
2297 }
2298 lanai_shutdown_tx_vci(lanai, lvcc);
2299 lanai_buf_deallocate(&lvcc->tx.buf, lanai->pci);
2300 lvcc->tx.atmvcc = NULL;
2301 }
2302 if (--lvcc->nref == 0) {
2303 host_vcc_unbind(lanai, lvcc);
2304 kfree(lvcc);
2305 }
2306 atmvcc->dev_data = NULL;
2307 clear_bit(ATM_VF_ADDR, &atmvcc->flags);
2308}
2309
2310/* open a vcc on the card to vpi/vci */
2311static int lanai_open(struct atm_vcc *atmvcc)
2312{
2313 struct lanai_dev *lanai;
2314 struct lanai_vcc *lvcc;
2315 int result = 0;
2316 int vci = atmvcc->vci;
2317 short vpi = atmvcc->vpi;
2318 /* we don't support partial open - it's not really useful anyway */
2319 if ((test_bit(ATM_VF_PARTIAL, &atmvcc->flags)) ||
2320 (vpi == ATM_VPI_UNSPEC) || (vci == ATM_VCI_UNSPEC))
2321 return -EINVAL;
2322 lanai = (struct lanai_dev *) atmvcc->dev->dev_data;
2323 result = lanai_normalize_ci(lanai, atmvcc, &vpi, &vci);
2324 if (unlikely(result != 0))
2325 goto out;
2326 set_bit(ATM_VF_ADDR, &atmvcc->flags);
2327 if (atmvcc->qos.aal != ATM_AAL0 && atmvcc->qos.aal != ATM_AAL5)
2328 return -EINVAL;
2329 DPRINTK(DEV_LABEL "(itf %d): open %d.%d\n", lanai->number,
2330 (int) vpi, vci);
2331 lvcc = lanai->vccs[vci];
2332 if (lvcc == NULL) {
2333 lvcc = new_lanai_vcc();
2334 if (unlikely(lvcc == NULL))
2335 return -ENOMEM;
2336 atmvcc->dev_data = lvcc;
2337 }
2338 lvcc->nref++;
2339 if (atmvcc->qos.rxtp.traffic_class != ATM_NONE) {
2340 APRINTK(lvcc->rx.atmvcc == NULL, "rx.atmvcc!=NULL, vci=%d\n",
2341 vci);
2342 if (atmvcc->qos.aal == ATM_AAL0) {
2343 if (lanai->naal0 == 0)
2344 result = aal0_buffer_allocate(lanai);
2345 } else
2346 result = lanai_setup_rx_vci_aal5(
2347 lanai, lvcc, &atmvcc->qos);
2348 if (unlikely(result != 0))
2349 goto out_free;
2350 lvcc->rx.atmvcc = atmvcc;
2351 lvcc->stats.rx_nomem = 0;
2352 lvcc->stats.x.aal5.rx_badlen = 0;
2353 lvcc->stats.x.aal5.service_trash = 0;
2354 lvcc->stats.x.aal5.service_stream = 0;
2355 lvcc->stats.x.aal5.service_rxcrc = 0;
2356 if (atmvcc->qos.aal == ATM_AAL0)
2357 lanai->naal0++;
2358 }
2359 if (atmvcc->qos.txtp.traffic_class != ATM_NONE) {
2360 APRINTK(lvcc->tx.atmvcc == NULL, "tx.atmvcc!=NULL, vci=%d\n",
2361 vci);
2362 result = lanai_setup_tx_vci(lanai, lvcc, &atmvcc->qos);
2363 if (unlikely(result != 0))
2364 goto out_free;
2365 lvcc->tx.atmvcc = atmvcc;
2366 if (atmvcc->qos.txtp.traffic_class == ATM_CBR) {
2367 APRINTK(lanai->cbrvcc == NULL,
2368 "cbrvcc!=NULL, vci=%d\n", vci);
2369 lanai->cbrvcc = atmvcc;
2370 }
2371 }
2372 host_vcc_bind(lanai, lvcc, vci);
2373 /*
2374 * Make sure everything made it to RAM before we tell the card about
2375 * the VCC
2376 */
2377 wmb();
2378 if (atmvcc == lvcc->rx.atmvcc)
2379 host_vcc_start_rx(lvcc);
2380 if (atmvcc == lvcc->tx.atmvcc) {
2381 host_vcc_start_tx(lvcc);
2382 if (lanai->cbrvcc == atmvcc)
2383 lanai_cbr_setup(lanai);
2384 }
2385 set_bit(ATM_VF_READY, &atmvcc->flags);
2386 return 0;
2387 out_free:
2388 lanai_close(atmvcc);
2389 out:
2390 return result;
2391}
2392
2393static int lanai_send(struct atm_vcc *atmvcc, struct sk_buff *skb)
2394{
2395 struct lanai_vcc *lvcc = (struct lanai_vcc *) atmvcc->dev_data;
2396 struct lanai_dev *lanai = (struct lanai_dev *) atmvcc->dev->dev_data;
2397 unsigned long flags;
2398 if (unlikely(lvcc == NULL || lvcc->vbase == NULL ||
2399 lvcc->tx.atmvcc != atmvcc))
2400 goto einval;
2401#ifdef DEBUG
2402 if (unlikely(skb == NULL)) {
2403 DPRINTK("lanai_send: skb==NULL for vci=%d\n", atmvcc->vci);
2404 goto einval;
2405 }
2406 if (unlikely(lanai == NULL)) {
2407 DPRINTK("lanai_send: lanai==NULL for vci=%d\n", atmvcc->vci);
2408 goto einval;
2409 }
2410#endif
2411 ATM_SKB(skb)->vcc = atmvcc;
2412 switch (atmvcc->qos.aal) {
2413 case ATM_AAL5:
2414 read_lock_irqsave(&vcc_sklist_lock, flags);
2415 vcc_tx_aal5(lanai, lvcc, skb);
2416 read_unlock_irqrestore(&vcc_sklist_lock, flags);
2417 return 0;
2418 case ATM_AAL0:
2419 if (unlikely(skb->len != ATM_CELL_SIZE-1))
2420 goto einval;
2421 /* NOTE - this next line is technically invalid - we haven't unshared skb */
2422 cpu_to_be32s((u32 *) skb->data);
2423 read_lock_irqsave(&vcc_sklist_lock, flags);
2424 vcc_tx_aal0(lanai, lvcc, skb);
2425 read_unlock_irqrestore(&vcc_sklist_lock, flags);
2426 return 0;
2427 }
2428 DPRINTK("lanai_send: bad aal=%d on vci=%d\n", (int) atmvcc->qos.aal,
2429 atmvcc->vci);
2430 einval:
2431 lanai_free_skb(atmvcc, skb);
2432 return -EINVAL;
2433}
2434
2435static int lanai_change_qos(struct atm_vcc *atmvcc,
2436 /*const*/ struct atm_qos *qos, int flags)
2437{
2438 return -EBUSY; /* TODO: need to write this */
2439}
2440
2441#ifndef CONFIG_PROC_FS
2442#define lanai_proc_read NULL
2443#else
2444static int lanai_proc_read(struct atm_dev *atmdev, loff_t *pos, char *page)
2445{
2446 struct lanai_dev *lanai = (struct lanai_dev *) atmdev->dev_data;
2447 loff_t left = *pos;
2448 struct lanai_vcc *lvcc;
2449 if (left-- == 0)
2450 return sprintf(page, DEV_LABEL "(itf %d): chip=LANAI%s, "
2451 "serial=%u, magic=0x%08X, num_vci=%d\n",
2452 atmdev->number, lanai->type==lanai2 ? "2" : "HB",
2453 (unsigned int) lanai->serialno,
2454 (unsigned int) lanai->magicno, lanai->num_vci);
2455 if (left-- == 0)
2456 return sprintf(page, "revision: board=%d, pci_if=%d\n",
2457 lanai->board_rev, (int) lanai->pci->revision);
2458 if (left-- == 0)
2459 return sprintf(page, "EEPROM ESI: %pM\n",
2460 &lanai->eeprom[EEPROM_MAC]);
2461 if (left-- == 0)
2462 return sprintf(page, "status: SOOL=%d, LOCD=%d, LED=%d, "
2463 "GPIN=%d\n", (lanai->status & STATUS_SOOL) ? 1 : 0,
2464 (lanai->status & STATUS_LOCD) ? 1 : 0,
2465 (lanai->status & STATUS_LED) ? 1 : 0,
2466 (lanai->status & STATUS_GPIN) ? 1 : 0);
2467 if (left-- == 0)
2468 return sprintf(page, "global buffer sizes: service=%zu, "
2469 "aal0_rx=%zu\n", lanai_buf_size(&lanai->service),
2470 lanai->naal0 ? lanai_buf_size(&lanai->aal0buf) : 0);
2471 if (left-- == 0) {
2472 get_statistics(lanai);
2473 return sprintf(page, "cells in error: overflow=%u, "
2474 "closed_vci=%u, bad_HEC=%u, rx_fifo=%u\n",
2475 lanai->stats.ovfl_trash, lanai->stats.vci_trash,
2476 lanai->stats.hec_err, lanai->stats.atm_ovfl);
2477 }
2478 if (left-- == 0)
2479 return sprintf(page, "PCI errors: parity_detect=%u, "
2480 "master_abort=%u, master_target_abort=%u,\n",
2481 lanai->stats.pcierr_parity_detect,
2482 lanai->stats.pcierr_serr_set,
2483 lanai->stats.pcierr_m_target_abort);
2484 if (left-- == 0)
2485 return sprintf(page, " slave_target_abort=%u, "
2486 "master_parity=%u\n", lanai->stats.pcierr_s_target_abort,
2487 lanai->stats.pcierr_master_parity);
2488 if (left-- == 0)
2489 return sprintf(page, " no_tx=%u, "
2490 "no_rx=%u, bad_rx_aal=%u\n", lanai->stats.service_norx,
2491 lanai->stats.service_notx,
2492 lanai->stats.service_rxnotaal5);
2493 if (left-- == 0)
2494 return sprintf(page, "resets: dma=%u, card=%u\n",
2495 lanai->stats.dma_reenable, lanai->stats.card_reset);
2496 /* At this point, "left" should be the VCI we're looking for */
2497 read_lock(&vcc_sklist_lock);
2498 for (; ; left++) {
2499 if (left >= NUM_VCI) {
2500 left = 0;
2501 goto out;
2502 }
2503 if ((lvcc = lanai->vccs[left]) != NULL)
2504 break;
2505 (*pos)++;
2506 }
2507 /* Note that we re-use "left" here since we're done with it */
2508 left = sprintf(page, "VCI %4d: nref=%d, rx_nomem=%u", (vci_t) left,
2509 lvcc->nref, lvcc->stats.rx_nomem);
2510 if (lvcc->rx.atmvcc != NULL) {
2511 left += sprintf(&page[left], ",\n rx_AAL=%d",
2512 lvcc->rx.atmvcc->qos.aal == ATM_AAL5 ? 5 : 0);
2513 if (lvcc->rx.atmvcc->qos.aal == ATM_AAL5)
2514 left += sprintf(&page[left], ", rx_buf_size=%zu, "
2515 "rx_bad_len=%u,\n rx_service_trash=%u, "
2516 "rx_service_stream=%u, rx_bad_crc=%u",
2517 lanai_buf_size(&lvcc->rx.buf),
2518 lvcc->stats.x.aal5.rx_badlen,
2519 lvcc->stats.x.aal5.service_trash,
2520 lvcc->stats.x.aal5.service_stream,
2521 lvcc->stats.x.aal5.service_rxcrc);
2522 }
2523 if (lvcc->tx.atmvcc != NULL)
2524 left += sprintf(&page[left], ",\n tx_AAL=%d, "
2525 "tx_buf_size=%zu, tx_qos=%cBR, tx_backlogged=%c",
2526 lvcc->tx.atmvcc->qos.aal == ATM_AAL5 ? 5 : 0,
2527 lanai_buf_size(&lvcc->tx.buf),
2528 lvcc->tx.atmvcc == lanai->cbrvcc ? 'C' : 'U',
2529 vcc_is_backlogged(lvcc) ? 'Y' : 'N');
2530 page[left++] = '\n';
2531 page[left] = '\0';
2532 out:
2533 read_unlock(&vcc_sklist_lock);
2534 return left;
2535}
2536#endif /* CONFIG_PROC_FS */
2537
2538/* -------------------- HOOKS: */
2539
2540static const struct atmdev_ops ops = {
2541 .dev_close = lanai_dev_close,
2542 .open = lanai_open,
2543 .close = lanai_close,
2544 .getsockopt = NULL,
2545 .setsockopt = NULL,
2546 .send = lanai_send,
2547 .phy_put = NULL,
2548 .phy_get = NULL,
2549 .change_qos = lanai_change_qos,
2550 .proc_read = lanai_proc_read,
2551 .owner = THIS_MODULE
2552};
2553
2554/* initialize one probed card */
2555static int lanai_init_one(struct pci_dev *pci,
2556 const struct pci_device_id *ident)
2557{
2558 struct lanai_dev *lanai;
2559 struct atm_dev *atmdev;
2560 int result;
2561
2562 lanai = kmalloc(sizeof(*lanai), GFP_KERNEL);
2563 if (lanai == NULL) {
2564 printk(KERN_ERR DEV_LABEL
2565 ": couldn't allocate dev_data structure!\n");
2566 return -ENOMEM;
2567 }
2568
2569 atmdev = atm_dev_register(DEV_LABEL, &pci->dev, &ops, -1, NULL);
2570 if (atmdev == NULL) {
2571 printk(KERN_ERR DEV_LABEL
2572 ": couldn't register atm device!\n");
2573 kfree(lanai);
2574 return -EBUSY;
2575 }
2576
2577 atmdev->dev_data = lanai;
2578 lanai->pci = pci;
2579 lanai->type = (enum lanai_type) ident->device;
2580
2581 result = lanai_dev_open(atmdev);
2582 if (result != 0) {
2583 DPRINTK("lanai_start() failed, err=%d\n", -result);
2584 atm_dev_deregister(atmdev);
2585 kfree(lanai);
2586 }
2587 return result;
2588}
2589
2590static const struct pci_device_id lanai_pci_tbl[] = {
2591 { PCI_VDEVICE(EF, PCI_DEVICE_ID_EF_ATM_LANAI2) },
2592 { PCI_VDEVICE(EF, PCI_DEVICE_ID_EF_ATM_LANAIHB) },
2593 { 0, } /* terminal entry */
2594};
2595MODULE_DEVICE_TABLE(pci, lanai_pci_tbl);
2596
2597static struct pci_driver lanai_driver = {
2598 .name = DEV_LABEL,
2599 .id_table = lanai_pci_tbl,
2600 .probe = lanai_init_one,
2601};
2602
2603module_pci_driver(lanai_driver);
2604
2605MODULE_AUTHOR("Mitchell Blank Jr <mitch@sfgoth.com>");
2606MODULE_DESCRIPTION("Efficient Networks Speedstream 3010 driver");
2607MODULE_LICENSE("GPL");
2608