1// SPDX-License-Identifier: GPL-2.0
2/*
3 * property.c - Unified device property interface.
4 *
5 * Copyright (C) 2014, Intel Corporation
6 * Authors: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
7 * Mika Westerberg <mika.westerberg@linux.intel.com>
8 */
9
10#include <linux/acpi.h>
11#include <linux/export.h>
12#include <linux/kernel.h>
13#include <linux/of.h>
14#include <linux/of_address.h>
15#include <linux/of_graph.h>
16#include <linux/of_irq.h>
17#include <linux/property.h>
18#include <linux/phy.h>
19
20struct fwnode_handle *__dev_fwnode(struct device *dev)
21{
22 return IS_ENABLED(CONFIG_OF) && dev->of_node ?
23 of_fwnode_handle(dev->of_node) : dev->fwnode;
24}
25EXPORT_SYMBOL_GPL(__dev_fwnode);
26
27const struct fwnode_handle *__dev_fwnode_const(const struct device *dev)
28{
29 return IS_ENABLED(CONFIG_OF) && dev->of_node ?
30 of_fwnode_handle(dev->of_node) : dev->fwnode;
31}
32EXPORT_SYMBOL_GPL(__dev_fwnode_const);
33
34/**
35 * device_property_present - check if a property of a device is present
36 * @dev: Device whose property is being checked
37 * @propname: Name of the property
38 *
39 * Check if property @propname is present in the device firmware description.
40 *
41 * Return: true if property @propname is present. Otherwise, returns false.
42 */
43bool device_property_present(const struct device *dev, const char *propname)
44{
45 return fwnode_property_present(dev_fwnode(dev), propname);
46}
47EXPORT_SYMBOL_GPL(device_property_present);
48
49/**
50 * fwnode_property_present - check if a property of a firmware node is present
51 * @fwnode: Firmware node whose property to check
52 * @propname: Name of the property
53 *
54 * Return: true if property @propname is present. Otherwise, returns false.
55 */
56bool fwnode_property_present(const struct fwnode_handle *fwnode,
57 const char *propname)
58{
59 bool ret;
60
61 if (IS_ERR_OR_NULL(ptr: fwnode))
62 return false;
63
64 ret = fwnode_call_bool_op(fwnode, property_present, propname);
65 if (ret)
66 return ret;
67
68 return fwnode_call_bool_op(fwnode->secondary, property_present, propname);
69}
70EXPORT_SYMBOL_GPL(fwnode_property_present);
71
72/**
73 * device_property_read_u8_array - return a u8 array property of a device
74 * @dev: Device to get the property of
75 * @propname: Name of the property
76 * @val: The values are stored here or %NULL to return the number of values
77 * @nval: Size of the @val array
78 *
79 * Function reads an array of u8 properties with @propname from the device
80 * firmware description and stores them to @val if found.
81 *
82 * It's recommended to call device_property_count_u8() instead of calling
83 * this function with @val equals %NULL and @nval equals 0.
84 *
85 * Return: number of values if @val was %NULL,
86 * %0 if the property was found (success),
87 * %-EINVAL if given arguments are not valid,
88 * %-ENODATA if the property does not have a value,
89 * %-EPROTO if the property is not an array of numbers,
90 * %-EOVERFLOW if the size of the property is not as expected.
91 * %-ENXIO if no suitable firmware interface is present.
92 */
93int device_property_read_u8_array(const struct device *dev, const char *propname,
94 u8 *val, size_t nval)
95{
96 return fwnode_property_read_u8_array(dev_fwnode(dev), propname, val, nval);
97}
98EXPORT_SYMBOL_GPL(device_property_read_u8_array);
99
100/**
101 * device_property_read_u16_array - return a u16 array property of a device
102 * @dev: Device to get the property of
103 * @propname: Name of the property
104 * @val: The values are stored here or %NULL to return the number of values
105 * @nval: Size of the @val array
106 *
107 * Function reads an array of u16 properties with @propname from the device
108 * firmware description and stores them to @val if found.
109 *
110 * It's recommended to call device_property_count_u16() instead of calling
111 * this function with @val equals %NULL and @nval equals 0.
112 *
113 * Return: number of values if @val was %NULL,
114 * %0 if the property was found (success),
115 * %-EINVAL if given arguments are not valid,
116 * %-ENODATA if the property does not have a value,
117 * %-EPROTO if the property is not an array of numbers,
118 * %-EOVERFLOW if the size of the property is not as expected.
119 * %-ENXIO if no suitable firmware interface is present.
120 */
121int device_property_read_u16_array(const struct device *dev, const char *propname,
122 u16 *val, size_t nval)
123{
124 return fwnode_property_read_u16_array(dev_fwnode(dev), propname, val, nval);
125}
126EXPORT_SYMBOL_GPL(device_property_read_u16_array);
127
128/**
129 * device_property_read_u32_array - return a u32 array property of a device
130 * @dev: Device to get the property of
131 * @propname: Name of the property
132 * @val: The values are stored here or %NULL to return the number of values
133 * @nval: Size of the @val array
134 *
135 * Function reads an array of u32 properties with @propname from the device
136 * firmware description and stores them to @val if found.
137 *
138 * It's recommended to call device_property_count_u32() instead of calling
139 * this function with @val equals %NULL and @nval equals 0.
140 *
141 * Return: number of values if @val was %NULL,
142 * %0 if the property was found (success),
143 * %-EINVAL if given arguments are not valid,
144 * %-ENODATA if the property does not have a value,
145 * %-EPROTO if the property is not an array of numbers,
146 * %-EOVERFLOW if the size of the property is not as expected.
147 * %-ENXIO if no suitable firmware interface is present.
148 */
149int device_property_read_u32_array(const struct device *dev, const char *propname,
150 u32 *val, size_t nval)
151{
152 return fwnode_property_read_u32_array(dev_fwnode(dev), propname, val, nval);
153}
154EXPORT_SYMBOL_GPL(device_property_read_u32_array);
155
156/**
157 * device_property_read_u64_array - return a u64 array property of a device
158 * @dev: Device to get the property of
159 * @propname: Name of the property
160 * @val: The values are stored here or %NULL to return the number of values
161 * @nval: Size of the @val array
162 *
163 * Function reads an array of u64 properties with @propname from the device
164 * firmware description and stores them to @val if found.
165 *
166 * It's recommended to call device_property_count_u64() instead of calling
167 * this function with @val equals %NULL and @nval equals 0.
168 *
169 * Return: number of values if @val was %NULL,
170 * %0 if the property was found (success),
171 * %-EINVAL if given arguments are not valid,
172 * %-ENODATA if the property does not have a value,
173 * %-EPROTO if the property is not an array of numbers,
174 * %-EOVERFLOW if the size of the property is not as expected.
175 * %-ENXIO if no suitable firmware interface is present.
176 */
177int device_property_read_u64_array(const struct device *dev, const char *propname,
178 u64 *val, size_t nval)
179{
180 return fwnode_property_read_u64_array(dev_fwnode(dev), propname, val, nval);
181}
182EXPORT_SYMBOL_GPL(device_property_read_u64_array);
183
184/**
185 * device_property_read_string_array - return a string array property of device
186 * @dev: Device to get the property of
187 * @propname: Name of the property
188 * @val: The values are stored here or %NULL to return the number of values
189 * @nval: Size of the @val array
190 *
191 * Function reads an array of string properties with @propname from the device
192 * firmware description and stores them to @val if found.
193 *
194 * It's recommended to call device_property_string_array_count() instead of calling
195 * this function with @val equals %NULL and @nval equals 0.
196 *
197 * Return: number of values read on success if @val is non-NULL,
198 * number of values available on success if @val is NULL,
199 * %-EINVAL if given arguments are not valid,
200 * %-ENODATA if the property does not have a value,
201 * %-EPROTO or %-EILSEQ if the property is not an array of strings,
202 * %-EOVERFLOW if the size of the property is not as expected.
203 * %-ENXIO if no suitable firmware interface is present.
204 */
205int device_property_read_string_array(const struct device *dev, const char *propname,
206 const char **val, size_t nval)
207{
208 return fwnode_property_read_string_array(dev_fwnode(dev), propname, val, nval);
209}
210EXPORT_SYMBOL_GPL(device_property_read_string_array);
211
212/**
213 * device_property_read_string - return a string property of a device
214 * @dev: Device to get the property of
215 * @propname: Name of the property
216 * @val: The value is stored here
217 *
218 * Function reads property @propname from the device firmware description and
219 * stores the value into @val if found. The value is checked to be a string.
220 *
221 * Return: %0 if the property was found (success),
222 * %-EINVAL if given arguments are not valid,
223 * %-ENODATA if the property does not have a value,
224 * %-EPROTO or %-EILSEQ if the property type is not a string.
225 * %-ENXIO if no suitable firmware interface is present.
226 */
227int device_property_read_string(const struct device *dev, const char *propname,
228 const char **val)
229{
230 return fwnode_property_read_string(dev_fwnode(dev), propname, val);
231}
232EXPORT_SYMBOL_GPL(device_property_read_string);
233
234/**
235 * device_property_match_string - find a string in an array and return index
236 * @dev: Device to get the property of
237 * @propname: Name of the property holding the array
238 * @string: String to look for
239 *
240 * Find a given string in a string array and if it is found return the
241 * index back.
242 *
243 * Return: index, starting from %0, if the property was found (success),
244 * %-EINVAL if given arguments are not valid,
245 * %-ENODATA if the property does not have a value,
246 * %-EPROTO if the property is not an array of strings,
247 * %-ENXIO if no suitable firmware interface is present.
248 */
249int device_property_match_string(const struct device *dev, const char *propname,
250 const char *string)
251{
252 return fwnode_property_match_string(dev_fwnode(dev), propname, string);
253}
254EXPORT_SYMBOL_GPL(device_property_match_string);
255
256static int fwnode_property_read_int_array(const struct fwnode_handle *fwnode,
257 const char *propname,
258 unsigned int elem_size, void *val,
259 size_t nval)
260{
261 int ret;
262
263 if (IS_ERR_OR_NULL(ptr: fwnode))
264 return -EINVAL;
265
266 ret = fwnode_call_int_op(fwnode, property_read_int_array, propname,
267 elem_size, val, nval);
268 if (ret != -EINVAL)
269 return ret;
270
271 return fwnode_call_int_op(fwnode->secondary, property_read_int_array, propname,
272 elem_size, val, nval);
273}
274
275/**
276 * fwnode_property_read_u8_array - return a u8 array property of firmware node
277 * @fwnode: Firmware node to get the property of
278 * @propname: Name of the property
279 * @val: The values are stored here or %NULL to return the number of values
280 * @nval: Size of the @val array
281 *
282 * Read an array of u8 properties with @propname from @fwnode and stores them to
283 * @val if found.
284 *
285 * It's recommended to call fwnode_property_count_u8() instead of calling
286 * this function with @val equals %NULL and @nval equals 0.
287 *
288 * Return: number of values if @val was %NULL,
289 * %0 if the property was found (success),
290 * %-EINVAL if given arguments are not valid,
291 * %-ENODATA if the property does not have a value,
292 * %-EPROTO if the property is not an array of numbers,
293 * %-EOVERFLOW if the size of the property is not as expected,
294 * %-ENXIO if no suitable firmware interface is present.
295 */
296int fwnode_property_read_u8_array(const struct fwnode_handle *fwnode,
297 const char *propname, u8 *val, size_t nval)
298{
299 return fwnode_property_read_int_array(fwnode, propname, elem_size: sizeof(u8),
300 val, nval);
301}
302EXPORT_SYMBOL_GPL(fwnode_property_read_u8_array);
303
304/**
305 * fwnode_property_read_u16_array - return a u16 array property of firmware node
306 * @fwnode: Firmware node to get the property of
307 * @propname: Name of the property
308 * @val: The values are stored here or %NULL to return the number of values
309 * @nval: Size of the @val array
310 *
311 * Read an array of u16 properties with @propname from @fwnode and store them to
312 * @val if found.
313 *
314 * It's recommended to call fwnode_property_count_u16() instead of calling
315 * this function with @val equals %NULL and @nval equals 0.
316 *
317 * Return: number of values if @val was %NULL,
318 * %0 if the property was found (success),
319 * %-EINVAL if given arguments are not valid,
320 * %-ENODATA if the property does not have a value,
321 * %-EPROTO if the property is not an array of numbers,
322 * %-EOVERFLOW if the size of the property is not as expected,
323 * %-ENXIO if no suitable firmware interface is present.
324 */
325int fwnode_property_read_u16_array(const struct fwnode_handle *fwnode,
326 const char *propname, u16 *val, size_t nval)
327{
328 return fwnode_property_read_int_array(fwnode, propname, elem_size: sizeof(u16),
329 val, nval);
330}
331EXPORT_SYMBOL_GPL(fwnode_property_read_u16_array);
332
333/**
334 * fwnode_property_read_u32_array - return a u32 array property of firmware node
335 * @fwnode: Firmware node to get the property of
336 * @propname: Name of the property
337 * @val: The values are stored here or %NULL to return the number of values
338 * @nval: Size of the @val array
339 *
340 * Read an array of u32 properties with @propname from @fwnode store them to
341 * @val if found.
342 *
343 * It's recommended to call fwnode_property_count_u32() instead of calling
344 * this function with @val equals %NULL and @nval equals 0.
345 *
346 * Return: number of values if @val was %NULL,
347 * %0 if the property was found (success),
348 * %-EINVAL if given arguments are not valid,
349 * %-ENODATA if the property does not have a value,
350 * %-EPROTO if the property is not an array of numbers,
351 * %-EOVERFLOW if the size of the property is not as expected,
352 * %-ENXIO if no suitable firmware interface is present.
353 */
354int fwnode_property_read_u32_array(const struct fwnode_handle *fwnode,
355 const char *propname, u32 *val, size_t nval)
356{
357 return fwnode_property_read_int_array(fwnode, propname, elem_size: sizeof(u32),
358 val, nval);
359}
360EXPORT_SYMBOL_GPL(fwnode_property_read_u32_array);
361
362/**
363 * fwnode_property_read_u64_array - return a u64 array property firmware node
364 * @fwnode: Firmware node to get the property of
365 * @propname: Name of the property
366 * @val: The values are stored here or %NULL to return the number of values
367 * @nval: Size of the @val array
368 *
369 * Read an array of u64 properties with @propname from @fwnode and store them to
370 * @val if found.
371 *
372 * It's recommended to call fwnode_property_count_u64() instead of calling
373 * this function with @val equals %NULL and @nval equals 0.
374 *
375 * Return: number of values if @val was %NULL,
376 * %0 if the property was found (success),
377 * %-EINVAL if given arguments are not valid,
378 * %-ENODATA if the property does not have a value,
379 * %-EPROTO if the property is not an array of numbers,
380 * %-EOVERFLOW if the size of the property is not as expected,
381 * %-ENXIO if no suitable firmware interface is present.
382 */
383int fwnode_property_read_u64_array(const struct fwnode_handle *fwnode,
384 const char *propname, u64 *val, size_t nval)
385{
386 return fwnode_property_read_int_array(fwnode, propname, elem_size: sizeof(u64),
387 val, nval);
388}
389EXPORT_SYMBOL_GPL(fwnode_property_read_u64_array);
390
391/**
392 * fwnode_property_read_string_array - return string array property of a node
393 * @fwnode: Firmware node to get the property of
394 * @propname: Name of the property
395 * @val: The values are stored here or %NULL to return the number of values
396 * @nval: Size of the @val array
397 *
398 * Read an string list property @propname from the given firmware node and store
399 * them to @val if found.
400 *
401 * It's recommended to call fwnode_property_string_array_count() instead of calling
402 * this function with @val equals %NULL and @nval equals 0.
403 *
404 * Return: number of values read on success if @val is non-NULL,
405 * number of values available on success if @val is NULL,
406 * %-EINVAL if given arguments are not valid,
407 * %-ENODATA if the property does not have a value,
408 * %-EPROTO or %-EILSEQ if the property is not an array of strings,
409 * %-EOVERFLOW if the size of the property is not as expected,
410 * %-ENXIO if no suitable firmware interface is present.
411 */
412int fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
413 const char *propname, const char **val,
414 size_t nval)
415{
416 int ret;
417
418 if (IS_ERR_OR_NULL(ptr: fwnode))
419 return -EINVAL;
420
421 ret = fwnode_call_int_op(fwnode, property_read_string_array, propname,
422 val, nval);
423 if (ret != -EINVAL)
424 return ret;
425
426 return fwnode_call_int_op(fwnode->secondary, property_read_string_array, propname,
427 val, nval);
428}
429EXPORT_SYMBOL_GPL(fwnode_property_read_string_array);
430
431/**
432 * fwnode_property_read_string - return a string property of a firmware node
433 * @fwnode: Firmware node to get the property of
434 * @propname: Name of the property
435 * @val: The value is stored here
436 *
437 * Read property @propname from the given firmware node and store the value into
438 * @val if found. The value is checked to be a string.
439 *
440 * Return: %0 if the property was found (success),
441 * %-EINVAL if given arguments are not valid,
442 * %-ENODATA if the property does not have a value,
443 * %-EPROTO or %-EILSEQ if the property is not a string,
444 * %-ENXIO if no suitable firmware interface is present.
445 */
446int fwnode_property_read_string(const struct fwnode_handle *fwnode,
447 const char *propname, const char **val)
448{
449 int ret = fwnode_property_read_string_array(fwnode, propname, val, 1);
450
451 return ret < 0 ? ret : 0;
452}
453EXPORT_SYMBOL_GPL(fwnode_property_read_string);
454
455/**
456 * fwnode_property_match_string - find a string in an array and return index
457 * @fwnode: Firmware node to get the property of
458 * @propname: Name of the property holding the array
459 * @string: String to look for
460 *
461 * Find a given string in a string array and if it is found return the
462 * index back.
463 *
464 * Return: index, starting from %0, if the property was found (success),
465 * %-EINVAL if given arguments are not valid,
466 * %-ENODATA if the property does not have a value,
467 * %-EPROTO if the property is not an array of strings,
468 * %-ENXIO if no suitable firmware interface is present.
469 */
470int fwnode_property_match_string(const struct fwnode_handle *fwnode,
471 const char *propname, const char *string)
472{
473 const char **values;
474 int nval, ret;
475
476 nval = fwnode_property_read_string_array(fwnode, propname, NULL, 0);
477 if (nval < 0)
478 return nval;
479
480 if (nval == 0)
481 return -ENODATA;
482
483 values = kcalloc(n: nval, size: sizeof(*values), GFP_KERNEL);
484 if (!values)
485 return -ENOMEM;
486
487 ret = fwnode_property_read_string_array(fwnode, propname, values, nval);
488 if (ret < 0)
489 goto out_free;
490
491 ret = match_string(array: values, n: nval, string);
492 if (ret < 0)
493 ret = -ENODATA;
494
495out_free:
496 kfree(objp: values);
497 return ret;
498}
499EXPORT_SYMBOL_GPL(fwnode_property_match_string);
500
501/**
502 * fwnode_property_get_reference_args() - Find a reference with arguments
503 * @fwnode: Firmware node where to look for the reference
504 * @prop: The name of the property
505 * @nargs_prop: The name of the property telling the number of
506 * arguments in the referred node. NULL if @nargs is known,
507 * otherwise @nargs is ignored. Only relevant on OF.
508 * @nargs: Number of arguments. Ignored if @nargs_prop is non-NULL.
509 * @index: Index of the reference, from zero onwards.
510 * @args: Result structure with reference and integer arguments.
511 *
512 * Obtain a reference based on a named property in an fwnode, with
513 * integer arguments.
514 *
515 * The caller is responsible for calling fwnode_handle_put() on the returned
516 * @args->fwnode pointer.
517 *
518 * Return: %0 on success
519 * %-ENOENT when the index is out of bounds, the index has an empty
520 * reference or the property was not found
521 * %-EINVAL on parse error
522 */
523int fwnode_property_get_reference_args(const struct fwnode_handle *fwnode,
524 const char *prop, const char *nargs_prop,
525 unsigned int nargs, unsigned int index,
526 struct fwnode_reference_args *args)
527{
528 int ret;
529
530 if (IS_ERR_OR_NULL(ptr: fwnode))
531 return -ENOENT;
532
533 ret = fwnode_call_int_op(fwnode, get_reference_args, prop, nargs_prop,
534 nargs, index, args);
535 if (ret == 0)
536 return ret;
537
538 if (IS_ERR_OR_NULL(ptr: fwnode->secondary))
539 return ret;
540
541 return fwnode_call_int_op(fwnode->secondary, get_reference_args, prop, nargs_prop,
542 nargs, index, args);
543}
544EXPORT_SYMBOL_GPL(fwnode_property_get_reference_args);
545
546/**
547 * fwnode_find_reference - Find named reference to a fwnode_handle
548 * @fwnode: Firmware node where to look for the reference
549 * @name: The name of the reference
550 * @index: Index of the reference
551 *
552 * @index can be used when the named reference holds a table of references.
553 *
554 * The caller is responsible for calling fwnode_handle_put() on the returned
555 * fwnode pointer.
556 *
557 * Return: a pointer to the reference fwnode, when found. Otherwise,
558 * returns an error pointer.
559 */
560struct fwnode_handle *fwnode_find_reference(const struct fwnode_handle *fwnode,
561 const char *name,
562 unsigned int index)
563{
564 struct fwnode_reference_args args;
565 int ret;
566
567 ret = fwnode_property_get_reference_args(fwnode, name, NULL, 0, index,
568 &args);
569 return ret ? ERR_PTR(error: ret) : args.fwnode;
570}
571EXPORT_SYMBOL_GPL(fwnode_find_reference);
572
573/**
574 * fwnode_get_name - Return the name of a node
575 * @fwnode: The firmware node
576 *
577 * Return: a pointer to the node name, or %NULL.
578 */
579const char *fwnode_get_name(const struct fwnode_handle *fwnode)
580{
581 return fwnode_call_ptr_op(fwnode, get_name);
582}
583EXPORT_SYMBOL_GPL(fwnode_get_name);
584
585/**
586 * fwnode_get_name_prefix - Return the prefix of node for printing purposes
587 * @fwnode: The firmware node
588 *
589 * Return: the prefix of a node, intended to be printed right before the node.
590 * The prefix works also as a separator between the nodes.
591 */
592const char *fwnode_get_name_prefix(const struct fwnode_handle *fwnode)
593{
594 return fwnode_call_ptr_op(fwnode, get_name_prefix);
595}
596
597/**
598 * fwnode_get_parent - Return parent firwmare node
599 * @fwnode: Firmware whose parent is retrieved
600 *
601 * The caller is responsible for calling fwnode_handle_put() on the returned
602 * fwnode pointer.
603 *
604 * Return: parent firmware node of the given node if possible or %NULL if no
605 * parent was available.
606 */
607struct fwnode_handle *fwnode_get_parent(const struct fwnode_handle *fwnode)
608{
609 return fwnode_call_ptr_op(fwnode, get_parent);
610}
611EXPORT_SYMBOL_GPL(fwnode_get_parent);
612
613/**
614 * fwnode_get_next_parent - Iterate to the node's parent
615 * @fwnode: Firmware whose parent is retrieved
616 *
617 * This is like fwnode_get_parent() except that it drops the refcount
618 * on the passed node, making it suitable for iterating through a
619 * node's parents.
620 *
621 * The caller is responsible for calling fwnode_handle_put() on the returned
622 * fwnode pointer. Note that this function also puts a reference to @fwnode
623 * unconditionally.
624 *
625 * Return: parent firmware node of the given node if possible or %NULL if no
626 * parent was available.
627 */
628struct fwnode_handle *fwnode_get_next_parent(struct fwnode_handle *fwnode)
629{
630 struct fwnode_handle *parent = fwnode_get_parent(fwnode);
631
632 fwnode_handle_put(fwnode);
633
634 return parent;
635}
636EXPORT_SYMBOL_GPL(fwnode_get_next_parent);
637
638/**
639 * fwnode_get_next_parent_dev - Find device of closest ancestor fwnode
640 * @fwnode: firmware node
641 *
642 * Given a firmware node (@fwnode), this function finds its closest ancestor
643 * firmware node that has a corresponding struct device and returns that struct
644 * device.
645 *
646 * The caller is responsible for calling put_device() on the returned device
647 * pointer.
648 *
649 * Return: a pointer to the device of the @fwnode's closest ancestor.
650 */
651struct device *fwnode_get_next_parent_dev(const struct fwnode_handle *fwnode)
652{
653 struct fwnode_handle *parent;
654 struct device *dev;
655
656 fwnode_for_each_parent_node(fwnode, parent) {
657 dev = get_dev_from_fwnode(parent);
658 if (dev) {
659 fwnode_handle_put(fwnode: parent);
660 return dev;
661 }
662 }
663 return NULL;
664}
665
666/**
667 * fwnode_count_parents - Return the number of parents a node has
668 * @fwnode: The node the parents of which are to be counted
669 *
670 * Return: the number of parents a node has.
671 */
672unsigned int fwnode_count_parents(const struct fwnode_handle *fwnode)
673{
674 struct fwnode_handle *parent;
675 unsigned int count = 0;
676
677 fwnode_for_each_parent_node(fwnode, parent)
678 count++;
679
680 return count;
681}
682EXPORT_SYMBOL_GPL(fwnode_count_parents);
683
684/**
685 * fwnode_get_nth_parent - Return an nth parent of a node
686 * @fwnode: The node the parent of which is requested
687 * @depth: Distance of the parent from the node
688 *
689 * The caller is responsible for calling fwnode_handle_put() on the returned
690 * fwnode pointer.
691 *
692 * Return: the nth parent of a node. If there is no parent at the requested
693 * @depth, %NULL is returned. If @depth is 0, the functionality is equivalent to
694 * fwnode_handle_get(). For @depth == 1, it is fwnode_get_parent() and so on.
695 */
696struct fwnode_handle *fwnode_get_nth_parent(struct fwnode_handle *fwnode,
697 unsigned int depth)
698{
699 struct fwnode_handle *parent;
700
701 if (depth == 0)
702 return fwnode_handle_get(fwnode);
703
704 fwnode_for_each_parent_node(fwnode, parent) {
705 if (--depth == 0)
706 return parent;
707 }
708 return NULL;
709}
710EXPORT_SYMBOL_GPL(fwnode_get_nth_parent);
711
712/**
713 * fwnode_is_ancestor_of - Test if @ancestor is ancestor of @child
714 * @ancestor: Firmware which is tested for being an ancestor
715 * @child: Firmware which is tested for being the child
716 *
717 * A node is considered an ancestor of itself too.
718 *
719 * Return: true if @ancestor is an ancestor of @child. Otherwise, returns false.
720 */
721bool fwnode_is_ancestor_of(const struct fwnode_handle *ancestor, const struct fwnode_handle *child)
722{
723 struct fwnode_handle *parent;
724
725 if (IS_ERR_OR_NULL(ptr: ancestor))
726 return false;
727
728 if (child == ancestor)
729 return true;
730
731 fwnode_for_each_parent_node(child, parent) {
732 if (parent == ancestor) {
733 fwnode_handle_put(fwnode: parent);
734 return true;
735 }
736 }
737 return false;
738}
739
740/**
741 * fwnode_get_next_child_node - Return the next child node handle for a node
742 * @fwnode: Firmware node to find the next child node for.
743 * @child: Handle to one of the node's child nodes or a %NULL handle.
744 *
745 * The caller is responsible for calling fwnode_handle_put() on the returned
746 * fwnode pointer. Note that this function also puts a reference to @child
747 * unconditionally.
748 */
749struct fwnode_handle *
750fwnode_get_next_child_node(const struct fwnode_handle *fwnode,
751 struct fwnode_handle *child)
752{
753 return fwnode_call_ptr_op(fwnode, get_next_child_node, child);
754}
755EXPORT_SYMBOL_GPL(fwnode_get_next_child_node);
756
757/**
758 * fwnode_get_next_available_child_node - Return the next available child node handle for a node
759 * @fwnode: Firmware node to find the next child node for.
760 * @child: Handle to one of the node's child nodes or a %NULL handle.
761 *
762 * The caller is responsible for calling fwnode_handle_put() on the returned
763 * fwnode pointer. Note that this function also puts a reference to @child
764 * unconditionally.
765 */
766struct fwnode_handle *
767fwnode_get_next_available_child_node(const struct fwnode_handle *fwnode,
768 struct fwnode_handle *child)
769{
770 struct fwnode_handle *next_child = child;
771
772 if (IS_ERR_OR_NULL(ptr: fwnode))
773 return NULL;
774
775 do {
776 next_child = fwnode_get_next_child_node(fwnode, next_child);
777 if (!next_child)
778 return NULL;
779 } while (!fwnode_device_is_available(fwnode: next_child));
780
781 return next_child;
782}
783EXPORT_SYMBOL_GPL(fwnode_get_next_available_child_node);
784
785/**
786 * device_get_next_child_node - Return the next child node handle for a device
787 * @dev: Device to find the next child node for.
788 * @child: Handle to one of the device's child nodes or a %NULL handle.
789 *
790 * The caller is responsible for calling fwnode_handle_put() on the returned
791 * fwnode pointer. Note that this function also puts a reference to @child
792 * unconditionally.
793 */
794struct fwnode_handle *device_get_next_child_node(const struct device *dev,
795 struct fwnode_handle *child)
796{
797 const struct fwnode_handle *fwnode = dev_fwnode(dev);
798 struct fwnode_handle *next;
799
800 if (IS_ERR_OR_NULL(ptr: fwnode))
801 return NULL;
802
803 /* Try to find a child in primary fwnode */
804 next = fwnode_get_next_child_node(fwnode, child);
805 if (next)
806 return next;
807
808 /* When no more children in primary, continue with secondary */
809 return fwnode_get_next_child_node(fwnode->secondary, child);
810}
811EXPORT_SYMBOL_GPL(device_get_next_child_node);
812
813/**
814 * fwnode_get_named_child_node - Return first matching named child node handle
815 * @fwnode: Firmware node to find the named child node for.
816 * @childname: String to match child node name against.
817 *
818 * The caller is responsible for calling fwnode_handle_put() on the returned
819 * fwnode pointer.
820 */
821struct fwnode_handle *
822fwnode_get_named_child_node(const struct fwnode_handle *fwnode,
823 const char *childname)
824{
825 return fwnode_call_ptr_op(fwnode, get_named_child_node, childname);
826}
827EXPORT_SYMBOL_GPL(fwnode_get_named_child_node);
828
829/**
830 * device_get_named_child_node - Return first matching named child node handle
831 * @dev: Device to find the named child node for.
832 * @childname: String to match child node name against.
833 *
834 * The caller is responsible for calling fwnode_handle_put() on the returned
835 * fwnode pointer.
836 */
837struct fwnode_handle *device_get_named_child_node(const struct device *dev,
838 const char *childname)
839{
840 return fwnode_get_named_child_node(dev_fwnode(dev), childname);
841}
842EXPORT_SYMBOL_GPL(device_get_named_child_node);
843
844/**
845 * fwnode_handle_get - Obtain a reference to a device node
846 * @fwnode: Pointer to the device node to obtain the reference to.
847 *
848 * The caller is responsible for calling fwnode_handle_put() on the returned
849 * fwnode pointer.
850 *
851 * Return: the fwnode handle.
852 */
853struct fwnode_handle *fwnode_handle_get(struct fwnode_handle *fwnode)
854{
855 if (!fwnode_has_op(fwnode, get))
856 return fwnode;
857
858 return fwnode_call_ptr_op(fwnode, get);
859}
860EXPORT_SYMBOL_GPL(fwnode_handle_get);
861
862/**
863 * fwnode_handle_put - Drop reference to a device node
864 * @fwnode: Pointer to the device node to drop the reference to.
865 *
866 * This has to be used when terminating device_for_each_child_node() iteration
867 * with break or return to prevent stale device node references from being left
868 * behind.
869 */
870void fwnode_handle_put(struct fwnode_handle *fwnode)
871{
872 fwnode_call_void_op(fwnode, put);
873}
874EXPORT_SYMBOL_GPL(fwnode_handle_put);
875
876/**
877 * fwnode_device_is_available - check if a device is available for use
878 * @fwnode: Pointer to the fwnode of the device.
879 *
880 * Return: true if device is available for use. Otherwise, returns false.
881 *
882 * For fwnode node types that don't implement the .device_is_available()
883 * operation, this function returns true.
884 */
885bool fwnode_device_is_available(const struct fwnode_handle *fwnode)
886{
887 if (IS_ERR_OR_NULL(ptr: fwnode))
888 return false;
889
890 if (!fwnode_has_op(fwnode, device_is_available))
891 return true;
892
893 return fwnode_call_bool_op(fwnode, device_is_available);
894}
895EXPORT_SYMBOL_GPL(fwnode_device_is_available);
896
897/**
898 * device_get_child_node_count - return the number of child nodes for device
899 * @dev: Device to cound the child nodes for
900 *
901 * Return: the number of child nodes for a given device.
902 */
903unsigned int device_get_child_node_count(const struct device *dev)
904{
905 struct fwnode_handle *child;
906 unsigned int count = 0;
907
908 device_for_each_child_node(dev, child)
909 count++;
910
911 return count;
912}
913EXPORT_SYMBOL_GPL(device_get_child_node_count);
914
915bool device_dma_supported(const struct device *dev)
916{
917 return fwnode_call_bool_op(dev_fwnode(dev), device_dma_supported);
918}
919EXPORT_SYMBOL_GPL(device_dma_supported);
920
921enum dev_dma_attr device_get_dma_attr(const struct device *dev)
922{
923 if (!fwnode_has_op(dev_fwnode(dev), device_get_dma_attr))
924 return DEV_DMA_NOT_SUPPORTED;
925
926 return fwnode_call_int_op(dev_fwnode(dev), device_get_dma_attr);
927}
928EXPORT_SYMBOL_GPL(device_get_dma_attr);
929
930/**
931 * fwnode_get_phy_mode - Get phy mode for given firmware node
932 * @fwnode: Pointer to the given node
933 *
934 * The function gets phy interface string from property 'phy-mode' or
935 * 'phy-connection-type', and return its index in phy_modes table, or errno in
936 * error case.
937 */
938int fwnode_get_phy_mode(const struct fwnode_handle *fwnode)
939{
940 const char *pm;
941 int err, i;
942
943 err = fwnode_property_read_string(fwnode, "phy-mode", &pm);
944 if (err < 0)
945 err = fwnode_property_read_string(fwnode,
946 "phy-connection-type", &pm);
947 if (err < 0)
948 return err;
949
950 for (i = 0; i < PHY_INTERFACE_MODE_MAX; i++)
951 if (!strcasecmp(s1: pm, s2: phy_modes(interface: i)))
952 return i;
953
954 return -ENODEV;
955}
956EXPORT_SYMBOL_GPL(fwnode_get_phy_mode);
957
958/**
959 * device_get_phy_mode - Get phy mode for given device
960 * @dev: Pointer to the given device
961 *
962 * The function gets phy interface string from property 'phy-mode' or
963 * 'phy-connection-type', and return its index in phy_modes table, or errno in
964 * error case.
965 */
966int device_get_phy_mode(struct device *dev)
967{
968 return fwnode_get_phy_mode(dev_fwnode(dev));
969}
970EXPORT_SYMBOL_GPL(device_get_phy_mode);
971
972/**
973 * fwnode_iomap - Maps the memory mapped IO for a given fwnode
974 * @fwnode: Pointer to the firmware node
975 * @index: Index of the IO range
976 *
977 * Return: a pointer to the mapped memory.
978 */
979void __iomem *fwnode_iomap(struct fwnode_handle *fwnode, int index)
980{
981 return fwnode_call_ptr_op(fwnode, iomap, index);
982}
983EXPORT_SYMBOL(fwnode_iomap);
984
985/**
986 * fwnode_irq_get - Get IRQ directly from a fwnode
987 * @fwnode: Pointer to the firmware node
988 * @index: Zero-based index of the IRQ
989 *
990 * Return: Linux IRQ number on success. Negative errno on failure.
991 */
992int fwnode_irq_get(const struct fwnode_handle *fwnode, unsigned int index)
993{
994 int ret;
995
996 ret = fwnode_call_int_op(fwnode, irq_get, index);
997 /* We treat mapping errors as invalid case */
998 if (ret == 0)
999 return -EINVAL;
1000
1001 return ret;
1002}
1003EXPORT_SYMBOL(fwnode_irq_get);
1004
1005/**
1006 * fwnode_irq_get_byname - Get IRQ from a fwnode using its name
1007 * @fwnode: Pointer to the firmware node
1008 * @name: IRQ name
1009 *
1010 * Description:
1011 * Find a match to the string @name in the 'interrupt-names' string array
1012 * in _DSD for ACPI, or of_node for Device Tree. Then get the Linux IRQ
1013 * number of the IRQ resource corresponding to the index of the matched
1014 * string.
1015 *
1016 * Return: Linux IRQ number on success, or negative errno otherwise.
1017 */
1018int fwnode_irq_get_byname(const struct fwnode_handle *fwnode, const char *name)
1019{
1020 int index;
1021
1022 if (!name)
1023 return -EINVAL;
1024
1025 index = fwnode_property_match_string(fwnode, "interrupt-names", name);
1026 if (index < 0)
1027 return index;
1028
1029 return fwnode_irq_get(fwnode, index);
1030}
1031EXPORT_SYMBOL(fwnode_irq_get_byname);
1032
1033/**
1034 * fwnode_graph_get_next_endpoint - Get next endpoint firmware node
1035 * @fwnode: Pointer to the parent firmware node
1036 * @prev: Previous endpoint node or %NULL to get the first
1037 *
1038 * The caller is responsible for calling fwnode_handle_put() on the returned
1039 * fwnode pointer. Note that this function also puts a reference to @prev
1040 * unconditionally.
1041 *
1042 * Return: an endpoint firmware node pointer or %NULL if no more endpoints
1043 * are available.
1044 */
1045struct fwnode_handle *
1046fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode,
1047 struct fwnode_handle *prev)
1048{
1049 struct fwnode_handle *ep, *port_parent = NULL;
1050 const struct fwnode_handle *parent;
1051
1052 /*
1053 * If this function is in a loop and the previous iteration returned
1054 * an endpoint from fwnode->secondary, then we need to use the secondary
1055 * as parent rather than @fwnode.
1056 */
1057 if (prev) {
1058 port_parent = fwnode_graph_get_port_parent(fwnode: prev);
1059 parent = port_parent;
1060 } else {
1061 parent = fwnode;
1062 }
1063 if (IS_ERR_OR_NULL(ptr: parent))
1064 return NULL;
1065
1066 ep = fwnode_call_ptr_op(parent, graph_get_next_endpoint, prev);
1067 if (ep)
1068 goto out_put_port_parent;
1069
1070 ep = fwnode_graph_get_next_endpoint(fwnode: parent->secondary, NULL);
1071
1072out_put_port_parent:
1073 fwnode_handle_put(port_parent);
1074 return ep;
1075}
1076EXPORT_SYMBOL_GPL(fwnode_graph_get_next_endpoint);
1077
1078/**
1079 * fwnode_graph_get_port_parent - Return the device fwnode of a port endpoint
1080 * @endpoint: Endpoint firmware node of the port
1081 *
1082 * The caller is responsible for calling fwnode_handle_put() on the returned
1083 * fwnode pointer.
1084 *
1085 * Return: the firmware node of the device the @endpoint belongs to.
1086 */
1087struct fwnode_handle *
1088fwnode_graph_get_port_parent(const struct fwnode_handle *endpoint)
1089{
1090 struct fwnode_handle *port, *parent;
1091
1092 port = fwnode_get_parent(endpoint);
1093 parent = fwnode_call_ptr_op(port, graph_get_port_parent);
1094
1095 fwnode_handle_put(port);
1096
1097 return parent;
1098}
1099EXPORT_SYMBOL_GPL(fwnode_graph_get_port_parent);
1100
1101/**
1102 * fwnode_graph_get_remote_port_parent - Return fwnode of a remote device
1103 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1104 *
1105 * Extracts firmware node of a remote device the @fwnode points to.
1106 *
1107 * The caller is responsible for calling fwnode_handle_put() on the returned
1108 * fwnode pointer.
1109 */
1110struct fwnode_handle *
1111fwnode_graph_get_remote_port_parent(const struct fwnode_handle *fwnode)
1112{
1113 struct fwnode_handle *endpoint, *parent;
1114
1115 endpoint = fwnode_graph_get_remote_endpoint(fwnode);
1116 parent = fwnode_graph_get_port_parent(endpoint);
1117
1118 fwnode_handle_put(endpoint);
1119
1120 return parent;
1121}
1122EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port_parent);
1123
1124/**
1125 * fwnode_graph_get_remote_port - Return fwnode of a remote port
1126 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1127 *
1128 * Extracts firmware node of a remote port the @fwnode points to.
1129 *
1130 * The caller is responsible for calling fwnode_handle_put() on the returned
1131 * fwnode pointer.
1132 */
1133struct fwnode_handle *
1134fwnode_graph_get_remote_port(const struct fwnode_handle *fwnode)
1135{
1136 return fwnode_get_next_parent(fwnode_graph_get_remote_endpoint(fwnode));
1137}
1138EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port);
1139
1140/**
1141 * fwnode_graph_get_remote_endpoint - Return fwnode of a remote endpoint
1142 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1143 *
1144 * Extracts firmware node of a remote endpoint the @fwnode points to.
1145 *
1146 * The caller is responsible for calling fwnode_handle_put() on the returned
1147 * fwnode pointer.
1148 */
1149struct fwnode_handle *
1150fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode)
1151{
1152 return fwnode_call_ptr_op(fwnode, graph_get_remote_endpoint);
1153}
1154EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_endpoint);
1155
1156static bool fwnode_graph_remote_available(struct fwnode_handle *ep)
1157{
1158 struct fwnode_handle *dev_node;
1159 bool available;
1160
1161 dev_node = fwnode_graph_get_remote_port_parent(ep);
1162 available = fwnode_device_is_available(dev_node);
1163 fwnode_handle_put(dev_node);
1164
1165 return available;
1166}
1167
1168/**
1169 * fwnode_graph_get_endpoint_by_id - get endpoint by port and endpoint numbers
1170 * @fwnode: parent fwnode_handle containing the graph
1171 * @port: identifier of the port node
1172 * @endpoint: identifier of the endpoint node under the port node
1173 * @flags: fwnode lookup flags
1174 *
1175 * The caller is responsible for calling fwnode_handle_put() on the returned
1176 * fwnode pointer.
1177 *
1178 * Return: the fwnode handle of the local endpoint corresponding the port and
1179 * endpoint IDs or %NULL if not found.
1180 *
1181 * If FWNODE_GRAPH_ENDPOINT_NEXT is passed in @flags and the specified endpoint
1182 * has not been found, look for the closest endpoint ID greater than the
1183 * specified one and return the endpoint that corresponds to it, if present.
1184 *
1185 * Does not return endpoints that belong to disabled devices or endpoints that
1186 * are unconnected, unless FWNODE_GRAPH_DEVICE_DISABLED is passed in @flags.
1187 */
1188struct fwnode_handle *
1189fwnode_graph_get_endpoint_by_id(const struct fwnode_handle *fwnode,
1190 u32 port, u32 endpoint, unsigned long flags)
1191{
1192 struct fwnode_handle *ep, *best_ep = NULL;
1193 unsigned int best_ep_id = 0;
1194 bool endpoint_next = flags & FWNODE_GRAPH_ENDPOINT_NEXT;
1195 bool enabled_only = !(flags & FWNODE_GRAPH_DEVICE_DISABLED);
1196
1197 fwnode_graph_for_each_endpoint(fwnode, ep) {
1198 struct fwnode_endpoint fwnode_ep = { 0 };
1199 int ret;
1200
1201 if (enabled_only && !fwnode_graph_remote_available(ep))
1202 continue;
1203
1204 ret = fwnode_graph_parse_endpoint(fwnode: ep, endpoint: &fwnode_ep);
1205 if (ret < 0)
1206 continue;
1207
1208 if (fwnode_ep.port != port)
1209 continue;
1210
1211 if (fwnode_ep.id == endpoint)
1212 return ep;
1213
1214 if (!endpoint_next)
1215 continue;
1216
1217 /*
1218 * If the endpoint that has just been found is not the first
1219 * matching one and the ID of the one found previously is closer
1220 * to the requested endpoint ID, skip it.
1221 */
1222 if (fwnode_ep.id < endpoint ||
1223 (best_ep && best_ep_id < fwnode_ep.id))
1224 continue;
1225
1226 fwnode_handle_put(best_ep);
1227 best_ep = fwnode_handle_get(ep);
1228 best_ep_id = fwnode_ep.id;
1229 }
1230
1231 return best_ep;
1232}
1233EXPORT_SYMBOL_GPL(fwnode_graph_get_endpoint_by_id);
1234
1235/**
1236 * fwnode_graph_get_endpoint_count - Count endpoints on a device node
1237 * @fwnode: The node related to a device
1238 * @flags: fwnode lookup flags
1239 * Count endpoints in a device node.
1240 *
1241 * If FWNODE_GRAPH_DEVICE_DISABLED flag is specified, also unconnected endpoints
1242 * and endpoints connected to disabled devices are counted.
1243 */
1244unsigned int fwnode_graph_get_endpoint_count(const struct fwnode_handle *fwnode,
1245 unsigned long flags)
1246{
1247 struct fwnode_handle *ep;
1248 unsigned int count = 0;
1249
1250 fwnode_graph_for_each_endpoint(fwnode, ep) {
1251 if (flags & FWNODE_GRAPH_DEVICE_DISABLED ||
1252 fwnode_graph_remote_available(ep))
1253 count++;
1254 }
1255
1256 return count;
1257}
1258EXPORT_SYMBOL_GPL(fwnode_graph_get_endpoint_count);
1259
1260/**
1261 * fwnode_graph_parse_endpoint - parse common endpoint node properties
1262 * @fwnode: pointer to endpoint fwnode_handle
1263 * @endpoint: pointer to the fwnode endpoint data structure
1264 *
1265 * Parse @fwnode representing a graph endpoint node and store the
1266 * information in @endpoint. The caller must hold a reference to
1267 * @fwnode.
1268 */
1269int fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode,
1270 struct fwnode_endpoint *endpoint)
1271{
1272 memset(endpoint, 0, sizeof(*endpoint));
1273
1274 return fwnode_call_int_op(fwnode, graph_parse_endpoint, endpoint);
1275}
1276EXPORT_SYMBOL(fwnode_graph_parse_endpoint);
1277
1278const void *device_get_match_data(const struct device *dev)
1279{
1280 return fwnode_call_ptr_op(dev_fwnode(dev), device_get_match_data, dev);
1281}
1282EXPORT_SYMBOL_GPL(device_get_match_data);
1283
1284static unsigned int fwnode_graph_devcon_matches(const struct fwnode_handle *fwnode,
1285 const char *con_id, void *data,
1286 devcon_match_fn_t match,
1287 void **matches,
1288 unsigned int matches_len)
1289{
1290 struct fwnode_handle *node;
1291 struct fwnode_handle *ep;
1292 unsigned int count = 0;
1293 void *ret;
1294
1295 fwnode_graph_for_each_endpoint(fwnode, ep) {
1296 if (matches && count >= matches_len) {
1297 fwnode_handle_put(ep);
1298 break;
1299 }
1300
1301 node = fwnode_graph_get_remote_port_parent(ep);
1302 if (!fwnode_device_is_available(node)) {
1303 fwnode_handle_put(node);
1304 continue;
1305 }
1306
1307 ret = match(node, con_id, data);
1308 fwnode_handle_put(node);
1309 if (ret) {
1310 if (matches)
1311 matches[count] = ret;
1312 count++;
1313 }
1314 }
1315 return count;
1316}
1317
1318static unsigned int fwnode_devcon_matches(const struct fwnode_handle *fwnode,
1319 const char *con_id, void *data,
1320 devcon_match_fn_t match,
1321 void **matches,
1322 unsigned int matches_len)
1323{
1324 struct fwnode_handle *node;
1325 unsigned int count = 0;
1326 unsigned int i;
1327 void *ret;
1328
1329 for (i = 0; ; i++) {
1330 if (matches && count >= matches_len)
1331 break;
1332
1333 node = fwnode_find_reference(fwnode, con_id, i);
1334 if (IS_ERR(ptr: node))
1335 break;
1336
1337 ret = match(node, NULL, data);
1338 fwnode_handle_put(node);
1339 if (ret) {
1340 if (matches)
1341 matches[count] = ret;
1342 count++;
1343 }
1344 }
1345
1346 return count;
1347}
1348
1349/**
1350 * fwnode_connection_find_match - Find connection from a device node
1351 * @fwnode: Device node with the connection
1352 * @con_id: Identifier for the connection
1353 * @data: Data for the match function
1354 * @match: Function to check and convert the connection description
1355 *
1356 * Find a connection with unique identifier @con_id between @fwnode and another
1357 * device node. @match will be used to convert the connection description to
1358 * data the caller is expecting to be returned.
1359 */
1360void *fwnode_connection_find_match(const struct fwnode_handle *fwnode,
1361 const char *con_id, void *data,
1362 devcon_match_fn_t match)
1363{
1364 unsigned int count;
1365 void *ret;
1366
1367 if (!fwnode || !match)
1368 return NULL;
1369
1370 count = fwnode_graph_devcon_matches(fwnode, con_id, data, match, matches: &ret, matches_len: 1);
1371 if (count)
1372 return ret;
1373
1374 count = fwnode_devcon_matches(fwnode, con_id, data, match, matches: &ret, matches_len: 1);
1375 return count ? ret : NULL;
1376}
1377EXPORT_SYMBOL_GPL(fwnode_connection_find_match);
1378
1379/**
1380 * fwnode_connection_find_matches - Find connections from a device node
1381 * @fwnode: Device node with the connection
1382 * @con_id: Identifier for the connection
1383 * @data: Data for the match function
1384 * @match: Function to check and convert the connection description
1385 * @matches: (Optional) array of pointers to fill with matches
1386 * @matches_len: Length of @matches
1387 *
1388 * Find up to @matches_len connections with unique identifier @con_id between
1389 * @fwnode and other device nodes. @match will be used to convert the
1390 * connection description to data the caller is expecting to be returned
1391 * through the @matches array.
1392 *
1393 * If @matches is %NULL @matches_len is ignored and the total number of resolved
1394 * matches is returned.
1395 *
1396 * Return: Number of matches resolved, or negative errno.
1397 */
1398int fwnode_connection_find_matches(const struct fwnode_handle *fwnode,
1399 const char *con_id, void *data,
1400 devcon_match_fn_t match,
1401 void **matches, unsigned int matches_len)
1402{
1403 unsigned int count_graph;
1404 unsigned int count_ref;
1405
1406 if (!fwnode || !match)
1407 return -EINVAL;
1408
1409 count_graph = fwnode_graph_devcon_matches(fwnode, con_id, data, match,
1410 matches, matches_len);
1411
1412 if (matches) {
1413 matches += count_graph;
1414 matches_len -= count_graph;
1415 }
1416
1417 count_ref = fwnode_devcon_matches(fwnode, con_id, data, match,
1418 matches, matches_len);
1419
1420 return count_graph + count_ref;
1421}
1422EXPORT_SYMBOL_GPL(fwnode_connection_find_matches);
1423

source code of linux/drivers/base/property.c