1/*
2 * Compressed RAM block device
3 *
4 * Copyright (C) 2008, 2009, 2010 Nitin Gupta
5 * 2012, 2013 Minchan Kim
6 *
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the licence that better fits your requirements.
9 *
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
12 *
13 */
14
15#define KMSG_COMPONENT "zram"
16#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17
18#include <linux/module.h>
19#include <linux/kernel.h>
20#include <linux/bio.h>
21#include <linux/bitops.h>
22#include <linux/blkdev.h>
23#include <linux/buffer_head.h>
24#include <linux/device.h>
25#include <linux/highmem.h>
26#include <linux/slab.h>
27#include <linux/backing-dev.h>
28#include <linux/string.h>
29#include <linux/vmalloc.h>
30#include <linux/err.h>
31#include <linux/idr.h>
32#include <linux/sysfs.h>
33#include <linux/debugfs.h>
34#include <linux/cpuhotplug.h>
35#include <linux/part_stat.h>
36
37#include "zram_drv.h"
38
39static DEFINE_IDR(zram_index_idr);
40/* idr index must be protected */
41static DEFINE_MUTEX(zram_index_mutex);
42
43static int zram_major;
44static const char *default_compressor = CONFIG_ZRAM_DEF_COMP;
45
46/* Module params (documentation at end) */
47static unsigned int num_devices = 1;
48/*
49 * Pages that compress to sizes equals or greater than this are stored
50 * uncompressed in memory.
51 */
52static size_t huge_class_size;
53
54static const struct block_device_operations zram_devops;
55
56static void zram_free_page(struct zram *zram, size_t index);
57static int zram_read_page(struct zram *zram, struct page *page, u32 index,
58 struct bio *parent);
59
60static int zram_slot_trylock(struct zram *zram, u32 index)
61{
62 return bit_spin_trylock(bitnum: ZRAM_LOCK, addr: &zram->table[index].flags);
63}
64
65static void zram_slot_lock(struct zram *zram, u32 index)
66{
67 bit_spin_lock(bitnum: ZRAM_LOCK, addr: &zram->table[index].flags);
68}
69
70static void zram_slot_unlock(struct zram *zram, u32 index)
71{
72 bit_spin_unlock(bitnum: ZRAM_LOCK, addr: &zram->table[index].flags);
73}
74
75static inline bool init_done(struct zram *zram)
76{
77 return zram->disksize;
78}
79
80static inline struct zram *dev_to_zram(struct device *dev)
81{
82 return (struct zram *)dev_to_disk(dev)->private_data;
83}
84
85static unsigned long zram_get_handle(struct zram *zram, u32 index)
86{
87 return zram->table[index].handle;
88}
89
90static void zram_set_handle(struct zram *zram, u32 index, unsigned long handle)
91{
92 zram->table[index].handle = handle;
93}
94
95/* flag operations require table entry bit_spin_lock() being held */
96static bool zram_test_flag(struct zram *zram, u32 index,
97 enum zram_pageflags flag)
98{
99 return zram->table[index].flags & BIT(flag);
100}
101
102static void zram_set_flag(struct zram *zram, u32 index,
103 enum zram_pageflags flag)
104{
105 zram->table[index].flags |= BIT(flag);
106}
107
108static void zram_clear_flag(struct zram *zram, u32 index,
109 enum zram_pageflags flag)
110{
111 zram->table[index].flags &= ~BIT(flag);
112}
113
114static inline void zram_set_element(struct zram *zram, u32 index,
115 unsigned long element)
116{
117 zram->table[index].element = element;
118}
119
120static unsigned long zram_get_element(struct zram *zram, u32 index)
121{
122 return zram->table[index].element;
123}
124
125static size_t zram_get_obj_size(struct zram *zram, u32 index)
126{
127 return zram->table[index].flags & (BIT(ZRAM_FLAG_SHIFT) - 1);
128}
129
130static void zram_set_obj_size(struct zram *zram,
131 u32 index, size_t size)
132{
133 unsigned long flags = zram->table[index].flags >> ZRAM_FLAG_SHIFT;
134
135 zram->table[index].flags = (flags << ZRAM_FLAG_SHIFT) | size;
136}
137
138static inline bool zram_allocated(struct zram *zram, u32 index)
139{
140 return zram_get_obj_size(zram, index) ||
141 zram_test_flag(zram, index, flag: ZRAM_SAME) ||
142 zram_test_flag(zram, index, flag: ZRAM_WB);
143}
144
145#if PAGE_SIZE != 4096
146static inline bool is_partial_io(struct bio_vec *bvec)
147{
148 return bvec->bv_len != PAGE_SIZE;
149}
150#define ZRAM_PARTIAL_IO 1
151#else
152static inline bool is_partial_io(struct bio_vec *bvec)
153{
154 return false;
155}
156#endif
157
158static inline void zram_set_priority(struct zram *zram, u32 index, u32 prio)
159{
160 prio &= ZRAM_COMP_PRIORITY_MASK;
161 /*
162 * Clear previous priority value first, in case if we recompress
163 * further an already recompressed page
164 */
165 zram->table[index].flags &= ~(ZRAM_COMP_PRIORITY_MASK <<
166 ZRAM_COMP_PRIORITY_BIT1);
167 zram->table[index].flags |= (prio << ZRAM_COMP_PRIORITY_BIT1);
168}
169
170static inline u32 zram_get_priority(struct zram *zram, u32 index)
171{
172 u32 prio = zram->table[index].flags >> ZRAM_COMP_PRIORITY_BIT1;
173
174 return prio & ZRAM_COMP_PRIORITY_MASK;
175}
176
177static inline void update_used_max(struct zram *zram,
178 const unsigned long pages)
179{
180 unsigned long cur_max = atomic_long_read(v: &zram->stats.max_used_pages);
181
182 do {
183 if (cur_max >= pages)
184 return;
185 } while (!atomic_long_try_cmpxchg(v: &zram->stats.max_used_pages,
186 old: &cur_max, new: pages));
187}
188
189static inline void zram_fill_page(void *ptr, unsigned long len,
190 unsigned long value)
191{
192 WARN_ON_ONCE(!IS_ALIGNED(len, sizeof(unsigned long)));
193 memset_l(p: ptr, v: value, n: len / sizeof(unsigned long));
194}
195
196static bool page_same_filled(void *ptr, unsigned long *element)
197{
198 unsigned long *page;
199 unsigned long val;
200 unsigned int pos, last_pos = PAGE_SIZE / sizeof(*page) - 1;
201
202 page = (unsigned long *)ptr;
203 val = page[0];
204
205 if (val != page[last_pos])
206 return false;
207
208 for (pos = 1; pos < last_pos; pos++) {
209 if (val != page[pos])
210 return false;
211 }
212
213 *element = val;
214
215 return true;
216}
217
218static ssize_t initstate_show(struct device *dev,
219 struct device_attribute *attr, char *buf)
220{
221 u32 val;
222 struct zram *zram = dev_to_zram(dev);
223
224 down_read(sem: &zram->init_lock);
225 val = init_done(zram);
226 up_read(sem: &zram->init_lock);
227
228 return scnprintf(buf, PAGE_SIZE, fmt: "%u\n", val);
229}
230
231static ssize_t disksize_show(struct device *dev,
232 struct device_attribute *attr, char *buf)
233{
234 struct zram *zram = dev_to_zram(dev);
235
236 return scnprintf(buf, PAGE_SIZE, fmt: "%llu\n", zram->disksize);
237}
238
239static ssize_t mem_limit_store(struct device *dev,
240 struct device_attribute *attr, const char *buf, size_t len)
241{
242 u64 limit;
243 char *tmp;
244 struct zram *zram = dev_to_zram(dev);
245
246 limit = memparse(ptr: buf, retptr: &tmp);
247 if (buf == tmp) /* no chars parsed, invalid input */
248 return -EINVAL;
249
250 down_write(sem: &zram->init_lock);
251 zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT;
252 up_write(sem: &zram->init_lock);
253
254 return len;
255}
256
257static ssize_t mem_used_max_store(struct device *dev,
258 struct device_attribute *attr, const char *buf, size_t len)
259{
260 int err;
261 unsigned long val;
262 struct zram *zram = dev_to_zram(dev);
263
264 err = kstrtoul(s: buf, base: 10, res: &val);
265 if (err || val != 0)
266 return -EINVAL;
267
268 down_read(sem: &zram->init_lock);
269 if (init_done(zram)) {
270 atomic_long_set(v: &zram->stats.max_used_pages,
271 i: zs_get_total_pages(pool: zram->mem_pool));
272 }
273 up_read(sem: &zram->init_lock);
274
275 return len;
276}
277
278/*
279 * Mark all pages which are older than or equal to cutoff as IDLE.
280 * Callers should hold the zram init lock in read mode
281 */
282static void mark_idle(struct zram *zram, ktime_t cutoff)
283{
284 int is_idle = 1;
285 unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
286 int index;
287
288 for (index = 0; index < nr_pages; index++) {
289 /*
290 * Do not mark ZRAM_UNDER_WB slot as ZRAM_IDLE to close race.
291 * See the comment in writeback_store.
292 */
293 zram_slot_lock(zram, index);
294 if (zram_allocated(zram, index) &&
295 !zram_test_flag(zram, index, flag: ZRAM_UNDER_WB)) {
296#ifdef CONFIG_ZRAM_MEMORY_TRACKING
297 is_idle = !cutoff || ktime_after(cmp1: cutoff, cmp2: zram->table[index].ac_time);
298#endif
299 if (is_idle)
300 zram_set_flag(zram, index, flag: ZRAM_IDLE);
301 }
302 zram_slot_unlock(zram, index);
303 }
304}
305
306static ssize_t idle_store(struct device *dev,
307 struct device_attribute *attr, const char *buf, size_t len)
308{
309 struct zram *zram = dev_to_zram(dev);
310 ktime_t cutoff_time = 0;
311 ssize_t rv = -EINVAL;
312
313 if (!sysfs_streq(s1: buf, s2: "all")) {
314 /*
315 * If it did not parse as 'all' try to treat it as an integer
316 * when we have memory tracking enabled.
317 */
318 u64 age_sec;
319
320 if (IS_ENABLED(CONFIG_ZRAM_MEMORY_TRACKING) && !kstrtoull(s: buf, base: 0, res: &age_sec))
321 cutoff_time = ktime_sub(ktime_get_boottime(),
322 ns_to_ktime(age_sec * NSEC_PER_SEC));
323 else
324 goto out;
325 }
326
327 down_read(sem: &zram->init_lock);
328 if (!init_done(zram))
329 goto out_unlock;
330
331 /*
332 * A cutoff_time of 0 marks everything as idle, this is the
333 * "all" behavior.
334 */
335 mark_idle(zram, cutoff: cutoff_time);
336 rv = len;
337
338out_unlock:
339 up_read(sem: &zram->init_lock);
340out:
341 return rv;
342}
343
344#ifdef CONFIG_ZRAM_WRITEBACK
345static ssize_t writeback_limit_enable_store(struct device *dev,
346 struct device_attribute *attr, const char *buf, size_t len)
347{
348 struct zram *zram = dev_to_zram(dev);
349 u64 val;
350 ssize_t ret = -EINVAL;
351
352 if (kstrtoull(s: buf, base: 10, res: &val))
353 return ret;
354
355 down_read(sem: &zram->init_lock);
356 spin_lock(lock: &zram->wb_limit_lock);
357 zram->wb_limit_enable = val;
358 spin_unlock(lock: &zram->wb_limit_lock);
359 up_read(sem: &zram->init_lock);
360 ret = len;
361
362 return ret;
363}
364
365static ssize_t writeback_limit_enable_show(struct device *dev,
366 struct device_attribute *attr, char *buf)
367{
368 bool val;
369 struct zram *zram = dev_to_zram(dev);
370
371 down_read(sem: &zram->init_lock);
372 spin_lock(lock: &zram->wb_limit_lock);
373 val = zram->wb_limit_enable;
374 spin_unlock(lock: &zram->wb_limit_lock);
375 up_read(sem: &zram->init_lock);
376
377 return scnprintf(buf, PAGE_SIZE, fmt: "%d\n", val);
378}
379
380static ssize_t writeback_limit_store(struct device *dev,
381 struct device_attribute *attr, const char *buf, size_t len)
382{
383 struct zram *zram = dev_to_zram(dev);
384 u64 val;
385 ssize_t ret = -EINVAL;
386
387 if (kstrtoull(s: buf, base: 10, res: &val))
388 return ret;
389
390 down_read(sem: &zram->init_lock);
391 spin_lock(lock: &zram->wb_limit_lock);
392 zram->bd_wb_limit = val;
393 spin_unlock(lock: &zram->wb_limit_lock);
394 up_read(sem: &zram->init_lock);
395 ret = len;
396
397 return ret;
398}
399
400static ssize_t writeback_limit_show(struct device *dev,
401 struct device_attribute *attr, char *buf)
402{
403 u64 val;
404 struct zram *zram = dev_to_zram(dev);
405
406 down_read(sem: &zram->init_lock);
407 spin_lock(lock: &zram->wb_limit_lock);
408 val = zram->bd_wb_limit;
409 spin_unlock(lock: &zram->wb_limit_lock);
410 up_read(sem: &zram->init_lock);
411
412 return scnprintf(buf, PAGE_SIZE, fmt: "%llu\n", val);
413}
414
415static void reset_bdev(struct zram *zram)
416{
417 if (!zram->backing_dev)
418 return;
419
420 bdev_release(handle: zram->bdev_handle);
421 /* hope filp_close flush all of IO */
422 filp_close(zram->backing_dev, NULL);
423 zram->backing_dev = NULL;
424 zram->bdev_handle = NULL;
425 zram->disk->fops = &zram_devops;
426 kvfree(addr: zram->bitmap);
427 zram->bitmap = NULL;
428}
429
430static ssize_t backing_dev_show(struct device *dev,
431 struct device_attribute *attr, char *buf)
432{
433 struct file *file;
434 struct zram *zram = dev_to_zram(dev);
435 char *p;
436 ssize_t ret;
437
438 down_read(sem: &zram->init_lock);
439 file = zram->backing_dev;
440 if (!file) {
441 memcpy(buf, "none\n", 5);
442 up_read(sem: &zram->init_lock);
443 return 5;
444 }
445
446 p = file_path(file, buf, PAGE_SIZE - 1);
447 if (IS_ERR(ptr: p)) {
448 ret = PTR_ERR(ptr: p);
449 goto out;
450 }
451
452 ret = strlen(p);
453 memmove(buf, p, ret);
454 buf[ret++] = '\n';
455out:
456 up_read(sem: &zram->init_lock);
457 return ret;
458}
459
460static ssize_t backing_dev_store(struct device *dev,
461 struct device_attribute *attr, const char *buf, size_t len)
462{
463 char *file_name;
464 size_t sz;
465 struct file *backing_dev = NULL;
466 struct inode *inode;
467 struct address_space *mapping;
468 unsigned int bitmap_sz;
469 unsigned long nr_pages, *bitmap = NULL;
470 struct bdev_handle *bdev_handle = NULL;
471 int err;
472 struct zram *zram = dev_to_zram(dev);
473
474 file_name = kmalloc(PATH_MAX, GFP_KERNEL);
475 if (!file_name)
476 return -ENOMEM;
477
478 down_write(sem: &zram->init_lock);
479 if (init_done(zram)) {
480 pr_info("Can't setup backing device for initialized device\n");
481 err = -EBUSY;
482 goto out;
483 }
484
485 strscpy(p: file_name, q: buf, PATH_MAX);
486 /* ignore trailing newline */
487 sz = strlen(file_name);
488 if (sz > 0 && file_name[sz - 1] == '\n')
489 file_name[sz - 1] = 0x00;
490
491 backing_dev = filp_open(file_name, O_RDWR|O_LARGEFILE, 0);
492 if (IS_ERR(ptr: backing_dev)) {
493 err = PTR_ERR(ptr: backing_dev);
494 backing_dev = NULL;
495 goto out;
496 }
497
498 mapping = backing_dev->f_mapping;
499 inode = mapping->host;
500
501 /* Support only block device in this moment */
502 if (!S_ISBLK(inode->i_mode)) {
503 err = -ENOTBLK;
504 goto out;
505 }
506
507 bdev_handle = bdev_open_by_dev(dev: inode->i_rdev,
508 BLK_OPEN_READ | BLK_OPEN_WRITE, holder: zram, NULL);
509 if (IS_ERR(ptr: bdev_handle)) {
510 err = PTR_ERR(ptr: bdev_handle);
511 bdev_handle = NULL;
512 goto out;
513 }
514
515 nr_pages = i_size_read(inode) >> PAGE_SHIFT;
516 bitmap_sz = BITS_TO_LONGS(nr_pages) * sizeof(long);
517 bitmap = kvzalloc(size: bitmap_sz, GFP_KERNEL);
518 if (!bitmap) {
519 err = -ENOMEM;
520 goto out;
521 }
522
523 reset_bdev(zram);
524
525 zram->bdev_handle = bdev_handle;
526 zram->backing_dev = backing_dev;
527 zram->bitmap = bitmap;
528 zram->nr_pages = nr_pages;
529 up_write(sem: &zram->init_lock);
530
531 pr_info("setup backing device %s\n", file_name);
532 kfree(objp: file_name);
533
534 return len;
535out:
536 kvfree(addr: bitmap);
537
538 if (bdev_handle)
539 bdev_release(handle: bdev_handle);
540
541 if (backing_dev)
542 filp_close(backing_dev, NULL);
543
544 up_write(sem: &zram->init_lock);
545
546 kfree(objp: file_name);
547
548 return err;
549}
550
551static unsigned long alloc_block_bdev(struct zram *zram)
552{
553 unsigned long blk_idx = 1;
554retry:
555 /* skip 0 bit to confuse zram.handle = 0 */
556 blk_idx = find_next_zero_bit(addr: zram->bitmap, size: zram->nr_pages, offset: blk_idx);
557 if (blk_idx == zram->nr_pages)
558 return 0;
559
560 if (test_and_set_bit(nr: blk_idx, addr: zram->bitmap))
561 goto retry;
562
563 atomic64_inc(v: &zram->stats.bd_count);
564 return blk_idx;
565}
566
567static void free_block_bdev(struct zram *zram, unsigned long blk_idx)
568{
569 int was_set;
570
571 was_set = test_and_clear_bit(nr: blk_idx, addr: zram->bitmap);
572 WARN_ON_ONCE(!was_set);
573 atomic64_dec(v: &zram->stats.bd_count);
574}
575
576static void read_from_bdev_async(struct zram *zram, struct page *page,
577 unsigned long entry, struct bio *parent)
578{
579 struct bio *bio;
580
581 bio = bio_alloc(bdev: zram->bdev_handle->bdev, nr_vecs: 1, opf: parent->bi_opf, GFP_NOIO);
582 bio->bi_iter.bi_sector = entry * (PAGE_SIZE >> 9);
583 __bio_add_page(bio, page, PAGE_SIZE, off: 0);
584 bio_chain(bio, parent);
585 submit_bio(bio);
586}
587
588#define PAGE_WB_SIG "page_index="
589
590#define PAGE_WRITEBACK 0
591#define HUGE_WRITEBACK (1<<0)
592#define IDLE_WRITEBACK (1<<1)
593#define INCOMPRESSIBLE_WRITEBACK (1<<2)
594
595static ssize_t writeback_store(struct device *dev,
596 struct device_attribute *attr, const char *buf, size_t len)
597{
598 struct zram *zram = dev_to_zram(dev);
599 unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
600 unsigned long index = 0;
601 struct bio bio;
602 struct bio_vec bio_vec;
603 struct page *page;
604 ssize_t ret = len;
605 int mode, err;
606 unsigned long blk_idx = 0;
607
608 if (sysfs_streq(s1: buf, s2: "idle"))
609 mode = IDLE_WRITEBACK;
610 else if (sysfs_streq(s1: buf, s2: "huge"))
611 mode = HUGE_WRITEBACK;
612 else if (sysfs_streq(s1: buf, s2: "huge_idle"))
613 mode = IDLE_WRITEBACK | HUGE_WRITEBACK;
614 else if (sysfs_streq(s1: buf, s2: "incompressible"))
615 mode = INCOMPRESSIBLE_WRITEBACK;
616 else {
617 if (strncmp(buf, PAGE_WB_SIG, sizeof(PAGE_WB_SIG) - 1))
618 return -EINVAL;
619
620 if (kstrtol(s: buf + sizeof(PAGE_WB_SIG) - 1, base: 10, res: &index) ||
621 index >= nr_pages)
622 return -EINVAL;
623
624 nr_pages = 1;
625 mode = PAGE_WRITEBACK;
626 }
627
628 down_read(sem: &zram->init_lock);
629 if (!init_done(zram)) {
630 ret = -EINVAL;
631 goto release_init_lock;
632 }
633
634 if (!zram->backing_dev) {
635 ret = -ENODEV;
636 goto release_init_lock;
637 }
638
639 page = alloc_page(GFP_KERNEL);
640 if (!page) {
641 ret = -ENOMEM;
642 goto release_init_lock;
643 }
644
645 for (; nr_pages != 0; index++, nr_pages--) {
646 spin_lock(lock: &zram->wb_limit_lock);
647 if (zram->wb_limit_enable && !zram->bd_wb_limit) {
648 spin_unlock(lock: &zram->wb_limit_lock);
649 ret = -EIO;
650 break;
651 }
652 spin_unlock(lock: &zram->wb_limit_lock);
653
654 if (!blk_idx) {
655 blk_idx = alloc_block_bdev(zram);
656 if (!blk_idx) {
657 ret = -ENOSPC;
658 break;
659 }
660 }
661
662 zram_slot_lock(zram, index);
663 if (!zram_allocated(zram, index))
664 goto next;
665
666 if (zram_test_flag(zram, index, flag: ZRAM_WB) ||
667 zram_test_flag(zram, index, flag: ZRAM_SAME) ||
668 zram_test_flag(zram, index, flag: ZRAM_UNDER_WB))
669 goto next;
670
671 if (mode & IDLE_WRITEBACK &&
672 !zram_test_flag(zram, index, flag: ZRAM_IDLE))
673 goto next;
674 if (mode & HUGE_WRITEBACK &&
675 !zram_test_flag(zram, index, flag: ZRAM_HUGE))
676 goto next;
677 if (mode & INCOMPRESSIBLE_WRITEBACK &&
678 !zram_test_flag(zram, index, flag: ZRAM_INCOMPRESSIBLE))
679 goto next;
680
681 /*
682 * Clearing ZRAM_UNDER_WB is duty of caller.
683 * IOW, zram_free_page never clear it.
684 */
685 zram_set_flag(zram, index, flag: ZRAM_UNDER_WB);
686 /* Need for hugepage writeback racing */
687 zram_set_flag(zram, index, flag: ZRAM_IDLE);
688 zram_slot_unlock(zram, index);
689 if (zram_read_page(zram, page, index, NULL)) {
690 zram_slot_lock(zram, index);
691 zram_clear_flag(zram, index, flag: ZRAM_UNDER_WB);
692 zram_clear_flag(zram, index, flag: ZRAM_IDLE);
693 zram_slot_unlock(zram, index);
694 continue;
695 }
696
697 bio_init(bio: &bio, bdev: zram->bdev_handle->bdev, table: &bio_vec, max_vecs: 1,
698 opf: REQ_OP_WRITE | REQ_SYNC);
699 bio.bi_iter.bi_sector = blk_idx * (PAGE_SIZE >> 9);
700 __bio_add_page(bio: &bio, page, PAGE_SIZE, off: 0);
701
702 /*
703 * XXX: A single page IO would be inefficient for write
704 * but it would be not bad as starter.
705 */
706 err = submit_bio_wait(bio: &bio);
707 if (err) {
708 zram_slot_lock(zram, index);
709 zram_clear_flag(zram, index, flag: ZRAM_UNDER_WB);
710 zram_clear_flag(zram, index, flag: ZRAM_IDLE);
711 zram_slot_unlock(zram, index);
712 /*
713 * BIO errors are not fatal, we continue and simply
714 * attempt to writeback the remaining objects (pages).
715 * At the same time we need to signal user-space that
716 * some writes (at least one, but also could be all of
717 * them) were not successful and we do so by returning
718 * the most recent BIO error.
719 */
720 ret = err;
721 continue;
722 }
723
724 atomic64_inc(v: &zram->stats.bd_writes);
725 /*
726 * We released zram_slot_lock so need to check if the slot was
727 * changed. If there is freeing for the slot, we can catch it
728 * easily by zram_allocated.
729 * A subtle case is the slot is freed/reallocated/marked as
730 * ZRAM_IDLE again. To close the race, idle_store doesn't
731 * mark ZRAM_IDLE once it found the slot was ZRAM_UNDER_WB.
732 * Thus, we could close the race by checking ZRAM_IDLE bit.
733 */
734 zram_slot_lock(zram, index);
735 if (!zram_allocated(zram, index) ||
736 !zram_test_flag(zram, index, flag: ZRAM_IDLE)) {
737 zram_clear_flag(zram, index, flag: ZRAM_UNDER_WB);
738 zram_clear_flag(zram, index, flag: ZRAM_IDLE);
739 goto next;
740 }
741
742 zram_free_page(zram, index);
743 zram_clear_flag(zram, index, flag: ZRAM_UNDER_WB);
744 zram_set_flag(zram, index, flag: ZRAM_WB);
745 zram_set_element(zram, index, element: blk_idx);
746 blk_idx = 0;
747 atomic64_inc(v: &zram->stats.pages_stored);
748 spin_lock(lock: &zram->wb_limit_lock);
749 if (zram->wb_limit_enable && zram->bd_wb_limit > 0)
750 zram->bd_wb_limit -= 1UL << (PAGE_SHIFT - 12);
751 spin_unlock(lock: &zram->wb_limit_lock);
752next:
753 zram_slot_unlock(zram, index);
754 }
755
756 if (blk_idx)
757 free_block_bdev(zram, blk_idx);
758 __free_page(page);
759release_init_lock:
760 up_read(sem: &zram->init_lock);
761
762 return ret;
763}
764
765struct zram_work {
766 struct work_struct work;
767 struct zram *zram;
768 unsigned long entry;
769 struct page *page;
770 int error;
771};
772
773static void zram_sync_read(struct work_struct *work)
774{
775 struct zram_work *zw = container_of(work, struct zram_work, work);
776 struct bio_vec bv;
777 struct bio bio;
778
779 bio_init(bio: &bio, bdev: zw->zram->bdev_handle->bdev, table: &bv, max_vecs: 1, opf: REQ_OP_READ);
780 bio.bi_iter.bi_sector = zw->entry * (PAGE_SIZE >> 9);
781 __bio_add_page(bio: &bio, page: zw->page, PAGE_SIZE, off: 0);
782 zw->error = submit_bio_wait(bio: &bio);
783}
784
785/*
786 * Block layer want one ->submit_bio to be active at a time, so if we use
787 * chained IO with parent IO in same context, it's a deadlock. To avoid that,
788 * use a worker thread context.
789 */
790static int read_from_bdev_sync(struct zram *zram, struct page *page,
791 unsigned long entry)
792{
793 struct zram_work work;
794
795 work.page = page;
796 work.zram = zram;
797 work.entry = entry;
798
799 INIT_WORK_ONSTACK(&work.work, zram_sync_read);
800 queue_work(wq: system_unbound_wq, work: &work.work);
801 flush_work(work: &work.work);
802 destroy_work_on_stack(work: &work.work);
803
804 return work.error;
805}
806
807static int read_from_bdev(struct zram *zram, struct page *page,
808 unsigned long entry, struct bio *parent)
809{
810 atomic64_inc(v: &zram->stats.bd_reads);
811 if (!parent) {
812 if (WARN_ON_ONCE(!IS_ENABLED(ZRAM_PARTIAL_IO)))
813 return -EIO;
814 return read_from_bdev_sync(zram, page, entry);
815 }
816 read_from_bdev_async(zram, page, entry, parent);
817 return 0;
818}
819#else
820static inline void reset_bdev(struct zram *zram) {};
821static int read_from_bdev(struct zram *zram, struct page *page,
822 unsigned long entry, struct bio *parent)
823{
824 return -EIO;
825}
826
827static void free_block_bdev(struct zram *zram, unsigned long blk_idx) {};
828#endif
829
830#ifdef CONFIG_ZRAM_MEMORY_TRACKING
831
832static struct dentry *zram_debugfs_root;
833
834static void zram_debugfs_create(void)
835{
836 zram_debugfs_root = debugfs_create_dir(name: "zram", NULL);
837}
838
839static void zram_debugfs_destroy(void)
840{
841 debugfs_remove_recursive(dentry: zram_debugfs_root);
842}
843
844static void zram_accessed(struct zram *zram, u32 index)
845{
846 zram_clear_flag(zram, index, flag: ZRAM_IDLE);
847 zram->table[index].ac_time = ktime_get_boottime();
848}
849
850static ssize_t read_block_state(struct file *file, char __user *buf,
851 size_t count, loff_t *ppos)
852{
853 char *kbuf;
854 ssize_t index, written = 0;
855 struct zram *zram = file->private_data;
856 unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
857 struct timespec64 ts;
858
859 kbuf = kvmalloc(size: count, GFP_KERNEL);
860 if (!kbuf)
861 return -ENOMEM;
862
863 down_read(sem: &zram->init_lock);
864 if (!init_done(zram)) {
865 up_read(sem: &zram->init_lock);
866 kvfree(addr: kbuf);
867 return -EINVAL;
868 }
869
870 for (index = *ppos; index < nr_pages; index++) {
871 int copied;
872
873 zram_slot_lock(zram, index);
874 if (!zram_allocated(zram, index))
875 goto next;
876
877 ts = ktime_to_timespec64(zram->table[index].ac_time);
878 copied = snprintf(buf: kbuf + written, size: count,
879 fmt: "%12zd %12lld.%06lu %c%c%c%c%c%c\n",
880 index, (s64)ts.tv_sec,
881 ts.tv_nsec / NSEC_PER_USEC,
882 zram_test_flag(zram, index, flag: ZRAM_SAME) ? 's' : '.',
883 zram_test_flag(zram, index, flag: ZRAM_WB) ? 'w' : '.',
884 zram_test_flag(zram, index, flag: ZRAM_HUGE) ? 'h' : '.',
885 zram_test_flag(zram, index, flag: ZRAM_IDLE) ? 'i' : '.',
886 zram_get_priority(zram, index) ? 'r' : '.',
887 zram_test_flag(zram, index,
888 flag: ZRAM_INCOMPRESSIBLE) ? 'n' : '.');
889
890 if (count <= copied) {
891 zram_slot_unlock(zram, index);
892 break;
893 }
894 written += copied;
895 count -= copied;
896next:
897 zram_slot_unlock(zram, index);
898 *ppos += 1;
899 }
900
901 up_read(sem: &zram->init_lock);
902 if (copy_to_user(to: buf, from: kbuf, n: written))
903 written = -EFAULT;
904 kvfree(addr: kbuf);
905
906 return written;
907}
908
909static const struct file_operations proc_zram_block_state_op = {
910 .open = simple_open,
911 .read = read_block_state,
912 .llseek = default_llseek,
913};
914
915static void zram_debugfs_register(struct zram *zram)
916{
917 if (!zram_debugfs_root)
918 return;
919
920 zram->debugfs_dir = debugfs_create_dir(name: zram->disk->disk_name,
921 parent: zram_debugfs_root);
922 debugfs_create_file(name: "block_state", mode: 0400, parent: zram->debugfs_dir,
923 data: zram, fops: &proc_zram_block_state_op);
924}
925
926static void zram_debugfs_unregister(struct zram *zram)
927{
928 debugfs_remove_recursive(dentry: zram->debugfs_dir);
929}
930#else
931static void zram_debugfs_create(void) {};
932static void zram_debugfs_destroy(void) {};
933static void zram_accessed(struct zram *zram, u32 index)
934{
935 zram_clear_flag(zram, index, ZRAM_IDLE);
936};
937static void zram_debugfs_register(struct zram *zram) {};
938static void zram_debugfs_unregister(struct zram *zram) {};
939#endif
940
941/*
942 * We switched to per-cpu streams and this attr is not needed anymore.
943 * However, we will keep it around for some time, because:
944 * a) we may revert per-cpu streams in the future
945 * b) it's visible to user space and we need to follow our 2 years
946 * retirement rule; but we already have a number of 'soon to be
947 * altered' attrs, so max_comp_streams need to wait for the next
948 * layoff cycle.
949 */
950static ssize_t max_comp_streams_show(struct device *dev,
951 struct device_attribute *attr, char *buf)
952{
953 return scnprintf(buf, PAGE_SIZE, fmt: "%d\n", num_online_cpus());
954}
955
956static ssize_t max_comp_streams_store(struct device *dev,
957 struct device_attribute *attr, const char *buf, size_t len)
958{
959 return len;
960}
961
962static void comp_algorithm_set(struct zram *zram, u32 prio, const char *alg)
963{
964 /* Do not free statically defined compression algorithms */
965 if (zram->comp_algs[prio] != default_compressor)
966 kfree(objp: zram->comp_algs[prio]);
967
968 zram->comp_algs[prio] = alg;
969}
970
971static ssize_t __comp_algorithm_show(struct zram *zram, u32 prio, char *buf)
972{
973 ssize_t sz;
974
975 down_read(sem: &zram->init_lock);
976 sz = zcomp_available_show(comp: zram->comp_algs[prio], buf);
977 up_read(sem: &zram->init_lock);
978
979 return sz;
980}
981
982static int __comp_algorithm_store(struct zram *zram, u32 prio, const char *buf)
983{
984 char *compressor;
985 size_t sz;
986
987 sz = strlen(buf);
988 if (sz >= CRYPTO_MAX_ALG_NAME)
989 return -E2BIG;
990
991 compressor = kstrdup(s: buf, GFP_KERNEL);
992 if (!compressor)
993 return -ENOMEM;
994
995 /* ignore trailing newline */
996 if (sz > 0 && compressor[sz - 1] == '\n')
997 compressor[sz - 1] = 0x00;
998
999 if (!zcomp_available_algorithm(comp: compressor)) {
1000 kfree(objp: compressor);
1001 return -EINVAL;
1002 }
1003
1004 down_write(sem: &zram->init_lock);
1005 if (init_done(zram)) {
1006 up_write(sem: &zram->init_lock);
1007 kfree(objp: compressor);
1008 pr_info("Can't change algorithm for initialized device\n");
1009 return -EBUSY;
1010 }
1011
1012 comp_algorithm_set(zram, prio, alg: compressor);
1013 up_write(sem: &zram->init_lock);
1014 return 0;
1015}
1016
1017static ssize_t comp_algorithm_show(struct device *dev,
1018 struct device_attribute *attr,
1019 char *buf)
1020{
1021 struct zram *zram = dev_to_zram(dev);
1022
1023 return __comp_algorithm_show(zram, ZRAM_PRIMARY_COMP, buf);
1024}
1025
1026static ssize_t comp_algorithm_store(struct device *dev,
1027 struct device_attribute *attr,
1028 const char *buf,
1029 size_t len)
1030{
1031 struct zram *zram = dev_to_zram(dev);
1032 int ret;
1033
1034 ret = __comp_algorithm_store(zram, ZRAM_PRIMARY_COMP, buf);
1035 return ret ? ret : len;
1036}
1037
1038#ifdef CONFIG_ZRAM_MULTI_COMP
1039static ssize_t recomp_algorithm_show(struct device *dev,
1040 struct device_attribute *attr,
1041 char *buf)
1042{
1043 struct zram *zram = dev_to_zram(dev);
1044 ssize_t sz = 0;
1045 u32 prio;
1046
1047 for (prio = ZRAM_SECONDARY_COMP; prio < ZRAM_MAX_COMPS; prio++) {
1048 if (!zram->comp_algs[prio])
1049 continue;
1050
1051 sz += scnprintf(buf: buf + sz, PAGE_SIZE - sz - 2, fmt: "#%d: ", prio);
1052 sz += __comp_algorithm_show(zram, prio, buf: buf + sz);
1053 }
1054
1055 return sz;
1056}
1057
1058static ssize_t recomp_algorithm_store(struct device *dev,
1059 struct device_attribute *attr,
1060 const char *buf,
1061 size_t len)
1062{
1063 struct zram *zram = dev_to_zram(dev);
1064 int prio = ZRAM_SECONDARY_COMP;
1065 char *args, *param, *val;
1066 char *alg = NULL;
1067 int ret;
1068
1069 args = skip_spaces(buf);
1070 while (*args) {
1071 args = next_arg(args, param: &param, val: &val);
1072
1073 if (!val || !*val)
1074 return -EINVAL;
1075
1076 if (!strcmp(param, "algo")) {
1077 alg = val;
1078 continue;
1079 }
1080
1081 if (!strcmp(param, "priority")) {
1082 ret = kstrtoint(s: val, base: 10, res: &prio);
1083 if (ret)
1084 return ret;
1085 continue;
1086 }
1087 }
1088
1089 if (!alg)
1090 return -EINVAL;
1091
1092 if (prio < ZRAM_SECONDARY_COMP || prio >= ZRAM_MAX_COMPS)
1093 return -EINVAL;
1094
1095 ret = __comp_algorithm_store(zram, prio, buf: alg);
1096 return ret ? ret : len;
1097}
1098#endif
1099
1100static ssize_t compact_store(struct device *dev,
1101 struct device_attribute *attr, const char *buf, size_t len)
1102{
1103 struct zram *zram = dev_to_zram(dev);
1104
1105 down_read(sem: &zram->init_lock);
1106 if (!init_done(zram)) {
1107 up_read(sem: &zram->init_lock);
1108 return -EINVAL;
1109 }
1110
1111 zs_compact(pool: zram->mem_pool);
1112 up_read(sem: &zram->init_lock);
1113
1114 return len;
1115}
1116
1117static ssize_t io_stat_show(struct device *dev,
1118 struct device_attribute *attr, char *buf)
1119{
1120 struct zram *zram = dev_to_zram(dev);
1121 ssize_t ret;
1122
1123 down_read(sem: &zram->init_lock);
1124 ret = scnprintf(buf, PAGE_SIZE,
1125 fmt: "%8llu %8llu 0 %8llu\n",
1126 (u64)atomic64_read(v: &zram->stats.failed_reads),
1127 (u64)atomic64_read(v: &zram->stats.failed_writes),
1128 (u64)atomic64_read(v: &zram->stats.notify_free));
1129 up_read(sem: &zram->init_lock);
1130
1131 return ret;
1132}
1133
1134static ssize_t mm_stat_show(struct device *dev,
1135 struct device_attribute *attr, char *buf)
1136{
1137 struct zram *zram = dev_to_zram(dev);
1138 struct zs_pool_stats pool_stats;
1139 u64 orig_size, mem_used = 0;
1140 long max_used;
1141 ssize_t ret;
1142
1143 memset(&pool_stats, 0x00, sizeof(struct zs_pool_stats));
1144
1145 down_read(sem: &zram->init_lock);
1146 if (init_done(zram)) {
1147 mem_used = zs_get_total_pages(pool: zram->mem_pool);
1148 zs_pool_stats(pool: zram->mem_pool, stats: &pool_stats);
1149 }
1150
1151 orig_size = atomic64_read(v: &zram->stats.pages_stored);
1152 max_used = atomic_long_read(v: &zram->stats.max_used_pages);
1153
1154 ret = scnprintf(buf, PAGE_SIZE,
1155 fmt: "%8llu %8llu %8llu %8lu %8ld %8llu %8lu %8llu %8llu\n",
1156 orig_size << PAGE_SHIFT,
1157 (u64)atomic64_read(v: &zram->stats.compr_data_size),
1158 mem_used << PAGE_SHIFT,
1159 zram->limit_pages << PAGE_SHIFT,
1160 max_used << PAGE_SHIFT,
1161 (u64)atomic64_read(v: &zram->stats.same_pages),
1162 atomic_long_read(v: &pool_stats.pages_compacted),
1163 (u64)atomic64_read(v: &zram->stats.huge_pages),
1164 (u64)atomic64_read(v: &zram->stats.huge_pages_since));
1165 up_read(sem: &zram->init_lock);
1166
1167 return ret;
1168}
1169
1170#ifdef CONFIG_ZRAM_WRITEBACK
1171#define FOUR_K(x) ((x) * (1 << (PAGE_SHIFT - 12)))
1172static ssize_t bd_stat_show(struct device *dev,
1173 struct device_attribute *attr, char *buf)
1174{
1175 struct zram *zram = dev_to_zram(dev);
1176 ssize_t ret;
1177
1178 down_read(sem: &zram->init_lock);
1179 ret = scnprintf(buf, PAGE_SIZE,
1180 fmt: "%8llu %8llu %8llu\n",
1181 FOUR_K((u64)atomic64_read(&zram->stats.bd_count)),
1182 FOUR_K((u64)atomic64_read(&zram->stats.bd_reads)),
1183 FOUR_K((u64)atomic64_read(&zram->stats.bd_writes)));
1184 up_read(sem: &zram->init_lock);
1185
1186 return ret;
1187}
1188#endif
1189
1190static ssize_t debug_stat_show(struct device *dev,
1191 struct device_attribute *attr, char *buf)
1192{
1193 int version = 1;
1194 struct zram *zram = dev_to_zram(dev);
1195 ssize_t ret;
1196
1197 down_read(sem: &zram->init_lock);
1198 ret = scnprintf(buf, PAGE_SIZE,
1199 fmt: "version: %d\n%8llu %8llu\n",
1200 version,
1201 (u64)atomic64_read(v: &zram->stats.writestall),
1202 (u64)atomic64_read(v: &zram->stats.miss_free));
1203 up_read(sem: &zram->init_lock);
1204
1205 return ret;
1206}
1207
1208static DEVICE_ATTR_RO(io_stat);
1209static DEVICE_ATTR_RO(mm_stat);
1210#ifdef CONFIG_ZRAM_WRITEBACK
1211static DEVICE_ATTR_RO(bd_stat);
1212#endif
1213static DEVICE_ATTR_RO(debug_stat);
1214
1215static void zram_meta_free(struct zram *zram, u64 disksize)
1216{
1217 size_t num_pages = disksize >> PAGE_SHIFT;
1218 size_t index;
1219
1220 /* Free all pages that are still in this zram device */
1221 for (index = 0; index < num_pages; index++)
1222 zram_free_page(zram, index);
1223
1224 zs_destroy_pool(pool: zram->mem_pool);
1225 vfree(addr: zram->table);
1226}
1227
1228static bool zram_meta_alloc(struct zram *zram, u64 disksize)
1229{
1230 size_t num_pages;
1231
1232 num_pages = disksize >> PAGE_SHIFT;
1233 zram->table = vzalloc(array_size(num_pages, sizeof(*zram->table)));
1234 if (!zram->table)
1235 return false;
1236
1237 zram->mem_pool = zs_create_pool(name: zram->disk->disk_name);
1238 if (!zram->mem_pool) {
1239 vfree(addr: zram->table);
1240 return false;
1241 }
1242
1243 if (!huge_class_size)
1244 huge_class_size = zs_huge_class_size(pool: zram->mem_pool);
1245 return true;
1246}
1247
1248/*
1249 * To protect concurrent access to the same index entry,
1250 * caller should hold this table index entry's bit_spinlock to
1251 * indicate this index entry is accessing.
1252 */
1253static void zram_free_page(struct zram *zram, size_t index)
1254{
1255 unsigned long handle;
1256
1257#ifdef CONFIG_ZRAM_MEMORY_TRACKING
1258 zram->table[index].ac_time = 0;
1259#endif
1260 if (zram_test_flag(zram, index, flag: ZRAM_IDLE))
1261 zram_clear_flag(zram, index, flag: ZRAM_IDLE);
1262
1263 if (zram_test_flag(zram, index, flag: ZRAM_HUGE)) {
1264 zram_clear_flag(zram, index, flag: ZRAM_HUGE);
1265 atomic64_dec(v: &zram->stats.huge_pages);
1266 }
1267
1268 if (zram_test_flag(zram, index, flag: ZRAM_INCOMPRESSIBLE))
1269 zram_clear_flag(zram, index, flag: ZRAM_INCOMPRESSIBLE);
1270
1271 zram_set_priority(zram, index, prio: 0);
1272
1273 if (zram_test_flag(zram, index, flag: ZRAM_WB)) {
1274 zram_clear_flag(zram, index, flag: ZRAM_WB);
1275 free_block_bdev(zram, blk_idx: zram_get_element(zram, index));
1276 goto out;
1277 }
1278
1279 /*
1280 * No memory is allocated for same element filled pages.
1281 * Simply clear same page flag.
1282 */
1283 if (zram_test_flag(zram, index, flag: ZRAM_SAME)) {
1284 zram_clear_flag(zram, index, flag: ZRAM_SAME);
1285 atomic64_dec(v: &zram->stats.same_pages);
1286 goto out;
1287 }
1288
1289 handle = zram_get_handle(zram, index);
1290 if (!handle)
1291 return;
1292
1293 zs_free(pool: zram->mem_pool, obj: handle);
1294
1295 atomic64_sub(i: zram_get_obj_size(zram, index),
1296 v: &zram->stats.compr_data_size);
1297out:
1298 atomic64_dec(v: &zram->stats.pages_stored);
1299 zram_set_handle(zram, index, handle: 0);
1300 zram_set_obj_size(zram, index, size: 0);
1301 WARN_ON_ONCE(zram->table[index].flags &
1302 ~(1UL << ZRAM_LOCK | 1UL << ZRAM_UNDER_WB));
1303}
1304
1305/*
1306 * Reads (decompresses if needed) a page from zspool (zsmalloc).
1307 * Corresponding ZRAM slot should be locked.
1308 */
1309static int zram_read_from_zspool(struct zram *zram, struct page *page,
1310 u32 index)
1311{
1312 struct zcomp_strm *zstrm;
1313 unsigned long handle;
1314 unsigned int size;
1315 void *src, *dst;
1316 u32 prio;
1317 int ret;
1318
1319 handle = zram_get_handle(zram, index);
1320 if (!handle || zram_test_flag(zram, index, flag: ZRAM_SAME)) {
1321 unsigned long value;
1322 void *mem;
1323
1324 value = handle ? zram_get_element(zram, index) : 0;
1325 mem = kmap_atomic(page);
1326 zram_fill_page(ptr: mem, PAGE_SIZE, value);
1327 kunmap_atomic(mem);
1328 return 0;
1329 }
1330
1331 size = zram_get_obj_size(zram, index);
1332
1333 if (size != PAGE_SIZE) {
1334 prio = zram_get_priority(zram, index);
1335 zstrm = zcomp_stream_get(comp: zram->comps[prio]);
1336 }
1337
1338 src = zs_map_object(pool: zram->mem_pool, handle, mm: ZS_MM_RO);
1339 if (size == PAGE_SIZE) {
1340 dst = kmap_atomic(page);
1341 memcpy(dst, src, PAGE_SIZE);
1342 kunmap_atomic(dst);
1343 ret = 0;
1344 } else {
1345 dst = kmap_atomic(page);
1346 ret = zcomp_decompress(zstrm, src, src_len: size, dst);
1347 kunmap_atomic(dst);
1348 zcomp_stream_put(comp: zram->comps[prio]);
1349 }
1350 zs_unmap_object(pool: zram->mem_pool, handle);
1351 return ret;
1352}
1353
1354static int zram_read_page(struct zram *zram, struct page *page, u32 index,
1355 struct bio *parent)
1356{
1357 int ret;
1358
1359 zram_slot_lock(zram, index);
1360 if (!zram_test_flag(zram, index, flag: ZRAM_WB)) {
1361 /* Slot should be locked through out the function call */
1362 ret = zram_read_from_zspool(zram, page, index);
1363 zram_slot_unlock(zram, index);
1364 } else {
1365 /*
1366 * The slot should be unlocked before reading from the backing
1367 * device.
1368 */
1369 zram_slot_unlock(zram, index);
1370
1371 ret = read_from_bdev(zram, page, entry: zram_get_element(zram, index),
1372 parent);
1373 }
1374
1375 /* Should NEVER happen. Return bio error if it does. */
1376 if (WARN_ON(ret < 0))
1377 pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
1378
1379 return ret;
1380}
1381
1382/*
1383 * Use a temporary buffer to decompress the page, as the decompressor
1384 * always expects a full page for the output.
1385 */
1386static int zram_bvec_read_partial(struct zram *zram, struct bio_vec *bvec,
1387 u32 index, int offset)
1388{
1389 struct page *page = alloc_page(GFP_NOIO);
1390 int ret;
1391
1392 if (!page)
1393 return -ENOMEM;
1394 ret = zram_read_page(zram, page, index, NULL);
1395 if (likely(!ret))
1396 memcpy_to_bvec(bvec, page_address(page) + offset);
1397 __free_page(page);
1398 return ret;
1399}
1400
1401static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
1402 u32 index, int offset, struct bio *bio)
1403{
1404 if (is_partial_io(bvec))
1405 return zram_bvec_read_partial(zram, bvec, index, offset);
1406 return zram_read_page(zram, page: bvec->bv_page, index, parent: bio);
1407}
1408
1409static int zram_write_page(struct zram *zram, struct page *page, u32 index)
1410{
1411 int ret = 0;
1412 unsigned long alloced_pages;
1413 unsigned long handle = -ENOMEM;
1414 unsigned int comp_len = 0;
1415 void *src, *dst, *mem;
1416 struct zcomp_strm *zstrm;
1417 unsigned long element = 0;
1418 enum zram_pageflags flags = 0;
1419
1420 mem = kmap_atomic(page);
1421 if (page_same_filled(ptr: mem, element: &element)) {
1422 kunmap_atomic(mem);
1423 /* Free memory associated with this sector now. */
1424 flags = ZRAM_SAME;
1425 atomic64_inc(v: &zram->stats.same_pages);
1426 goto out;
1427 }
1428 kunmap_atomic(mem);
1429
1430compress_again:
1431 zstrm = zcomp_stream_get(comp: zram->comps[ZRAM_PRIMARY_COMP]);
1432 src = kmap_atomic(page);
1433 ret = zcomp_compress(zstrm, src, dst_len: &comp_len);
1434 kunmap_atomic(src);
1435
1436 if (unlikely(ret)) {
1437 zcomp_stream_put(comp: zram->comps[ZRAM_PRIMARY_COMP]);
1438 pr_err("Compression failed! err=%d\n", ret);
1439 zs_free(pool: zram->mem_pool, obj: handle);
1440 return ret;
1441 }
1442
1443 if (comp_len >= huge_class_size)
1444 comp_len = PAGE_SIZE;
1445 /*
1446 * handle allocation has 2 paths:
1447 * a) fast path is executed with preemption disabled (for
1448 * per-cpu streams) and has __GFP_DIRECT_RECLAIM bit clear,
1449 * since we can't sleep;
1450 * b) slow path enables preemption and attempts to allocate
1451 * the page with __GFP_DIRECT_RECLAIM bit set. we have to
1452 * put per-cpu compression stream and, thus, to re-do
1453 * the compression once handle is allocated.
1454 *
1455 * if we have a 'non-null' handle here then we are coming
1456 * from the slow path and handle has already been allocated.
1457 */
1458 if (IS_ERR_VALUE(handle))
1459 handle = zs_malloc(pool: zram->mem_pool, size: comp_len,
1460 __GFP_KSWAPD_RECLAIM |
1461 __GFP_NOWARN |
1462 __GFP_HIGHMEM |
1463 __GFP_MOVABLE);
1464 if (IS_ERR_VALUE(handle)) {
1465 zcomp_stream_put(comp: zram->comps[ZRAM_PRIMARY_COMP]);
1466 atomic64_inc(v: &zram->stats.writestall);
1467 handle = zs_malloc(pool: zram->mem_pool, size: comp_len,
1468 GFP_NOIO | __GFP_HIGHMEM |
1469 __GFP_MOVABLE);
1470 if (IS_ERR_VALUE(handle))
1471 return PTR_ERR(ptr: (void *)handle);
1472
1473 if (comp_len != PAGE_SIZE)
1474 goto compress_again;
1475 /*
1476 * If the page is not compressible, you need to acquire the
1477 * lock and execute the code below. The zcomp_stream_get()
1478 * call is needed to disable the cpu hotplug and grab the
1479 * zstrm buffer back. It is necessary that the dereferencing
1480 * of the zstrm variable below occurs correctly.
1481 */
1482 zstrm = zcomp_stream_get(comp: zram->comps[ZRAM_PRIMARY_COMP]);
1483 }
1484
1485 alloced_pages = zs_get_total_pages(pool: zram->mem_pool);
1486 update_used_max(zram, pages: alloced_pages);
1487
1488 if (zram->limit_pages && alloced_pages > zram->limit_pages) {
1489 zcomp_stream_put(comp: zram->comps[ZRAM_PRIMARY_COMP]);
1490 zs_free(pool: zram->mem_pool, obj: handle);
1491 return -ENOMEM;
1492 }
1493
1494 dst = zs_map_object(pool: zram->mem_pool, handle, mm: ZS_MM_WO);
1495
1496 src = zstrm->buffer;
1497 if (comp_len == PAGE_SIZE)
1498 src = kmap_atomic(page);
1499 memcpy(dst, src, comp_len);
1500 if (comp_len == PAGE_SIZE)
1501 kunmap_atomic(src);
1502
1503 zcomp_stream_put(comp: zram->comps[ZRAM_PRIMARY_COMP]);
1504 zs_unmap_object(pool: zram->mem_pool, handle);
1505 atomic64_add(i: comp_len, v: &zram->stats.compr_data_size);
1506out:
1507 /*
1508 * Free memory associated with this sector
1509 * before overwriting unused sectors.
1510 */
1511 zram_slot_lock(zram, index);
1512 zram_free_page(zram, index);
1513
1514 if (comp_len == PAGE_SIZE) {
1515 zram_set_flag(zram, index, flag: ZRAM_HUGE);
1516 atomic64_inc(v: &zram->stats.huge_pages);
1517 atomic64_inc(v: &zram->stats.huge_pages_since);
1518 }
1519
1520 if (flags) {
1521 zram_set_flag(zram, index, flag: flags);
1522 zram_set_element(zram, index, element);
1523 } else {
1524 zram_set_handle(zram, index, handle);
1525 zram_set_obj_size(zram, index, size: comp_len);
1526 }
1527 zram_slot_unlock(zram, index);
1528
1529 /* Update stats */
1530 atomic64_inc(v: &zram->stats.pages_stored);
1531 return ret;
1532}
1533
1534/*
1535 * This is a partial IO. Read the full page before writing the changes.
1536 */
1537static int zram_bvec_write_partial(struct zram *zram, struct bio_vec *bvec,
1538 u32 index, int offset, struct bio *bio)
1539{
1540 struct page *page = alloc_page(GFP_NOIO);
1541 int ret;
1542
1543 if (!page)
1544 return -ENOMEM;
1545
1546 ret = zram_read_page(zram, page, index, parent: bio);
1547 if (!ret) {
1548 memcpy_from_bvec(page_address(page) + offset, bvec);
1549 ret = zram_write_page(zram, page, index);
1550 }
1551 __free_page(page);
1552 return ret;
1553}
1554
1555static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec,
1556 u32 index, int offset, struct bio *bio)
1557{
1558 if (is_partial_io(bvec))
1559 return zram_bvec_write_partial(zram, bvec, index, offset, bio);
1560 return zram_write_page(zram, page: bvec->bv_page, index);
1561}
1562
1563#ifdef CONFIG_ZRAM_MULTI_COMP
1564/*
1565 * This function will decompress (unless it's ZRAM_HUGE) the page and then
1566 * attempt to compress it using provided compression algorithm priority
1567 * (which is potentially more effective).
1568 *
1569 * Corresponding ZRAM slot should be locked.
1570 */
1571static int zram_recompress(struct zram *zram, u32 index, struct page *page,
1572 u32 threshold, u32 prio, u32 prio_max)
1573{
1574 struct zcomp_strm *zstrm = NULL;
1575 unsigned long handle_old;
1576 unsigned long handle_new;
1577 unsigned int comp_len_old;
1578 unsigned int comp_len_new;
1579 unsigned int class_index_old;
1580 unsigned int class_index_new;
1581 u32 num_recomps = 0;
1582 void *src, *dst;
1583 int ret;
1584
1585 handle_old = zram_get_handle(zram, index);
1586 if (!handle_old)
1587 return -EINVAL;
1588
1589 comp_len_old = zram_get_obj_size(zram, index);
1590 /*
1591 * Do not recompress objects that are already "small enough".
1592 */
1593 if (comp_len_old < threshold)
1594 return 0;
1595
1596 ret = zram_read_from_zspool(zram, page, index);
1597 if (ret)
1598 return ret;
1599
1600 class_index_old = zs_lookup_class_index(pool: zram->mem_pool, size: comp_len_old);
1601 /*
1602 * Iterate the secondary comp algorithms list (in order of priority)
1603 * and try to recompress the page.
1604 */
1605 for (; prio < prio_max; prio++) {
1606 if (!zram->comps[prio])
1607 continue;
1608
1609 /*
1610 * Skip if the object is already re-compressed with a higher
1611 * priority algorithm (or same algorithm).
1612 */
1613 if (prio <= zram_get_priority(zram, index))
1614 continue;
1615
1616 num_recomps++;
1617 zstrm = zcomp_stream_get(comp: zram->comps[prio]);
1618 src = kmap_atomic(page);
1619 ret = zcomp_compress(zstrm, src, dst_len: &comp_len_new);
1620 kunmap_atomic(src);
1621
1622 if (ret) {
1623 zcomp_stream_put(comp: zram->comps[prio]);
1624 return ret;
1625 }
1626
1627 class_index_new = zs_lookup_class_index(pool: zram->mem_pool,
1628 size: comp_len_new);
1629
1630 /* Continue until we make progress */
1631 if (class_index_new >= class_index_old ||
1632 (threshold && comp_len_new >= threshold)) {
1633 zcomp_stream_put(comp: zram->comps[prio]);
1634 continue;
1635 }
1636
1637 /* Recompression was successful so break out */
1638 break;
1639 }
1640
1641 /*
1642 * We did not try to recompress, e.g. when we have only one
1643 * secondary algorithm and the page is already recompressed
1644 * using that algorithm
1645 */
1646 if (!zstrm)
1647 return 0;
1648
1649 if (class_index_new >= class_index_old) {
1650 /*
1651 * Secondary algorithms failed to re-compress the page
1652 * in a way that would save memory, mark the object as
1653 * incompressible so that we will not try to compress
1654 * it again.
1655 *
1656 * We need to make sure that all secondary algorithms have
1657 * failed, so we test if the number of recompressions matches
1658 * the number of active secondary algorithms.
1659 */
1660 if (num_recomps == zram->num_active_comps - 1)
1661 zram_set_flag(zram, index, flag: ZRAM_INCOMPRESSIBLE);
1662 return 0;
1663 }
1664
1665 /* Successful recompression but above threshold */
1666 if (threshold && comp_len_new >= threshold)
1667 return 0;
1668
1669 /*
1670 * No direct reclaim (slow path) for handle allocation and no
1671 * re-compression attempt (unlike in zram_write_bvec()) since
1672 * we already have stored that object in zsmalloc. If we cannot
1673 * alloc memory for recompressed object then we bail out and
1674 * simply keep the old (existing) object in zsmalloc.
1675 */
1676 handle_new = zs_malloc(pool: zram->mem_pool, size: comp_len_new,
1677 __GFP_KSWAPD_RECLAIM |
1678 __GFP_NOWARN |
1679 __GFP_HIGHMEM |
1680 __GFP_MOVABLE);
1681 if (IS_ERR_VALUE(handle_new)) {
1682 zcomp_stream_put(comp: zram->comps[prio]);
1683 return PTR_ERR(ptr: (void *)handle_new);
1684 }
1685
1686 dst = zs_map_object(pool: zram->mem_pool, handle: handle_new, mm: ZS_MM_WO);
1687 memcpy(dst, zstrm->buffer, comp_len_new);
1688 zcomp_stream_put(comp: zram->comps[prio]);
1689
1690 zs_unmap_object(pool: zram->mem_pool, handle: handle_new);
1691
1692 zram_free_page(zram, index);
1693 zram_set_handle(zram, index, handle: handle_new);
1694 zram_set_obj_size(zram, index, size: comp_len_new);
1695 zram_set_priority(zram, index, prio);
1696
1697 atomic64_add(i: comp_len_new, v: &zram->stats.compr_data_size);
1698 atomic64_inc(v: &zram->stats.pages_stored);
1699
1700 return 0;
1701}
1702
1703#define RECOMPRESS_IDLE (1 << 0)
1704#define RECOMPRESS_HUGE (1 << 1)
1705
1706static ssize_t recompress_store(struct device *dev,
1707 struct device_attribute *attr,
1708 const char *buf, size_t len)
1709{
1710 u32 prio = ZRAM_SECONDARY_COMP, prio_max = ZRAM_MAX_COMPS;
1711 struct zram *zram = dev_to_zram(dev);
1712 unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
1713 char *args, *param, *val, *algo = NULL;
1714 u32 mode = 0, threshold = 0;
1715 unsigned long index;
1716 struct page *page;
1717 ssize_t ret;
1718
1719 args = skip_spaces(buf);
1720 while (*args) {
1721 args = next_arg(args, param: &param, val: &val);
1722
1723 if (!val || !*val)
1724 return -EINVAL;
1725
1726 if (!strcmp(param, "type")) {
1727 if (!strcmp(val, "idle"))
1728 mode = RECOMPRESS_IDLE;
1729 if (!strcmp(val, "huge"))
1730 mode = RECOMPRESS_HUGE;
1731 if (!strcmp(val, "huge_idle"))
1732 mode = RECOMPRESS_IDLE | RECOMPRESS_HUGE;
1733 continue;
1734 }
1735
1736 if (!strcmp(param, "threshold")) {
1737 /*
1738 * We will re-compress only idle objects equal or
1739 * greater in size than watermark.
1740 */
1741 ret = kstrtouint(s: val, base: 10, res: &threshold);
1742 if (ret)
1743 return ret;
1744 continue;
1745 }
1746
1747 if (!strcmp(param, "algo")) {
1748 algo = val;
1749 continue;
1750 }
1751 }
1752
1753 if (threshold >= huge_class_size)
1754 return -EINVAL;
1755
1756 down_read(sem: &zram->init_lock);
1757 if (!init_done(zram)) {
1758 ret = -EINVAL;
1759 goto release_init_lock;
1760 }
1761
1762 if (algo) {
1763 bool found = false;
1764
1765 for (; prio < ZRAM_MAX_COMPS; prio++) {
1766 if (!zram->comp_algs[prio])
1767 continue;
1768
1769 if (!strcmp(zram->comp_algs[prio], algo)) {
1770 prio_max = min(prio + 1, ZRAM_MAX_COMPS);
1771 found = true;
1772 break;
1773 }
1774 }
1775
1776 if (!found) {
1777 ret = -EINVAL;
1778 goto release_init_lock;
1779 }
1780 }
1781
1782 page = alloc_page(GFP_KERNEL);
1783 if (!page) {
1784 ret = -ENOMEM;
1785 goto release_init_lock;
1786 }
1787
1788 ret = len;
1789 for (index = 0; index < nr_pages; index++) {
1790 int err = 0;
1791
1792 zram_slot_lock(zram, index);
1793
1794 if (!zram_allocated(zram, index))
1795 goto next;
1796
1797 if (mode & RECOMPRESS_IDLE &&
1798 !zram_test_flag(zram, index, flag: ZRAM_IDLE))
1799 goto next;
1800
1801 if (mode & RECOMPRESS_HUGE &&
1802 !zram_test_flag(zram, index, flag: ZRAM_HUGE))
1803 goto next;
1804
1805 if (zram_test_flag(zram, index, flag: ZRAM_WB) ||
1806 zram_test_flag(zram, index, flag: ZRAM_UNDER_WB) ||
1807 zram_test_flag(zram, index, flag: ZRAM_SAME) ||
1808 zram_test_flag(zram, index, flag: ZRAM_INCOMPRESSIBLE))
1809 goto next;
1810
1811 err = zram_recompress(zram, index, page, threshold,
1812 prio, prio_max);
1813next:
1814 zram_slot_unlock(zram, index);
1815 if (err) {
1816 ret = err;
1817 break;
1818 }
1819
1820 cond_resched();
1821 }
1822
1823 __free_page(page);
1824
1825release_init_lock:
1826 up_read(sem: &zram->init_lock);
1827 return ret;
1828}
1829#endif
1830
1831static void zram_bio_discard(struct zram *zram, struct bio *bio)
1832{
1833 size_t n = bio->bi_iter.bi_size;
1834 u32 index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
1835 u32 offset = (bio->bi_iter.bi_sector & (SECTORS_PER_PAGE - 1)) <<
1836 SECTOR_SHIFT;
1837
1838 /*
1839 * zram manages data in physical block size units. Because logical block
1840 * size isn't identical with physical block size on some arch, we
1841 * could get a discard request pointing to a specific offset within a
1842 * certain physical block. Although we can handle this request by
1843 * reading that physiclal block and decompressing and partially zeroing
1844 * and re-compressing and then re-storing it, this isn't reasonable
1845 * because our intent with a discard request is to save memory. So
1846 * skipping this logical block is appropriate here.
1847 */
1848 if (offset) {
1849 if (n <= (PAGE_SIZE - offset))
1850 return;
1851
1852 n -= (PAGE_SIZE - offset);
1853 index++;
1854 }
1855
1856 while (n >= PAGE_SIZE) {
1857 zram_slot_lock(zram, index);
1858 zram_free_page(zram, index);
1859 zram_slot_unlock(zram, index);
1860 atomic64_inc(v: &zram->stats.notify_free);
1861 index++;
1862 n -= PAGE_SIZE;
1863 }
1864
1865 bio_endio(bio);
1866}
1867
1868static void zram_bio_read(struct zram *zram, struct bio *bio)
1869{
1870 unsigned long start_time = bio_start_io_acct(bio);
1871 struct bvec_iter iter = bio->bi_iter;
1872
1873 do {
1874 u32 index = iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
1875 u32 offset = (iter.bi_sector & (SECTORS_PER_PAGE - 1)) <<
1876 SECTOR_SHIFT;
1877 struct bio_vec bv = bio_iter_iovec(bio, iter);
1878
1879 bv.bv_len = min_t(u32, bv.bv_len, PAGE_SIZE - offset);
1880
1881 if (zram_bvec_read(zram, bvec: &bv, index, offset, bio) < 0) {
1882 atomic64_inc(v: &zram->stats.failed_reads);
1883 bio->bi_status = BLK_STS_IOERR;
1884 break;
1885 }
1886 flush_dcache_page(page: bv.bv_page);
1887
1888 zram_slot_lock(zram, index);
1889 zram_accessed(zram, index);
1890 zram_slot_unlock(zram, index);
1891
1892 bio_advance_iter_single(bio, iter: &iter, bytes: bv.bv_len);
1893 } while (iter.bi_size);
1894
1895 bio_end_io_acct(bio, start_time);
1896 bio_endio(bio);
1897}
1898
1899static void zram_bio_write(struct zram *zram, struct bio *bio)
1900{
1901 unsigned long start_time = bio_start_io_acct(bio);
1902 struct bvec_iter iter = bio->bi_iter;
1903
1904 do {
1905 u32 index = iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
1906 u32 offset = (iter.bi_sector & (SECTORS_PER_PAGE - 1)) <<
1907 SECTOR_SHIFT;
1908 struct bio_vec bv = bio_iter_iovec(bio, iter);
1909
1910 bv.bv_len = min_t(u32, bv.bv_len, PAGE_SIZE - offset);
1911
1912 if (zram_bvec_write(zram, bvec: &bv, index, offset, bio) < 0) {
1913 atomic64_inc(v: &zram->stats.failed_writes);
1914 bio->bi_status = BLK_STS_IOERR;
1915 break;
1916 }
1917
1918 zram_slot_lock(zram, index);
1919 zram_accessed(zram, index);
1920 zram_slot_unlock(zram, index);
1921
1922 bio_advance_iter_single(bio, iter: &iter, bytes: bv.bv_len);
1923 } while (iter.bi_size);
1924
1925 bio_end_io_acct(bio, start_time);
1926 bio_endio(bio);
1927}
1928
1929/*
1930 * Handler function for all zram I/O requests.
1931 */
1932static void zram_submit_bio(struct bio *bio)
1933{
1934 struct zram *zram = bio->bi_bdev->bd_disk->private_data;
1935
1936 switch (bio_op(bio)) {
1937 case REQ_OP_READ:
1938 zram_bio_read(zram, bio);
1939 break;
1940 case REQ_OP_WRITE:
1941 zram_bio_write(zram, bio);
1942 break;
1943 case REQ_OP_DISCARD:
1944 case REQ_OP_WRITE_ZEROES:
1945 zram_bio_discard(zram, bio);
1946 break;
1947 default:
1948 WARN_ON_ONCE(1);
1949 bio_endio(bio);
1950 }
1951}
1952
1953static void zram_slot_free_notify(struct block_device *bdev,
1954 unsigned long index)
1955{
1956 struct zram *zram;
1957
1958 zram = bdev->bd_disk->private_data;
1959
1960 atomic64_inc(v: &zram->stats.notify_free);
1961 if (!zram_slot_trylock(zram, index)) {
1962 atomic64_inc(v: &zram->stats.miss_free);
1963 return;
1964 }
1965
1966 zram_free_page(zram, index);
1967 zram_slot_unlock(zram, index);
1968}
1969
1970static void zram_destroy_comps(struct zram *zram)
1971{
1972 u32 prio;
1973
1974 for (prio = 0; prio < ZRAM_MAX_COMPS; prio++) {
1975 struct zcomp *comp = zram->comps[prio];
1976
1977 zram->comps[prio] = NULL;
1978 if (!comp)
1979 continue;
1980 zcomp_destroy(comp);
1981 zram->num_active_comps--;
1982 }
1983}
1984
1985static void zram_reset_device(struct zram *zram)
1986{
1987 down_write(sem: &zram->init_lock);
1988
1989 zram->limit_pages = 0;
1990
1991 if (!init_done(zram)) {
1992 up_write(sem: &zram->init_lock);
1993 return;
1994 }
1995
1996 set_capacity_and_notify(disk: zram->disk, size: 0);
1997 part_stat_set_all(part: zram->disk->part0, value: 0);
1998
1999 /* I/O operation under all of CPU are done so let's free */
2000 zram_meta_free(zram, disksize: zram->disksize);
2001 zram->disksize = 0;
2002 zram_destroy_comps(zram);
2003 memset(&zram->stats, 0, sizeof(zram->stats));
2004 reset_bdev(zram);
2005
2006 comp_algorithm_set(zram, ZRAM_PRIMARY_COMP, alg: default_compressor);
2007 up_write(sem: &zram->init_lock);
2008}
2009
2010static ssize_t disksize_store(struct device *dev,
2011 struct device_attribute *attr, const char *buf, size_t len)
2012{
2013 u64 disksize;
2014 struct zcomp *comp;
2015 struct zram *zram = dev_to_zram(dev);
2016 int err;
2017 u32 prio;
2018
2019 disksize = memparse(ptr: buf, NULL);
2020 if (!disksize)
2021 return -EINVAL;
2022
2023 down_write(sem: &zram->init_lock);
2024 if (init_done(zram)) {
2025 pr_info("Cannot change disksize for initialized device\n");
2026 err = -EBUSY;
2027 goto out_unlock;
2028 }
2029
2030 disksize = PAGE_ALIGN(disksize);
2031 if (!zram_meta_alloc(zram, disksize)) {
2032 err = -ENOMEM;
2033 goto out_unlock;
2034 }
2035
2036 for (prio = 0; prio < ZRAM_MAX_COMPS; prio++) {
2037 if (!zram->comp_algs[prio])
2038 continue;
2039
2040 comp = zcomp_create(alg: zram->comp_algs[prio]);
2041 if (IS_ERR(ptr: comp)) {
2042 pr_err("Cannot initialise %s compressing backend\n",
2043 zram->comp_algs[prio]);
2044 err = PTR_ERR(ptr: comp);
2045 goto out_free_comps;
2046 }
2047
2048 zram->comps[prio] = comp;
2049 zram->num_active_comps++;
2050 }
2051 zram->disksize = disksize;
2052 set_capacity_and_notify(disk: zram->disk, size: zram->disksize >> SECTOR_SHIFT);
2053 up_write(sem: &zram->init_lock);
2054
2055 return len;
2056
2057out_free_comps:
2058 zram_destroy_comps(zram);
2059 zram_meta_free(zram, disksize);
2060out_unlock:
2061 up_write(sem: &zram->init_lock);
2062 return err;
2063}
2064
2065static ssize_t reset_store(struct device *dev,
2066 struct device_attribute *attr, const char *buf, size_t len)
2067{
2068 int ret;
2069 unsigned short do_reset;
2070 struct zram *zram;
2071 struct gendisk *disk;
2072
2073 ret = kstrtou16(s: buf, base: 10, res: &do_reset);
2074 if (ret)
2075 return ret;
2076
2077 if (!do_reset)
2078 return -EINVAL;
2079
2080 zram = dev_to_zram(dev);
2081 disk = zram->disk;
2082
2083 mutex_lock(&disk->open_mutex);
2084 /* Do not reset an active device or claimed device */
2085 if (disk_openers(disk) || zram->claim) {
2086 mutex_unlock(lock: &disk->open_mutex);
2087 return -EBUSY;
2088 }
2089
2090 /* From now on, anyone can't open /dev/zram[0-9] */
2091 zram->claim = true;
2092 mutex_unlock(lock: &disk->open_mutex);
2093
2094 /* Make sure all the pending I/O are finished */
2095 sync_blockdev(bdev: disk->part0);
2096 zram_reset_device(zram);
2097
2098 mutex_lock(&disk->open_mutex);
2099 zram->claim = false;
2100 mutex_unlock(lock: &disk->open_mutex);
2101
2102 return len;
2103}
2104
2105static int zram_open(struct gendisk *disk, blk_mode_t mode)
2106{
2107 struct zram *zram = disk->private_data;
2108
2109 WARN_ON(!mutex_is_locked(&disk->open_mutex));
2110
2111 /* zram was claimed to reset so open request fails */
2112 if (zram->claim)
2113 return -EBUSY;
2114 return 0;
2115}
2116
2117static const struct block_device_operations zram_devops = {
2118 .open = zram_open,
2119 .submit_bio = zram_submit_bio,
2120 .swap_slot_free_notify = zram_slot_free_notify,
2121 .owner = THIS_MODULE
2122};
2123
2124static DEVICE_ATTR_WO(compact);
2125static DEVICE_ATTR_RW(disksize);
2126static DEVICE_ATTR_RO(initstate);
2127static DEVICE_ATTR_WO(reset);
2128static DEVICE_ATTR_WO(mem_limit);
2129static DEVICE_ATTR_WO(mem_used_max);
2130static DEVICE_ATTR_WO(idle);
2131static DEVICE_ATTR_RW(max_comp_streams);
2132static DEVICE_ATTR_RW(comp_algorithm);
2133#ifdef CONFIG_ZRAM_WRITEBACK
2134static DEVICE_ATTR_RW(backing_dev);
2135static DEVICE_ATTR_WO(writeback);
2136static DEVICE_ATTR_RW(writeback_limit);
2137static DEVICE_ATTR_RW(writeback_limit_enable);
2138#endif
2139#ifdef CONFIG_ZRAM_MULTI_COMP
2140static DEVICE_ATTR_RW(recomp_algorithm);
2141static DEVICE_ATTR_WO(recompress);
2142#endif
2143
2144static struct attribute *zram_disk_attrs[] = {
2145 &dev_attr_disksize.attr,
2146 &dev_attr_initstate.attr,
2147 &dev_attr_reset.attr,
2148 &dev_attr_compact.attr,
2149 &dev_attr_mem_limit.attr,
2150 &dev_attr_mem_used_max.attr,
2151 &dev_attr_idle.attr,
2152 &dev_attr_max_comp_streams.attr,
2153 &dev_attr_comp_algorithm.attr,
2154#ifdef CONFIG_ZRAM_WRITEBACK
2155 &dev_attr_backing_dev.attr,
2156 &dev_attr_writeback.attr,
2157 &dev_attr_writeback_limit.attr,
2158 &dev_attr_writeback_limit_enable.attr,
2159#endif
2160 &dev_attr_io_stat.attr,
2161 &dev_attr_mm_stat.attr,
2162#ifdef CONFIG_ZRAM_WRITEBACK
2163 &dev_attr_bd_stat.attr,
2164#endif
2165 &dev_attr_debug_stat.attr,
2166#ifdef CONFIG_ZRAM_MULTI_COMP
2167 &dev_attr_recomp_algorithm.attr,
2168 &dev_attr_recompress.attr,
2169#endif
2170 NULL,
2171};
2172
2173ATTRIBUTE_GROUPS(zram_disk);
2174
2175/*
2176 * Allocate and initialize new zram device. the function returns
2177 * '>= 0' device_id upon success, and negative value otherwise.
2178 */
2179static int zram_add(void)
2180{
2181 struct zram *zram;
2182 int ret, device_id;
2183
2184 zram = kzalloc(size: sizeof(struct zram), GFP_KERNEL);
2185 if (!zram)
2186 return -ENOMEM;
2187
2188 ret = idr_alloc(&zram_index_idr, ptr: zram, start: 0, end: 0, GFP_KERNEL);
2189 if (ret < 0)
2190 goto out_free_dev;
2191 device_id = ret;
2192
2193 init_rwsem(&zram->init_lock);
2194#ifdef CONFIG_ZRAM_WRITEBACK
2195 spin_lock_init(&zram->wb_limit_lock);
2196#endif
2197
2198 /* gendisk structure */
2199 zram->disk = blk_alloc_disk(NUMA_NO_NODE);
2200 if (!zram->disk) {
2201 pr_err("Error allocating disk structure for device %d\n",
2202 device_id);
2203 ret = -ENOMEM;
2204 goto out_free_idr;
2205 }
2206
2207 zram->disk->major = zram_major;
2208 zram->disk->first_minor = device_id;
2209 zram->disk->minors = 1;
2210 zram->disk->flags |= GENHD_FL_NO_PART;
2211 zram->disk->fops = &zram_devops;
2212 zram->disk->private_data = zram;
2213 snprintf(buf: zram->disk->disk_name, size: 16, fmt: "zram%d", device_id);
2214
2215 /* Actual capacity set using sysfs (/sys/block/zram<id>/disksize */
2216 set_capacity(disk: zram->disk, size: 0);
2217 /* zram devices sort of resembles non-rotational disks */
2218 blk_queue_flag_set(QUEUE_FLAG_NONROT, q: zram->disk->queue);
2219 blk_queue_flag_set(QUEUE_FLAG_SYNCHRONOUS, q: zram->disk->queue);
2220
2221 /*
2222 * To ensure that we always get PAGE_SIZE aligned
2223 * and n*PAGE_SIZED sized I/O requests.
2224 */
2225 blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
2226 blk_queue_logical_block_size(zram->disk->queue,
2227 ZRAM_LOGICAL_BLOCK_SIZE);
2228 blk_queue_io_min(q: zram->disk->queue, PAGE_SIZE);
2229 blk_queue_io_opt(q: zram->disk->queue, PAGE_SIZE);
2230 zram->disk->queue->limits.discard_granularity = PAGE_SIZE;
2231 blk_queue_max_discard_sectors(q: zram->disk->queue, UINT_MAX);
2232
2233 /*
2234 * zram_bio_discard() will clear all logical blocks if logical block
2235 * size is identical with physical block size(PAGE_SIZE). But if it is
2236 * different, we will skip discarding some parts of logical blocks in
2237 * the part of the request range which isn't aligned to physical block
2238 * size. So we can't ensure that all discarded logical blocks are
2239 * zeroed.
2240 */
2241 if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE)
2242 blk_queue_max_write_zeroes_sectors(q: zram->disk->queue, UINT_MAX);
2243
2244 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q: zram->disk->queue);
2245 ret = device_add_disk(NULL, disk: zram->disk, groups: zram_disk_groups);
2246 if (ret)
2247 goto out_cleanup_disk;
2248
2249 comp_algorithm_set(zram, ZRAM_PRIMARY_COMP, alg: default_compressor);
2250
2251 zram_debugfs_register(zram);
2252 pr_info("Added device: %s\n", zram->disk->disk_name);
2253 return device_id;
2254
2255out_cleanup_disk:
2256 put_disk(disk: zram->disk);
2257out_free_idr:
2258 idr_remove(&zram_index_idr, id: device_id);
2259out_free_dev:
2260 kfree(objp: zram);
2261 return ret;
2262}
2263
2264static int zram_remove(struct zram *zram)
2265{
2266 bool claimed;
2267
2268 mutex_lock(&zram->disk->open_mutex);
2269 if (disk_openers(disk: zram->disk)) {
2270 mutex_unlock(lock: &zram->disk->open_mutex);
2271 return -EBUSY;
2272 }
2273
2274 claimed = zram->claim;
2275 if (!claimed)
2276 zram->claim = true;
2277 mutex_unlock(lock: &zram->disk->open_mutex);
2278
2279 zram_debugfs_unregister(zram);
2280
2281 if (claimed) {
2282 /*
2283 * If we were claimed by reset_store(), del_gendisk() will
2284 * wait until reset_store() is done, so nothing need to do.
2285 */
2286 ;
2287 } else {
2288 /* Make sure all the pending I/O are finished */
2289 sync_blockdev(bdev: zram->disk->part0);
2290 zram_reset_device(zram);
2291 }
2292
2293 pr_info("Removed device: %s\n", zram->disk->disk_name);
2294
2295 del_gendisk(gp: zram->disk);
2296
2297 /* del_gendisk drains pending reset_store */
2298 WARN_ON_ONCE(claimed && zram->claim);
2299
2300 /*
2301 * disksize_store() may be called in between zram_reset_device()
2302 * and del_gendisk(), so run the last reset to avoid leaking
2303 * anything allocated with disksize_store()
2304 */
2305 zram_reset_device(zram);
2306
2307 put_disk(disk: zram->disk);
2308 kfree(objp: zram);
2309 return 0;
2310}
2311
2312/* zram-control sysfs attributes */
2313
2314/*
2315 * NOTE: hot_add attribute is not the usual read-only sysfs attribute. In a
2316 * sense that reading from this file does alter the state of your system -- it
2317 * creates a new un-initialized zram device and returns back this device's
2318 * device_id (or an error code if it fails to create a new device).
2319 */
2320static ssize_t hot_add_show(const struct class *class,
2321 const struct class_attribute *attr,
2322 char *buf)
2323{
2324 int ret;
2325
2326 mutex_lock(&zram_index_mutex);
2327 ret = zram_add();
2328 mutex_unlock(lock: &zram_index_mutex);
2329
2330 if (ret < 0)
2331 return ret;
2332 return scnprintf(buf, PAGE_SIZE, fmt: "%d\n", ret);
2333}
2334/* This attribute must be set to 0400, so CLASS_ATTR_RO() can not be used */
2335static struct class_attribute class_attr_hot_add =
2336 __ATTR(hot_add, 0400, hot_add_show, NULL);
2337
2338static ssize_t hot_remove_store(const struct class *class,
2339 const struct class_attribute *attr,
2340 const char *buf,
2341 size_t count)
2342{
2343 struct zram *zram;
2344 int ret, dev_id;
2345
2346 /* dev_id is gendisk->first_minor, which is `int' */
2347 ret = kstrtoint(s: buf, base: 10, res: &dev_id);
2348 if (ret)
2349 return ret;
2350 if (dev_id < 0)
2351 return -EINVAL;
2352
2353 mutex_lock(&zram_index_mutex);
2354
2355 zram = idr_find(&zram_index_idr, id: dev_id);
2356 if (zram) {
2357 ret = zram_remove(zram);
2358 if (!ret)
2359 idr_remove(&zram_index_idr, id: dev_id);
2360 } else {
2361 ret = -ENODEV;
2362 }
2363
2364 mutex_unlock(lock: &zram_index_mutex);
2365 return ret ? ret : count;
2366}
2367static CLASS_ATTR_WO(hot_remove);
2368
2369static struct attribute *zram_control_class_attrs[] = {
2370 &class_attr_hot_add.attr,
2371 &class_attr_hot_remove.attr,
2372 NULL,
2373};
2374ATTRIBUTE_GROUPS(zram_control_class);
2375
2376static struct class zram_control_class = {
2377 .name = "zram-control",
2378 .class_groups = zram_control_class_groups,
2379};
2380
2381static int zram_remove_cb(int id, void *ptr, void *data)
2382{
2383 WARN_ON_ONCE(zram_remove(ptr));
2384 return 0;
2385}
2386
2387static void destroy_devices(void)
2388{
2389 class_unregister(class: &zram_control_class);
2390 idr_for_each(&zram_index_idr, fn: &zram_remove_cb, NULL);
2391 zram_debugfs_destroy();
2392 idr_destroy(&zram_index_idr);
2393 unregister_blkdev(major: zram_major, name: "zram");
2394 cpuhp_remove_multi_state(state: CPUHP_ZCOMP_PREPARE);
2395}
2396
2397static int __init zram_init(void)
2398{
2399 int ret;
2400
2401 BUILD_BUG_ON(__NR_ZRAM_PAGEFLAGS > BITS_PER_LONG);
2402
2403 ret = cpuhp_setup_state_multi(state: CPUHP_ZCOMP_PREPARE, name: "block/zram:prepare",
2404 startup: zcomp_cpu_up_prepare, teardown: zcomp_cpu_dead);
2405 if (ret < 0)
2406 return ret;
2407
2408 ret = class_register(class: &zram_control_class);
2409 if (ret) {
2410 pr_err("Unable to register zram-control class\n");
2411 cpuhp_remove_multi_state(state: CPUHP_ZCOMP_PREPARE);
2412 return ret;
2413 }
2414
2415 zram_debugfs_create();
2416 zram_major = register_blkdev(0, "zram");
2417 if (zram_major <= 0) {
2418 pr_err("Unable to get major number\n");
2419 class_unregister(class: &zram_control_class);
2420 cpuhp_remove_multi_state(state: CPUHP_ZCOMP_PREPARE);
2421 return -EBUSY;
2422 }
2423
2424 while (num_devices != 0) {
2425 mutex_lock(&zram_index_mutex);
2426 ret = zram_add();
2427 mutex_unlock(lock: &zram_index_mutex);
2428 if (ret < 0)
2429 goto out_error;
2430 num_devices--;
2431 }
2432
2433 return 0;
2434
2435out_error:
2436 destroy_devices();
2437 return ret;
2438}
2439
2440static void __exit zram_exit(void)
2441{
2442 destroy_devices();
2443}
2444
2445module_init(zram_init);
2446module_exit(zram_exit);
2447
2448module_param(num_devices, uint, 0);
2449MODULE_PARM_DESC(num_devices, "Number of pre-created zram devices");
2450
2451MODULE_LICENSE("Dual BSD/GPL");
2452MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
2453MODULE_DESCRIPTION("Compressed RAM Block Device");
2454

source code of linux/drivers/block/zram/zram_drv.c