1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Copyright (C) 2010,2015 Broadcom
4 * Copyright (C) 2012 Stephen Warren
5 */
6
7/**
8 * DOC: BCM2835 CPRMAN (clock manager for the "audio" domain)
9 *
10 * The clock tree on the 2835 has several levels. There's a root
11 * oscillator running at 19.2Mhz. After the oscillator there are 5
12 * PLLs, roughly divided as "camera", "ARM", "core", "DSI displays",
13 * and "HDMI displays". Those 5 PLLs each can divide their output to
14 * produce up to 4 channels. Finally, there is the level of clocks to
15 * be consumed by other hardware components (like "H264" or "HDMI
16 * state machine"), which divide off of some subset of the PLL
17 * channels.
18 *
19 * All of the clocks in the tree are exposed in the DT, because the DT
20 * may want to make assignments of the final layer of clocks to the
21 * PLL channels, and some components of the hardware will actually
22 * skip layers of the tree (for example, the pixel clock comes
23 * directly from the PLLH PIX channel without using a CM_*CTL clock
24 * generator).
25 */
26
27#include <linux/clk-provider.h>
28#include <linux/clkdev.h>
29#include <linux/clk.h>
30#include <linux/debugfs.h>
31#include <linux/delay.h>
32#include <linux/io.h>
33#include <linux/math.h>
34#include <linux/module.h>
35#include <linux/of.h>
36#include <linux/platform_device.h>
37#include <linux/slab.h>
38#include <dt-bindings/clock/bcm2835.h>
39
40#define CM_PASSWORD 0x5a000000
41
42#define CM_GNRICCTL 0x000
43#define CM_GNRICDIV 0x004
44# define CM_DIV_FRAC_BITS 12
45# define CM_DIV_FRAC_MASK GENMASK(CM_DIV_FRAC_BITS - 1, 0)
46
47#define CM_VPUCTL 0x008
48#define CM_VPUDIV 0x00c
49#define CM_SYSCTL 0x010
50#define CM_SYSDIV 0x014
51#define CM_PERIACTL 0x018
52#define CM_PERIADIV 0x01c
53#define CM_PERIICTL 0x020
54#define CM_PERIIDIV 0x024
55#define CM_H264CTL 0x028
56#define CM_H264DIV 0x02c
57#define CM_ISPCTL 0x030
58#define CM_ISPDIV 0x034
59#define CM_V3DCTL 0x038
60#define CM_V3DDIV 0x03c
61#define CM_CAM0CTL 0x040
62#define CM_CAM0DIV 0x044
63#define CM_CAM1CTL 0x048
64#define CM_CAM1DIV 0x04c
65#define CM_CCP2CTL 0x050
66#define CM_CCP2DIV 0x054
67#define CM_DSI0ECTL 0x058
68#define CM_DSI0EDIV 0x05c
69#define CM_DSI0PCTL 0x060
70#define CM_DSI0PDIV 0x064
71#define CM_DPICTL 0x068
72#define CM_DPIDIV 0x06c
73#define CM_GP0CTL 0x070
74#define CM_GP0DIV 0x074
75#define CM_GP1CTL 0x078
76#define CM_GP1DIV 0x07c
77#define CM_GP2CTL 0x080
78#define CM_GP2DIV 0x084
79#define CM_HSMCTL 0x088
80#define CM_HSMDIV 0x08c
81#define CM_OTPCTL 0x090
82#define CM_OTPDIV 0x094
83#define CM_PCMCTL 0x098
84#define CM_PCMDIV 0x09c
85#define CM_PWMCTL 0x0a0
86#define CM_PWMDIV 0x0a4
87#define CM_SLIMCTL 0x0a8
88#define CM_SLIMDIV 0x0ac
89#define CM_SMICTL 0x0b0
90#define CM_SMIDIV 0x0b4
91/* no definition for 0x0b8 and 0x0bc */
92#define CM_TCNTCTL 0x0c0
93# define CM_TCNT_SRC1_SHIFT 12
94#define CM_TCNTCNT 0x0c4
95#define CM_TECCTL 0x0c8
96#define CM_TECDIV 0x0cc
97#define CM_TD0CTL 0x0d0
98#define CM_TD0DIV 0x0d4
99#define CM_TD1CTL 0x0d8
100#define CM_TD1DIV 0x0dc
101#define CM_TSENSCTL 0x0e0
102#define CM_TSENSDIV 0x0e4
103#define CM_TIMERCTL 0x0e8
104#define CM_TIMERDIV 0x0ec
105#define CM_UARTCTL 0x0f0
106#define CM_UARTDIV 0x0f4
107#define CM_VECCTL 0x0f8
108#define CM_VECDIV 0x0fc
109#define CM_PULSECTL 0x190
110#define CM_PULSEDIV 0x194
111#define CM_SDCCTL 0x1a8
112#define CM_SDCDIV 0x1ac
113#define CM_ARMCTL 0x1b0
114#define CM_AVEOCTL 0x1b8
115#define CM_AVEODIV 0x1bc
116#define CM_EMMCCTL 0x1c0
117#define CM_EMMCDIV 0x1c4
118#define CM_EMMC2CTL 0x1d0
119#define CM_EMMC2DIV 0x1d4
120
121/* General bits for the CM_*CTL regs */
122# define CM_ENABLE BIT(4)
123# define CM_KILL BIT(5)
124# define CM_GATE_BIT 6
125# define CM_GATE BIT(CM_GATE_BIT)
126# define CM_BUSY BIT(7)
127# define CM_BUSYD BIT(8)
128# define CM_FRAC BIT(9)
129# define CM_SRC_SHIFT 0
130# define CM_SRC_BITS 4
131# define CM_SRC_MASK 0xf
132# define CM_SRC_GND 0
133# define CM_SRC_OSC 1
134# define CM_SRC_TESTDEBUG0 2
135# define CM_SRC_TESTDEBUG1 3
136# define CM_SRC_PLLA_CORE 4
137# define CM_SRC_PLLA_PER 4
138# define CM_SRC_PLLC_CORE0 5
139# define CM_SRC_PLLC_PER 5
140# define CM_SRC_PLLC_CORE1 8
141# define CM_SRC_PLLD_CORE 6
142# define CM_SRC_PLLD_PER 6
143# define CM_SRC_PLLH_AUX 7
144# define CM_SRC_PLLC_CORE1 8
145# define CM_SRC_PLLC_CORE2 9
146
147#define CM_OSCCOUNT 0x100
148
149#define CM_PLLA 0x104
150# define CM_PLL_ANARST BIT(8)
151# define CM_PLLA_HOLDPER BIT(7)
152# define CM_PLLA_LOADPER BIT(6)
153# define CM_PLLA_HOLDCORE BIT(5)
154# define CM_PLLA_LOADCORE BIT(4)
155# define CM_PLLA_HOLDCCP2 BIT(3)
156# define CM_PLLA_LOADCCP2 BIT(2)
157# define CM_PLLA_HOLDDSI0 BIT(1)
158# define CM_PLLA_LOADDSI0 BIT(0)
159
160#define CM_PLLC 0x108
161# define CM_PLLC_HOLDPER BIT(7)
162# define CM_PLLC_LOADPER BIT(6)
163# define CM_PLLC_HOLDCORE2 BIT(5)
164# define CM_PLLC_LOADCORE2 BIT(4)
165# define CM_PLLC_HOLDCORE1 BIT(3)
166# define CM_PLLC_LOADCORE1 BIT(2)
167# define CM_PLLC_HOLDCORE0 BIT(1)
168# define CM_PLLC_LOADCORE0 BIT(0)
169
170#define CM_PLLD 0x10c
171# define CM_PLLD_HOLDPER BIT(7)
172# define CM_PLLD_LOADPER BIT(6)
173# define CM_PLLD_HOLDCORE BIT(5)
174# define CM_PLLD_LOADCORE BIT(4)
175# define CM_PLLD_HOLDDSI1 BIT(3)
176# define CM_PLLD_LOADDSI1 BIT(2)
177# define CM_PLLD_HOLDDSI0 BIT(1)
178# define CM_PLLD_LOADDSI0 BIT(0)
179
180#define CM_PLLH 0x110
181# define CM_PLLH_LOADRCAL BIT(2)
182# define CM_PLLH_LOADAUX BIT(1)
183# define CM_PLLH_LOADPIX BIT(0)
184
185#define CM_LOCK 0x114
186# define CM_LOCK_FLOCKH BIT(12)
187# define CM_LOCK_FLOCKD BIT(11)
188# define CM_LOCK_FLOCKC BIT(10)
189# define CM_LOCK_FLOCKB BIT(9)
190# define CM_LOCK_FLOCKA BIT(8)
191
192#define CM_EVENT 0x118
193#define CM_DSI1ECTL 0x158
194#define CM_DSI1EDIV 0x15c
195#define CM_DSI1PCTL 0x160
196#define CM_DSI1PDIV 0x164
197#define CM_DFTCTL 0x168
198#define CM_DFTDIV 0x16c
199
200#define CM_PLLB 0x170
201# define CM_PLLB_HOLDARM BIT(1)
202# define CM_PLLB_LOADARM BIT(0)
203
204#define A2W_PLLA_CTRL 0x1100
205#define A2W_PLLC_CTRL 0x1120
206#define A2W_PLLD_CTRL 0x1140
207#define A2W_PLLH_CTRL 0x1160
208#define A2W_PLLB_CTRL 0x11e0
209# define A2W_PLL_CTRL_PRST_DISABLE BIT(17)
210# define A2W_PLL_CTRL_PWRDN BIT(16)
211# define A2W_PLL_CTRL_PDIV_MASK 0x000007000
212# define A2W_PLL_CTRL_PDIV_SHIFT 12
213# define A2W_PLL_CTRL_NDIV_MASK 0x0000003ff
214# define A2W_PLL_CTRL_NDIV_SHIFT 0
215
216#define A2W_PLLA_ANA0 0x1010
217#define A2W_PLLC_ANA0 0x1030
218#define A2W_PLLD_ANA0 0x1050
219#define A2W_PLLH_ANA0 0x1070
220#define A2W_PLLB_ANA0 0x10f0
221
222#define A2W_PLL_KA_SHIFT 7
223#define A2W_PLL_KA_MASK GENMASK(9, 7)
224#define A2W_PLL_KI_SHIFT 19
225#define A2W_PLL_KI_MASK GENMASK(21, 19)
226#define A2W_PLL_KP_SHIFT 15
227#define A2W_PLL_KP_MASK GENMASK(18, 15)
228
229#define A2W_PLLH_KA_SHIFT 19
230#define A2W_PLLH_KA_MASK GENMASK(21, 19)
231#define A2W_PLLH_KI_LOW_SHIFT 22
232#define A2W_PLLH_KI_LOW_MASK GENMASK(23, 22)
233#define A2W_PLLH_KI_HIGH_SHIFT 0
234#define A2W_PLLH_KI_HIGH_MASK GENMASK(0, 0)
235#define A2W_PLLH_KP_SHIFT 1
236#define A2W_PLLH_KP_MASK GENMASK(4, 1)
237
238#define A2W_XOSC_CTRL 0x1190
239# define A2W_XOSC_CTRL_PLLB_ENABLE BIT(7)
240# define A2W_XOSC_CTRL_PLLA_ENABLE BIT(6)
241# define A2W_XOSC_CTRL_PLLD_ENABLE BIT(5)
242# define A2W_XOSC_CTRL_DDR_ENABLE BIT(4)
243# define A2W_XOSC_CTRL_CPR1_ENABLE BIT(3)
244# define A2W_XOSC_CTRL_USB_ENABLE BIT(2)
245# define A2W_XOSC_CTRL_HDMI_ENABLE BIT(1)
246# define A2W_XOSC_CTRL_PLLC_ENABLE BIT(0)
247
248#define A2W_PLLA_FRAC 0x1200
249#define A2W_PLLC_FRAC 0x1220
250#define A2W_PLLD_FRAC 0x1240
251#define A2W_PLLH_FRAC 0x1260
252#define A2W_PLLB_FRAC 0x12e0
253# define A2W_PLL_FRAC_MASK ((1 << A2W_PLL_FRAC_BITS) - 1)
254# define A2W_PLL_FRAC_BITS 20
255
256#define A2W_PLL_CHANNEL_DISABLE BIT(8)
257#define A2W_PLL_DIV_BITS 8
258#define A2W_PLL_DIV_SHIFT 0
259
260#define A2W_PLLA_DSI0 0x1300
261#define A2W_PLLA_CORE 0x1400
262#define A2W_PLLA_PER 0x1500
263#define A2W_PLLA_CCP2 0x1600
264
265#define A2W_PLLC_CORE2 0x1320
266#define A2W_PLLC_CORE1 0x1420
267#define A2W_PLLC_PER 0x1520
268#define A2W_PLLC_CORE0 0x1620
269
270#define A2W_PLLD_DSI0 0x1340
271#define A2W_PLLD_CORE 0x1440
272#define A2W_PLLD_PER 0x1540
273#define A2W_PLLD_DSI1 0x1640
274
275#define A2W_PLLH_AUX 0x1360
276#define A2W_PLLH_RCAL 0x1460
277#define A2W_PLLH_PIX 0x1560
278#define A2W_PLLH_STS 0x1660
279
280#define A2W_PLLH_CTRLR 0x1960
281#define A2W_PLLH_FRACR 0x1a60
282#define A2W_PLLH_AUXR 0x1b60
283#define A2W_PLLH_RCALR 0x1c60
284#define A2W_PLLH_PIXR 0x1d60
285#define A2W_PLLH_STSR 0x1e60
286
287#define A2W_PLLB_ARM 0x13e0
288#define A2W_PLLB_SP0 0x14e0
289#define A2W_PLLB_SP1 0x15e0
290#define A2W_PLLB_SP2 0x16e0
291
292#define LOCK_TIMEOUT_NS 100000000
293#define BCM2835_MAX_FB_RATE 1750000000u
294
295#define SOC_BCM2835 BIT(0)
296#define SOC_BCM2711 BIT(1)
297#define SOC_ALL (SOC_BCM2835 | SOC_BCM2711)
298
299/*
300 * Names of clocks used within the driver that need to be replaced
301 * with an external parent's name. This array is in the order that
302 * the clocks node in the DT references external clocks.
303 */
304static const char *const cprman_parent_names[] = {
305 "xosc",
306 "dsi0_byte",
307 "dsi0_ddr2",
308 "dsi0_ddr",
309 "dsi1_byte",
310 "dsi1_ddr2",
311 "dsi1_ddr",
312};
313
314struct bcm2835_cprman {
315 struct device *dev;
316 void __iomem *regs;
317 spinlock_t regs_lock; /* spinlock for all clocks */
318 unsigned int soc;
319
320 /*
321 * Real names of cprman clock parents looked up through
322 * of_clk_get_parent_name(), which will be used in the
323 * parent_names[] arrays for clock registration.
324 */
325 const char *real_parent_names[ARRAY_SIZE(cprman_parent_names)];
326
327 /* Must be last */
328 struct clk_hw_onecell_data onecell;
329};
330
331struct cprman_plat_data {
332 unsigned int soc;
333};
334
335static inline void cprman_write(struct bcm2835_cprman *cprman, u32 reg, u32 val)
336{
337 writel(CM_PASSWORD | val, addr: cprman->regs + reg);
338}
339
340static inline u32 cprman_read(struct bcm2835_cprman *cprman, u32 reg)
341{
342 return readl(addr: cprman->regs + reg);
343}
344
345/* Does a cycle of measuring a clock through the TCNT clock, which may
346 * source from many other clocks in the system.
347 */
348static unsigned long bcm2835_measure_tcnt_mux(struct bcm2835_cprman *cprman,
349 u32 tcnt_mux)
350{
351 u32 osccount = 19200; /* 1ms */
352 u32 count;
353 ktime_t timeout;
354
355 spin_lock(lock: &cprman->regs_lock);
356
357 cprman_write(cprman, CM_TCNTCTL, CM_KILL);
358
359 cprman_write(cprman, CM_TCNTCTL,
360 val: (tcnt_mux & CM_SRC_MASK) |
361 (tcnt_mux >> CM_SRC_BITS) << CM_TCNT_SRC1_SHIFT);
362
363 cprman_write(cprman, CM_OSCCOUNT, val: osccount);
364
365 /* do a kind delay at the start */
366 mdelay(1);
367
368 /* Finish off whatever is left of OSCCOUNT */
369 timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
370 while (cprman_read(cprman, CM_OSCCOUNT)) {
371 if (ktime_after(cmp1: ktime_get(), cmp2: timeout)) {
372 dev_err(cprman->dev, "timeout waiting for OSCCOUNT\n");
373 count = 0;
374 goto out;
375 }
376 cpu_relax();
377 }
378
379 /* Wait for BUSY to clear. */
380 timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
381 while (cprman_read(cprman, CM_TCNTCTL) & CM_BUSY) {
382 if (ktime_after(cmp1: ktime_get(), cmp2: timeout)) {
383 dev_err(cprman->dev, "timeout waiting for !BUSY\n");
384 count = 0;
385 goto out;
386 }
387 cpu_relax();
388 }
389
390 count = cprman_read(cprman, CM_TCNTCNT);
391
392 cprman_write(cprman, CM_TCNTCTL, val: 0);
393
394out:
395 spin_unlock(lock: &cprman->regs_lock);
396
397 return count * 1000;
398}
399
400static void bcm2835_debugfs_regset(struct bcm2835_cprman *cprman, u32 base,
401 const struct debugfs_reg32 *regs,
402 size_t nregs, struct dentry *dentry)
403{
404 struct debugfs_regset32 *regset;
405
406 regset = devm_kzalloc(dev: cprman->dev, size: sizeof(*regset), GFP_KERNEL);
407 if (!regset)
408 return;
409
410 regset->regs = regs;
411 regset->nregs = nregs;
412 regset->base = cprman->regs + base;
413
414 debugfs_create_regset32(name: "regdump", S_IRUGO, parent: dentry, regset);
415}
416
417struct bcm2835_pll_data {
418 const char *name;
419 u32 cm_ctrl_reg;
420 u32 a2w_ctrl_reg;
421 u32 frac_reg;
422 u32 ana_reg_base;
423 u32 reference_enable_mask;
424 /* Bit in CM_LOCK to indicate when the PLL has locked. */
425 u32 lock_mask;
426 u32 flags;
427
428 const struct bcm2835_pll_ana_bits *ana;
429
430 unsigned long min_rate;
431 unsigned long max_rate;
432 /*
433 * Highest rate for the VCO before we have to use the
434 * pre-divide-by-2.
435 */
436 unsigned long max_fb_rate;
437};
438
439struct bcm2835_pll_ana_bits {
440 u32 mask0;
441 u32 set0;
442 u32 mask1;
443 u32 set1;
444 u32 mask3;
445 u32 set3;
446 u32 fb_prediv_mask;
447};
448
449static const struct bcm2835_pll_ana_bits bcm2835_ana_default = {
450 .mask0 = 0,
451 .set0 = 0,
452 .mask1 = A2W_PLL_KI_MASK | A2W_PLL_KP_MASK,
453 .set1 = (2 << A2W_PLL_KI_SHIFT) | (8 << A2W_PLL_KP_SHIFT),
454 .mask3 = A2W_PLL_KA_MASK,
455 .set3 = (2 << A2W_PLL_KA_SHIFT),
456 .fb_prediv_mask = BIT(14),
457};
458
459static const struct bcm2835_pll_ana_bits bcm2835_ana_pllh = {
460 .mask0 = A2W_PLLH_KA_MASK | A2W_PLLH_KI_LOW_MASK,
461 .set0 = (2 << A2W_PLLH_KA_SHIFT) | (2 << A2W_PLLH_KI_LOW_SHIFT),
462 .mask1 = A2W_PLLH_KI_HIGH_MASK | A2W_PLLH_KP_MASK,
463 .set1 = (6 << A2W_PLLH_KP_SHIFT),
464 .mask3 = 0,
465 .set3 = 0,
466 .fb_prediv_mask = BIT(11),
467};
468
469struct bcm2835_pll_divider_data {
470 const char *name;
471 const char *source_pll;
472
473 u32 cm_reg;
474 u32 a2w_reg;
475
476 u32 load_mask;
477 u32 hold_mask;
478 u32 fixed_divider;
479 u32 flags;
480};
481
482struct bcm2835_clock_data {
483 const char *name;
484
485 const char *const *parents;
486 int num_mux_parents;
487
488 /* Bitmap encoding which parents accept rate change propagation. */
489 unsigned int set_rate_parent;
490
491 u32 ctl_reg;
492 u32 div_reg;
493
494 /* Number of integer bits in the divider */
495 u32 int_bits;
496 /* Number of fractional bits in the divider */
497 u32 frac_bits;
498
499 u32 flags;
500
501 bool is_vpu_clock;
502 bool is_mash_clock;
503 bool low_jitter;
504
505 u32 tcnt_mux;
506
507 bool round_up;
508};
509
510struct bcm2835_gate_data {
511 const char *name;
512 const char *parent;
513
514 u32 ctl_reg;
515};
516
517struct bcm2835_pll {
518 struct clk_hw hw;
519 struct bcm2835_cprman *cprman;
520 const struct bcm2835_pll_data *data;
521};
522
523static int bcm2835_pll_is_on(struct clk_hw *hw)
524{
525 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
526 struct bcm2835_cprman *cprman = pll->cprman;
527 const struct bcm2835_pll_data *data = pll->data;
528
529 return cprman_read(cprman, reg: data->a2w_ctrl_reg) &
530 A2W_PLL_CTRL_PRST_DISABLE;
531}
532
533static u32 bcm2835_pll_get_prediv_mask(struct bcm2835_cprman *cprman,
534 const struct bcm2835_pll_data *data)
535{
536 /*
537 * On BCM2711 there isn't a pre-divisor available in the PLL feedback
538 * loop. Bits 13:14 of ANA1 (PLLA,PLLB,PLLC,PLLD) have been re-purposed
539 * for to for VCO RANGE bits.
540 */
541 if (cprman->soc & SOC_BCM2711)
542 return 0;
543
544 return data->ana->fb_prediv_mask;
545}
546
547static void bcm2835_pll_choose_ndiv_and_fdiv(unsigned long rate,
548 unsigned long parent_rate,
549 u32 *ndiv, u32 *fdiv)
550{
551 u64 div;
552
553 div = (u64)rate << A2W_PLL_FRAC_BITS;
554 do_div(div, parent_rate);
555
556 *ndiv = div >> A2W_PLL_FRAC_BITS;
557 *fdiv = div & ((1 << A2W_PLL_FRAC_BITS) - 1);
558}
559
560static long bcm2835_pll_rate_from_divisors(unsigned long parent_rate,
561 u32 ndiv, u32 fdiv, u32 pdiv)
562{
563 u64 rate;
564
565 if (pdiv == 0)
566 return 0;
567
568 rate = (u64)parent_rate * ((ndiv << A2W_PLL_FRAC_BITS) + fdiv);
569 do_div(rate, pdiv);
570 return rate >> A2W_PLL_FRAC_BITS;
571}
572
573static long bcm2835_pll_round_rate(struct clk_hw *hw, unsigned long rate,
574 unsigned long *parent_rate)
575{
576 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
577 const struct bcm2835_pll_data *data = pll->data;
578 u32 ndiv, fdiv;
579
580 rate = clamp(rate, data->min_rate, data->max_rate);
581
582 bcm2835_pll_choose_ndiv_and_fdiv(rate, parent_rate: *parent_rate, ndiv: &ndiv, fdiv: &fdiv);
583
584 return bcm2835_pll_rate_from_divisors(parent_rate: *parent_rate, ndiv, fdiv, pdiv: 1);
585}
586
587static unsigned long bcm2835_pll_get_rate(struct clk_hw *hw,
588 unsigned long parent_rate)
589{
590 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
591 struct bcm2835_cprman *cprman = pll->cprman;
592 const struct bcm2835_pll_data *data = pll->data;
593 u32 a2wctrl = cprman_read(cprman, reg: data->a2w_ctrl_reg);
594 u32 ndiv, pdiv, fdiv;
595 bool using_prediv;
596
597 if (parent_rate == 0)
598 return 0;
599
600 fdiv = cprman_read(cprman, reg: data->frac_reg) & A2W_PLL_FRAC_MASK;
601 ndiv = (a2wctrl & A2W_PLL_CTRL_NDIV_MASK) >> A2W_PLL_CTRL_NDIV_SHIFT;
602 pdiv = (a2wctrl & A2W_PLL_CTRL_PDIV_MASK) >> A2W_PLL_CTRL_PDIV_SHIFT;
603 using_prediv = cprman_read(cprman, reg: data->ana_reg_base + 4) &
604 bcm2835_pll_get_prediv_mask(cprman, data);
605
606 if (using_prediv) {
607 ndiv *= 2;
608 fdiv *= 2;
609 }
610
611 return bcm2835_pll_rate_from_divisors(parent_rate, ndiv, fdiv, pdiv);
612}
613
614static void bcm2835_pll_off(struct clk_hw *hw)
615{
616 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
617 struct bcm2835_cprman *cprman = pll->cprman;
618 const struct bcm2835_pll_data *data = pll->data;
619
620 spin_lock(lock: &cprman->regs_lock);
621 cprman_write(cprman, reg: data->cm_ctrl_reg, CM_PLL_ANARST);
622 cprman_write(cprman, reg: data->a2w_ctrl_reg,
623 val: cprman_read(cprman, reg: data->a2w_ctrl_reg) |
624 A2W_PLL_CTRL_PWRDN);
625 spin_unlock(lock: &cprman->regs_lock);
626}
627
628static int bcm2835_pll_on(struct clk_hw *hw)
629{
630 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
631 struct bcm2835_cprman *cprman = pll->cprman;
632 const struct bcm2835_pll_data *data = pll->data;
633 ktime_t timeout;
634
635 cprman_write(cprman, reg: data->a2w_ctrl_reg,
636 val: cprman_read(cprman, reg: data->a2w_ctrl_reg) &
637 ~A2W_PLL_CTRL_PWRDN);
638
639 /* Take the PLL out of reset. */
640 spin_lock(lock: &cprman->regs_lock);
641 cprman_write(cprman, reg: data->cm_ctrl_reg,
642 val: cprman_read(cprman, reg: data->cm_ctrl_reg) & ~CM_PLL_ANARST);
643 spin_unlock(lock: &cprman->regs_lock);
644
645 /* Wait for the PLL to lock. */
646 timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
647 while (!(cprman_read(cprman, CM_LOCK) & data->lock_mask)) {
648 if (ktime_after(cmp1: ktime_get(), cmp2: timeout)) {
649 dev_err(cprman->dev, "%s: couldn't lock PLL\n",
650 clk_hw_get_name(hw));
651 return -ETIMEDOUT;
652 }
653
654 cpu_relax();
655 }
656
657 cprman_write(cprman, reg: data->a2w_ctrl_reg,
658 val: cprman_read(cprman, reg: data->a2w_ctrl_reg) |
659 A2W_PLL_CTRL_PRST_DISABLE);
660
661 return 0;
662}
663
664static void
665bcm2835_pll_write_ana(struct bcm2835_cprman *cprman, u32 ana_reg_base, u32 *ana)
666{
667 int i;
668
669 /*
670 * ANA register setup is done as a series of writes to
671 * ANA3-ANA0, in that order. This lets us write all 4
672 * registers as a single cycle of the serdes interface (taking
673 * 100 xosc clocks), whereas if we were to update ana0, 1, and
674 * 3 individually through their partial-write registers, each
675 * would be their own serdes cycle.
676 */
677 for (i = 3; i >= 0; i--)
678 cprman_write(cprman, reg: ana_reg_base + i * 4, val: ana[i]);
679}
680
681static int bcm2835_pll_set_rate(struct clk_hw *hw,
682 unsigned long rate, unsigned long parent_rate)
683{
684 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
685 struct bcm2835_cprman *cprman = pll->cprman;
686 const struct bcm2835_pll_data *data = pll->data;
687 u32 prediv_mask = bcm2835_pll_get_prediv_mask(cprman, data);
688 bool was_using_prediv, use_fb_prediv, do_ana_setup_first;
689 u32 ndiv, fdiv, a2w_ctl;
690 u32 ana[4];
691 int i;
692
693 if (rate > data->max_fb_rate) {
694 use_fb_prediv = true;
695 rate /= 2;
696 } else {
697 use_fb_prediv = false;
698 }
699
700 bcm2835_pll_choose_ndiv_and_fdiv(rate, parent_rate, ndiv: &ndiv, fdiv: &fdiv);
701
702 for (i = 3; i >= 0; i--)
703 ana[i] = cprman_read(cprman, reg: data->ana_reg_base + i * 4);
704
705 was_using_prediv = ana[1] & prediv_mask;
706
707 ana[0] &= ~data->ana->mask0;
708 ana[0] |= data->ana->set0;
709 ana[1] &= ~data->ana->mask1;
710 ana[1] |= data->ana->set1;
711 ana[3] &= ~data->ana->mask3;
712 ana[3] |= data->ana->set3;
713
714 if (was_using_prediv && !use_fb_prediv) {
715 ana[1] &= ~prediv_mask;
716 do_ana_setup_first = true;
717 } else if (!was_using_prediv && use_fb_prediv) {
718 ana[1] |= prediv_mask;
719 do_ana_setup_first = false;
720 } else {
721 do_ana_setup_first = true;
722 }
723
724 /* Unmask the reference clock from the oscillator. */
725 spin_lock(lock: &cprman->regs_lock);
726 cprman_write(cprman, A2W_XOSC_CTRL,
727 val: cprman_read(cprman, A2W_XOSC_CTRL) |
728 data->reference_enable_mask);
729 spin_unlock(lock: &cprman->regs_lock);
730
731 if (do_ana_setup_first)
732 bcm2835_pll_write_ana(cprman, ana_reg_base: data->ana_reg_base, ana);
733
734 /* Set the PLL multiplier from the oscillator. */
735 cprman_write(cprman, reg: data->frac_reg, val: fdiv);
736
737 a2w_ctl = cprman_read(cprman, reg: data->a2w_ctrl_reg);
738 a2w_ctl &= ~A2W_PLL_CTRL_NDIV_MASK;
739 a2w_ctl |= ndiv << A2W_PLL_CTRL_NDIV_SHIFT;
740 a2w_ctl &= ~A2W_PLL_CTRL_PDIV_MASK;
741 a2w_ctl |= 1 << A2W_PLL_CTRL_PDIV_SHIFT;
742 cprman_write(cprman, reg: data->a2w_ctrl_reg, val: a2w_ctl);
743
744 if (!do_ana_setup_first)
745 bcm2835_pll_write_ana(cprman, ana_reg_base: data->ana_reg_base, ana);
746
747 return 0;
748}
749
750static void bcm2835_pll_debug_init(struct clk_hw *hw,
751 struct dentry *dentry)
752{
753 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
754 struct bcm2835_cprman *cprman = pll->cprman;
755 const struct bcm2835_pll_data *data = pll->data;
756 struct debugfs_reg32 *regs;
757
758 regs = devm_kcalloc(dev: cprman->dev, n: 7, size: sizeof(*regs), GFP_KERNEL);
759 if (!regs)
760 return;
761
762 regs[0].name = "cm_ctrl";
763 regs[0].offset = data->cm_ctrl_reg;
764 regs[1].name = "a2w_ctrl";
765 regs[1].offset = data->a2w_ctrl_reg;
766 regs[2].name = "frac";
767 regs[2].offset = data->frac_reg;
768 regs[3].name = "ana0";
769 regs[3].offset = data->ana_reg_base + 0 * 4;
770 regs[4].name = "ana1";
771 regs[4].offset = data->ana_reg_base + 1 * 4;
772 regs[5].name = "ana2";
773 regs[5].offset = data->ana_reg_base + 2 * 4;
774 regs[6].name = "ana3";
775 regs[6].offset = data->ana_reg_base + 3 * 4;
776
777 bcm2835_debugfs_regset(cprman, base: 0, regs, nregs: 7, dentry);
778}
779
780static const struct clk_ops bcm2835_pll_clk_ops = {
781 .is_prepared = bcm2835_pll_is_on,
782 .prepare = bcm2835_pll_on,
783 .unprepare = bcm2835_pll_off,
784 .recalc_rate = bcm2835_pll_get_rate,
785 .set_rate = bcm2835_pll_set_rate,
786 .round_rate = bcm2835_pll_round_rate,
787 .debug_init = bcm2835_pll_debug_init,
788};
789
790struct bcm2835_pll_divider {
791 struct clk_divider div;
792 struct bcm2835_cprman *cprman;
793 const struct bcm2835_pll_divider_data *data;
794};
795
796static struct bcm2835_pll_divider *
797bcm2835_pll_divider_from_hw(struct clk_hw *hw)
798{
799 return container_of(hw, struct bcm2835_pll_divider, div.hw);
800}
801
802static int bcm2835_pll_divider_is_on(struct clk_hw *hw)
803{
804 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
805 struct bcm2835_cprman *cprman = divider->cprman;
806 const struct bcm2835_pll_divider_data *data = divider->data;
807
808 return !(cprman_read(cprman, reg: data->a2w_reg) & A2W_PLL_CHANNEL_DISABLE);
809}
810
811static int bcm2835_pll_divider_determine_rate(struct clk_hw *hw,
812 struct clk_rate_request *req)
813{
814 return clk_divider_ops.determine_rate(hw, req);
815}
816
817static unsigned long bcm2835_pll_divider_get_rate(struct clk_hw *hw,
818 unsigned long parent_rate)
819{
820 return clk_divider_ops.recalc_rate(hw, parent_rate);
821}
822
823static void bcm2835_pll_divider_off(struct clk_hw *hw)
824{
825 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
826 struct bcm2835_cprman *cprman = divider->cprman;
827 const struct bcm2835_pll_divider_data *data = divider->data;
828
829 spin_lock(lock: &cprman->regs_lock);
830 cprman_write(cprman, reg: data->cm_reg,
831 val: (cprman_read(cprman, reg: data->cm_reg) &
832 ~data->load_mask) | data->hold_mask);
833 cprman_write(cprman, reg: data->a2w_reg,
834 val: cprman_read(cprman, reg: data->a2w_reg) |
835 A2W_PLL_CHANNEL_DISABLE);
836 spin_unlock(lock: &cprman->regs_lock);
837}
838
839static int bcm2835_pll_divider_on(struct clk_hw *hw)
840{
841 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
842 struct bcm2835_cprman *cprman = divider->cprman;
843 const struct bcm2835_pll_divider_data *data = divider->data;
844
845 spin_lock(lock: &cprman->regs_lock);
846 cprman_write(cprman, reg: data->a2w_reg,
847 val: cprman_read(cprman, reg: data->a2w_reg) &
848 ~A2W_PLL_CHANNEL_DISABLE);
849
850 cprman_write(cprman, reg: data->cm_reg,
851 val: cprman_read(cprman, reg: data->cm_reg) & ~data->hold_mask);
852 spin_unlock(lock: &cprman->regs_lock);
853
854 return 0;
855}
856
857static int bcm2835_pll_divider_set_rate(struct clk_hw *hw,
858 unsigned long rate,
859 unsigned long parent_rate)
860{
861 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
862 struct bcm2835_cprman *cprman = divider->cprman;
863 const struct bcm2835_pll_divider_data *data = divider->data;
864 u32 cm, div, max_div = 1 << A2W_PLL_DIV_BITS;
865
866 div = DIV_ROUND_UP_ULL(parent_rate, rate);
867
868 div = min(div, max_div);
869 if (div == max_div)
870 div = 0;
871
872 cprman_write(cprman, reg: data->a2w_reg, val: div);
873 cm = cprman_read(cprman, reg: data->cm_reg);
874 cprman_write(cprman, reg: data->cm_reg, val: cm | data->load_mask);
875 cprman_write(cprman, reg: data->cm_reg, val: cm & ~data->load_mask);
876
877 return 0;
878}
879
880static void bcm2835_pll_divider_debug_init(struct clk_hw *hw,
881 struct dentry *dentry)
882{
883 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
884 struct bcm2835_cprman *cprman = divider->cprman;
885 const struct bcm2835_pll_divider_data *data = divider->data;
886 struct debugfs_reg32 *regs;
887
888 regs = devm_kcalloc(dev: cprman->dev, n: 7, size: sizeof(*regs), GFP_KERNEL);
889 if (!regs)
890 return;
891
892 regs[0].name = "cm";
893 regs[0].offset = data->cm_reg;
894 regs[1].name = "a2w";
895 regs[1].offset = data->a2w_reg;
896
897 bcm2835_debugfs_regset(cprman, base: 0, regs, nregs: 2, dentry);
898}
899
900static const struct clk_ops bcm2835_pll_divider_clk_ops = {
901 .is_prepared = bcm2835_pll_divider_is_on,
902 .prepare = bcm2835_pll_divider_on,
903 .unprepare = bcm2835_pll_divider_off,
904 .recalc_rate = bcm2835_pll_divider_get_rate,
905 .set_rate = bcm2835_pll_divider_set_rate,
906 .determine_rate = bcm2835_pll_divider_determine_rate,
907 .debug_init = bcm2835_pll_divider_debug_init,
908};
909
910/*
911 * The CM dividers do fixed-point division, so we can't use the
912 * generic integer divider code like the PLL dividers do (and we can't
913 * fake it by having some fixed shifts preceding it in the clock tree,
914 * because we'd run out of bits in a 32-bit unsigned long).
915 */
916struct bcm2835_clock {
917 struct clk_hw hw;
918 struct bcm2835_cprman *cprman;
919 const struct bcm2835_clock_data *data;
920};
921
922static struct bcm2835_clock *bcm2835_clock_from_hw(struct clk_hw *hw)
923{
924 return container_of(hw, struct bcm2835_clock, hw);
925}
926
927static int bcm2835_clock_is_on(struct clk_hw *hw)
928{
929 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
930 struct bcm2835_cprman *cprman = clock->cprman;
931 const struct bcm2835_clock_data *data = clock->data;
932
933 return (cprman_read(cprman, reg: data->ctl_reg) & CM_ENABLE) != 0;
934}
935
936static u32 bcm2835_clock_choose_div(struct clk_hw *hw,
937 unsigned long rate,
938 unsigned long parent_rate)
939{
940 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
941 const struct bcm2835_clock_data *data = clock->data;
942 u32 unused_frac_mask =
943 GENMASK(CM_DIV_FRAC_BITS - data->frac_bits, 0) >> 1;
944 u64 temp = (u64)parent_rate << CM_DIV_FRAC_BITS;
945 u32 div, mindiv, maxdiv;
946
947 do_div(temp, rate);
948 div = temp;
949 div &= ~unused_frac_mask;
950
951 /* different clamping limits apply for a mash clock */
952 if (data->is_mash_clock) {
953 /* clamp to min divider of 2 */
954 mindiv = 2 << CM_DIV_FRAC_BITS;
955 /* clamp to the highest possible integer divider */
956 maxdiv = (BIT(data->int_bits) - 1) << CM_DIV_FRAC_BITS;
957 } else {
958 /* clamp to min divider of 1 */
959 mindiv = 1 << CM_DIV_FRAC_BITS;
960 /* clamp to the highest possible fractional divider */
961 maxdiv = GENMASK(data->int_bits + CM_DIV_FRAC_BITS - 1,
962 CM_DIV_FRAC_BITS - data->frac_bits);
963 }
964
965 /* apply the clamping limits */
966 div = max_t(u32, div, mindiv);
967 div = min_t(u32, div, maxdiv);
968
969 return div;
970}
971
972static unsigned long bcm2835_clock_rate_from_divisor(struct bcm2835_clock *clock,
973 unsigned long parent_rate,
974 u32 div)
975{
976 const struct bcm2835_clock_data *data = clock->data;
977 u64 temp;
978
979 if (data->int_bits == 0 && data->frac_bits == 0)
980 return parent_rate;
981
982 /*
983 * The divisor is a 12.12 fixed point field, but only some of
984 * the bits are populated in any given clock.
985 */
986 div >>= CM_DIV_FRAC_BITS - data->frac_bits;
987 div &= (1 << (data->int_bits + data->frac_bits)) - 1;
988
989 if (div == 0)
990 return 0;
991
992 temp = (u64)parent_rate << data->frac_bits;
993
994 do_div(temp, div);
995
996 return temp;
997}
998
999static unsigned long bcm2835_round_rate(unsigned long rate)
1000{
1001 unsigned long scaler;
1002 unsigned long limit;
1003
1004 limit = rate / 100000;
1005
1006 scaler = 1;
1007 while (scaler < limit)
1008 scaler *= 10;
1009
1010 /*
1011 * If increasing a clock by less than 0.1% changes it
1012 * from ..999.. to ..000.., round up.
1013 */
1014 if ((rate + scaler - 1) / scaler % 1000 == 0)
1015 rate = roundup(rate, scaler);
1016
1017 return rate;
1018}
1019
1020static unsigned long bcm2835_clock_get_rate(struct clk_hw *hw,
1021 unsigned long parent_rate)
1022{
1023 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1024 struct bcm2835_cprman *cprman = clock->cprman;
1025 const struct bcm2835_clock_data *data = clock->data;
1026 unsigned long rate;
1027 u32 div;
1028
1029 if (data->int_bits == 0 && data->frac_bits == 0)
1030 return parent_rate;
1031
1032 div = cprman_read(cprman, reg: data->div_reg);
1033
1034 rate = bcm2835_clock_rate_from_divisor(clock, parent_rate, div);
1035
1036 if (data->round_up)
1037 rate = bcm2835_round_rate(rate);
1038
1039 return rate;
1040}
1041
1042static void bcm2835_clock_wait_busy(struct bcm2835_clock *clock)
1043{
1044 struct bcm2835_cprman *cprman = clock->cprman;
1045 const struct bcm2835_clock_data *data = clock->data;
1046 ktime_t timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
1047
1048 while (cprman_read(cprman, reg: data->ctl_reg) & CM_BUSY) {
1049 if (ktime_after(cmp1: ktime_get(), cmp2: timeout)) {
1050 dev_err(cprman->dev, "%s: couldn't lock PLL\n",
1051 clk_hw_get_name(&clock->hw));
1052 return;
1053 }
1054 cpu_relax();
1055 }
1056}
1057
1058static void bcm2835_clock_off(struct clk_hw *hw)
1059{
1060 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1061 struct bcm2835_cprman *cprman = clock->cprman;
1062 const struct bcm2835_clock_data *data = clock->data;
1063
1064 spin_lock(lock: &cprman->regs_lock);
1065 cprman_write(cprman, reg: data->ctl_reg,
1066 val: cprman_read(cprman, reg: data->ctl_reg) & ~CM_ENABLE);
1067 spin_unlock(lock: &cprman->regs_lock);
1068
1069 /* BUSY will remain high until the divider completes its cycle. */
1070 bcm2835_clock_wait_busy(clock);
1071}
1072
1073static int bcm2835_clock_on(struct clk_hw *hw)
1074{
1075 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1076 struct bcm2835_cprman *cprman = clock->cprman;
1077 const struct bcm2835_clock_data *data = clock->data;
1078
1079 spin_lock(lock: &cprman->regs_lock);
1080 cprman_write(cprman, reg: data->ctl_reg,
1081 val: cprman_read(cprman, reg: data->ctl_reg) |
1082 CM_ENABLE |
1083 CM_GATE);
1084 spin_unlock(lock: &cprman->regs_lock);
1085
1086 /* Debug code to measure the clock once it's turned on to see
1087 * if it's ticking at the rate we expect.
1088 */
1089 if (data->tcnt_mux && false) {
1090 dev_info(cprman->dev,
1091 "clk %s: rate %ld, measure %ld\n",
1092 data->name,
1093 clk_hw_get_rate(hw),
1094 bcm2835_measure_tcnt_mux(cprman, data->tcnt_mux));
1095 }
1096
1097 return 0;
1098}
1099
1100static int bcm2835_clock_set_rate(struct clk_hw *hw,
1101 unsigned long rate, unsigned long parent_rate)
1102{
1103 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1104 struct bcm2835_cprman *cprman = clock->cprman;
1105 const struct bcm2835_clock_data *data = clock->data;
1106 u32 div = bcm2835_clock_choose_div(hw, rate, parent_rate);
1107 u32 ctl;
1108
1109 spin_lock(lock: &cprman->regs_lock);
1110
1111 /*
1112 * Setting up frac support
1113 *
1114 * In principle it is recommended to stop/start the clock first,
1115 * but as we set CLK_SET_RATE_GATE during registration of the
1116 * clock this requirement should be take care of by the
1117 * clk-framework.
1118 */
1119 ctl = cprman_read(cprman, reg: data->ctl_reg) & ~CM_FRAC;
1120 ctl |= (div & CM_DIV_FRAC_MASK) ? CM_FRAC : 0;
1121 cprman_write(cprman, reg: data->ctl_reg, val: ctl);
1122
1123 cprman_write(cprman, reg: data->div_reg, val: div);
1124
1125 spin_unlock(lock: &cprman->regs_lock);
1126
1127 return 0;
1128}
1129
1130static bool
1131bcm2835_clk_is_pllc(struct clk_hw *hw)
1132{
1133 if (!hw)
1134 return false;
1135
1136 return strncmp(clk_hw_get_name(hw), "pllc", 4) == 0;
1137}
1138
1139static unsigned long bcm2835_clock_choose_div_and_prate(struct clk_hw *hw,
1140 int parent_idx,
1141 unsigned long rate,
1142 u32 *div,
1143 unsigned long *prate,
1144 unsigned long *avgrate)
1145{
1146 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1147 struct bcm2835_cprman *cprman = clock->cprman;
1148 const struct bcm2835_clock_data *data = clock->data;
1149 unsigned long best_rate = 0;
1150 u32 curdiv, mindiv, maxdiv;
1151 struct clk_hw *parent;
1152
1153 parent = clk_hw_get_parent_by_index(hw, index: parent_idx);
1154
1155 if (!(BIT(parent_idx) & data->set_rate_parent)) {
1156 *prate = clk_hw_get_rate(hw: parent);
1157 *div = bcm2835_clock_choose_div(hw, rate, parent_rate: *prate);
1158
1159 *avgrate = bcm2835_clock_rate_from_divisor(clock, parent_rate: *prate, div: *div);
1160
1161 if (data->low_jitter && (*div & CM_DIV_FRAC_MASK)) {
1162 unsigned long high, low;
1163 u32 int_div = *div & ~CM_DIV_FRAC_MASK;
1164
1165 high = bcm2835_clock_rate_from_divisor(clock, parent_rate: *prate,
1166 div: int_div);
1167 int_div += CM_DIV_FRAC_MASK + 1;
1168 low = bcm2835_clock_rate_from_divisor(clock, parent_rate: *prate,
1169 div: int_div);
1170
1171 /*
1172 * Return a value which is the maximum deviation
1173 * below the ideal rate, for use as a metric.
1174 */
1175 return *avgrate - max(*avgrate - low, high - *avgrate);
1176 }
1177 return *avgrate;
1178 }
1179
1180 if (data->frac_bits)
1181 dev_warn(cprman->dev,
1182 "frac bits are not used when propagating rate change");
1183
1184 /* clamp to min divider of 2 if we're dealing with a mash clock */
1185 mindiv = data->is_mash_clock ? 2 : 1;
1186 maxdiv = BIT(data->int_bits) - 1;
1187
1188 /* TODO: Be smart, and only test a subset of the available divisors. */
1189 for (curdiv = mindiv; curdiv <= maxdiv; curdiv++) {
1190 unsigned long tmp_rate;
1191
1192 tmp_rate = clk_hw_round_rate(hw: parent, rate: rate * curdiv);
1193 tmp_rate /= curdiv;
1194 if (curdiv == mindiv ||
1195 (tmp_rate > best_rate && tmp_rate <= rate))
1196 best_rate = tmp_rate;
1197
1198 if (best_rate == rate)
1199 break;
1200 }
1201
1202 *div = curdiv << CM_DIV_FRAC_BITS;
1203 *prate = curdiv * best_rate;
1204 *avgrate = best_rate;
1205
1206 return best_rate;
1207}
1208
1209static int bcm2835_clock_determine_rate(struct clk_hw *hw,
1210 struct clk_rate_request *req)
1211{
1212 struct clk_hw *parent, *best_parent = NULL;
1213 bool current_parent_is_pllc;
1214 unsigned long rate, best_rate = 0;
1215 unsigned long prate, best_prate = 0;
1216 unsigned long avgrate, best_avgrate = 0;
1217 size_t i;
1218 u32 div;
1219
1220 current_parent_is_pllc = bcm2835_clk_is_pllc(hw: clk_hw_get_parent(hw));
1221
1222 /*
1223 * Select parent clock that results in the closest but lower rate
1224 */
1225 for (i = 0; i < clk_hw_get_num_parents(hw); ++i) {
1226 parent = clk_hw_get_parent_by_index(hw, index: i);
1227 if (!parent)
1228 continue;
1229
1230 /*
1231 * Don't choose a PLLC-derived clock as our parent
1232 * unless it had been manually set that way. PLLC's
1233 * frequency gets adjusted by the firmware due to
1234 * over-temp or under-voltage conditions, without
1235 * prior notification to our clock consumer.
1236 */
1237 if (bcm2835_clk_is_pllc(hw: parent) && !current_parent_is_pllc)
1238 continue;
1239
1240 rate = bcm2835_clock_choose_div_and_prate(hw, parent_idx: i, rate: req->rate,
1241 div: &div, prate: &prate,
1242 avgrate: &avgrate);
1243 if (abs(req->rate - rate) < abs(req->rate - best_rate)) {
1244 best_parent = parent;
1245 best_prate = prate;
1246 best_rate = rate;
1247 best_avgrate = avgrate;
1248 }
1249 }
1250
1251 if (!best_parent)
1252 return -EINVAL;
1253
1254 req->best_parent_hw = best_parent;
1255 req->best_parent_rate = best_prate;
1256
1257 req->rate = best_avgrate;
1258
1259 return 0;
1260}
1261
1262static int bcm2835_clock_set_parent(struct clk_hw *hw, u8 index)
1263{
1264 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1265 struct bcm2835_cprman *cprman = clock->cprman;
1266 const struct bcm2835_clock_data *data = clock->data;
1267 u8 src = (index << CM_SRC_SHIFT) & CM_SRC_MASK;
1268
1269 cprman_write(cprman, reg: data->ctl_reg, val: src);
1270 return 0;
1271}
1272
1273static u8 bcm2835_clock_get_parent(struct clk_hw *hw)
1274{
1275 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1276 struct bcm2835_cprman *cprman = clock->cprman;
1277 const struct bcm2835_clock_data *data = clock->data;
1278 u32 src = cprman_read(cprman, reg: data->ctl_reg);
1279
1280 return (src & CM_SRC_MASK) >> CM_SRC_SHIFT;
1281}
1282
1283static const struct debugfs_reg32 bcm2835_debugfs_clock_reg32[] = {
1284 {
1285 .name = "ctl",
1286 .offset = 0,
1287 },
1288 {
1289 .name = "div",
1290 .offset = 4,
1291 },
1292};
1293
1294static void bcm2835_clock_debug_init(struct clk_hw *hw,
1295 struct dentry *dentry)
1296{
1297 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1298 struct bcm2835_cprman *cprman = clock->cprman;
1299 const struct bcm2835_clock_data *data = clock->data;
1300
1301 bcm2835_debugfs_regset(cprman, base: data->ctl_reg,
1302 regs: bcm2835_debugfs_clock_reg32,
1303 ARRAY_SIZE(bcm2835_debugfs_clock_reg32),
1304 dentry);
1305}
1306
1307static const struct clk_ops bcm2835_clock_clk_ops = {
1308 .is_prepared = bcm2835_clock_is_on,
1309 .prepare = bcm2835_clock_on,
1310 .unprepare = bcm2835_clock_off,
1311 .recalc_rate = bcm2835_clock_get_rate,
1312 .set_rate = bcm2835_clock_set_rate,
1313 .determine_rate = bcm2835_clock_determine_rate,
1314 .set_parent = bcm2835_clock_set_parent,
1315 .get_parent = bcm2835_clock_get_parent,
1316 .debug_init = bcm2835_clock_debug_init,
1317};
1318
1319static int bcm2835_vpu_clock_is_on(struct clk_hw *hw)
1320{
1321 return true;
1322}
1323
1324/*
1325 * The VPU clock can never be disabled (it doesn't have an ENABLE
1326 * bit), so it gets its own set of clock ops.
1327 */
1328static const struct clk_ops bcm2835_vpu_clock_clk_ops = {
1329 .is_prepared = bcm2835_vpu_clock_is_on,
1330 .recalc_rate = bcm2835_clock_get_rate,
1331 .set_rate = bcm2835_clock_set_rate,
1332 .determine_rate = bcm2835_clock_determine_rate,
1333 .set_parent = bcm2835_clock_set_parent,
1334 .get_parent = bcm2835_clock_get_parent,
1335 .debug_init = bcm2835_clock_debug_init,
1336};
1337
1338static struct clk_hw *bcm2835_register_pll(struct bcm2835_cprman *cprman,
1339 const void *data)
1340{
1341 const struct bcm2835_pll_data *pll_data = data;
1342 struct bcm2835_pll *pll;
1343 struct clk_init_data init;
1344 int ret;
1345
1346 memset(&init, 0, sizeof(init));
1347
1348 /* All of the PLLs derive from the external oscillator. */
1349 init.parent_names = &cprman->real_parent_names[0];
1350 init.num_parents = 1;
1351 init.name = pll_data->name;
1352 init.ops = &bcm2835_pll_clk_ops;
1353 init.flags = pll_data->flags | CLK_IGNORE_UNUSED;
1354
1355 pll = kzalloc(size: sizeof(*pll), GFP_KERNEL);
1356 if (!pll)
1357 return NULL;
1358
1359 pll->cprman = cprman;
1360 pll->data = pll_data;
1361 pll->hw.init = &init;
1362
1363 ret = devm_clk_hw_register(dev: cprman->dev, hw: &pll->hw);
1364 if (ret) {
1365 kfree(objp: pll);
1366 return NULL;
1367 }
1368 return &pll->hw;
1369}
1370
1371static struct clk_hw *
1372bcm2835_register_pll_divider(struct bcm2835_cprman *cprman,
1373 const void *data)
1374{
1375 const struct bcm2835_pll_divider_data *divider_data = data;
1376 struct bcm2835_pll_divider *divider;
1377 struct clk_init_data init;
1378 const char *divider_name;
1379 int ret;
1380
1381 if (divider_data->fixed_divider != 1) {
1382 divider_name = devm_kasprintf(dev: cprman->dev, GFP_KERNEL,
1383 fmt: "%s_prediv", divider_data->name);
1384 if (!divider_name)
1385 return NULL;
1386 } else {
1387 divider_name = divider_data->name;
1388 }
1389
1390 memset(&init, 0, sizeof(init));
1391
1392 init.parent_names = &divider_data->source_pll;
1393 init.num_parents = 1;
1394 init.name = divider_name;
1395 init.ops = &bcm2835_pll_divider_clk_ops;
1396 init.flags = divider_data->flags | CLK_IGNORE_UNUSED;
1397
1398 divider = devm_kzalloc(dev: cprman->dev, size: sizeof(*divider), GFP_KERNEL);
1399 if (!divider)
1400 return NULL;
1401
1402 divider->div.reg = cprman->regs + divider_data->a2w_reg;
1403 divider->div.shift = A2W_PLL_DIV_SHIFT;
1404 divider->div.width = A2W_PLL_DIV_BITS;
1405 divider->div.flags = CLK_DIVIDER_MAX_AT_ZERO;
1406 divider->div.lock = &cprman->regs_lock;
1407 divider->div.hw.init = &init;
1408 divider->div.table = NULL;
1409
1410 divider->cprman = cprman;
1411 divider->data = divider_data;
1412
1413 ret = devm_clk_hw_register(dev: cprman->dev, hw: &divider->div.hw);
1414 if (ret)
1415 return ERR_PTR(error: ret);
1416
1417 /*
1418 * PLLH's channels have a fixed divide by 10 afterwards, which
1419 * is what our consumers are actually using.
1420 */
1421 if (divider_data->fixed_divider != 1) {
1422 return clk_hw_register_fixed_factor(dev: cprman->dev,
1423 name: divider_data->name,
1424 parent_name: divider_name,
1425 CLK_SET_RATE_PARENT,
1426 mult: 1,
1427 div: divider_data->fixed_divider);
1428 }
1429
1430 return &divider->div.hw;
1431}
1432
1433static struct clk_hw *bcm2835_register_clock(struct bcm2835_cprman *cprman,
1434 const void *data)
1435{
1436 const struct bcm2835_clock_data *clock_data = data;
1437 struct bcm2835_clock *clock;
1438 struct clk_init_data init;
1439 const char *parents[1 << CM_SRC_BITS];
1440 size_t i;
1441 int ret;
1442
1443 /*
1444 * Replace our strings referencing parent clocks with the
1445 * actual clock-output-name of the parent.
1446 */
1447 for (i = 0; i < clock_data->num_mux_parents; i++) {
1448 parents[i] = clock_data->parents[i];
1449
1450 ret = match_string(array: cprman_parent_names,
1451 ARRAY_SIZE(cprman_parent_names),
1452 string: parents[i]);
1453 if (ret >= 0)
1454 parents[i] = cprman->real_parent_names[ret];
1455 }
1456
1457 memset(&init, 0, sizeof(init));
1458 init.parent_names = parents;
1459 init.num_parents = clock_data->num_mux_parents;
1460 init.name = clock_data->name;
1461 init.flags = clock_data->flags | CLK_IGNORE_UNUSED;
1462
1463 /*
1464 * Pass the CLK_SET_RATE_PARENT flag if we are allowed to propagate
1465 * rate changes on at least of the parents.
1466 */
1467 if (clock_data->set_rate_parent)
1468 init.flags |= CLK_SET_RATE_PARENT;
1469
1470 if (clock_data->is_vpu_clock) {
1471 init.ops = &bcm2835_vpu_clock_clk_ops;
1472 } else {
1473 init.ops = &bcm2835_clock_clk_ops;
1474 init.flags |= CLK_SET_RATE_GATE | CLK_SET_PARENT_GATE;
1475
1476 /* If the clock wasn't actually enabled at boot, it's not
1477 * critical.
1478 */
1479 if (!(cprman_read(cprman, reg: clock_data->ctl_reg) & CM_ENABLE))
1480 init.flags &= ~CLK_IS_CRITICAL;
1481 }
1482
1483 clock = devm_kzalloc(dev: cprman->dev, size: sizeof(*clock), GFP_KERNEL);
1484 if (!clock)
1485 return NULL;
1486
1487 clock->cprman = cprman;
1488 clock->data = clock_data;
1489 clock->hw.init = &init;
1490
1491 ret = devm_clk_hw_register(dev: cprman->dev, hw: &clock->hw);
1492 if (ret)
1493 return ERR_PTR(error: ret);
1494 return &clock->hw;
1495}
1496
1497static struct clk_hw *bcm2835_register_gate(struct bcm2835_cprman *cprman,
1498 const void *data)
1499{
1500 const struct bcm2835_gate_data *gate_data = data;
1501
1502 return clk_hw_register_gate(cprman->dev, gate_data->name,
1503 gate_data->parent,
1504 CLK_IGNORE_UNUSED | CLK_SET_RATE_GATE,
1505 cprman->regs + gate_data->ctl_reg,
1506 CM_GATE_BIT, 0, &cprman->regs_lock);
1507}
1508
1509struct bcm2835_clk_desc {
1510 struct clk_hw *(*clk_register)(struct bcm2835_cprman *cprman,
1511 const void *data);
1512 unsigned int supported;
1513 const void *data;
1514};
1515
1516/* assignment helper macros for different clock types */
1517#define _REGISTER(f, s, ...) { .clk_register = f, \
1518 .supported = s, \
1519 .data = __VA_ARGS__ }
1520#define REGISTER_PLL(s, ...) _REGISTER(&bcm2835_register_pll, \
1521 s, \
1522 &(struct bcm2835_pll_data) \
1523 {__VA_ARGS__})
1524#define REGISTER_PLL_DIV(s, ...) _REGISTER(&bcm2835_register_pll_divider, \
1525 s, \
1526 &(struct bcm2835_pll_divider_data) \
1527 {__VA_ARGS__})
1528#define REGISTER_CLK(s, ...) _REGISTER(&bcm2835_register_clock, \
1529 s, \
1530 &(struct bcm2835_clock_data) \
1531 {__VA_ARGS__})
1532#define REGISTER_GATE(s, ...) _REGISTER(&bcm2835_register_gate, \
1533 s, \
1534 &(struct bcm2835_gate_data) \
1535 {__VA_ARGS__})
1536
1537/* parent mux arrays plus helper macros */
1538
1539/* main oscillator parent mux */
1540static const char *const bcm2835_clock_osc_parents[] = {
1541 "gnd",
1542 "xosc",
1543 "testdebug0",
1544 "testdebug1"
1545};
1546
1547#define REGISTER_OSC_CLK(s, ...) REGISTER_CLK( \
1548 s, \
1549 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_osc_parents), \
1550 .parents = bcm2835_clock_osc_parents, \
1551 __VA_ARGS__)
1552
1553/* main peripherial parent mux */
1554static const char *const bcm2835_clock_per_parents[] = {
1555 "gnd",
1556 "xosc",
1557 "testdebug0",
1558 "testdebug1",
1559 "plla_per",
1560 "pllc_per",
1561 "plld_per",
1562 "pllh_aux",
1563};
1564
1565#define REGISTER_PER_CLK(s, ...) REGISTER_CLK( \
1566 s, \
1567 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents), \
1568 .parents = bcm2835_clock_per_parents, \
1569 __VA_ARGS__)
1570
1571/*
1572 * Restrict clock sources for the PCM peripheral to the oscillator and
1573 * PLLD_PER because other source may have varying rates or be switched
1574 * off.
1575 *
1576 * Prevent other sources from being selected by replacing their names in
1577 * the list of potential parents with dummy entries (entry index is
1578 * significant).
1579 */
1580static const char *const bcm2835_pcm_per_parents[] = {
1581 "-",
1582 "xosc",
1583 "-",
1584 "-",
1585 "-",
1586 "-",
1587 "plld_per",
1588 "-",
1589};
1590
1591#define REGISTER_PCM_CLK(s, ...) REGISTER_CLK( \
1592 s, \
1593 .num_mux_parents = ARRAY_SIZE(bcm2835_pcm_per_parents), \
1594 .parents = bcm2835_pcm_per_parents, \
1595 __VA_ARGS__)
1596
1597/* main vpu parent mux */
1598static const char *const bcm2835_clock_vpu_parents[] = {
1599 "gnd",
1600 "xosc",
1601 "testdebug0",
1602 "testdebug1",
1603 "plla_core",
1604 "pllc_core0",
1605 "plld_core",
1606 "pllh_aux",
1607 "pllc_core1",
1608 "pllc_core2",
1609};
1610
1611#define REGISTER_VPU_CLK(s, ...) REGISTER_CLK( \
1612 s, \
1613 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents), \
1614 .parents = bcm2835_clock_vpu_parents, \
1615 __VA_ARGS__)
1616
1617/*
1618 * DSI parent clocks. The DSI byte/DDR/DDR2 clocks come from the DSI
1619 * analog PHY. The _inv variants are generated internally to cprman,
1620 * but we don't use them so they aren't hooked up.
1621 */
1622static const char *const bcm2835_clock_dsi0_parents[] = {
1623 "gnd",
1624 "xosc",
1625 "testdebug0",
1626 "testdebug1",
1627 "dsi0_ddr",
1628 "dsi0_ddr_inv",
1629 "dsi0_ddr2",
1630 "dsi0_ddr2_inv",
1631 "dsi0_byte",
1632 "dsi0_byte_inv",
1633};
1634
1635static const char *const bcm2835_clock_dsi1_parents[] = {
1636 "gnd",
1637 "xosc",
1638 "testdebug0",
1639 "testdebug1",
1640 "dsi1_ddr",
1641 "dsi1_ddr_inv",
1642 "dsi1_ddr2",
1643 "dsi1_ddr2_inv",
1644 "dsi1_byte",
1645 "dsi1_byte_inv",
1646};
1647
1648#define REGISTER_DSI0_CLK(s, ...) REGISTER_CLK( \
1649 s, \
1650 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_dsi0_parents), \
1651 .parents = bcm2835_clock_dsi0_parents, \
1652 __VA_ARGS__)
1653
1654#define REGISTER_DSI1_CLK(s, ...) REGISTER_CLK( \
1655 s, \
1656 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_dsi1_parents), \
1657 .parents = bcm2835_clock_dsi1_parents, \
1658 __VA_ARGS__)
1659
1660/*
1661 * the real definition of all the pll, pll_dividers and clocks
1662 * these make use of the above REGISTER_* macros
1663 */
1664static const struct bcm2835_clk_desc clk_desc_array[] = {
1665 /* the PLL + PLL dividers */
1666
1667 /*
1668 * PLLA is the auxiliary PLL, used to drive the CCP2
1669 * (Compact Camera Port 2) transmitter clock.
1670 *
1671 * It is in the PX LDO power domain, which is on when the
1672 * AUDIO domain is on.
1673 */
1674 [BCM2835_PLLA] = REGISTER_PLL(
1675 SOC_ALL,
1676 .name = "plla",
1677 .cm_ctrl_reg = CM_PLLA,
1678 .a2w_ctrl_reg = A2W_PLLA_CTRL,
1679 .frac_reg = A2W_PLLA_FRAC,
1680 .ana_reg_base = A2W_PLLA_ANA0,
1681 .reference_enable_mask = A2W_XOSC_CTRL_PLLA_ENABLE,
1682 .lock_mask = CM_LOCK_FLOCKA,
1683
1684 .ana = &bcm2835_ana_default,
1685
1686 .min_rate = 600000000u,
1687 .max_rate = 2400000000u,
1688 .max_fb_rate = BCM2835_MAX_FB_RATE),
1689 [BCM2835_PLLA_CORE] = REGISTER_PLL_DIV(
1690 SOC_ALL,
1691 .name = "plla_core",
1692 .source_pll = "plla",
1693 .cm_reg = CM_PLLA,
1694 .a2w_reg = A2W_PLLA_CORE,
1695 .load_mask = CM_PLLA_LOADCORE,
1696 .hold_mask = CM_PLLA_HOLDCORE,
1697 .fixed_divider = 1,
1698 .flags = CLK_SET_RATE_PARENT),
1699 [BCM2835_PLLA_PER] = REGISTER_PLL_DIV(
1700 SOC_ALL,
1701 .name = "plla_per",
1702 .source_pll = "plla",
1703 .cm_reg = CM_PLLA,
1704 .a2w_reg = A2W_PLLA_PER,
1705 .load_mask = CM_PLLA_LOADPER,
1706 .hold_mask = CM_PLLA_HOLDPER,
1707 .fixed_divider = 1,
1708 .flags = CLK_SET_RATE_PARENT),
1709 [BCM2835_PLLA_DSI0] = REGISTER_PLL_DIV(
1710 SOC_ALL,
1711 .name = "plla_dsi0",
1712 .source_pll = "plla",
1713 .cm_reg = CM_PLLA,
1714 .a2w_reg = A2W_PLLA_DSI0,
1715 .load_mask = CM_PLLA_LOADDSI0,
1716 .hold_mask = CM_PLLA_HOLDDSI0,
1717 .fixed_divider = 1),
1718 [BCM2835_PLLA_CCP2] = REGISTER_PLL_DIV(
1719 SOC_ALL,
1720 .name = "plla_ccp2",
1721 .source_pll = "plla",
1722 .cm_reg = CM_PLLA,
1723 .a2w_reg = A2W_PLLA_CCP2,
1724 .load_mask = CM_PLLA_LOADCCP2,
1725 .hold_mask = CM_PLLA_HOLDCCP2,
1726 .fixed_divider = 1,
1727 .flags = CLK_SET_RATE_PARENT),
1728
1729 /* PLLB is used for the ARM's clock. */
1730 [BCM2835_PLLB] = REGISTER_PLL(
1731 SOC_ALL,
1732 .name = "pllb",
1733 .cm_ctrl_reg = CM_PLLB,
1734 .a2w_ctrl_reg = A2W_PLLB_CTRL,
1735 .frac_reg = A2W_PLLB_FRAC,
1736 .ana_reg_base = A2W_PLLB_ANA0,
1737 .reference_enable_mask = A2W_XOSC_CTRL_PLLB_ENABLE,
1738 .lock_mask = CM_LOCK_FLOCKB,
1739
1740 .ana = &bcm2835_ana_default,
1741
1742 .min_rate = 600000000u,
1743 .max_rate = 3000000000u,
1744 .max_fb_rate = BCM2835_MAX_FB_RATE,
1745 .flags = CLK_GET_RATE_NOCACHE),
1746 [BCM2835_PLLB_ARM] = REGISTER_PLL_DIV(
1747 SOC_ALL,
1748 .name = "pllb_arm",
1749 .source_pll = "pllb",
1750 .cm_reg = CM_PLLB,
1751 .a2w_reg = A2W_PLLB_ARM,
1752 .load_mask = CM_PLLB_LOADARM,
1753 .hold_mask = CM_PLLB_HOLDARM,
1754 .fixed_divider = 1,
1755 .flags = CLK_SET_RATE_PARENT | CLK_GET_RATE_NOCACHE),
1756
1757 /*
1758 * PLLC is the core PLL, used to drive the core VPU clock.
1759 *
1760 * It is in the PX LDO power domain, which is on when the
1761 * AUDIO domain is on.
1762 */
1763 [BCM2835_PLLC] = REGISTER_PLL(
1764 SOC_ALL,
1765 .name = "pllc",
1766 .cm_ctrl_reg = CM_PLLC,
1767 .a2w_ctrl_reg = A2W_PLLC_CTRL,
1768 .frac_reg = A2W_PLLC_FRAC,
1769 .ana_reg_base = A2W_PLLC_ANA0,
1770 .reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
1771 .lock_mask = CM_LOCK_FLOCKC,
1772
1773 .ana = &bcm2835_ana_default,
1774
1775 .min_rate = 600000000u,
1776 .max_rate = 3000000000u,
1777 .max_fb_rate = BCM2835_MAX_FB_RATE),
1778 [BCM2835_PLLC_CORE0] = REGISTER_PLL_DIV(
1779 SOC_ALL,
1780 .name = "pllc_core0",
1781 .source_pll = "pllc",
1782 .cm_reg = CM_PLLC,
1783 .a2w_reg = A2W_PLLC_CORE0,
1784 .load_mask = CM_PLLC_LOADCORE0,
1785 .hold_mask = CM_PLLC_HOLDCORE0,
1786 .fixed_divider = 1,
1787 .flags = CLK_SET_RATE_PARENT),
1788 [BCM2835_PLLC_CORE1] = REGISTER_PLL_DIV(
1789 SOC_ALL,
1790 .name = "pllc_core1",
1791 .source_pll = "pllc",
1792 .cm_reg = CM_PLLC,
1793 .a2w_reg = A2W_PLLC_CORE1,
1794 .load_mask = CM_PLLC_LOADCORE1,
1795 .hold_mask = CM_PLLC_HOLDCORE1,
1796 .fixed_divider = 1,
1797 .flags = CLK_SET_RATE_PARENT),
1798 [BCM2835_PLLC_CORE2] = REGISTER_PLL_DIV(
1799 SOC_ALL,
1800 .name = "pllc_core2",
1801 .source_pll = "pllc",
1802 .cm_reg = CM_PLLC,
1803 .a2w_reg = A2W_PLLC_CORE2,
1804 .load_mask = CM_PLLC_LOADCORE2,
1805 .hold_mask = CM_PLLC_HOLDCORE2,
1806 .fixed_divider = 1,
1807 .flags = CLK_SET_RATE_PARENT),
1808 [BCM2835_PLLC_PER] = REGISTER_PLL_DIV(
1809 SOC_ALL,
1810 .name = "pllc_per",
1811 .source_pll = "pllc",
1812 .cm_reg = CM_PLLC,
1813 .a2w_reg = A2W_PLLC_PER,
1814 .load_mask = CM_PLLC_LOADPER,
1815 .hold_mask = CM_PLLC_HOLDPER,
1816 .fixed_divider = 1,
1817 .flags = CLK_IS_CRITICAL | CLK_SET_RATE_PARENT),
1818
1819 /*
1820 * PLLD is the display PLL, used to drive DSI display panels.
1821 *
1822 * It is in the PX LDO power domain, which is on when the
1823 * AUDIO domain is on.
1824 */
1825 [BCM2835_PLLD] = REGISTER_PLL(
1826 SOC_ALL,
1827 .name = "plld",
1828 .cm_ctrl_reg = CM_PLLD,
1829 .a2w_ctrl_reg = A2W_PLLD_CTRL,
1830 .frac_reg = A2W_PLLD_FRAC,
1831 .ana_reg_base = A2W_PLLD_ANA0,
1832 .reference_enable_mask = A2W_XOSC_CTRL_DDR_ENABLE,
1833 .lock_mask = CM_LOCK_FLOCKD,
1834
1835 .ana = &bcm2835_ana_default,
1836
1837 .min_rate = 600000000u,
1838 .max_rate = 2400000000u,
1839 .max_fb_rate = BCM2835_MAX_FB_RATE),
1840 [BCM2835_PLLD_CORE] = REGISTER_PLL_DIV(
1841 SOC_ALL,
1842 .name = "plld_core",
1843 .source_pll = "plld",
1844 .cm_reg = CM_PLLD,
1845 .a2w_reg = A2W_PLLD_CORE,
1846 .load_mask = CM_PLLD_LOADCORE,
1847 .hold_mask = CM_PLLD_HOLDCORE,
1848 .fixed_divider = 1,
1849 .flags = CLK_SET_RATE_PARENT),
1850 /*
1851 * VPU firmware assumes that PLLD_PER isn't disabled by the ARM core.
1852 * Otherwise this could cause firmware lookups. That's why we mark
1853 * it as critical.
1854 */
1855 [BCM2835_PLLD_PER] = REGISTER_PLL_DIV(
1856 SOC_ALL,
1857 .name = "plld_per",
1858 .source_pll = "plld",
1859 .cm_reg = CM_PLLD,
1860 .a2w_reg = A2W_PLLD_PER,
1861 .load_mask = CM_PLLD_LOADPER,
1862 .hold_mask = CM_PLLD_HOLDPER,
1863 .fixed_divider = 1,
1864 .flags = CLK_IS_CRITICAL | CLK_SET_RATE_PARENT),
1865 [BCM2835_PLLD_DSI0] = REGISTER_PLL_DIV(
1866 SOC_ALL,
1867 .name = "plld_dsi0",
1868 .source_pll = "plld",
1869 .cm_reg = CM_PLLD,
1870 .a2w_reg = A2W_PLLD_DSI0,
1871 .load_mask = CM_PLLD_LOADDSI0,
1872 .hold_mask = CM_PLLD_HOLDDSI0,
1873 .fixed_divider = 1),
1874 [BCM2835_PLLD_DSI1] = REGISTER_PLL_DIV(
1875 SOC_ALL,
1876 .name = "plld_dsi1",
1877 .source_pll = "plld",
1878 .cm_reg = CM_PLLD,
1879 .a2w_reg = A2W_PLLD_DSI1,
1880 .load_mask = CM_PLLD_LOADDSI1,
1881 .hold_mask = CM_PLLD_HOLDDSI1,
1882 .fixed_divider = 1),
1883
1884 /*
1885 * PLLH is used to supply the pixel clock or the AUX clock for the
1886 * TV encoder.
1887 *
1888 * It is in the HDMI power domain.
1889 */
1890 [BCM2835_PLLH] = REGISTER_PLL(
1891 SOC_BCM2835,
1892 "pllh",
1893 .cm_ctrl_reg = CM_PLLH,
1894 .a2w_ctrl_reg = A2W_PLLH_CTRL,
1895 .frac_reg = A2W_PLLH_FRAC,
1896 .ana_reg_base = A2W_PLLH_ANA0,
1897 .reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
1898 .lock_mask = CM_LOCK_FLOCKH,
1899
1900 .ana = &bcm2835_ana_pllh,
1901
1902 .min_rate = 600000000u,
1903 .max_rate = 3000000000u,
1904 .max_fb_rate = BCM2835_MAX_FB_RATE),
1905 [BCM2835_PLLH_RCAL] = REGISTER_PLL_DIV(
1906 SOC_BCM2835,
1907 .name = "pllh_rcal",
1908 .source_pll = "pllh",
1909 .cm_reg = CM_PLLH,
1910 .a2w_reg = A2W_PLLH_RCAL,
1911 .load_mask = CM_PLLH_LOADRCAL,
1912 .hold_mask = 0,
1913 .fixed_divider = 10,
1914 .flags = CLK_SET_RATE_PARENT),
1915 [BCM2835_PLLH_AUX] = REGISTER_PLL_DIV(
1916 SOC_BCM2835,
1917 .name = "pllh_aux",
1918 .source_pll = "pllh",
1919 .cm_reg = CM_PLLH,
1920 .a2w_reg = A2W_PLLH_AUX,
1921 .load_mask = CM_PLLH_LOADAUX,
1922 .hold_mask = 0,
1923 .fixed_divider = 1,
1924 .flags = CLK_SET_RATE_PARENT),
1925 [BCM2835_PLLH_PIX] = REGISTER_PLL_DIV(
1926 SOC_BCM2835,
1927 .name = "pllh_pix",
1928 .source_pll = "pllh",
1929 .cm_reg = CM_PLLH,
1930 .a2w_reg = A2W_PLLH_PIX,
1931 .load_mask = CM_PLLH_LOADPIX,
1932 .hold_mask = 0,
1933 .fixed_divider = 10,
1934 .flags = CLK_SET_RATE_PARENT),
1935
1936 /* the clocks */
1937
1938 /* clocks with oscillator parent mux */
1939
1940 /* One Time Programmable Memory clock. Maximum 10Mhz. */
1941 [BCM2835_CLOCK_OTP] = REGISTER_OSC_CLK(
1942 SOC_ALL,
1943 .name = "otp",
1944 .ctl_reg = CM_OTPCTL,
1945 .div_reg = CM_OTPDIV,
1946 .int_bits = 4,
1947 .frac_bits = 0,
1948 .tcnt_mux = 6),
1949 /*
1950 * Used for a 1Mhz clock for the system clocksource, and also used
1951 * bythe watchdog timer and the camera pulse generator.
1952 */
1953 [BCM2835_CLOCK_TIMER] = REGISTER_OSC_CLK(
1954 SOC_ALL,
1955 .name = "timer",
1956 .ctl_reg = CM_TIMERCTL,
1957 .div_reg = CM_TIMERDIV,
1958 .int_bits = 6,
1959 .frac_bits = 12),
1960 /*
1961 * Clock for the temperature sensor.
1962 * Generally run at 2Mhz, max 5Mhz.
1963 */
1964 [BCM2835_CLOCK_TSENS] = REGISTER_OSC_CLK(
1965 SOC_ALL,
1966 .name = "tsens",
1967 .ctl_reg = CM_TSENSCTL,
1968 .div_reg = CM_TSENSDIV,
1969 .int_bits = 5,
1970 .frac_bits = 0),
1971 [BCM2835_CLOCK_TEC] = REGISTER_OSC_CLK(
1972 SOC_ALL,
1973 .name = "tec",
1974 .ctl_reg = CM_TECCTL,
1975 .div_reg = CM_TECDIV,
1976 .int_bits = 6,
1977 .frac_bits = 0),
1978
1979 /* clocks with vpu parent mux */
1980 [BCM2835_CLOCK_H264] = REGISTER_VPU_CLK(
1981 SOC_ALL,
1982 .name = "h264",
1983 .ctl_reg = CM_H264CTL,
1984 .div_reg = CM_H264DIV,
1985 .int_bits = 4,
1986 .frac_bits = 8,
1987 .tcnt_mux = 1),
1988 [BCM2835_CLOCK_ISP] = REGISTER_VPU_CLK(
1989 SOC_ALL,
1990 .name = "isp",
1991 .ctl_reg = CM_ISPCTL,
1992 .div_reg = CM_ISPDIV,
1993 .int_bits = 4,
1994 .frac_bits = 8,
1995 .tcnt_mux = 2),
1996
1997 /*
1998 * Secondary SDRAM clock. Used for low-voltage modes when the PLL
1999 * in the SDRAM controller can't be used.
2000 */
2001 [BCM2835_CLOCK_SDRAM] = REGISTER_VPU_CLK(
2002 SOC_ALL,
2003 .name = "sdram",
2004 .ctl_reg = CM_SDCCTL,
2005 .div_reg = CM_SDCDIV,
2006 .int_bits = 6,
2007 .frac_bits = 0,
2008 .tcnt_mux = 3),
2009 [BCM2835_CLOCK_V3D] = REGISTER_VPU_CLK(
2010 SOC_ALL,
2011 .name = "v3d",
2012 .ctl_reg = CM_V3DCTL,
2013 .div_reg = CM_V3DDIV,
2014 .int_bits = 4,
2015 .frac_bits = 8,
2016 .tcnt_mux = 4),
2017 /*
2018 * VPU clock. This doesn't have an enable bit, since it drives
2019 * the bus for everything else, and is special so it doesn't need
2020 * to be gated for rate changes. It is also known as "clk_audio"
2021 * in various hardware documentation.
2022 */
2023 [BCM2835_CLOCK_VPU] = REGISTER_VPU_CLK(
2024 SOC_ALL,
2025 .name = "vpu",
2026 .ctl_reg = CM_VPUCTL,
2027 .div_reg = CM_VPUDIV,
2028 .int_bits = 12,
2029 .frac_bits = 8,
2030 .flags = CLK_IS_CRITICAL,
2031 .is_vpu_clock = true,
2032 .tcnt_mux = 5),
2033
2034 /* clocks with per parent mux */
2035 [BCM2835_CLOCK_AVEO] = REGISTER_PER_CLK(
2036 SOC_ALL,
2037 .name = "aveo",
2038 .ctl_reg = CM_AVEOCTL,
2039 .div_reg = CM_AVEODIV,
2040 .int_bits = 4,
2041 .frac_bits = 0,
2042 .tcnt_mux = 38),
2043 [BCM2835_CLOCK_CAM0] = REGISTER_PER_CLK(
2044 SOC_ALL,
2045 .name = "cam0",
2046 .ctl_reg = CM_CAM0CTL,
2047 .div_reg = CM_CAM0DIV,
2048 .int_bits = 4,
2049 .frac_bits = 8,
2050 .tcnt_mux = 14),
2051 [BCM2835_CLOCK_CAM1] = REGISTER_PER_CLK(
2052 SOC_ALL,
2053 .name = "cam1",
2054 .ctl_reg = CM_CAM1CTL,
2055 .div_reg = CM_CAM1DIV,
2056 .int_bits = 4,
2057 .frac_bits = 8,
2058 .tcnt_mux = 15),
2059 [BCM2835_CLOCK_DFT] = REGISTER_PER_CLK(
2060 SOC_ALL,
2061 .name = "dft",
2062 .ctl_reg = CM_DFTCTL,
2063 .div_reg = CM_DFTDIV,
2064 .int_bits = 5,
2065 .frac_bits = 0),
2066 [BCM2835_CLOCK_DPI] = REGISTER_PER_CLK(
2067 SOC_ALL,
2068 .name = "dpi",
2069 .ctl_reg = CM_DPICTL,
2070 .div_reg = CM_DPIDIV,
2071 .int_bits = 4,
2072 .frac_bits = 8,
2073 .tcnt_mux = 17),
2074
2075 /* Arasan EMMC clock */
2076 [BCM2835_CLOCK_EMMC] = REGISTER_PER_CLK(
2077 SOC_ALL,
2078 .name = "emmc",
2079 .ctl_reg = CM_EMMCCTL,
2080 .div_reg = CM_EMMCDIV,
2081 .int_bits = 4,
2082 .frac_bits = 8,
2083 .tcnt_mux = 39),
2084
2085 /* EMMC2 clock (only available for BCM2711) */
2086 [BCM2711_CLOCK_EMMC2] = REGISTER_PER_CLK(
2087 SOC_BCM2711,
2088 .name = "emmc2",
2089 .ctl_reg = CM_EMMC2CTL,
2090 .div_reg = CM_EMMC2DIV,
2091 .int_bits = 4,
2092 .frac_bits = 8,
2093 .tcnt_mux = 42),
2094
2095 /* General purpose (GPIO) clocks */
2096 [BCM2835_CLOCK_GP0] = REGISTER_PER_CLK(
2097 SOC_ALL,
2098 .name = "gp0",
2099 .ctl_reg = CM_GP0CTL,
2100 .div_reg = CM_GP0DIV,
2101 .int_bits = 12,
2102 .frac_bits = 12,
2103 .is_mash_clock = true,
2104 .tcnt_mux = 20),
2105 [BCM2835_CLOCK_GP1] = REGISTER_PER_CLK(
2106 SOC_ALL,
2107 .name = "gp1",
2108 .ctl_reg = CM_GP1CTL,
2109 .div_reg = CM_GP1DIV,
2110 .int_bits = 12,
2111 .frac_bits = 12,
2112 .flags = CLK_IS_CRITICAL,
2113 .is_mash_clock = true,
2114 .tcnt_mux = 21),
2115 [BCM2835_CLOCK_GP2] = REGISTER_PER_CLK(
2116 SOC_ALL,
2117 .name = "gp2",
2118 .ctl_reg = CM_GP2CTL,
2119 .div_reg = CM_GP2DIV,
2120 .int_bits = 12,
2121 .frac_bits = 12,
2122 .flags = CLK_IS_CRITICAL),
2123
2124 /* HDMI state machine */
2125 [BCM2835_CLOCK_HSM] = REGISTER_PER_CLK(
2126 SOC_ALL,
2127 .name = "hsm",
2128 .ctl_reg = CM_HSMCTL,
2129 .div_reg = CM_HSMDIV,
2130 .int_bits = 4,
2131 .frac_bits = 8,
2132 .tcnt_mux = 22),
2133 [BCM2835_CLOCK_PCM] = REGISTER_PCM_CLK(
2134 SOC_ALL,
2135 .name = "pcm",
2136 .ctl_reg = CM_PCMCTL,
2137 .div_reg = CM_PCMDIV,
2138 .int_bits = 12,
2139 .frac_bits = 12,
2140 .is_mash_clock = true,
2141 .low_jitter = true,
2142 .tcnt_mux = 23),
2143 [BCM2835_CLOCK_PWM] = REGISTER_PER_CLK(
2144 SOC_ALL,
2145 .name = "pwm",
2146 .ctl_reg = CM_PWMCTL,
2147 .div_reg = CM_PWMDIV,
2148 .int_bits = 12,
2149 .frac_bits = 12,
2150 .is_mash_clock = true,
2151 .tcnt_mux = 24),
2152 [BCM2835_CLOCK_SLIM] = REGISTER_PER_CLK(
2153 SOC_ALL,
2154 .name = "slim",
2155 .ctl_reg = CM_SLIMCTL,
2156 .div_reg = CM_SLIMDIV,
2157 .int_bits = 12,
2158 .frac_bits = 12,
2159 .is_mash_clock = true,
2160 .tcnt_mux = 25),
2161 [BCM2835_CLOCK_SMI] = REGISTER_PER_CLK(
2162 SOC_ALL,
2163 .name = "smi",
2164 .ctl_reg = CM_SMICTL,
2165 .div_reg = CM_SMIDIV,
2166 .int_bits = 4,
2167 .frac_bits = 8,
2168 .tcnt_mux = 27),
2169 [BCM2835_CLOCK_UART] = REGISTER_PER_CLK(
2170 SOC_ALL,
2171 .name = "uart",
2172 .ctl_reg = CM_UARTCTL,
2173 .div_reg = CM_UARTDIV,
2174 .int_bits = 10,
2175 .frac_bits = 12,
2176 .tcnt_mux = 28,
2177 .round_up = true),
2178
2179 /* TV encoder clock. Only operating frequency is 108Mhz. */
2180 [BCM2835_CLOCK_VEC] = REGISTER_PER_CLK(
2181 SOC_ALL,
2182 .name = "vec",
2183 .ctl_reg = CM_VECCTL,
2184 .div_reg = CM_VECDIV,
2185 .int_bits = 4,
2186 .frac_bits = 0,
2187 /*
2188 * Allow rate change propagation only on PLLH_AUX which is
2189 * assigned index 7 in the parent array.
2190 */
2191 .set_rate_parent = BIT(7),
2192 .tcnt_mux = 29),
2193
2194 /* dsi clocks */
2195 [BCM2835_CLOCK_DSI0E] = REGISTER_PER_CLK(
2196 SOC_ALL,
2197 .name = "dsi0e",
2198 .ctl_reg = CM_DSI0ECTL,
2199 .div_reg = CM_DSI0EDIV,
2200 .int_bits = 4,
2201 .frac_bits = 8,
2202 .tcnt_mux = 18),
2203 [BCM2835_CLOCK_DSI1E] = REGISTER_PER_CLK(
2204 SOC_ALL,
2205 .name = "dsi1e",
2206 .ctl_reg = CM_DSI1ECTL,
2207 .div_reg = CM_DSI1EDIV,
2208 .int_bits = 4,
2209 .frac_bits = 8,
2210 .tcnt_mux = 19),
2211 [BCM2835_CLOCK_DSI0P] = REGISTER_DSI0_CLK(
2212 SOC_ALL,
2213 .name = "dsi0p",
2214 .ctl_reg = CM_DSI0PCTL,
2215 .div_reg = CM_DSI0PDIV,
2216 .int_bits = 0,
2217 .frac_bits = 0,
2218 .tcnt_mux = 12),
2219 [BCM2835_CLOCK_DSI1P] = REGISTER_DSI1_CLK(
2220 SOC_ALL,
2221 .name = "dsi1p",
2222 .ctl_reg = CM_DSI1PCTL,
2223 .div_reg = CM_DSI1PDIV,
2224 .int_bits = 0,
2225 .frac_bits = 0,
2226 .tcnt_mux = 13),
2227
2228 /* the gates */
2229
2230 /*
2231 * CM_PERIICTL (and CM_PERIACTL, CM_SYSCTL and CM_VPUCTL if
2232 * you have the debug bit set in the power manager, which we
2233 * don't bother exposing) are individual gates off of the
2234 * non-stop vpu clock.
2235 */
2236 [BCM2835_CLOCK_PERI_IMAGE] = REGISTER_GATE(
2237 SOC_ALL,
2238 .name = "peri_image",
2239 .parent = "vpu",
2240 .ctl_reg = CM_PERIICTL),
2241};
2242
2243/*
2244 * Permanently take a reference on the parent of the SDRAM clock.
2245 *
2246 * While the SDRAM is being driven by its dedicated PLL most of the
2247 * time, there is a little loop running in the firmware that
2248 * periodically switches the SDRAM to using our CM clock to do PVT
2249 * recalibration, with the assumption that the previously configured
2250 * SDRAM parent is still enabled and running.
2251 */
2252static int bcm2835_mark_sdc_parent_critical(struct clk *sdc)
2253{
2254 struct clk *parent = clk_get_parent(clk: sdc);
2255
2256 if (IS_ERR(ptr: parent))
2257 return PTR_ERR(ptr: parent);
2258
2259 return clk_prepare_enable(clk: parent);
2260}
2261
2262static int bcm2835_clk_probe(struct platform_device *pdev)
2263{
2264 struct device *dev = &pdev->dev;
2265 struct clk_hw **hws;
2266 struct bcm2835_cprman *cprman;
2267 const struct bcm2835_clk_desc *desc;
2268 const size_t asize = ARRAY_SIZE(clk_desc_array);
2269 const struct cprman_plat_data *pdata;
2270 size_t i;
2271 int ret;
2272
2273 pdata = of_device_get_match_data(dev: &pdev->dev);
2274 if (!pdata)
2275 return -ENODEV;
2276
2277 cprman = devm_kzalloc(dev,
2278 struct_size(cprman, onecell.hws, asize),
2279 GFP_KERNEL);
2280 if (!cprman)
2281 return -ENOMEM;
2282
2283 spin_lock_init(&cprman->regs_lock);
2284 cprman->dev = dev;
2285 cprman->regs = devm_platform_ioremap_resource(pdev, index: 0);
2286 if (IS_ERR(ptr: cprman->regs))
2287 return PTR_ERR(ptr: cprman->regs);
2288
2289 memcpy(cprman->real_parent_names, cprman_parent_names,
2290 sizeof(cprman_parent_names));
2291 of_clk_parent_fill(np: dev->of_node, parents: cprman->real_parent_names,
2292 ARRAY_SIZE(cprman_parent_names));
2293
2294 /*
2295 * Make sure the external oscillator has been registered.
2296 *
2297 * The other (DSI) clocks are not present on older device
2298 * trees, which we still need to support for backwards
2299 * compatibility.
2300 */
2301 if (!cprman->real_parent_names[0])
2302 return -ENODEV;
2303
2304 platform_set_drvdata(pdev, data: cprman);
2305
2306 cprman->onecell.num = asize;
2307 cprman->soc = pdata->soc;
2308 hws = cprman->onecell.hws;
2309
2310 for (i = 0; i < asize; i++) {
2311 desc = &clk_desc_array[i];
2312 if (desc->clk_register && desc->data &&
2313 (desc->supported & pdata->soc)) {
2314 hws[i] = desc->clk_register(cprman, desc->data);
2315 }
2316 }
2317
2318 ret = bcm2835_mark_sdc_parent_critical(sdc: hws[BCM2835_CLOCK_SDRAM]->clk);
2319 if (ret)
2320 return ret;
2321
2322 return of_clk_add_hw_provider(np: dev->of_node, get: of_clk_hw_onecell_get,
2323 data: &cprman->onecell);
2324}
2325
2326static const struct cprman_plat_data cprman_bcm2835_plat_data = {
2327 .soc = SOC_BCM2835,
2328};
2329
2330static const struct cprman_plat_data cprman_bcm2711_plat_data = {
2331 .soc = SOC_BCM2711,
2332};
2333
2334static const struct of_device_id bcm2835_clk_of_match[] = {
2335 { .compatible = "brcm,bcm2835-cprman", .data = &cprman_bcm2835_plat_data },
2336 { .compatible = "brcm,bcm2711-cprman", .data = &cprman_bcm2711_plat_data },
2337 {}
2338};
2339MODULE_DEVICE_TABLE(of, bcm2835_clk_of_match);
2340
2341static struct platform_driver bcm2835_clk_driver = {
2342 .driver = {
2343 .name = "bcm2835-clk",
2344 .of_match_table = bcm2835_clk_of_match,
2345 },
2346 .probe = bcm2835_clk_probe,
2347};
2348
2349builtin_platform_driver(bcm2835_clk_driver);
2350
2351MODULE_AUTHOR("Eric Anholt <eric@anholt.net>");
2352MODULE_DESCRIPTION("BCM2835 clock driver");
2353

source code of linux/drivers/clk/bcm/clk-bcm2835.c