1/*
2 * clk-xgene.c - AppliedMicro X-Gene Clock Interface
3 *
4 * Copyright (c) 2013, Applied Micro Circuits Corporation
5 * Author: Loc Ho <lho@apm.com>
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License as
9 * published by the Free Software Foundation; either version 2 of
10 * the License, or (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
20 * MA 02111-1307 USA
21 *
22 */
23#include <linux/module.h>
24#include <linux/spinlock.h>
25#include <linux/io.h>
26#include <linux/of.h>
27#include <linux/clkdev.h>
28#include <linux/clk-provider.h>
29#include <linux/of_address.h>
30
31/* Register SCU_PCPPLL bit fields */
32#define N_DIV_RD(src) ((src) & 0x000001ff)
33#define SC_N_DIV_RD(src) ((src) & 0x0000007f)
34#define SC_OUTDIV2(src) (((src) & 0x00000100) >> 8)
35
36/* Register SCU_SOCPLL bit fields */
37#define CLKR_RD(src) (((src) & 0x07000000)>>24)
38#define CLKOD_RD(src) (((src) & 0x00300000)>>20)
39#define REGSPEC_RESET_F1_MASK 0x00010000
40#define CLKF_RD(src) (((src) & 0x000001ff))
41
42#define XGENE_CLK_DRIVER_VER "0.1"
43
44static DEFINE_SPINLOCK(clk_lock);
45
46static inline u32 xgene_clk_read(void __iomem *csr)
47{
48 return readl_relaxed(csr);
49}
50
51static inline void xgene_clk_write(u32 data, void __iomem *csr)
52{
53 writel_relaxed(data, csr);
54}
55
56/* PLL Clock */
57enum xgene_pll_type {
58 PLL_TYPE_PCP = 0,
59 PLL_TYPE_SOC = 1,
60};
61
62struct xgene_clk_pll {
63 struct clk_hw hw;
64 void __iomem *reg;
65 spinlock_t *lock;
66 u32 pll_offset;
67 enum xgene_pll_type type;
68 int version;
69};
70
71#define to_xgene_clk_pll(_hw) container_of(_hw, struct xgene_clk_pll, hw)
72
73static int xgene_clk_pll_is_enabled(struct clk_hw *hw)
74{
75 struct xgene_clk_pll *pllclk = to_xgene_clk_pll(hw);
76 u32 data;
77
78 data = xgene_clk_read(pllclk->reg + pllclk->pll_offset);
79 pr_debug("%s pll %s\n", clk_hw_get_name(hw),
80 data & REGSPEC_RESET_F1_MASK ? "disabled" : "enabled");
81
82 return data & REGSPEC_RESET_F1_MASK ? 0 : 1;
83}
84
85static unsigned long xgene_clk_pll_recalc_rate(struct clk_hw *hw,
86 unsigned long parent_rate)
87{
88 struct xgene_clk_pll *pllclk = to_xgene_clk_pll(hw);
89 unsigned long fref;
90 unsigned long fvco;
91 u32 pll;
92 u32 nref;
93 u32 nout;
94 u32 nfb;
95
96 pll = xgene_clk_read(pllclk->reg + pllclk->pll_offset);
97
98 if (pllclk->version <= 1) {
99 if (pllclk->type == PLL_TYPE_PCP) {
100 /*
101 * PLL VCO = Reference clock * NF
102 * PCP PLL = PLL_VCO / 2
103 */
104 nout = 2;
105 fvco = parent_rate * (N_DIV_RD(pll) + 4);
106 } else {
107 /*
108 * Fref = Reference Clock / NREF;
109 * Fvco = Fref * NFB;
110 * Fout = Fvco / NOUT;
111 */
112 nref = CLKR_RD(pll) + 1;
113 nout = CLKOD_RD(pll) + 1;
114 nfb = CLKF_RD(pll);
115 fref = parent_rate / nref;
116 fvco = fref * nfb;
117 }
118 } else {
119 /*
120 * fvco = Reference clock * FBDIVC
121 * PLL freq = fvco / NOUT
122 */
123 nout = SC_OUTDIV2(pll) ? 2 : 3;
124 fvco = parent_rate * SC_N_DIV_RD(pll);
125 }
126 pr_debug("%s pll recalc rate %ld parent %ld version %d\n",
127 clk_hw_get_name(hw), fvco / nout, parent_rate,
128 pllclk->version);
129
130 return fvco / nout;
131}
132
133static const struct clk_ops xgene_clk_pll_ops = {
134 .is_enabled = xgene_clk_pll_is_enabled,
135 .recalc_rate = xgene_clk_pll_recalc_rate,
136};
137
138static struct clk *xgene_register_clk_pll(struct device *dev,
139 const char *name, const char *parent_name,
140 unsigned long flags, void __iomem *reg, u32 pll_offset,
141 u32 type, spinlock_t *lock, int version)
142{
143 struct xgene_clk_pll *apmclk;
144 struct clk *clk;
145 struct clk_init_data init;
146
147 /* allocate the APM clock structure */
148 apmclk = kzalloc(sizeof(*apmclk), GFP_KERNEL);
149 if (!apmclk)
150 return ERR_PTR(-ENOMEM);
151
152 init.name = name;
153 init.ops = &xgene_clk_pll_ops;
154 init.flags = flags;
155 init.parent_names = parent_name ? &parent_name : NULL;
156 init.num_parents = parent_name ? 1 : 0;
157
158 apmclk->version = version;
159 apmclk->reg = reg;
160 apmclk->lock = lock;
161 apmclk->pll_offset = pll_offset;
162 apmclk->type = type;
163 apmclk->hw.init = &init;
164
165 /* Register the clock */
166 clk = clk_register(dev, &apmclk->hw);
167 if (IS_ERR(clk)) {
168 pr_err("%s: could not register clk %s\n", __func__, name);
169 kfree(apmclk);
170 return NULL;
171 }
172 return clk;
173}
174
175static int xgene_pllclk_version(struct device_node *np)
176{
177 if (of_device_is_compatible(np, "apm,xgene-socpll-clock"))
178 return 1;
179 if (of_device_is_compatible(np, "apm,xgene-pcppll-clock"))
180 return 1;
181 return 2;
182}
183
184static void xgene_pllclk_init(struct device_node *np, enum xgene_pll_type pll_type)
185{
186 const char *clk_name = np->full_name;
187 struct clk *clk;
188 void __iomem *reg;
189 int version = xgene_pllclk_version(np);
190
191 reg = of_iomap(np, 0);
192 if (!reg) {
193 pr_err("Unable to map CSR register for %pOF\n", np);
194 return;
195 }
196 of_property_read_string(np, "clock-output-names", &clk_name);
197 clk = xgene_register_clk_pll(NULL,
198 clk_name, of_clk_get_parent_name(np, 0),
199 0, reg, 0, pll_type, &clk_lock,
200 version);
201 if (!IS_ERR(clk)) {
202 of_clk_add_provider(np, of_clk_src_simple_get, clk);
203 clk_register_clkdev(clk, clk_name, NULL);
204 pr_debug("Add %s clock PLL\n", clk_name);
205 }
206}
207
208static void xgene_socpllclk_init(struct device_node *np)
209{
210 xgene_pllclk_init(np, PLL_TYPE_SOC);
211}
212
213static void xgene_pcppllclk_init(struct device_node *np)
214{
215 xgene_pllclk_init(np, PLL_TYPE_PCP);
216}
217
218/**
219 * struct xgene_clk_pmd - PMD clock
220 *
221 * @hw: handle between common and hardware-specific interfaces
222 * @reg: register containing the fractional scale multiplier (scaler)
223 * @shift: shift to the unit bit field
224 * @denom: 1/denominator unit
225 * @lock: register lock
226 * Flags:
227 * XGENE_CLK_PMD_SCALE_INVERTED - By default the scaler is the value read
228 * from the register plus one. For example,
229 * 0 for (0 + 1) / denom,
230 * 1 for (1 + 1) / denom and etc.
231 * If this flag is set, it is
232 * 0 for (denom - 0) / denom,
233 * 1 for (denom - 1) / denom and etc.
234 *
235 */
236struct xgene_clk_pmd {
237 struct clk_hw hw;
238 void __iomem *reg;
239 u8 shift;
240 u32 mask;
241 u64 denom;
242 u32 flags;
243 spinlock_t *lock;
244};
245
246#define to_xgene_clk_pmd(_hw) container_of(_hw, struct xgene_clk_pmd, hw)
247
248#define XGENE_CLK_PMD_SCALE_INVERTED BIT(0)
249#define XGENE_CLK_PMD_SHIFT 8
250#define XGENE_CLK_PMD_WIDTH 3
251
252static unsigned long xgene_clk_pmd_recalc_rate(struct clk_hw *hw,
253 unsigned long parent_rate)
254{
255 struct xgene_clk_pmd *fd = to_xgene_clk_pmd(hw);
256 unsigned long flags = 0;
257 u64 ret, scale;
258 u32 val;
259
260 if (fd->lock)
261 spin_lock_irqsave(fd->lock, flags);
262 else
263 __acquire(fd->lock);
264
265 val = clk_readl(fd->reg);
266
267 if (fd->lock)
268 spin_unlock_irqrestore(fd->lock, flags);
269 else
270 __release(fd->lock);
271
272 ret = (u64)parent_rate;
273
274 scale = (val & fd->mask) >> fd->shift;
275 if (fd->flags & XGENE_CLK_PMD_SCALE_INVERTED)
276 scale = fd->denom - scale;
277 else
278 scale++;
279
280 /* freq = parent_rate * scaler / denom */
281 do_div(ret, fd->denom);
282 ret *= scale;
283 if (ret == 0)
284 ret = (u64)parent_rate;
285
286 return ret;
287}
288
289static long xgene_clk_pmd_round_rate(struct clk_hw *hw, unsigned long rate,
290 unsigned long *parent_rate)
291{
292 struct xgene_clk_pmd *fd = to_xgene_clk_pmd(hw);
293 u64 ret, scale;
294
295 if (!rate || rate >= *parent_rate)
296 return *parent_rate;
297
298 /* freq = parent_rate * scaler / denom */
299 ret = rate * fd->denom;
300 scale = DIV_ROUND_UP_ULL(ret, *parent_rate);
301
302 ret = (u64)*parent_rate * scale;
303 do_div(ret, fd->denom);
304
305 return ret;
306}
307
308static int xgene_clk_pmd_set_rate(struct clk_hw *hw, unsigned long rate,
309 unsigned long parent_rate)
310{
311 struct xgene_clk_pmd *fd = to_xgene_clk_pmd(hw);
312 unsigned long flags = 0;
313 u64 scale, ret;
314 u32 val;
315
316 /*
317 * Compute the scaler:
318 *
319 * freq = parent_rate * scaler / denom, or
320 * scaler = freq * denom / parent_rate
321 */
322 ret = rate * fd->denom;
323 scale = DIV_ROUND_UP_ULL(ret, (u64)parent_rate);
324
325 /* Check if inverted */
326 if (fd->flags & XGENE_CLK_PMD_SCALE_INVERTED)
327 scale = fd->denom - scale;
328 else
329 scale--;
330
331 if (fd->lock)
332 spin_lock_irqsave(fd->lock, flags);
333 else
334 __acquire(fd->lock);
335
336 val = clk_readl(fd->reg);
337 val &= ~fd->mask;
338 val |= (scale << fd->shift);
339 clk_writel(val, fd->reg);
340
341 if (fd->lock)
342 spin_unlock_irqrestore(fd->lock, flags);
343 else
344 __release(fd->lock);
345
346 return 0;
347}
348
349static const struct clk_ops xgene_clk_pmd_ops = {
350 .recalc_rate = xgene_clk_pmd_recalc_rate,
351 .round_rate = xgene_clk_pmd_round_rate,
352 .set_rate = xgene_clk_pmd_set_rate,
353};
354
355static struct clk *
356xgene_register_clk_pmd(struct device *dev,
357 const char *name, const char *parent_name,
358 unsigned long flags, void __iomem *reg, u8 shift,
359 u8 width, u64 denom, u32 clk_flags, spinlock_t *lock)
360{
361 struct xgene_clk_pmd *fd;
362 struct clk_init_data init;
363 struct clk *clk;
364
365 fd = kzalloc(sizeof(*fd), GFP_KERNEL);
366 if (!fd)
367 return ERR_PTR(-ENOMEM);
368
369 init.name = name;
370 init.ops = &xgene_clk_pmd_ops;
371 init.flags = flags;
372 init.parent_names = parent_name ? &parent_name : NULL;
373 init.num_parents = parent_name ? 1 : 0;
374
375 fd->reg = reg;
376 fd->shift = shift;
377 fd->mask = (BIT(width) - 1) << shift;
378 fd->denom = denom;
379 fd->flags = clk_flags;
380 fd->lock = lock;
381 fd->hw.init = &init;
382
383 clk = clk_register(dev, &fd->hw);
384 if (IS_ERR(clk)) {
385 pr_err("%s: could not register clk %s\n", __func__, name);
386 kfree(fd);
387 return NULL;
388 }
389
390 return clk;
391}
392
393static void xgene_pmdclk_init(struct device_node *np)
394{
395 const char *clk_name = np->full_name;
396 void __iomem *csr_reg;
397 struct resource res;
398 struct clk *clk;
399 u64 denom;
400 u32 flags = 0;
401 int rc;
402
403 /* Check if the entry is disabled */
404 if (!of_device_is_available(np))
405 return;
406
407 /* Parse the DTS register for resource */
408 rc = of_address_to_resource(np, 0, &res);
409 if (rc != 0) {
410 pr_err("no DTS register for %pOF\n", np);
411 return;
412 }
413 csr_reg = of_iomap(np, 0);
414 if (!csr_reg) {
415 pr_err("Unable to map resource for %pOF\n", np);
416 return;
417 }
418 of_property_read_string(np, "clock-output-names", &clk_name);
419
420 denom = BIT(XGENE_CLK_PMD_WIDTH);
421 flags |= XGENE_CLK_PMD_SCALE_INVERTED;
422
423 clk = xgene_register_clk_pmd(NULL, clk_name,
424 of_clk_get_parent_name(np, 0), 0,
425 csr_reg, XGENE_CLK_PMD_SHIFT,
426 XGENE_CLK_PMD_WIDTH, denom,
427 flags, &clk_lock);
428 if (!IS_ERR(clk)) {
429 of_clk_add_provider(np, of_clk_src_simple_get, clk);
430 clk_register_clkdev(clk, clk_name, NULL);
431 pr_debug("Add %s clock\n", clk_name);
432 } else {
433 if (csr_reg)
434 iounmap(csr_reg);
435 }
436}
437
438/* IP Clock */
439struct xgene_dev_parameters {
440 void __iomem *csr_reg; /* CSR for IP clock */
441 u32 reg_clk_offset; /* Offset to clock enable CSR */
442 u32 reg_clk_mask; /* Mask bit for clock enable */
443 u32 reg_csr_offset; /* Offset to CSR reset */
444 u32 reg_csr_mask; /* Mask bit for disable CSR reset */
445 void __iomem *divider_reg; /* CSR for divider */
446 u32 reg_divider_offset; /* Offset to divider register */
447 u32 reg_divider_shift; /* Bit shift to divider field */
448 u32 reg_divider_width; /* Width of the bit to divider field */
449};
450
451struct xgene_clk {
452 struct clk_hw hw;
453 spinlock_t *lock;
454 struct xgene_dev_parameters param;
455};
456
457#define to_xgene_clk(_hw) container_of(_hw, struct xgene_clk, hw)
458
459static int xgene_clk_enable(struct clk_hw *hw)
460{
461 struct xgene_clk *pclk = to_xgene_clk(hw);
462 unsigned long flags = 0;
463 u32 data;
464
465 if (pclk->lock)
466 spin_lock_irqsave(pclk->lock, flags);
467
468 if (pclk->param.csr_reg) {
469 pr_debug("%s clock enabled\n", clk_hw_get_name(hw));
470 /* First enable the clock */
471 data = xgene_clk_read(pclk->param.csr_reg +
472 pclk->param.reg_clk_offset);
473 data |= pclk->param.reg_clk_mask;
474 xgene_clk_write(data, pclk->param.csr_reg +
475 pclk->param.reg_clk_offset);
476 pr_debug("%s clk offset 0x%08X mask 0x%08X value 0x%08X\n",
477 clk_hw_get_name(hw),
478 pclk->param.reg_clk_offset, pclk->param.reg_clk_mask,
479 data);
480
481 /* Second enable the CSR */
482 data = xgene_clk_read(pclk->param.csr_reg +
483 pclk->param.reg_csr_offset);
484 data &= ~pclk->param.reg_csr_mask;
485 xgene_clk_write(data, pclk->param.csr_reg +
486 pclk->param.reg_csr_offset);
487 pr_debug("%s csr offset 0x%08X mask 0x%08X value 0x%08X\n",
488 clk_hw_get_name(hw),
489 pclk->param.reg_csr_offset, pclk->param.reg_csr_mask,
490 data);
491 }
492
493 if (pclk->lock)
494 spin_unlock_irqrestore(pclk->lock, flags);
495
496 return 0;
497}
498
499static void xgene_clk_disable(struct clk_hw *hw)
500{
501 struct xgene_clk *pclk = to_xgene_clk(hw);
502 unsigned long flags = 0;
503 u32 data;
504
505 if (pclk->lock)
506 spin_lock_irqsave(pclk->lock, flags);
507
508 if (pclk->param.csr_reg) {
509 pr_debug("%s clock disabled\n", clk_hw_get_name(hw));
510 /* First put the CSR in reset */
511 data = xgene_clk_read(pclk->param.csr_reg +
512 pclk->param.reg_csr_offset);
513 data |= pclk->param.reg_csr_mask;
514 xgene_clk_write(data, pclk->param.csr_reg +
515 pclk->param.reg_csr_offset);
516
517 /* Second disable the clock */
518 data = xgene_clk_read(pclk->param.csr_reg +
519 pclk->param.reg_clk_offset);
520 data &= ~pclk->param.reg_clk_mask;
521 xgene_clk_write(data, pclk->param.csr_reg +
522 pclk->param.reg_clk_offset);
523 }
524
525 if (pclk->lock)
526 spin_unlock_irqrestore(pclk->lock, flags);
527}
528
529static int xgene_clk_is_enabled(struct clk_hw *hw)
530{
531 struct xgene_clk *pclk = to_xgene_clk(hw);
532 u32 data = 0;
533
534 if (pclk->param.csr_reg) {
535 pr_debug("%s clock checking\n", clk_hw_get_name(hw));
536 data = xgene_clk_read(pclk->param.csr_reg +
537 pclk->param.reg_clk_offset);
538 pr_debug("%s clock is %s\n", clk_hw_get_name(hw),
539 data & pclk->param.reg_clk_mask ? "enabled" :
540 "disabled");
541 }
542
543 if (!pclk->param.csr_reg)
544 return 1;
545 return data & pclk->param.reg_clk_mask ? 1 : 0;
546}
547
548static unsigned long xgene_clk_recalc_rate(struct clk_hw *hw,
549 unsigned long parent_rate)
550{
551 struct xgene_clk *pclk = to_xgene_clk(hw);
552 u32 data;
553
554 if (pclk->param.divider_reg) {
555 data = xgene_clk_read(pclk->param.divider_reg +
556 pclk->param.reg_divider_offset);
557 data >>= pclk->param.reg_divider_shift;
558 data &= (1 << pclk->param.reg_divider_width) - 1;
559
560 pr_debug("%s clock recalc rate %ld parent %ld\n",
561 clk_hw_get_name(hw),
562 parent_rate / data, parent_rate);
563
564 return parent_rate / data;
565 } else {
566 pr_debug("%s clock recalc rate %ld parent %ld\n",
567 clk_hw_get_name(hw), parent_rate, parent_rate);
568 return parent_rate;
569 }
570}
571
572static int xgene_clk_set_rate(struct clk_hw *hw, unsigned long rate,
573 unsigned long parent_rate)
574{
575 struct xgene_clk *pclk = to_xgene_clk(hw);
576 unsigned long flags = 0;
577 u32 data;
578 u32 divider;
579 u32 divider_save;
580
581 if (pclk->lock)
582 spin_lock_irqsave(pclk->lock, flags);
583
584 if (pclk->param.divider_reg) {
585 /* Let's compute the divider */
586 if (rate > parent_rate)
587 rate = parent_rate;
588 divider_save = divider = parent_rate / rate; /* Rounded down */
589 divider &= (1 << pclk->param.reg_divider_width) - 1;
590 divider <<= pclk->param.reg_divider_shift;
591
592 /* Set new divider */
593 data = xgene_clk_read(pclk->param.divider_reg +
594 pclk->param.reg_divider_offset);
595 data &= ~(((1 << pclk->param.reg_divider_width) - 1)
596 << pclk->param.reg_divider_shift);
597 data |= divider;
598 xgene_clk_write(data, pclk->param.divider_reg +
599 pclk->param.reg_divider_offset);
600 pr_debug("%s clock set rate %ld\n", clk_hw_get_name(hw),
601 parent_rate / divider_save);
602 } else {
603 divider_save = 1;
604 }
605
606 if (pclk->lock)
607 spin_unlock_irqrestore(pclk->lock, flags);
608
609 return parent_rate / divider_save;
610}
611
612static long xgene_clk_round_rate(struct clk_hw *hw, unsigned long rate,
613 unsigned long *prate)
614{
615 struct xgene_clk *pclk = to_xgene_clk(hw);
616 unsigned long parent_rate = *prate;
617 u32 divider;
618
619 if (pclk->param.divider_reg) {
620 /* Let's compute the divider */
621 if (rate > parent_rate)
622 rate = parent_rate;
623 divider = parent_rate / rate; /* Rounded down */
624 } else {
625 divider = 1;
626 }
627
628 return parent_rate / divider;
629}
630
631static const struct clk_ops xgene_clk_ops = {
632 .enable = xgene_clk_enable,
633 .disable = xgene_clk_disable,
634 .is_enabled = xgene_clk_is_enabled,
635 .recalc_rate = xgene_clk_recalc_rate,
636 .set_rate = xgene_clk_set_rate,
637 .round_rate = xgene_clk_round_rate,
638};
639
640static struct clk *xgene_register_clk(struct device *dev,
641 const char *name, const char *parent_name,
642 struct xgene_dev_parameters *parameters, spinlock_t *lock)
643{
644 struct xgene_clk *apmclk;
645 struct clk *clk;
646 struct clk_init_data init;
647 int rc;
648
649 /* allocate the APM clock structure */
650 apmclk = kzalloc(sizeof(*apmclk), GFP_KERNEL);
651 if (!apmclk)
652 return ERR_PTR(-ENOMEM);
653
654 init.name = name;
655 init.ops = &xgene_clk_ops;
656 init.flags = 0;
657 init.parent_names = parent_name ? &parent_name : NULL;
658 init.num_parents = parent_name ? 1 : 0;
659
660 apmclk->lock = lock;
661 apmclk->hw.init = &init;
662 apmclk->param = *parameters;
663
664 /* Register the clock */
665 clk = clk_register(dev, &apmclk->hw);
666 if (IS_ERR(clk)) {
667 pr_err("%s: could not register clk %s\n", __func__, name);
668 kfree(apmclk);
669 return clk;
670 }
671
672 /* Register the clock for lookup */
673 rc = clk_register_clkdev(clk, name, NULL);
674 if (rc != 0) {
675 pr_err("%s: could not register lookup clk %s\n",
676 __func__, name);
677 }
678 return clk;
679}
680
681static void __init xgene_devclk_init(struct device_node *np)
682{
683 const char *clk_name = np->full_name;
684 struct clk *clk;
685 struct resource res;
686 int rc;
687 struct xgene_dev_parameters parameters;
688 int i;
689
690 /* Check if the entry is disabled */
691 if (!of_device_is_available(np))
692 return;
693
694 /* Parse the DTS register for resource */
695 parameters.csr_reg = NULL;
696 parameters.divider_reg = NULL;
697 for (i = 0; i < 2; i++) {
698 void __iomem *map_res;
699 rc = of_address_to_resource(np, i, &res);
700 if (rc != 0) {
701 if (i == 0) {
702 pr_err("no DTS register for %pOF\n", np);
703 return;
704 }
705 break;
706 }
707 map_res = of_iomap(np, i);
708 if (!map_res) {
709 pr_err("Unable to map resource %d for %pOF\n", i, np);
710 goto err;
711 }
712 if (strcmp(res.name, "div-reg") == 0)
713 parameters.divider_reg = map_res;
714 else /* if (strcmp(res->name, "csr-reg") == 0) */
715 parameters.csr_reg = map_res;
716 }
717 if (of_property_read_u32(np, "csr-offset", &parameters.reg_csr_offset))
718 parameters.reg_csr_offset = 0;
719 if (of_property_read_u32(np, "csr-mask", &parameters.reg_csr_mask))
720 parameters.reg_csr_mask = 0xF;
721 if (of_property_read_u32(np, "enable-offset",
722 &parameters.reg_clk_offset))
723 parameters.reg_clk_offset = 0x8;
724 if (of_property_read_u32(np, "enable-mask", &parameters.reg_clk_mask))
725 parameters.reg_clk_mask = 0xF;
726 if (of_property_read_u32(np, "divider-offset",
727 &parameters.reg_divider_offset))
728 parameters.reg_divider_offset = 0;
729 if (of_property_read_u32(np, "divider-width",
730 &parameters.reg_divider_width))
731 parameters.reg_divider_width = 0;
732 if (of_property_read_u32(np, "divider-shift",
733 &parameters.reg_divider_shift))
734 parameters.reg_divider_shift = 0;
735 of_property_read_string(np, "clock-output-names", &clk_name);
736
737 clk = xgene_register_clk(NULL, clk_name,
738 of_clk_get_parent_name(np, 0), &parameters, &clk_lock);
739 if (IS_ERR(clk))
740 goto err;
741 pr_debug("Add %s clock\n", clk_name);
742 rc = of_clk_add_provider(np, of_clk_src_simple_get, clk);
743 if (rc != 0)
744 pr_err("%s: could register provider clk %pOF\n", __func__, np);
745
746 return;
747
748err:
749 if (parameters.csr_reg)
750 iounmap(parameters.csr_reg);
751 if (parameters.divider_reg)
752 iounmap(parameters.divider_reg);
753}
754
755CLK_OF_DECLARE(xgene_socpll_clock, "apm,xgene-socpll-clock", xgene_socpllclk_init);
756CLK_OF_DECLARE(xgene_pcppll_clock, "apm,xgene-pcppll-clock", xgene_pcppllclk_init);
757CLK_OF_DECLARE(xgene_pmd_clock, "apm,xgene-pmd-clock", xgene_pmdclk_init);
758CLK_OF_DECLARE(xgene_socpll_v2_clock, "apm,xgene-socpll-v2-clock",
759 xgene_socpllclk_init);
760CLK_OF_DECLARE(xgene_pcppll_v2_clock, "apm,xgene-pcppll-v2-clock",
761 xgene_pcppllclk_init);
762CLK_OF_DECLARE(xgene_dev_clock, "apm,xgene-device-clock", xgene_devclk_init);
763