1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Freescale FlexTimer Module (FTM) timer driver.
4 *
5 * Copyright 2014 Freescale Semiconductor, Inc.
6 */
7
8#include <linux/clk.h>
9#include <linux/clockchips.h>
10#include <linux/clocksource.h>
11#include <linux/err.h>
12#include <linux/interrupt.h>
13#include <linux/io.h>
14#include <linux/of_address.h>
15#include <linux/of_irq.h>
16#include <linux/sched_clock.h>
17#include <linux/slab.h>
18#include <linux/fsl/ftm.h>
19
20#define FTM_SC_CLK(c) ((c) << FTM_SC_CLK_MASK_SHIFT)
21
22struct ftm_clock_device {
23 void __iomem *clksrc_base;
24 void __iomem *clkevt_base;
25 unsigned long periodic_cyc;
26 unsigned long ps;
27 bool big_endian;
28};
29
30static struct ftm_clock_device *priv;
31
32static inline u32 ftm_readl(void __iomem *addr)
33{
34 if (priv->big_endian)
35 return ioread32be(addr);
36 else
37 return ioread32(addr);
38}
39
40static inline void ftm_writel(u32 val, void __iomem *addr)
41{
42 if (priv->big_endian)
43 iowrite32be(val, addr);
44 else
45 iowrite32(val, addr);
46}
47
48static inline void ftm_counter_enable(void __iomem *base)
49{
50 u32 val;
51
52 /* select and enable counter clock source */
53 val = ftm_readl(addr: base + FTM_SC);
54 val &= ~(FTM_SC_PS_MASK | FTM_SC_CLK_MASK);
55 val |= priv->ps | FTM_SC_CLK(1);
56 ftm_writel(val, addr: base + FTM_SC);
57}
58
59static inline void ftm_counter_disable(void __iomem *base)
60{
61 u32 val;
62
63 /* disable counter clock source */
64 val = ftm_readl(addr: base + FTM_SC);
65 val &= ~(FTM_SC_PS_MASK | FTM_SC_CLK_MASK);
66 ftm_writel(val, addr: base + FTM_SC);
67}
68
69static inline void ftm_irq_acknowledge(void __iomem *base)
70{
71 u32 val;
72
73 val = ftm_readl(addr: base + FTM_SC);
74 val &= ~FTM_SC_TOF;
75 ftm_writel(val, addr: base + FTM_SC);
76}
77
78static inline void ftm_irq_enable(void __iomem *base)
79{
80 u32 val;
81
82 val = ftm_readl(addr: base + FTM_SC);
83 val |= FTM_SC_TOIE;
84 ftm_writel(val, addr: base + FTM_SC);
85}
86
87static inline void ftm_irq_disable(void __iomem *base)
88{
89 u32 val;
90
91 val = ftm_readl(addr: base + FTM_SC);
92 val &= ~FTM_SC_TOIE;
93 ftm_writel(val, addr: base + FTM_SC);
94}
95
96static inline void ftm_reset_counter(void __iomem *base)
97{
98 /*
99 * The CNT register contains the FTM counter value.
100 * Reset clears the CNT register. Writing any value to COUNT
101 * updates the counter with its initial value, CNTIN.
102 */
103 ftm_writel(val: 0x00, addr: base + FTM_CNT);
104}
105
106static u64 notrace ftm_read_sched_clock(void)
107{
108 return ftm_readl(addr: priv->clksrc_base + FTM_CNT);
109}
110
111static int ftm_set_next_event(unsigned long delta,
112 struct clock_event_device *unused)
113{
114 /*
115 * The CNNIN and MOD are all double buffer registers, writing
116 * to the MOD register latches the value into a buffer. The MOD
117 * register is updated with the value of its write buffer with
118 * the following scenario:
119 * a, the counter source clock is disabled.
120 */
121 ftm_counter_disable(base: priv->clkevt_base);
122
123 /* Force the value of CNTIN to be loaded into the FTM counter */
124 ftm_reset_counter(base: priv->clkevt_base);
125
126 /*
127 * The counter increments until the value of MOD is reached,
128 * at which point the counter is reloaded with the value of CNTIN.
129 * The TOF (the overflow flag) bit is set when the FTM counter
130 * changes from MOD to CNTIN. So we should using the delta - 1.
131 */
132 ftm_writel(val: delta - 1, addr: priv->clkevt_base + FTM_MOD);
133
134 ftm_counter_enable(base: priv->clkevt_base);
135
136 ftm_irq_enable(base: priv->clkevt_base);
137
138 return 0;
139}
140
141static int ftm_set_oneshot(struct clock_event_device *evt)
142{
143 ftm_counter_disable(base: priv->clkevt_base);
144 return 0;
145}
146
147static int ftm_set_periodic(struct clock_event_device *evt)
148{
149 ftm_set_next_event(delta: priv->periodic_cyc, unused: evt);
150 return 0;
151}
152
153static irqreturn_t ftm_evt_interrupt(int irq, void *dev_id)
154{
155 struct clock_event_device *evt = dev_id;
156
157 ftm_irq_acknowledge(base: priv->clkevt_base);
158
159 if (likely(clockevent_state_oneshot(evt))) {
160 ftm_irq_disable(base: priv->clkevt_base);
161 ftm_counter_disable(base: priv->clkevt_base);
162 }
163
164 evt->event_handler(evt);
165
166 return IRQ_HANDLED;
167}
168
169static struct clock_event_device ftm_clockevent = {
170 .name = "Freescale ftm timer",
171 .features = CLOCK_EVT_FEAT_PERIODIC |
172 CLOCK_EVT_FEAT_ONESHOT,
173 .set_state_periodic = ftm_set_periodic,
174 .set_state_oneshot = ftm_set_oneshot,
175 .set_next_event = ftm_set_next_event,
176 .rating = 300,
177};
178
179static int __init ftm_clockevent_init(unsigned long freq, int irq)
180{
181 int err;
182
183 ftm_writel(val: 0x00, addr: priv->clkevt_base + FTM_CNTIN);
184 ftm_writel(val: ~0u, addr: priv->clkevt_base + FTM_MOD);
185
186 ftm_reset_counter(base: priv->clkevt_base);
187
188 err = request_irq(irq, handler: ftm_evt_interrupt, IRQF_TIMER | IRQF_IRQPOLL,
189 name: "Freescale ftm timer", dev: &ftm_clockevent);
190 if (err) {
191 pr_err("ftm: setup irq failed: %d\n", err);
192 return err;
193 }
194
195 ftm_clockevent.cpumask = cpumask_of(0);
196 ftm_clockevent.irq = irq;
197
198 clockevents_config_and_register(dev: &ftm_clockevent,
199 freq: freq / (1 << priv->ps),
200 min_delta: 1, max_delta: 0xffff);
201
202 ftm_counter_enable(base: priv->clkevt_base);
203
204 return 0;
205}
206
207static int __init ftm_clocksource_init(unsigned long freq)
208{
209 int err;
210
211 ftm_writel(val: 0x00, addr: priv->clksrc_base + FTM_CNTIN);
212 ftm_writel(val: ~0u, addr: priv->clksrc_base + FTM_MOD);
213
214 ftm_reset_counter(base: priv->clksrc_base);
215
216 sched_clock_register(read: ftm_read_sched_clock, bits: 16, rate: freq / (1 << priv->ps));
217 err = clocksource_mmio_init(priv->clksrc_base + FTM_CNT, "fsl-ftm",
218 freq / (1 << priv->ps), 300, 16,
219 clocksource_mmio_readl_up);
220 if (err) {
221 pr_err("ftm: init clock source mmio failed: %d\n", err);
222 return err;
223 }
224
225 ftm_counter_enable(base: priv->clksrc_base);
226
227 return 0;
228}
229
230static int __init __ftm_clk_init(struct device_node *np, char *cnt_name,
231 char *ftm_name)
232{
233 struct clk *clk;
234 int err;
235
236 clk = of_clk_get_by_name(np, name: cnt_name);
237 if (IS_ERR(ptr: clk)) {
238 pr_err("ftm: Cannot get \"%s\": %ld\n", cnt_name, PTR_ERR(clk));
239 return PTR_ERR(ptr: clk);
240 }
241 err = clk_prepare_enable(clk);
242 if (err) {
243 pr_err("ftm: clock failed to prepare+enable \"%s\": %d\n",
244 cnt_name, err);
245 return err;
246 }
247
248 clk = of_clk_get_by_name(np, name: ftm_name);
249 if (IS_ERR(ptr: clk)) {
250 pr_err("ftm: Cannot get \"%s\": %ld\n", ftm_name, PTR_ERR(clk));
251 return PTR_ERR(ptr: clk);
252 }
253 err = clk_prepare_enable(clk);
254 if (err)
255 pr_err("ftm: clock failed to prepare+enable \"%s\": %d\n",
256 ftm_name, err);
257
258 return clk_get_rate(clk);
259}
260
261static unsigned long __init ftm_clk_init(struct device_node *np)
262{
263 long freq;
264
265 freq = __ftm_clk_init(np, cnt_name: "ftm-evt-counter-en", ftm_name: "ftm-evt");
266 if (freq <= 0)
267 return 0;
268
269 freq = __ftm_clk_init(np, cnt_name: "ftm-src-counter-en", ftm_name: "ftm-src");
270 if (freq <= 0)
271 return 0;
272
273 return freq;
274}
275
276static int __init ftm_calc_closest_round_cyc(unsigned long freq)
277{
278 priv->ps = 0;
279
280 /* The counter register is only using the lower 16 bits, and
281 * if the 'freq' value is to big here, then the periodic_cyc
282 * may exceed 0xFFFF.
283 */
284 do {
285 priv->periodic_cyc = DIV_ROUND_CLOSEST(freq,
286 HZ * (1 << priv->ps++));
287 } while (priv->periodic_cyc > 0xFFFF);
288
289 if (priv->ps > FTM_PS_MAX) {
290 pr_err("ftm: the prescaler is %lu > %d\n",
291 priv->ps, FTM_PS_MAX);
292 return -EINVAL;
293 }
294
295 return 0;
296}
297
298static int __init ftm_timer_init(struct device_node *np)
299{
300 unsigned long freq;
301 int ret, irq;
302
303 priv = kzalloc(size: sizeof(*priv), GFP_KERNEL);
304 if (!priv)
305 return -ENOMEM;
306
307 ret = -ENXIO;
308 priv->clkevt_base = of_iomap(node: np, index: 0);
309 if (!priv->clkevt_base) {
310 pr_err("ftm: unable to map event timer registers\n");
311 goto err_clkevt;
312 }
313
314 priv->clksrc_base = of_iomap(node: np, index: 1);
315 if (!priv->clksrc_base) {
316 pr_err("ftm: unable to map source timer registers\n");
317 goto err_clksrc;
318 }
319
320 ret = -EINVAL;
321 irq = irq_of_parse_and_map(node: np, index: 0);
322 if (irq <= 0) {
323 pr_err("ftm: unable to get IRQ from DT, %d\n", irq);
324 goto err;
325 }
326
327 priv->big_endian = of_property_read_bool(np, propname: "big-endian");
328
329 freq = ftm_clk_init(np);
330 if (!freq)
331 goto err;
332
333 ret = ftm_calc_closest_round_cyc(freq);
334 if (ret)
335 goto err;
336
337 ret = ftm_clocksource_init(freq);
338 if (ret)
339 goto err;
340
341 ret = ftm_clockevent_init(freq, irq);
342 if (ret)
343 goto err;
344
345 return 0;
346
347err:
348 iounmap(addr: priv->clksrc_base);
349err_clksrc:
350 iounmap(addr: priv->clkevt_base);
351err_clkevt:
352 kfree(objp: priv);
353 return ret;
354}
355TIMER_OF_DECLARE(flextimer, "fsl,ftm-timer", ftm_timer_init);
356

source code of linux/drivers/clocksource/timer-fsl-ftm.c