1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2018, The Linux Foundation. All rights reserved.
4 */
5
6#include <linux/bitfield.h>
7#include <linux/clk-provider.h>
8#include <linux/cpufreq.h>
9#include <linux/init.h>
10#include <linux/interconnect.h>
11#include <linux/interrupt.h>
12#include <linux/kernel.h>
13#include <linux/module.h>
14#include <linux/of.h>
15#include <linux/platform_device.h>
16#include <linux/pm_opp.h>
17#include <linux/slab.h>
18#include <linux/spinlock.h>
19#include <linux/units.h>
20
21#define LUT_MAX_ENTRIES 40U
22#define LUT_SRC GENMASK(31, 30)
23#define LUT_L_VAL GENMASK(7, 0)
24#define LUT_CORE_COUNT GENMASK(18, 16)
25#define LUT_VOLT GENMASK(11, 0)
26#define CLK_HW_DIV 2
27#define LUT_TURBO_IND 1
28
29#define GT_IRQ_STATUS BIT(2)
30
31#define MAX_FREQ_DOMAINS 4
32
33struct qcom_cpufreq_soc_data {
34 u32 reg_enable;
35 u32 reg_domain_state;
36 u32 reg_dcvs_ctrl;
37 u32 reg_freq_lut;
38 u32 reg_volt_lut;
39 u32 reg_intr_clr;
40 u32 reg_current_vote;
41 u32 reg_perf_state;
42 u8 lut_row_size;
43};
44
45struct qcom_cpufreq_data {
46 void __iomem *base;
47
48 /*
49 * Mutex to synchronize between de-init sequence and re-starting LMh
50 * polling/interrupts
51 */
52 struct mutex throttle_lock;
53 int throttle_irq;
54 char irq_name[15];
55 bool cancel_throttle;
56 struct delayed_work throttle_work;
57 struct cpufreq_policy *policy;
58 struct clk_hw cpu_clk;
59
60 bool per_core_dcvs;
61};
62
63static struct {
64 struct qcom_cpufreq_data *data;
65 const struct qcom_cpufreq_soc_data *soc_data;
66} qcom_cpufreq;
67
68static unsigned long cpu_hw_rate, xo_rate;
69static bool icc_scaling_enabled;
70
71static int qcom_cpufreq_set_bw(struct cpufreq_policy *policy,
72 unsigned long freq_khz)
73{
74 unsigned long freq_hz = freq_khz * 1000;
75 struct dev_pm_opp *opp;
76 struct device *dev;
77 int ret;
78
79 dev = get_cpu_device(cpu: policy->cpu);
80 if (!dev)
81 return -ENODEV;
82
83 opp = dev_pm_opp_find_freq_exact(dev, freq: freq_hz, available: true);
84 if (IS_ERR(ptr: opp))
85 return PTR_ERR(ptr: opp);
86
87 ret = dev_pm_opp_set_opp(dev, opp);
88 dev_pm_opp_put(opp);
89 return ret;
90}
91
92static int qcom_cpufreq_update_opp(struct device *cpu_dev,
93 unsigned long freq_khz,
94 unsigned long volt)
95{
96 unsigned long freq_hz = freq_khz * 1000;
97 int ret;
98
99 /* Skip voltage update if the opp table is not available */
100 if (!icc_scaling_enabled)
101 return dev_pm_opp_add(dev: cpu_dev, freq: freq_hz, u_volt: volt);
102
103 ret = dev_pm_opp_adjust_voltage(dev: cpu_dev, freq: freq_hz, u_volt: volt, u_volt_min: volt, u_volt_max: volt);
104 if (ret) {
105 dev_err(cpu_dev, "Voltage update failed freq=%ld\n", freq_khz);
106 return ret;
107 }
108
109 return dev_pm_opp_enable(dev: cpu_dev, freq: freq_hz);
110}
111
112static int qcom_cpufreq_hw_target_index(struct cpufreq_policy *policy,
113 unsigned int index)
114{
115 struct qcom_cpufreq_data *data = policy->driver_data;
116 const struct qcom_cpufreq_soc_data *soc_data = qcom_cpufreq.soc_data;
117 unsigned long freq = policy->freq_table[index].frequency;
118 unsigned int i;
119
120 writel_relaxed(index, data->base + soc_data->reg_perf_state);
121
122 if (data->per_core_dcvs)
123 for (i = 1; i < cpumask_weight(srcp: policy->related_cpus); i++)
124 writel_relaxed(index, data->base + soc_data->reg_perf_state + i * 4);
125
126 if (icc_scaling_enabled)
127 qcom_cpufreq_set_bw(policy, freq_khz: freq);
128
129 return 0;
130}
131
132static unsigned long qcom_lmh_get_throttle_freq(struct qcom_cpufreq_data *data)
133{
134 unsigned int lval;
135
136 if (qcom_cpufreq.soc_data->reg_current_vote)
137 lval = readl_relaxed(data->base + qcom_cpufreq.soc_data->reg_current_vote) & 0x3ff;
138 else
139 lval = readl_relaxed(data->base + qcom_cpufreq.soc_data->reg_domain_state) & 0xff;
140
141 return lval * xo_rate;
142}
143
144/* Get the frequency requested by the cpufreq core for the CPU */
145static unsigned int qcom_cpufreq_get_freq(unsigned int cpu)
146{
147 struct qcom_cpufreq_data *data;
148 const struct qcom_cpufreq_soc_data *soc_data;
149 struct cpufreq_policy *policy;
150 unsigned int index;
151
152 policy = cpufreq_cpu_get_raw(cpu);
153 if (!policy)
154 return 0;
155
156 data = policy->driver_data;
157 soc_data = qcom_cpufreq.soc_data;
158
159 index = readl_relaxed(data->base + soc_data->reg_perf_state);
160 index = min(index, LUT_MAX_ENTRIES - 1);
161
162 return policy->freq_table[index].frequency;
163}
164
165static unsigned int qcom_cpufreq_hw_get(unsigned int cpu)
166{
167 struct qcom_cpufreq_data *data;
168 struct cpufreq_policy *policy;
169
170 policy = cpufreq_cpu_get_raw(cpu);
171 if (!policy)
172 return 0;
173
174 data = policy->driver_data;
175
176 if (data->throttle_irq >= 0)
177 return qcom_lmh_get_throttle_freq(data) / HZ_PER_KHZ;
178
179 return qcom_cpufreq_get_freq(cpu);
180}
181
182static unsigned int qcom_cpufreq_hw_fast_switch(struct cpufreq_policy *policy,
183 unsigned int target_freq)
184{
185 struct qcom_cpufreq_data *data = policy->driver_data;
186 const struct qcom_cpufreq_soc_data *soc_data = qcom_cpufreq.soc_data;
187 unsigned int index;
188 unsigned int i;
189
190 index = policy->cached_resolved_idx;
191 writel_relaxed(index, data->base + soc_data->reg_perf_state);
192
193 if (data->per_core_dcvs)
194 for (i = 1; i < cpumask_weight(srcp: policy->related_cpus); i++)
195 writel_relaxed(index, data->base + soc_data->reg_perf_state + i * 4);
196
197 return policy->freq_table[index].frequency;
198}
199
200static int qcom_cpufreq_hw_read_lut(struct device *cpu_dev,
201 struct cpufreq_policy *policy)
202{
203 u32 data, src, lval, i, core_count, prev_freq = 0, freq;
204 u32 volt;
205 struct cpufreq_frequency_table *table;
206 struct dev_pm_opp *opp;
207 unsigned long rate;
208 int ret;
209 struct qcom_cpufreq_data *drv_data = policy->driver_data;
210 const struct qcom_cpufreq_soc_data *soc_data = qcom_cpufreq.soc_data;
211
212 table = kcalloc(LUT_MAX_ENTRIES + 1, size: sizeof(*table), GFP_KERNEL);
213 if (!table)
214 return -ENOMEM;
215
216 ret = dev_pm_opp_of_add_table(dev: cpu_dev);
217 if (!ret) {
218 /* Disable all opps and cross-validate against LUT later */
219 icc_scaling_enabled = true;
220 for (rate = 0; ; rate++) {
221 opp = dev_pm_opp_find_freq_ceil(dev: cpu_dev, freq: &rate);
222 if (IS_ERR(ptr: opp))
223 break;
224
225 dev_pm_opp_put(opp);
226 dev_pm_opp_disable(dev: cpu_dev, freq: rate);
227 }
228 } else if (ret != -ENODEV) {
229 dev_err(cpu_dev, "Invalid opp table in device tree\n");
230 kfree(objp: table);
231 return ret;
232 } else {
233 policy->fast_switch_possible = true;
234 icc_scaling_enabled = false;
235 }
236
237 for (i = 0; i < LUT_MAX_ENTRIES; i++) {
238 data = readl_relaxed(drv_data->base + soc_data->reg_freq_lut +
239 i * soc_data->lut_row_size);
240 src = FIELD_GET(LUT_SRC, data);
241 lval = FIELD_GET(LUT_L_VAL, data);
242 core_count = FIELD_GET(LUT_CORE_COUNT, data);
243
244 data = readl_relaxed(drv_data->base + soc_data->reg_volt_lut +
245 i * soc_data->lut_row_size);
246 volt = FIELD_GET(LUT_VOLT, data) * 1000;
247
248 if (src)
249 freq = xo_rate * lval / 1000;
250 else
251 freq = cpu_hw_rate / 1000;
252
253 if (freq != prev_freq && core_count != LUT_TURBO_IND) {
254 if (!qcom_cpufreq_update_opp(cpu_dev, freq_khz: freq, volt)) {
255 table[i].frequency = freq;
256 dev_dbg(cpu_dev, "index=%d freq=%d, core_count %d\n", i,
257 freq, core_count);
258 } else {
259 dev_warn(cpu_dev, "failed to update OPP for freq=%d\n", freq);
260 table[i].frequency = CPUFREQ_ENTRY_INVALID;
261 }
262
263 } else if (core_count == LUT_TURBO_IND) {
264 table[i].frequency = CPUFREQ_ENTRY_INVALID;
265 }
266
267 /*
268 * Two of the same frequencies with the same core counts means
269 * end of table
270 */
271 if (i > 0 && prev_freq == freq) {
272 struct cpufreq_frequency_table *prev = &table[i - 1];
273
274 /*
275 * Only treat the last frequency that might be a boost
276 * as the boost frequency
277 */
278 if (prev->frequency == CPUFREQ_ENTRY_INVALID) {
279 if (!qcom_cpufreq_update_opp(cpu_dev, freq_khz: prev_freq, volt)) {
280 prev->frequency = prev_freq;
281 prev->flags = CPUFREQ_BOOST_FREQ;
282 } else {
283 dev_warn(cpu_dev, "failed to update OPP for freq=%d\n",
284 freq);
285 }
286 }
287
288 break;
289 }
290
291 prev_freq = freq;
292 }
293
294 table[i].frequency = CPUFREQ_TABLE_END;
295 policy->freq_table = table;
296 dev_pm_opp_set_sharing_cpus(cpu_dev, cpumask: policy->cpus);
297
298 return 0;
299}
300
301static void qcom_get_related_cpus(int index, struct cpumask *m)
302{
303 struct device_node *cpu_np;
304 struct of_phandle_args args;
305 int cpu, ret;
306
307 for_each_possible_cpu(cpu) {
308 cpu_np = of_cpu_device_node_get(cpu);
309 if (!cpu_np)
310 continue;
311
312 ret = of_parse_phandle_with_args(np: cpu_np, list_name: "qcom,freq-domain",
313 cells_name: "#freq-domain-cells", index: 0,
314 out_args: &args);
315 of_node_put(node: cpu_np);
316 if (ret < 0)
317 continue;
318
319 if (index == args.args[0])
320 cpumask_set_cpu(cpu, dstp: m);
321 }
322}
323
324static void qcom_lmh_dcvs_notify(struct qcom_cpufreq_data *data)
325{
326 struct cpufreq_policy *policy = data->policy;
327 int cpu = cpumask_first(srcp: policy->related_cpus);
328 struct device *dev = get_cpu_device(cpu);
329 unsigned long freq_hz, throttled_freq;
330 struct dev_pm_opp *opp;
331
332 /*
333 * Get the h/w throttled frequency, normalize it using the
334 * registered opp table and use it to calculate thermal pressure.
335 */
336 freq_hz = qcom_lmh_get_throttle_freq(data);
337
338 opp = dev_pm_opp_find_freq_floor(dev, freq: &freq_hz);
339 if (IS_ERR(ptr: opp) && PTR_ERR(ptr: opp) == -ERANGE)
340 opp = dev_pm_opp_find_freq_ceil(dev, freq: &freq_hz);
341
342 if (IS_ERR(ptr: opp)) {
343 dev_warn(dev, "Can't find the OPP for throttling: %pe!\n", opp);
344 } else {
345 dev_pm_opp_put(opp);
346 }
347
348 throttled_freq = freq_hz / HZ_PER_KHZ;
349
350 /* Update thermal pressure (the boost frequencies are accepted) */
351 arch_update_thermal_pressure(cpus: policy->related_cpus, capped_frequency: throttled_freq);
352
353 /*
354 * In the unlikely case policy is unregistered do not enable
355 * polling or h/w interrupt
356 */
357 mutex_lock(&data->throttle_lock);
358 if (data->cancel_throttle)
359 goto out;
360
361 /*
362 * If h/w throttled frequency is higher than what cpufreq has requested
363 * for, then stop polling and switch back to interrupt mechanism.
364 */
365 if (throttled_freq >= qcom_cpufreq_get_freq(cpu))
366 enable_irq(irq: data->throttle_irq);
367 else
368 mod_delayed_work(wq: system_highpri_wq, dwork: &data->throttle_work,
369 delay: msecs_to_jiffies(m: 10));
370
371out:
372 mutex_unlock(lock: &data->throttle_lock);
373}
374
375static void qcom_lmh_dcvs_poll(struct work_struct *work)
376{
377 struct qcom_cpufreq_data *data;
378
379 data = container_of(work, struct qcom_cpufreq_data, throttle_work.work);
380 qcom_lmh_dcvs_notify(data);
381}
382
383static irqreturn_t qcom_lmh_dcvs_handle_irq(int irq, void *data)
384{
385 struct qcom_cpufreq_data *c_data = data;
386
387 /* Disable interrupt and enable polling */
388 disable_irq_nosync(irq: c_data->throttle_irq);
389 schedule_delayed_work(dwork: &c_data->throttle_work, delay: 0);
390
391 if (qcom_cpufreq.soc_data->reg_intr_clr)
392 writel_relaxed(GT_IRQ_STATUS,
393 c_data->base + qcom_cpufreq.soc_data->reg_intr_clr);
394
395 return IRQ_HANDLED;
396}
397
398static const struct qcom_cpufreq_soc_data qcom_soc_data = {
399 .reg_enable = 0x0,
400 .reg_dcvs_ctrl = 0xbc,
401 .reg_freq_lut = 0x110,
402 .reg_volt_lut = 0x114,
403 .reg_current_vote = 0x704,
404 .reg_perf_state = 0x920,
405 .lut_row_size = 32,
406};
407
408static const struct qcom_cpufreq_soc_data epss_soc_data = {
409 .reg_enable = 0x0,
410 .reg_domain_state = 0x20,
411 .reg_dcvs_ctrl = 0xb0,
412 .reg_freq_lut = 0x100,
413 .reg_volt_lut = 0x200,
414 .reg_intr_clr = 0x308,
415 .reg_perf_state = 0x320,
416 .lut_row_size = 4,
417};
418
419static const struct of_device_id qcom_cpufreq_hw_match[] = {
420 { .compatible = "qcom,cpufreq-hw", .data = &qcom_soc_data },
421 { .compatible = "qcom,cpufreq-epss", .data = &epss_soc_data },
422 {}
423};
424MODULE_DEVICE_TABLE(of, qcom_cpufreq_hw_match);
425
426static int qcom_cpufreq_hw_lmh_init(struct cpufreq_policy *policy, int index)
427{
428 struct qcom_cpufreq_data *data = policy->driver_data;
429 struct platform_device *pdev = cpufreq_get_driver_data();
430 int ret;
431
432 /*
433 * Look for LMh interrupt. If no interrupt line is specified /
434 * if there is an error, allow cpufreq to be enabled as usual.
435 */
436 data->throttle_irq = platform_get_irq_optional(pdev, index);
437 if (data->throttle_irq == -ENXIO)
438 return 0;
439 if (data->throttle_irq < 0)
440 return data->throttle_irq;
441
442 data->cancel_throttle = false;
443 data->policy = policy;
444
445 mutex_init(&data->throttle_lock);
446 INIT_DEFERRABLE_WORK(&data->throttle_work, qcom_lmh_dcvs_poll);
447
448 snprintf(buf: data->irq_name, size: sizeof(data->irq_name), fmt: "dcvsh-irq-%u", policy->cpu);
449 ret = request_threaded_irq(irq: data->throttle_irq, NULL, thread_fn: qcom_lmh_dcvs_handle_irq,
450 IRQF_ONESHOT | IRQF_NO_AUTOEN, name: data->irq_name, dev: data);
451 if (ret) {
452 dev_err(&pdev->dev, "Error registering %s: %d\n", data->irq_name, ret);
453 return 0;
454 }
455
456 ret = irq_set_affinity_and_hint(irq: data->throttle_irq, m: policy->cpus);
457 if (ret)
458 dev_err(&pdev->dev, "Failed to set CPU affinity of %s[%d]\n",
459 data->irq_name, data->throttle_irq);
460
461 return 0;
462}
463
464static int qcom_cpufreq_hw_cpu_online(struct cpufreq_policy *policy)
465{
466 struct qcom_cpufreq_data *data = policy->driver_data;
467 struct platform_device *pdev = cpufreq_get_driver_data();
468 int ret;
469
470 if (data->throttle_irq <= 0)
471 return 0;
472
473 mutex_lock(&data->throttle_lock);
474 data->cancel_throttle = false;
475 mutex_unlock(lock: &data->throttle_lock);
476
477 ret = irq_set_affinity_and_hint(irq: data->throttle_irq, m: policy->cpus);
478 if (ret)
479 dev_err(&pdev->dev, "Failed to set CPU affinity of %s[%d]\n",
480 data->irq_name, data->throttle_irq);
481
482 return ret;
483}
484
485static int qcom_cpufreq_hw_cpu_offline(struct cpufreq_policy *policy)
486{
487 struct qcom_cpufreq_data *data = policy->driver_data;
488
489 if (data->throttle_irq <= 0)
490 return 0;
491
492 mutex_lock(&data->throttle_lock);
493 data->cancel_throttle = true;
494 mutex_unlock(lock: &data->throttle_lock);
495
496 cancel_delayed_work_sync(dwork: &data->throttle_work);
497 irq_set_affinity_and_hint(irq: data->throttle_irq, NULL);
498 disable_irq_nosync(irq: data->throttle_irq);
499
500 return 0;
501}
502
503static void qcom_cpufreq_hw_lmh_exit(struct qcom_cpufreq_data *data)
504{
505 if (data->throttle_irq <= 0)
506 return;
507
508 free_irq(data->throttle_irq, data);
509}
510
511static int qcom_cpufreq_hw_cpu_init(struct cpufreq_policy *policy)
512{
513 struct platform_device *pdev = cpufreq_get_driver_data();
514 struct device *dev = &pdev->dev;
515 struct of_phandle_args args;
516 struct device_node *cpu_np;
517 struct device *cpu_dev;
518 struct qcom_cpufreq_data *data;
519 int ret, index;
520
521 cpu_dev = get_cpu_device(cpu: policy->cpu);
522 if (!cpu_dev) {
523 pr_err("%s: failed to get cpu%d device\n", __func__,
524 policy->cpu);
525 return -ENODEV;
526 }
527
528 cpu_np = of_cpu_device_node_get(cpu: policy->cpu);
529 if (!cpu_np)
530 return -EINVAL;
531
532 ret = of_parse_phandle_with_args(np: cpu_np, list_name: "qcom,freq-domain",
533 cells_name: "#freq-domain-cells", index: 0, out_args: &args);
534 of_node_put(node: cpu_np);
535 if (ret)
536 return ret;
537
538 index = args.args[0];
539 data = &qcom_cpufreq.data[index];
540
541 /* HW should be in enabled state to proceed */
542 if (!(readl_relaxed(data->base + qcom_cpufreq.soc_data->reg_enable) & 0x1)) {
543 dev_err(dev, "Domain-%d cpufreq hardware not enabled\n", index);
544 return -ENODEV;
545 }
546
547 if (readl_relaxed(data->base + qcom_cpufreq.soc_data->reg_dcvs_ctrl) & 0x1)
548 data->per_core_dcvs = true;
549
550 qcom_get_related_cpus(index, m: policy->cpus);
551
552 policy->driver_data = data;
553 policy->dvfs_possible_from_any_cpu = true;
554
555 ret = qcom_cpufreq_hw_read_lut(cpu_dev, policy);
556 if (ret) {
557 dev_err(dev, "Domain-%d failed to read LUT\n", index);
558 return ret;
559 }
560
561 ret = dev_pm_opp_get_opp_count(dev: cpu_dev);
562 if (ret <= 0) {
563 dev_err(cpu_dev, "Failed to add OPPs\n");
564 return -ENODEV;
565 }
566
567 if (policy_has_boost_freq(policy)) {
568 ret = cpufreq_enable_boost_support();
569 if (ret)
570 dev_warn(cpu_dev, "failed to enable boost: %d\n", ret);
571 }
572
573 return qcom_cpufreq_hw_lmh_init(policy, index);
574}
575
576static int qcom_cpufreq_hw_cpu_exit(struct cpufreq_policy *policy)
577{
578 struct device *cpu_dev = get_cpu_device(cpu: policy->cpu);
579 struct qcom_cpufreq_data *data = policy->driver_data;
580
581 dev_pm_opp_remove_all_dynamic(dev: cpu_dev);
582 dev_pm_opp_of_cpumask_remove_table(cpumask: policy->related_cpus);
583 qcom_cpufreq_hw_lmh_exit(data);
584 kfree(objp: policy->freq_table);
585 kfree(objp: data);
586
587 return 0;
588}
589
590static void qcom_cpufreq_ready(struct cpufreq_policy *policy)
591{
592 struct qcom_cpufreq_data *data = policy->driver_data;
593
594 if (data->throttle_irq >= 0)
595 enable_irq(irq: data->throttle_irq);
596}
597
598static struct freq_attr *qcom_cpufreq_hw_attr[] = {
599 &cpufreq_freq_attr_scaling_available_freqs,
600 &cpufreq_freq_attr_scaling_boost_freqs,
601 NULL
602};
603
604static struct cpufreq_driver cpufreq_qcom_hw_driver = {
605 .flags = CPUFREQ_NEED_INITIAL_FREQ_CHECK |
606 CPUFREQ_HAVE_GOVERNOR_PER_POLICY |
607 CPUFREQ_IS_COOLING_DEV,
608 .verify = cpufreq_generic_frequency_table_verify,
609 .target_index = qcom_cpufreq_hw_target_index,
610 .get = qcom_cpufreq_hw_get,
611 .init = qcom_cpufreq_hw_cpu_init,
612 .exit = qcom_cpufreq_hw_cpu_exit,
613 .online = qcom_cpufreq_hw_cpu_online,
614 .offline = qcom_cpufreq_hw_cpu_offline,
615 .register_em = cpufreq_register_em_with_opp,
616 .fast_switch = qcom_cpufreq_hw_fast_switch,
617 .name = "qcom-cpufreq-hw",
618 .attr = qcom_cpufreq_hw_attr,
619 .ready = qcom_cpufreq_ready,
620};
621
622static unsigned long qcom_cpufreq_hw_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
623{
624 struct qcom_cpufreq_data *data = container_of(hw, struct qcom_cpufreq_data, cpu_clk);
625
626 return qcom_lmh_get_throttle_freq(data);
627}
628
629static const struct clk_ops qcom_cpufreq_hw_clk_ops = {
630 .recalc_rate = qcom_cpufreq_hw_recalc_rate,
631};
632
633static int qcom_cpufreq_hw_driver_probe(struct platform_device *pdev)
634{
635 struct clk_hw_onecell_data *clk_data;
636 struct device *dev = &pdev->dev;
637 struct device *cpu_dev;
638 struct clk *clk;
639 int ret, i, num_domains;
640
641 clk = clk_get(dev, id: "xo");
642 if (IS_ERR(ptr: clk))
643 return PTR_ERR(ptr: clk);
644
645 xo_rate = clk_get_rate(clk);
646 clk_put(clk);
647
648 clk = clk_get(dev, id: "alternate");
649 if (IS_ERR(ptr: clk))
650 return PTR_ERR(ptr: clk);
651
652 cpu_hw_rate = clk_get_rate(clk) / CLK_HW_DIV;
653 clk_put(clk);
654
655 cpufreq_qcom_hw_driver.driver_data = pdev;
656
657 /* Check for optional interconnect paths on CPU0 */
658 cpu_dev = get_cpu_device(cpu: 0);
659 if (!cpu_dev)
660 return -EPROBE_DEFER;
661
662 ret = dev_pm_opp_of_find_icc_paths(dev: cpu_dev, NULL);
663 if (ret)
664 return dev_err_probe(dev, err: ret, fmt: "Failed to find icc paths\n");
665
666 for (num_domains = 0; num_domains < MAX_FREQ_DOMAINS; num_domains++)
667 if (!platform_get_resource(pdev, IORESOURCE_MEM, num_domains))
668 break;
669
670 qcom_cpufreq.data = devm_kzalloc(dev, size: sizeof(struct qcom_cpufreq_data) * num_domains,
671 GFP_KERNEL);
672 if (!qcom_cpufreq.data)
673 return -ENOMEM;
674
675 qcom_cpufreq.soc_data = of_device_get_match_data(dev);
676 if (!qcom_cpufreq.soc_data)
677 return -ENODEV;
678
679 clk_data = devm_kzalloc(dev, struct_size(clk_data, hws, num_domains), GFP_KERNEL);
680 if (!clk_data)
681 return -ENOMEM;
682
683 clk_data->num = num_domains;
684
685 for (i = 0; i < num_domains; i++) {
686 struct qcom_cpufreq_data *data = &qcom_cpufreq.data[i];
687 struct clk_init_data clk_init = {};
688 void __iomem *base;
689
690 base = devm_platform_ioremap_resource(pdev, index: i);
691 if (IS_ERR(ptr: base)) {
692 dev_err(dev, "Failed to map resource index %d\n", i);
693 return PTR_ERR(ptr: base);
694 }
695
696 data->base = base;
697
698 /* Register CPU clock for each frequency domain */
699 clk_init.name = kasprintf(GFP_KERNEL, fmt: "qcom_cpufreq%d", i);
700 if (!clk_init.name)
701 return -ENOMEM;
702
703 clk_init.flags = CLK_GET_RATE_NOCACHE;
704 clk_init.ops = &qcom_cpufreq_hw_clk_ops;
705 data->cpu_clk.init = &clk_init;
706
707 ret = devm_clk_hw_register(dev, hw: &data->cpu_clk);
708 if (ret < 0) {
709 dev_err(dev, "Failed to register clock %d: %d\n", i, ret);
710 kfree(objp: clk_init.name);
711 return ret;
712 }
713
714 clk_data->hws[i] = &data->cpu_clk;
715 kfree(objp: clk_init.name);
716 }
717
718 ret = devm_of_clk_add_hw_provider(dev, get: of_clk_hw_onecell_get, data: clk_data);
719 if (ret < 0) {
720 dev_err(dev, "Failed to add clock provider\n");
721 return ret;
722 }
723
724 ret = cpufreq_register_driver(driver_data: &cpufreq_qcom_hw_driver);
725 if (ret)
726 dev_err(dev, "CPUFreq HW driver failed to register\n");
727 else
728 dev_dbg(dev, "QCOM CPUFreq HW driver initialized\n");
729
730 return ret;
731}
732
733static void qcom_cpufreq_hw_driver_remove(struct platform_device *pdev)
734{
735 cpufreq_unregister_driver(driver_data: &cpufreq_qcom_hw_driver);
736}
737
738static struct platform_driver qcom_cpufreq_hw_driver = {
739 .probe = qcom_cpufreq_hw_driver_probe,
740 .remove_new = qcom_cpufreq_hw_driver_remove,
741 .driver = {
742 .name = "qcom-cpufreq-hw",
743 .of_match_table = qcom_cpufreq_hw_match,
744 },
745};
746
747static int __init qcom_cpufreq_hw_init(void)
748{
749 return platform_driver_register(&qcom_cpufreq_hw_driver);
750}
751postcore_initcall(qcom_cpufreq_hw_init);
752
753static void __exit qcom_cpufreq_hw_exit(void)
754{
755 platform_driver_unregister(&qcom_cpufreq_hw_driver);
756}
757module_exit(qcom_cpufreq_hw_exit);
758
759MODULE_DESCRIPTION("QCOM CPUFREQ HW Driver");
760MODULE_LICENSE("GPL v2");
761

source code of linux/drivers/cpufreq/qcom-cpufreq-hw.c