1/*
2 * Copyright 2009 Jerome Glisse.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sub license, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19 * USE OR OTHER DEALINGS IN THE SOFTWARE.
20 *
21 * The above copyright notice and this permission notice (including the
22 * next paragraph) shall be included in all copies or substantial portions
23 * of the Software.
24 *
25 */
26/*
27 * Authors:
28 * Jerome Glisse <glisse@freedesktop.org>
29 * Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30 * Dave Airlie
31 */
32
33#include <linux/dma-mapping.h>
34#include <linux/iommu.h>
35#include <linux/pagemap.h>
36#include <linux/sched/task.h>
37#include <linux/sched/mm.h>
38#include <linux/seq_file.h>
39#include <linux/slab.h>
40#include <linux/swap.h>
41#include <linux/dma-buf.h>
42#include <linux/sizes.h>
43#include <linux/module.h>
44
45#include <drm/drm_drv.h>
46#include <drm/ttm/ttm_bo.h>
47#include <drm/ttm/ttm_placement.h>
48#include <drm/ttm/ttm_range_manager.h>
49#include <drm/ttm/ttm_tt.h>
50
51#include <drm/amdgpu_drm.h>
52
53#include "amdgpu.h"
54#include "amdgpu_object.h"
55#include "amdgpu_trace.h"
56#include "amdgpu_amdkfd.h"
57#include "amdgpu_sdma.h"
58#include "amdgpu_ras.h"
59#include "amdgpu_hmm.h"
60#include "amdgpu_atomfirmware.h"
61#include "amdgpu_res_cursor.h"
62#include "bif/bif_4_1_d.h"
63
64MODULE_IMPORT_NS(DMA_BUF);
65
66#define AMDGPU_TTM_VRAM_MAX_DW_READ ((size_t)128)
67
68static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
69 struct ttm_tt *ttm,
70 struct ttm_resource *bo_mem);
71static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
72 struct ttm_tt *ttm);
73
74static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev,
75 unsigned int type,
76 uint64_t size_in_page)
77{
78 return ttm_range_man_init(bdev: &adev->mman.bdev, type,
79 use_tt: false, p_size: size_in_page);
80}
81
82/**
83 * amdgpu_evict_flags - Compute placement flags
84 *
85 * @bo: The buffer object to evict
86 * @placement: Possible destination(s) for evicted BO
87 *
88 * Fill in placement data when ttm_bo_evict() is called
89 */
90static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
91 struct ttm_placement *placement)
92{
93 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev: bo->bdev);
94 struct amdgpu_bo *abo;
95 static const struct ttm_place placements = {
96 .fpfn = 0,
97 .lpfn = 0,
98 .mem_type = TTM_PL_SYSTEM,
99 .flags = 0
100 };
101
102 /* Don't handle scatter gather BOs */
103 if (bo->type == ttm_bo_type_sg) {
104 placement->num_placement = 0;
105 placement->num_busy_placement = 0;
106 return;
107 }
108
109 /* Object isn't an AMDGPU object so ignore */
110 if (!amdgpu_bo_is_amdgpu_bo(bo)) {
111 placement->placement = &placements;
112 placement->busy_placement = &placements;
113 placement->num_placement = 1;
114 placement->num_busy_placement = 1;
115 return;
116 }
117
118 abo = ttm_to_amdgpu_bo(tbo: bo);
119 if (abo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) {
120 placement->num_placement = 0;
121 placement->num_busy_placement = 0;
122 return;
123 }
124
125 switch (bo->resource->mem_type) {
126 case AMDGPU_PL_GDS:
127 case AMDGPU_PL_GWS:
128 case AMDGPU_PL_OA:
129 case AMDGPU_PL_DOORBELL:
130 placement->num_placement = 0;
131 placement->num_busy_placement = 0;
132 return;
133
134 case TTM_PL_VRAM:
135 if (!adev->mman.buffer_funcs_enabled) {
136 /* Move to system memory */
137 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
138 } else if (!amdgpu_gmc_vram_full_visible(gmc: &adev->gmc) &&
139 !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
140 amdgpu_bo_in_cpu_visible_vram(bo: abo)) {
141
142 /* Try evicting to the CPU inaccessible part of VRAM
143 * first, but only set GTT as busy placement, so this
144 * BO will be evicted to GTT rather than causing other
145 * BOs to be evicted from VRAM
146 */
147 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
148 AMDGPU_GEM_DOMAIN_GTT |
149 AMDGPU_GEM_DOMAIN_CPU);
150 abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
151 abo->placements[0].lpfn = 0;
152 abo->placement.busy_placement = &abo->placements[1];
153 abo->placement.num_busy_placement = 1;
154 } else {
155 /* Move to GTT memory */
156 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT |
157 AMDGPU_GEM_DOMAIN_CPU);
158 }
159 break;
160 case TTM_PL_TT:
161 case AMDGPU_PL_PREEMPT:
162 default:
163 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
164 break;
165 }
166 *placement = abo->placement;
167}
168
169/**
170 * amdgpu_ttm_map_buffer - Map memory into the GART windows
171 * @bo: buffer object to map
172 * @mem: memory object to map
173 * @mm_cur: range to map
174 * @window: which GART window to use
175 * @ring: DMA ring to use for the copy
176 * @tmz: if we should setup a TMZ enabled mapping
177 * @size: in number of bytes to map, out number of bytes mapped
178 * @addr: resulting address inside the MC address space
179 *
180 * Setup one of the GART windows to access a specific piece of memory or return
181 * the physical address for local memory.
182 */
183static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
184 struct ttm_resource *mem,
185 struct amdgpu_res_cursor *mm_cur,
186 unsigned int window, struct amdgpu_ring *ring,
187 bool tmz, uint64_t *size, uint64_t *addr)
188{
189 struct amdgpu_device *adev = ring->adev;
190 unsigned int offset, num_pages, num_dw, num_bytes;
191 uint64_t src_addr, dst_addr;
192 struct amdgpu_job *job;
193 void *cpu_addr;
194 uint64_t flags;
195 unsigned int i;
196 int r;
197
198 BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
199 AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
200
201 if (WARN_ON(mem->mem_type == AMDGPU_PL_PREEMPT))
202 return -EINVAL;
203
204 /* Map only what can't be accessed directly */
205 if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
206 *addr = amdgpu_ttm_domain_start(adev, type: mem->mem_type) +
207 mm_cur->start;
208 return 0;
209 }
210
211
212 /*
213 * If start begins at an offset inside the page, then adjust the size
214 * and addr accordingly
215 */
216 offset = mm_cur->start & ~PAGE_MASK;
217
218 num_pages = PFN_UP(*size + offset);
219 num_pages = min_t(uint32_t, num_pages, AMDGPU_GTT_MAX_TRANSFER_SIZE);
220
221 *size = min(*size, (uint64_t)num_pages * PAGE_SIZE - offset);
222
223 *addr = adev->gmc.gart_start;
224 *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
225 AMDGPU_GPU_PAGE_SIZE;
226 *addr += offset;
227
228 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
229 num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE;
230
231 r = amdgpu_job_alloc_with_ib(adev, entity: &adev->mman.high_pr,
232 AMDGPU_FENCE_OWNER_UNDEFINED,
233 size: num_dw * 4 + num_bytes,
234 pool_type: AMDGPU_IB_POOL_DELAYED, job: &job);
235 if (r)
236 return r;
237
238 src_addr = num_dw * 4;
239 src_addr += job->ibs[0].gpu_addr;
240
241 dst_addr = amdgpu_bo_gpu_offset(bo: adev->gart.bo);
242 dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
243 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
244 dst_addr, num_bytes, false);
245
246 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
247 WARN_ON(job->ibs[0].length_dw > num_dw);
248
249 flags = amdgpu_ttm_tt_pte_flags(adev, ttm: bo->ttm, mem);
250 if (tmz)
251 flags |= AMDGPU_PTE_TMZ;
252
253 cpu_addr = &job->ibs[0].ptr[num_dw];
254
255 if (mem->mem_type == TTM_PL_TT) {
256 dma_addr_t *dma_addr;
257
258 dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT];
259 amdgpu_gart_map(adev, offset: 0, pages: num_pages, dma_addr, flags, dst: cpu_addr);
260 } else {
261 dma_addr_t dma_address;
262
263 dma_address = mm_cur->start;
264 dma_address += adev->vm_manager.vram_base_offset;
265
266 for (i = 0; i < num_pages; ++i) {
267 amdgpu_gart_map(adev, offset: i << PAGE_SHIFT, pages: 1, dma_addr: &dma_address,
268 flags, dst: cpu_addr);
269 dma_address += PAGE_SIZE;
270 }
271 }
272
273 dma_fence_put(fence: amdgpu_job_submit(job));
274 return 0;
275}
276
277/**
278 * amdgpu_ttm_copy_mem_to_mem - Helper function for copy
279 * @adev: amdgpu device
280 * @src: buffer/address where to read from
281 * @dst: buffer/address where to write to
282 * @size: number of bytes to copy
283 * @tmz: if a secure copy should be used
284 * @resv: resv object to sync to
285 * @f: Returns the last fence if multiple jobs are submitted.
286 *
287 * The function copies @size bytes from {src->mem + src->offset} to
288 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
289 * move and different for a BO to BO copy.
290 *
291 */
292int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
293 const struct amdgpu_copy_mem *src,
294 const struct amdgpu_copy_mem *dst,
295 uint64_t size, bool tmz,
296 struct dma_resv *resv,
297 struct dma_fence **f)
298{
299 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
300 struct amdgpu_res_cursor src_mm, dst_mm;
301 struct dma_fence *fence = NULL;
302 int r = 0;
303
304 if (!adev->mman.buffer_funcs_enabled) {
305 DRM_ERROR("Trying to move memory with ring turned off.\n");
306 return -EINVAL;
307 }
308
309 amdgpu_res_first(res: src->mem, start: src->offset, size, cur: &src_mm);
310 amdgpu_res_first(res: dst->mem, start: dst->offset, size, cur: &dst_mm);
311
312 mutex_lock(&adev->mman.gtt_window_lock);
313 while (src_mm.remaining) {
314 uint64_t from, to, cur_size;
315 struct dma_fence *next;
316
317 /* Never copy more than 256MiB at once to avoid a timeout */
318 cur_size = min3(src_mm.size, dst_mm.size, 256ULL << 20);
319
320 /* Map src to window 0 and dst to window 1. */
321 r = amdgpu_ttm_map_buffer(bo: src->bo, mem: src->mem, mm_cur: &src_mm,
322 window: 0, ring, tmz, size: &cur_size, addr: &from);
323 if (r)
324 goto error;
325
326 r = amdgpu_ttm_map_buffer(bo: dst->bo, mem: dst->mem, mm_cur: &dst_mm,
327 window: 1, ring, tmz, size: &cur_size, addr: &to);
328 if (r)
329 goto error;
330
331 r = amdgpu_copy_buffer(ring, src_offset: from, dst_offset: to, byte_count: cur_size,
332 resv, fence: &next, direct_submit: false, vm_needs_flush: true, tmz);
333 if (r)
334 goto error;
335
336 dma_fence_put(fence);
337 fence = next;
338
339 amdgpu_res_next(cur: &src_mm, size: cur_size);
340 amdgpu_res_next(cur: &dst_mm, size: cur_size);
341 }
342error:
343 mutex_unlock(lock: &adev->mman.gtt_window_lock);
344 if (f)
345 *f = dma_fence_get(fence);
346 dma_fence_put(fence);
347 return r;
348}
349
350/*
351 * amdgpu_move_blit - Copy an entire buffer to another buffer
352 *
353 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
354 * help move buffers to and from VRAM.
355 */
356static int amdgpu_move_blit(struct ttm_buffer_object *bo,
357 bool evict,
358 struct ttm_resource *new_mem,
359 struct ttm_resource *old_mem)
360{
361 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev: bo->bdev);
362 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo: bo);
363 struct amdgpu_copy_mem src, dst;
364 struct dma_fence *fence = NULL;
365 int r;
366
367 src.bo = bo;
368 dst.bo = bo;
369 src.mem = old_mem;
370 dst.mem = new_mem;
371 src.offset = 0;
372 dst.offset = 0;
373
374 r = amdgpu_ttm_copy_mem_to_mem(adev, src: &src, dst: &dst,
375 size: new_mem->size,
376 tmz: amdgpu_bo_encrypted(bo: abo),
377 resv: bo->base.resv, f: &fence);
378 if (r)
379 goto error;
380
381 /* clear the space being freed */
382 if (old_mem->mem_type == TTM_PL_VRAM &&
383 (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
384 struct dma_fence *wipe_fence = NULL;
385
386 r = amdgpu_fill_buffer(bo: abo, AMDGPU_POISON, NULL, fence: &wipe_fence,
387 delayed: false);
388 if (r) {
389 goto error;
390 } else if (wipe_fence) {
391 dma_fence_put(fence);
392 fence = wipe_fence;
393 }
394 }
395
396 /* Always block for VM page tables before committing the new location */
397 if (bo->type == ttm_bo_type_kernel)
398 r = ttm_bo_move_accel_cleanup(bo, fence, evict: true, pipeline: false, new_mem);
399 else
400 r = ttm_bo_move_accel_cleanup(bo, fence, evict, pipeline: true, new_mem);
401 dma_fence_put(fence);
402 return r;
403
404error:
405 if (fence)
406 dma_fence_wait(fence, intr: false);
407 dma_fence_put(fence);
408 return r;
409}
410
411/*
412 * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy
413 *
414 * Called by amdgpu_bo_move()
415 */
416static bool amdgpu_mem_visible(struct amdgpu_device *adev,
417 struct ttm_resource *mem)
418{
419 u64 mem_size = (u64)mem->size;
420 struct amdgpu_res_cursor cursor;
421 u64 end;
422
423 if (mem->mem_type == TTM_PL_SYSTEM ||
424 mem->mem_type == TTM_PL_TT)
425 return true;
426 if (mem->mem_type != TTM_PL_VRAM)
427 return false;
428
429 amdgpu_res_first(res: mem, start: 0, size: mem_size, cur: &cursor);
430 end = cursor.start + cursor.size;
431 while (cursor.remaining) {
432 amdgpu_res_next(cur: &cursor, size: cursor.size);
433
434 if (!cursor.remaining)
435 break;
436
437 /* ttm_resource_ioremap only supports contiguous memory */
438 if (end != cursor.start)
439 return false;
440
441 end = cursor.start + cursor.size;
442 }
443
444 return end <= adev->gmc.visible_vram_size;
445}
446
447/*
448 * amdgpu_bo_move - Move a buffer object to a new memory location
449 *
450 * Called by ttm_bo_handle_move_mem()
451 */
452static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
453 struct ttm_operation_ctx *ctx,
454 struct ttm_resource *new_mem,
455 struct ttm_place *hop)
456{
457 struct amdgpu_device *adev;
458 struct amdgpu_bo *abo;
459 struct ttm_resource *old_mem = bo->resource;
460 int r;
461
462 if (new_mem->mem_type == TTM_PL_TT ||
463 new_mem->mem_type == AMDGPU_PL_PREEMPT) {
464 r = amdgpu_ttm_backend_bind(bdev: bo->bdev, ttm: bo->ttm, bo_mem: new_mem);
465 if (r)
466 return r;
467 }
468
469 abo = ttm_to_amdgpu_bo(tbo: bo);
470 adev = amdgpu_ttm_adev(bdev: bo->bdev);
471
472 if (!old_mem || (old_mem->mem_type == TTM_PL_SYSTEM &&
473 bo->ttm == NULL)) {
474 ttm_bo_move_null(bo, new_mem);
475 goto out;
476 }
477 if (old_mem->mem_type == TTM_PL_SYSTEM &&
478 (new_mem->mem_type == TTM_PL_TT ||
479 new_mem->mem_type == AMDGPU_PL_PREEMPT)) {
480 ttm_bo_move_null(bo, new_mem);
481 goto out;
482 }
483 if ((old_mem->mem_type == TTM_PL_TT ||
484 old_mem->mem_type == AMDGPU_PL_PREEMPT) &&
485 new_mem->mem_type == TTM_PL_SYSTEM) {
486 r = ttm_bo_wait_ctx(bo, ctx);
487 if (r)
488 return r;
489
490 amdgpu_ttm_backend_unbind(bdev: bo->bdev, ttm: bo->ttm);
491 ttm_resource_free(bo, res: &bo->resource);
492 ttm_bo_assign_mem(bo, new_mem);
493 goto out;
494 }
495
496 if (old_mem->mem_type == AMDGPU_PL_GDS ||
497 old_mem->mem_type == AMDGPU_PL_GWS ||
498 old_mem->mem_type == AMDGPU_PL_OA ||
499 old_mem->mem_type == AMDGPU_PL_DOORBELL ||
500 new_mem->mem_type == AMDGPU_PL_GDS ||
501 new_mem->mem_type == AMDGPU_PL_GWS ||
502 new_mem->mem_type == AMDGPU_PL_OA ||
503 new_mem->mem_type == AMDGPU_PL_DOORBELL) {
504 /* Nothing to save here */
505 ttm_bo_move_null(bo, new_mem);
506 goto out;
507 }
508
509 if (bo->type == ttm_bo_type_device &&
510 new_mem->mem_type == TTM_PL_VRAM &&
511 old_mem->mem_type != TTM_PL_VRAM) {
512 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
513 * accesses the BO after it's moved.
514 */
515 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
516 }
517
518 if (adev->mman.buffer_funcs_enabled) {
519 if (((old_mem->mem_type == TTM_PL_SYSTEM &&
520 new_mem->mem_type == TTM_PL_VRAM) ||
521 (old_mem->mem_type == TTM_PL_VRAM &&
522 new_mem->mem_type == TTM_PL_SYSTEM))) {
523 hop->fpfn = 0;
524 hop->lpfn = 0;
525 hop->mem_type = TTM_PL_TT;
526 hop->flags = TTM_PL_FLAG_TEMPORARY;
527 return -EMULTIHOP;
528 }
529
530 r = amdgpu_move_blit(bo, evict, new_mem, old_mem);
531 } else {
532 r = -ENODEV;
533 }
534
535 if (r) {
536 /* Check that all memory is CPU accessible */
537 if (!amdgpu_mem_visible(adev, mem: old_mem) ||
538 !amdgpu_mem_visible(adev, mem: new_mem)) {
539 pr_err("Move buffer fallback to memcpy unavailable\n");
540 return r;
541 }
542
543 r = ttm_bo_move_memcpy(bo, ctx, new_mem);
544 if (r)
545 return r;
546 }
547
548out:
549 /* update statistics */
550 atomic64_add(i: bo->base.size, v: &adev->num_bytes_moved);
551 amdgpu_bo_move_notify(bo, evict, new_mem);
552 return 0;
553}
554
555/*
556 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
557 *
558 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
559 */
560static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev,
561 struct ttm_resource *mem)
562{
563 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
564 size_t bus_size = (size_t)mem->size;
565
566 switch (mem->mem_type) {
567 case TTM_PL_SYSTEM:
568 /* system memory */
569 return 0;
570 case TTM_PL_TT:
571 case AMDGPU_PL_PREEMPT:
572 break;
573 case TTM_PL_VRAM:
574 mem->bus.offset = mem->start << PAGE_SHIFT;
575 /* check if it's visible */
576 if ((mem->bus.offset + bus_size) > adev->gmc.visible_vram_size)
577 return -EINVAL;
578
579 if (adev->mman.aper_base_kaddr &&
580 mem->placement & TTM_PL_FLAG_CONTIGUOUS)
581 mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
582 mem->bus.offset;
583
584 mem->bus.offset += adev->gmc.aper_base;
585 mem->bus.is_iomem = true;
586 break;
587 case AMDGPU_PL_DOORBELL:
588 mem->bus.offset = mem->start << PAGE_SHIFT;
589 mem->bus.offset += adev->doorbell.base;
590 mem->bus.is_iomem = true;
591 mem->bus.caching = ttm_uncached;
592 break;
593 default:
594 return -EINVAL;
595 }
596 return 0;
597}
598
599static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
600 unsigned long page_offset)
601{
602 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev: bo->bdev);
603 struct amdgpu_res_cursor cursor;
604
605 amdgpu_res_first(res: bo->resource, start: (u64)page_offset << PAGE_SHIFT, size: 0,
606 cur: &cursor);
607
608 if (bo->resource->mem_type == AMDGPU_PL_DOORBELL)
609 return ((uint64_t)(adev->doorbell.base + cursor.start)) >> PAGE_SHIFT;
610
611 return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT;
612}
613
614/**
615 * amdgpu_ttm_domain_start - Returns GPU start address
616 * @adev: amdgpu device object
617 * @type: type of the memory
618 *
619 * Returns:
620 * GPU start address of a memory domain
621 */
622
623uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
624{
625 switch (type) {
626 case TTM_PL_TT:
627 return adev->gmc.gart_start;
628 case TTM_PL_VRAM:
629 return adev->gmc.vram_start;
630 }
631
632 return 0;
633}
634
635/*
636 * TTM backend functions.
637 */
638struct amdgpu_ttm_tt {
639 struct ttm_tt ttm;
640 struct drm_gem_object *gobj;
641 u64 offset;
642 uint64_t userptr;
643 struct task_struct *usertask;
644 uint32_t userflags;
645 bool bound;
646 int32_t pool_id;
647};
648
649#define ttm_to_amdgpu_ttm_tt(ptr) container_of(ptr, struct amdgpu_ttm_tt, ttm)
650
651#ifdef CONFIG_DRM_AMDGPU_USERPTR
652/*
653 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
654 * memory and start HMM tracking CPU page table update
655 *
656 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
657 * once afterwards to stop HMM tracking
658 */
659int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages,
660 struct hmm_range **range)
661{
662 struct ttm_tt *ttm = bo->tbo.ttm;
663 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
664 unsigned long start = gtt->userptr;
665 struct vm_area_struct *vma;
666 struct mm_struct *mm;
667 bool readonly;
668 int r = 0;
669
670 /* Make sure get_user_pages_done() can cleanup gracefully */
671 *range = NULL;
672
673 mm = bo->notifier.mm;
674 if (unlikely(!mm)) {
675 DRM_DEBUG_DRIVER("BO is not registered?\n");
676 return -EFAULT;
677 }
678
679 if (!mmget_not_zero(mm)) /* Happens during process shutdown */
680 return -ESRCH;
681
682 mmap_read_lock(mm);
683 vma = vma_lookup(mm, addr: start);
684 if (unlikely(!vma)) {
685 r = -EFAULT;
686 goto out_unlock;
687 }
688 if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
689 vma->vm_file)) {
690 r = -EPERM;
691 goto out_unlock;
692 }
693
694 readonly = amdgpu_ttm_tt_is_readonly(ttm);
695 r = amdgpu_hmm_range_get_pages(notifier: &bo->notifier, start, npages: ttm->num_pages,
696 readonly, NULL, pages, phmm_range: range);
697out_unlock:
698 mmap_read_unlock(mm);
699 if (r)
700 pr_debug("failed %d to get user pages 0x%lx\n", r, start);
701
702 mmput(mm);
703
704 return r;
705}
706
707/* amdgpu_ttm_tt_discard_user_pages - Discard range and pfn array allocations
708 */
709void amdgpu_ttm_tt_discard_user_pages(struct ttm_tt *ttm,
710 struct hmm_range *range)
711{
712 struct amdgpu_ttm_tt *gtt = (void *)ttm;
713
714 if (gtt && gtt->userptr && range)
715 amdgpu_hmm_range_get_pages_done(hmm_range: range);
716}
717
718/*
719 * amdgpu_ttm_tt_get_user_pages_done - stop HMM track the CPU page table change
720 * Check if the pages backing this ttm range have been invalidated
721 *
722 * Returns: true if pages are still valid
723 */
724bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm,
725 struct hmm_range *range)
726{
727 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
728
729 if (!gtt || !gtt->userptr || !range)
730 return false;
731
732 DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n",
733 gtt->userptr, ttm->num_pages);
734
735 WARN_ONCE(!range->hmm_pfns, "No user pages to check\n");
736
737 return !amdgpu_hmm_range_get_pages_done(hmm_range: range);
738}
739#endif
740
741/*
742 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
743 *
744 * Called by amdgpu_cs_list_validate(). This creates the page list
745 * that backs user memory and will ultimately be mapped into the device
746 * address space.
747 */
748void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
749{
750 unsigned long i;
751
752 for (i = 0; i < ttm->num_pages; ++i)
753 ttm->pages[i] = pages ? pages[i] : NULL;
754}
755
756/*
757 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
758 *
759 * Called by amdgpu_ttm_backend_bind()
760 **/
761static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev,
762 struct ttm_tt *ttm)
763{
764 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
765 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
766 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
767 enum dma_data_direction direction = write ?
768 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
769 int r;
770
771 /* Allocate an SG array and squash pages into it */
772 r = sg_alloc_table_from_pages(sgt: ttm->sg, pages: ttm->pages, n_pages: ttm->num_pages, offset: 0,
773 size: (u64)ttm->num_pages << PAGE_SHIFT,
774 GFP_KERNEL);
775 if (r)
776 goto release_sg;
777
778 /* Map SG to device */
779 r = dma_map_sgtable(dev: adev->dev, sgt: ttm->sg, dir: direction, attrs: 0);
780 if (r)
781 goto release_sg;
782
783 /* convert SG to linear array of pages and dma addresses */
784 drm_prime_sg_to_dma_addr_array(sgt: ttm->sg, addrs: gtt->ttm.dma_address,
785 max_pages: ttm->num_pages);
786
787 return 0;
788
789release_sg:
790 kfree(objp: ttm->sg);
791 ttm->sg = NULL;
792 return r;
793}
794
795/*
796 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
797 */
798static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev,
799 struct ttm_tt *ttm)
800{
801 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
802 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
803 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
804 enum dma_data_direction direction = write ?
805 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
806
807 /* double check that we don't free the table twice */
808 if (!ttm->sg || !ttm->sg->sgl)
809 return;
810
811 /* unmap the pages mapped to the device */
812 dma_unmap_sgtable(dev: adev->dev, sgt: ttm->sg, dir: direction, attrs: 0);
813 sg_free_table(ttm->sg);
814}
815
816/*
817 * total_pages is constructed as MQD0+CtrlStack0 + MQD1+CtrlStack1 + ...
818 * MQDn+CtrlStackn where n is the number of XCCs per partition.
819 * pages_per_xcc is the size of one MQD+CtrlStack. The first page is MQD
820 * and uses memory type default, UC. The rest of pages_per_xcc are
821 * Ctrl stack and modify their memory type to NC.
822 */
823static void amdgpu_ttm_gart_bind_gfx9_mqd(struct amdgpu_device *adev,
824 struct ttm_tt *ttm, uint64_t flags)
825{
826 struct amdgpu_ttm_tt *gtt = (void *)ttm;
827 uint64_t total_pages = ttm->num_pages;
828 int num_xcc = max(1U, adev->gfx.num_xcc_per_xcp);
829 uint64_t page_idx, pages_per_xcc;
830 int i;
831 uint64_t ctrl_flags = (flags & ~AMDGPU_PTE_MTYPE_VG10_MASK) |
832 AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
833
834 pages_per_xcc = total_pages;
835 do_div(pages_per_xcc, num_xcc);
836
837 for (i = 0, page_idx = 0; i < num_xcc; i++, page_idx += pages_per_xcc) {
838 /* MQD page: use default flags */
839 amdgpu_gart_bind(adev,
840 offset: gtt->offset + (page_idx << PAGE_SHIFT),
841 pages: 1, dma_addr: &gtt->ttm.dma_address[page_idx], flags);
842 /*
843 * Ctrl pages - modify the memory type to NC (ctrl_flags) from
844 * the second page of the BO onward.
845 */
846 amdgpu_gart_bind(adev,
847 offset: gtt->offset + ((page_idx + 1) << PAGE_SHIFT),
848 pages: pages_per_xcc - 1,
849 dma_addr: &gtt->ttm.dma_address[page_idx + 1],
850 flags: ctrl_flags);
851 }
852}
853
854static void amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
855 struct ttm_buffer_object *tbo,
856 uint64_t flags)
857{
858 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
859 struct ttm_tt *ttm = tbo->ttm;
860 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
861
862 if (amdgpu_bo_encrypted(bo: abo))
863 flags |= AMDGPU_PTE_TMZ;
864
865 if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
866 amdgpu_ttm_gart_bind_gfx9_mqd(adev, ttm, flags);
867 } else {
868 amdgpu_gart_bind(adev, offset: gtt->offset, pages: ttm->num_pages,
869 dma_addr: gtt->ttm.dma_address, flags);
870 }
871}
872
873/*
874 * amdgpu_ttm_backend_bind - Bind GTT memory
875 *
876 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
877 * This handles binding GTT memory to the device address space.
878 */
879static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
880 struct ttm_tt *ttm,
881 struct ttm_resource *bo_mem)
882{
883 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
884 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
885 uint64_t flags;
886 int r;
887
888 if (!bo_mem)
889 return -EINVAL;
890
891 if (gtt->bound)
892 return 0;
893
894 if (gtt->userptr) {
895 r = amdgpu_ttm_tt_pin_userptr(bdev, ttm);
896 if (r) {
897 DRM_ERROR("failed to pin userptr\n");
898 return r;
899 }
900 } else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) {
901 if (!ttm->sg) {
902 struct dma_buf_attachment *attach;
903 struct sg_table *sgt;
904
905 attach = gtt->gobj->import_attach;
906 sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
907 if (IS_ERR(ptr: sgt))
908 return PTR_ERR(ptr: sgt);
909
910 ttm->sg = sgt;
911 }
912
913 drm_prime_sg_to_dma_addr_array(sgt: ttm->sg, addrs: gtt->ttm.dma_address,
914 max_pages: ttm->num_pages);
915 }
916
917 if (!ttm->num_pages) {
918 WARN(1, "nothing to bind %u pages for mreg %p back %p!\n",
919 ttm->num_pages, bo_mem, ttm);
920 }
921
922 if (bo_mem->mem_type != TTM_PL_TT ||
923 !amdgpu_gtt_mgr_has_gart_addr(mem: bo_mem)) {
924 gtt->offset = AMDGPU_BO_INVALID_OFFSET;
925 return 0;
926 }
927
928 /* compute PTE flags relevant to this BO memory */
929 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, mem: bo_mem);
930
931 /* bind pages into GART page tables */
932 gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
933 amdgpu_gart_bind(adev, offset: gtt->offset, pages: ttm->num_pages,
934 dma_addr: gtt->ttm.dma_address, flags);
935 gtt->bound = true;
936 return 0;
937}
938
939/*
940 * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either
941 * through AGP or GART aperture.
942 *
943 * If bo is accessible through AGP aperture, then use AGP aperture
944 * to access bo; otherwise allocate logical space in GART aperture
945 * and map bo to GART aperture.
946 */
947int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
948{
949 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev: bo->bdev);
950 struct ttm_operation_ctx ctx = { false, false };
951 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
952 struct ttm_placement placement;
953 struct ttm_place placements;
954 struct ttm_resource *tmp;
955 uint64_t addr, flags;
956 int r;
957
958 if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET)
959 return 0;
960
961 addr = amdgpu_gmc_agp_addr(bo);
962 if (addr != AMDGPU_BO_INVALID_OFFSET) {
963 bo->resource->start = addr >> PAGE_SHIFT;
964 return 0;
965 }
966
967 /* allocate GART space */
968 placement.num_placement = 1;
969 placement.placement = &placements;
970 placement.num_busy_placement = 1;
971 placement.busy_placement = &placements;
972 placements.fpfn = 0;
973 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
974 placements.mem_type = TTM_PL_TT;
975 placements.flags = bo->resource->placement;
976
977 r = ttm_bo_mem_space(bo, placement: &placement, mem: &tmp, ctx: &ctx);
978 if (unlikely(r))
979 return r;
980
981 /* compute PTE flags for this buffer object */
982 flags = amdgpu_ttm_tt_pte_flags(adev, ttm: bo->ttm, mem: tmp);
983
984 /* Bind pages */
985 gtt->offset = (u64)tmp->start << PAGE_SHIFT;
986 amdgpu_ttm_gart_bind(adev, tbo: bo, flags);
987 amdgpu_gart_invalidate_tlb(adev);
988 ttm_resource_free(bo, res: &bo->resource);
989 ttm_bo_assign_mem(bo, new_mem: tmp);
990
991 return 0;
992}
993
994/*
995 * amdgpu_ttm_recover_gart - Rebind GTT pages
996 *
997 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
998 * rebind GTT pages during a GPU reset.
999 */
1000void amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1001{
1002 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev: tbo->bdev);
1003 uint64_t flags;
1004
1005 if (!tbo->ttm)
1006 return;
1007
1008 flags = amdgpu_ttm_tt_pte_flags(adev, ttm: tbo->ttm, mem: tbo->resource);
1009 amdgpu_ttm_gart_bind(adev, tbo, flags);
1010}
1011
1012/*
1013 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1014 *
1015 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1016 * ttm_tt_destroy().
1017 */
1018static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
1019 struct ttm_tt *ttm)
1020{
1021 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1022 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1023
1024 /* if the pages have userptr pinning then clear that first */
1025 if (gtt->userptr) {
1026 amdgpu_ttm_tt_unpin_userptr(bdev, ttm);
1027 } else if (ttm->sg && gtt->gobj->import_attach) {
1028 struct dma_buf_attachment *attach;
1029
1030 attach = gtt->gobj->import_attach;
1031 dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1032 ttm->sg = NULL;
1033 }
1034
1035 if (!gtt->bound)
1036 return;
1037
1038 if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1039 return;
1040
1041 /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1042 amdgpu_gart_unbind(adev, offset: gtt->offset, pages: ttm->num_pages);
1043 gtt->bound = false;
1044}
1045
1046static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev,
1047 struct ttm_tt *ttm)
1048{
1049 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1050
1051 if (gtt->usertask)
1052 put_task_struct(t: gtt->usertask);
1053
1054 ttm_tt_fini(ttm: &gtt->ttm);
1055 kfree(objp: gtt);
1056}
1057
1058/**
1059 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1060 *
1061 * @bo: The buffer object to create a GTT ttm_tt object around
1062 * @page_flags: Page flags to be added to the ttm_tt object
1063 *
1064 * Called by ttm_tt_create().
1065 */
1066static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1067 uint32_t page_flags)
1068{
1069 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev: bo->bdev);
1070 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo: bo);
1071 struct amdgpu_ttm_tt *gtt;
1072 enum ttm_caching caching;
1073
1074 gtt = kzalloc(size: sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1075 if (!gtt)
1076 return NULL;
1077
1078 gtt->gobj = &bo->base;
1079 if (adev->gmc.mem_partitions && abo->xcp_id >= 0)
1080 gtt->pool_id = KFD_XCP_MEM_ID(adev, abo->xcp_id);
1081 else
1082 gtt->pool_id = abo->xcp_id;
1083
1084 if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC)
1085 caching = ttm_write_combined;
1086 else
1087 caching = ttm_cached;
1088
1089 /* allocate space for the uninitialized page entries */
1090 if (ttm_sg_tt_init(ttm_dma: &gtt->ttm, bo, page_flags, caching)) {
1091 kfree(objp: gtt);
1092 return NULL;
1093 }
1094 return &gtt->ttm;
1095}
1096
1097/*
1098 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1099 *
1100 * Map the pages of a ttm_tt object to an address space visible
1101 * to the underlying device.
1102 */
1103static int amdgpu_ttm_tt_populate(struct ttm_device *bdev,
1104 struct ttm_tt *ttm,
1105 struct ttm_operation_ctx *ctx)
1106{
1107 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1108 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1109 struct ttm_pool *pool;
1110 pgoff_t i;
1111 int ret;
1112
1113 /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1114 if (gtt->userptr) {
1115 ttm->sg = kzalloc(size: sizeof(struct sg_table), GFP_KERNEL);
1116 if (!ttm->sg)
1117 return -ENOMEM;
1118 return 0;
1119 }
1120
1121 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1122 return 0;
1123
1124 if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1125 pool = &adev->mman.ttm_pools[gtt->pool_id];
1126 else
1127 pool = &adev->mman.bdev.pool;
1128 ret = ttm_pool_alloc(pool, tt: ttm, ctx);
1129 if (ret)
1130 return ret;
1131
1132 for (i = 0; i < ttm->num_pages; ++i)
1133 ttm->pages[i]->mapping = bdev->dev_mapping;
1134
1135 return 0;
1136}
1137
1138/*
1139 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1140 *
1141 * Unmaps pages of a ttm_tt object from the device address space and
1142 * unpopulates the page array backing it.
1143 */
1144static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev,
1145 struct ttm_tt *ttm)
1146{
1147 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1148 struct amdgpu_device *adev;
1149 struct ttm_pool *pool;
1150 pgoff_t i;
1151
1152 amdgpu_ttm_backend_unbind(bdev, ttm);
1153
1154 if (gtt->userptr) {
1155 amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1156 kfree(objp: ttm->sg);
1157 ttm->sg = NULL;
1158 return;
1159 }
1160
1161 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1162 return;
1163
1164 for (i = 0; i < ttm->num_pages; ++i)
1165 ttm->pages[i]->mapping = NULL;
1166
1167 adev = amdgpu_ttm_adev(bdev);
1168
1169 if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1170 pool = &adev->mman.ttm_pools[gtt->pool_id];
1171 else
1172 pool = &adev->mman.bdev.pool;
1173
1174 return ttm_pool_free(pool, tt: ttm);
1175}
1176
1177/**
1178 * amdgpu_ttm_tt_get_userptr - Return the userptr GTT ttm_tt for the current
1179 * task
1180 *
1181 * @tbo: The ttm_buffer_object that contains the userptr
1182 * @user_addr: The returned value
1183 */
1184int amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object *tbo,
1185 uint64_t *user_addr)
1186{
1187 struct amdgpu_ttm_tt *gtt;
1188
1189 if (!tbo->ttm)
1190 return -EINVAL;
1191
1192 gtt = (void *)tbo->ttm;
1193 *user_addr = gtt->userptr;
1194 return 0;
1195}
1196
1197/**
1198 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1199 * task
1200 *
1201 * @bo: The ttm_buffer_object to bind this userptr to
1202 * @addr: The address in the current tasks VM space to use
1203 * @flags: Requirements of userptr object.
1204 *
1205 * Called by amdgpu_gem_userptr_ioctl() and kfd_ioctl_alloc_memory_of_gpu() to
1206 * bind userptr pages to current task and by kfd_ioctl_acquire_vm() to
1207 * initialize GPU VM for a KFD process.
1208 */
1209int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo,
1210 uint64_t addr, uint32_t flags)
1211{
1212 struct amdgpu_ttm_tt *gtt;
1213
1214 if (!bo->ttm) {
1215 /* TODO: We want a separate TTM object type for userptrs */
1216 bo->ttm = amdgpu_ttm_tt_create(bo, page_flags: 0);
1217 if (bo->ttm == NULL)
1218 return -ENOMEM;
1219 }
1220
1221 /* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */
1222 bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL;
1223
1224 gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
1225 gtt->userptr = addr;
1226 gtt->userflags = flags;
1227
1228 if (gtt->usertask)
1229 put_task_struct(t: gtt->usertask);
1230 gtt->usertask = current->group_leader;
1231 get_task_struct(t: gtt->usertask);
1232
1233 return 0;
1234}
1235
1236/*
1237 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1238 */
1239struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1240{
1241 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1242
1243 if (gtt == NULL)
1244 return NULL;
1245
1246 if (gtt->usertask == NULL)
1247 return NULL;
1248
1249 return gtt->usertask->mm;
1250}
1251
1252/*
1253 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1254 * address range for the current task.
1255 *
1256 */
1257bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1258 unsigned long end, unsigned long *userptr)
1259{
1260 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1261 unsigned long size;
1262
1263 if (gtt == NULL || !gtt->userptr)
1264 return false;
1265
1266 /* Return false if no part of the ttm_tt object lies within
1267 * the range
1268 */
1269 size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE;
1270 if (gtt->userptr > end || gtt->userptr + size <= start)
1271 return false;
1272
1273 if (userptr)
1274 *userptr = gtt->userptr;
1275 return true;
1276}
1277
1278/*
1279 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1280 */
1281bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1282{
1283 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1284
1285 if (gtt == NULL || !gtt->userptr)
1286 return false;
1287
1288 return true;
1289}
1290
1291/*
1292 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1293 */
1294bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1295{
1296 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1297
1298 if (gtt == NULL)
1299 return false;
1300
1301 return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1302}
1303
1304/**
1305 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1306 *
1307 * @ttm: The ttm_tt object to compute the flags for
1308 * @mem: The memory registry backing this ttm_tt object
1309 *
1310 * Figure out the flags to use for a VM PDE (Page Directory Entry).
1311 */
1312uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem)
1313{
1314 uint64_t flags = 0;
1315
1316 if (mem && mem->mem_type != TTM_PL_SYSTEM)
1317 flags |= AMDGPU_PTE_VALID;
1318
1319 if (mem && (mem->mem_type == TTM_PL_TT ||
1320 mem->mem_type == AMDGPU_PL_DOORBELL ||
1321 mem->mem_type == AMDGPU_PL_PREEMPT)) {
1322 flags |= AMDGPU_PTE_SYSTEM;
1323
1324 if (ttm->caching == ttm_cached)
1325 flags |= AMDGPU_PTE_SNOOPED;
1326 }
1327
1328 if (mem && mem->mem_type == TTM_PL_VRAM &&
1329 mem->bus.caching == ttm_cached)
1330 flags |= AMDGPU_PTE_SNOOPED;
1331
1332 return flags;
1333}
1334
1335/**
1336 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1337 *
1338 * @adev: amdgpu_device pointer
1339 * @ttm: The ttm_tt object to compute the flags for
1340 * @mem: The memory registry backing this ttm_tt object
1341 *
1342 * Figure out the flags to use for a VM PTE (Page Table Entry).
1343 */
1344uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1345 struct ttm_resource *mem)
1346{
1347 uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1348
1349 flags |= adev->gart.gart_pte_flags;
1350 flags |= AMDGPU_PTE_READABLE;
1351
1352 if (!amdgpu_ttm_tt_is_readonly(ttm))
1353 flags |= AMDGPU_PTE_WRITEABLE;
1354
1355 return flags;
1356}
1357
1358/*
1359 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1360 * object.
1361 *
1362 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1363 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1364 * it can find space for a new object and by ttm_bo_force_list_clean() which is
1365 * used to clean out a memory space.
1366 */
1367static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1368 const struct ttm_place *place)
1369{
1370 struct dma_resv_iter resv_cursor;
1371 struct dma_fence *f;
1372
1373 if (!amdgpu_bo_is_amdgpu_bo(bo))
1374 return ttm_bo_eviction_valuable(bo, place);
1375
1376 /* Swapout? */
1377 if (bo->resource->mem_type == TTM_PL_SYSTEM)
1378 return true;
1379
1380 if (bo->type == ttm_bo_type_kernel &&
1381 !amdgpu_vm_evictable(bo: ttm_to_amdgpu_bo(tbo: bo)))
1382 return false;
1383
1384 /* If bo is a KFD BO, check if the bo belongs to the current process.
1385 * If true, then return false as any KFD process needs all its BOs to
1386 * be resident to run successfully
1387 */
1388 dma_resv_for_each_fence(&resv_cursor, bo->base.resv,
1389 DMA_RESV_USAGE_BOOKKEEP, f) {
1390 if (amdkfd_fence_check_mm(f, current->mm))
1391 return false;
1392 }
1393
1394 /* Preemptible BOs don't own system resources managed by the
1395 * driver (pages, VRAM, GART space). They point to resources
1396 * owned by someone else (e.g. pageable memory in user mode
1397 * or a DMABuf). They are used in a preemptible context so we
1398 * can guarantee no deadlocks and good QoS in case of MMU
1399 * notifiers or DMABuf move notifiers from the resource owner.
1400 */
1401 if (bo->resource->mem_type == AMDGPU_PL_PREEMPT)
1402 return false;
1403
1404 if (bo->resource->mem_type == TTM_PL_TT &&
1405 amdgpu_bo_encrypted(bo: ttm_to_amdgpu_bo(tbo: bo)))
1406 return false;
1407
1408 return ttm_bo_eviction_valuable(bo, place);
1409}
1410
1411static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos,
1412 void *buf, size_t size, bool write)
1413{
1414 while (size) {
1415 uint64_t aligned_pos = ALIGN_DOWN(pos, 4);
1416 uint64_t bytes = 4 - (pos & 0x3);
1417 uint32_t shift = (pos & 0x3) * 8;
1418 uint32_t mask = 0xffffffff << shift;
1419 uint32_t value = 0;
1420
1421 if (size < bytes) {
1422 mask &= 0xffffffff >> (bytes - size) * 8;
1423 bytes = size;
1424 }
1425
1426 if (mask != 0xffffffff) {
1427 amdgpu_device_mm_access(adev, pos: aligned_pos, buf: &value, size: 4, write: false);
1428 if (write) {
1429 value &= ~mask;
1430 value |= (*(uint32_t *)buf << shift) & mask;
1431 amdgpu_device_mm_access(adev, pos: aligned_pos, buf: &value, size: 4, write: true);
1432 } else {
1433 value = (value & mask) >> shift;
1434 memcpy(buf, &value, bytes);
1435 }
1436 } else {
1437 amdgpu_device_mm_access(adev, pos: aligned_pos, buf, size: 4, write);
1438 }
1439
1440 pos += bytes;
1441 buf += bytes;
1442 size -= bytes;
1443 }
1444}
1445
1446static int amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object *bo,
1447 unsigned long offset, void *buf,
1448 int len, int write)
1449{
1450 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo: bo);
1451 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev: abo->tbo.bdev);
1452 struct amdgpu_res_cursor src_mm;
1453 struct amdgpu_job *job;
1454 struct dma_fence *fence;
1455 uint64_t src_addr, dst_addr;
1456 unsigned int num_dw;
1457 int r, idx;
1458
1459 if (len != PAGE_SIZE)
1460 return -EINVAL;
1461
1462 if (!adev->mman.sdma_access_ptr)
1463 return -EACCES;
1464
1465 if (!drm_dev_enter(dev: adev_to_drm(adev), idx: &idx))
1466 return -ENODEV;
1467
1468 if (write)
1469 memcpy(adev->mman.sdma_access_ptr, buf, len);
1470
1471 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
1472 r = amdgpu_job_alloc_with_ib(adev, entity: &adev->mman.high_pr,
1473 AMDGPU_FENCE_OWNER_UNDEFINED,
1474 size: num_dw * 4, pool_type: AMDGPU_IB_POOL_DELAYED,
1475 job: &job);
1476 if (r)
1477 goto out;
1478
1479 amdgpu_res_first(res: abo->tbo.resource, start: offset, size: len, cur: &src_mm);
1480 src_addr = amdgpu_ttm_domain_start(adev, type: bo->resource->mem_type) +
1481 src_mm.start;
1482 dst_addr = amdgpu_bo_gpu_offset(bo: adev->mman.sdma_access_bo);
1483 if (write)
1484 swap(src_addr, dst_addr);
1485
1486 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, dst_addr,
1487 PAGE_SIZE, false);
1488
1489 amdgpu_ring_pad_ib(adev->mman.buffer_funcs_ring, &job->ibs[0]);
1490 WARN_ON(job->ibs[0].length_dw > num_dw);
1491
1492 fence = amdgpu_job_submit(job);
1493
1494 if (!dma_fence_wait_timeout(fence, intr: false, timeout: adev->sdma_timeout))
1495 r = -ETIMEDOUT;
1496 dma_fence_put(fence);
1497
1498 if (!(r || write))
1499 memcpy(buf, adev->mman.sdma_access_ptr, len);
1500out:
1501 drm_dev_exit(idx);
1502 return r;
1503}
1504
1505/**
1506 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1507 *
1508 * @bo: The buffer object to read/write
1509 * @offset: Offset into buffer object
1510 * @buf: Secondary buffer to write/read from
1511 * @len: Length in bytes of access
1512 * @write: true if writing
1513 *
1514 * This is used to access VRAM that backs a buffer object via MMIO
1515 * access for debugging purposes.
1516 */
1517static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1518 unsigned long offset, void *buf, int len,
1519 int write)
1520{
1521 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo: bo);
1522 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev: abo->tbo.bdev);
1523 struct amdgpu_res_cursor cursor;
1524 int ret = 0;
1525
1526 if (bo->resource->mem_type != TTM_PL_VRAM)
1527 return -EIO;
1528
1529 if (amdgpu_device_has_timeouts_enabled(adev) &&
1530 !amdgpu_ttm_access_memory_sdma(bo, offset, buf, len, write))
1531 return len;
1532
1533 amdgpu_res_first(res: bo->resource, start: offset, size: len, cur: &cursor);
1534 while (cursor.remaining) {
1535 size_t count, size = cursor.size;
1536 loff_t pos = cursor.start;
1537
1538 count = amdgpu_device_aper_access(adev, pos, buf, size, write);
1539 size -= count;
1540 if (size) {
1541 /* using MM to access rest vram and handle un-aligned address */
1542 pos += count;
1543 buf += count;
1544 amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write);
1545 }
1546
1547 ret += cursor.size;
1548 buf += cursor.size;
1549 amdgpu_res_next(cur: &cursor, size: cursor.size);
1550 }
1551
1552 return ret;
1553}
1554
1555static void
1556amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo)
1557{
1558 amdgpu_bo_move_notify(bo, evict: false, NULL);
1559}
1560
1561static struct ttm_device_funcs amdgpu_bo_driver = {
1562 .ttm_tt_create = &amdgpu_ttm_tt_create,
1563 .ttm_tt_populate = &amdgpu_ttm_tt_populate,
1564 .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1565 .ttm_tt_destroy = &amdgpu_ttm_backend_destroy,
1566 .eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1567 .evict_flags = &amdgpu_evict_flags,
1568 .move = &amdgpu_bo_move,
1569 .delete_mem_notify = &amdgpu_bo_delete_mem_notify,
1570 .release_notify = &amdgpu_bo_release_notify,
1571 .io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1572 .io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1573 .access_memory = &amdgpu_ttm_access_memory,
1574};
1575
1576/*
1577 * Firmware Reservation functions
1578 */
1579/**
1580 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1581 *
1582 * @adev: amdgpu_device pointer
1583 *
1584 * free fw reserved vram if it has been reserved.
1585 */
1586static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1587{
1588 amdgpu_bo_free_kernel(bo: &adev->mman.fw_vram_usage_reserved_bo,
1589 NULL, cpu_addr: &adev->mman.fw_vram_usage_va);
1590}
1591
1592/*
1593 * Driver Reservation functions
1594 */
1595/**
1596 * amdgpu_ttm_drv_reserve_vram_fini - free drv reserved vram
1597 *
1598 * @adev: amdgpu_device pointer
1599 *
1600 * free drv reserved vram if it has been reserved.
1601 */
1602static void amdgpu_ttm_drv_reserve_vram_fini(struct amdgpu_device *adev)
1603{
1604 amdgpu_bo_free_kernel(bo: &adev->mman.drv_vram_usage_reserved_bo,
1605 NULL,
1606 cpu_addr: &adev->mman.drv_vram_usage_va);
1607}
1608
1609/**
1610 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1611 *
1612 * @adev: amdgpu_device pointer
1613 *
1614 * create bo vram reservation from fw.
1615 */
1616static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1617{
1618 uint64_t vram_size = adev->gmc.visible_vram_size;
1619
1620 adev->mman.fw_vram_usage_va = NULL;
1621 adev->mman.fw_vram_usage_reserved_bo = NULL;
1622
1623 if (adev->mman.fw_vram_usage_size == 0 ||
1624 adev->mman.fw_vram_usage_size > vram_size)
1625 return 0;
1626
1627 return amdgpu_bo_create_kernel_at(adev,
1628 offset: adev->mman.fw_vram_usage_start_offset,
1629 size: adev->mman.fw_vram_usage_size,
1630 bo_ptr: &adev->mman.fw_vram_usage_reserved_bo,
1631 cpu_addr: &adev->mman.fw_vram_usage_va);
1632}
1633
1634/**
1635 * amdgpu_ttm_drv_reserve_vram_init - create bo vram reservation from driver
1636 *
1637 * @adev: amdgpu_device pointer
1638 *
1639 * create bo vram reservation from drv.
1640 */
1641static int amdgpu_ttm_drv_reserve_vram_init(struct amdgpu_device *adev)
1642{
1643 u64 vram_size = adev->gmc.visible_vram_size;
1644
1645 adev->mman.drv_vram_usage_va = NULL;
1646 adev->mman.drv_vram_usage_reserved_bo = NULL;
1647
1648 if (adev->mman.drv_vram_usage_size == 0 ||
1649 adev->mman.drv_vram_usage_size > vram_size)
1650 return 0;
1651
1652 return amdgpu_bo_create_kernel_at(adev,
1653 offset: adev->mman.drv_vram_usage_start_offset,
1654 size: adev->mman.drv_vram_usage_size,
1655 bo_ptr: &adev->mman.drv_vram_usage_reserved_bo,
1656 cpu_addr: &adev->mman.drv_vram_usage_va);
1657}
1658
1659/*
1660 * Memoy training reservation functions
1661 */
1662
1663/**
1664 * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1665 *
1666 * @adev: amdgpu_device pointer
1667 *
1668 * free memory training reserved vram if it has been reserved.
1669 */
1670static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1671{
1672 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1673
1674 ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1675 amdgpu_bo_free_kernel(bo: &ctx->c2p_bo, NULL, NULL);
1676 ctx->c2p_bo = NULL;
1677
1678 return 0;
1679}
1680
1681static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev,
1682 uint32_t reserve_size)
1683{
1684 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1685
1686 memset(ctx, 0, sizeof(*ctx));
1687
1688 ctx->c2p_train_data_offset =
1689 ALIGN((adev->gmc.mc_vram_size - reserve_size - SZ_1M), SZ_1M);
1690 ctx->p2c_train_data_offset =
1691 (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1692 ctx->train_data_size =
1693 GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1694
1695 DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1696 ctx->train_data_size,
1697 ctx->p2c_train_data_offset,
1698 ctx->c2p_train_data_offset);
1699}
1700
1701/*
1702 * reserve TMR memory at the top of VRAM which holds
1703 * IP Discovery data and is protected by PSP.
1704 */
1705static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev)
1706{
1707 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1708 bool mem_train_support = false;
1709 uint32_t reserve_size = 0;
1710 int ret;
1711
1712 if (adev->bios && !amdgpu_sriov_vf(adev)) {
1713 if (amdgpu_atomfirmware_mem_training_supported(adev))
1714 mem_train_support = true;
1715 else
1716 DRM_DEBUG("memory training does not support!\n");
1717 }
1718
1719 /*
1720 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all
1721 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc)
1722 *
1723 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip
1724 * discovery data and G6 memory training data respectively
1725 */
1726 if (adev->bios)
1727 reserve_size =
1728 amdgpu_atomfirmware_get_fw_reserved_fb_size(adev);
1729
1730 if (!adev->bios &&
1731 amdgpu_ip_version(adev, ip: GC_HWIP, inst: 0) == IP_VERSION(9, 4, 3))
1732 reserve_size = max(reserve_size, (uint32_t)280 << 20);
1733 else if (!reserve_size)
1734 reserve_size = DISCOVERY_TMR_OFFSET;
1735
1736 if (mem_train_support) {
1737 /* reserve vram for mem train according to TMR location */
1738 amdgpu_ttm_training_data_block_init(adev, reserve_size);
1739 ret = amdgpu_bo_create_kernel_at(adev,
1740 offset: ctx->c2p_train_data_offset,
1741 size: ctx->train_data_size,
1742 bo_ptr: &ctx->c2p_bo,
1743 NULL);
1744 if (ret) {
1745 DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1746 amdgpu_ttm_training_reserve_vram_fini(adev);
1747 return ret;
1748 }
1749 ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1750 }
1751
1752 if (!adev->gmc.is_app_apu) {
1753 ret = amdgpu_bo_create_kernel_at(
1754 adev, offset: adev->gmc.real_vram_size - reserve_size,
1755 size: reserve_size, bo_ptr: &adev->mman.fw_reserved_memory, NULL);
1756 if (ret) {
1757 DRM_ERROR("alloc tmr failed(%d)!\n", ret);
1758 amdgpu_bo_free_kernel(bo: &adev->mman.fw_reserved_memory,
1759 NULL, NULL);
1760 return ret;
1761 }
1762 } else {
1763 DRM_DEBUG_DRIVER("backdoor fw loading path for PSP TMR, no reservation needed\n");
1764 }
1765
1766 return 0;
1767}
1768
1769static int amdgpu_ttm_pools_init(struct amdgpu_device *adev)
1770{
1771 int i;
1772
1773 if (!adev->gmc.is_app_apu || !adev->gmc.num_mem_partitions)
1774 return 0;
1775
1776 adev->mman.ttm_pools = kcalloc(n: adev->gmc.num_mem_partitions,
1777 size: sizeof(*adev->mman.ttm_pools),
1778 GFP_KERNEL);
1779 if (!adev->mman.ttm_pools)
1780 return -ENOMEM;
1781
1782 for (i = 0; i < adev->gmc.num_mem_partitions; i++) {
1783 ttm_pool_init(pool: &adev->mman.ttm_pools[i], dev: adev->dev,
1784 nid: adev->gmc.mem_partitions[i].numa.node,
1785 use_dma_alloc: false, use_dma32: false);
1786 }
1787 return 0;
1788}
1789
1790static void amdgpu_ttm_pools_fini(struct amdgpu_device *adev)
1791{
1792 int i;
1793
1794 if (!adev->gmc.is_app_apu || !adev->mman.ttm_pools)
1795 return;
1796
1797 for (i = 0; i < adev->gmc.num_mem_partitions; i++)
1798 ttm_pool_fini(pool: &adev->mman.ttm_pools[i]);
1799
1800 kfree(objp: adev->mman.ttm_pools);
1801 adev->mman.ttm_pools = NULL;
1802}
1803
1804/*
1805 * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1806 * gtt/vram related fields.
1807 *
1808 * This initializes all of the memory space pools that the TTM layer
1809 * will need such as the GTT space (system memory mapped to the device),
1810 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1811 * can be mapped per VMID.
1812 */
1813int amdgpu_ttm_init(struct amdgpu_device *adev)
1814{
1815 uint64_t gtt_size;
1816 int r;
1817
1818 mutex_init(&adev->mman.gtt_window_lock);
1819
1820 /* No others user of address space so set it to 0 */
1821 r = ttm_device_init(bdev: &adev->mman.bdev, funcs: &amdgpu_bo_driver, dev: adev->dev,
1822 mapping: adev_to_drm(adev)->anon_inode->i_mapping,
1823 vma_manager: adev_to_drm(adev)->vma_offset_manager,
1824 use_dma_alloc: adev->need_swiotlb,
1825 use_dma32: dma_addressing_limited(dev: adev->dev));
1826 if (r) {
1827 DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1828 return r;
1829 }
1830
1831 r = amdgpu_ttm_pools_init(adev);
1832 if (r) {
1833 DRM_ERROR("failed to init ttm pools(%d).\n", r);
1834 return r;
1835 }
1836 adev->mman.initialized = true;
1837
1838 /* Initialize VRAM pool with all of VRAM divided into pages */
1839 r = amdgpu_vram_mgr_init(adev);
1840 if (r) {
1841 DRM_ERROR("Failed initializing VRAM heap.\n");
1842 return r;
1843 }
1844
1845 /* Change the size here instead of the init above so only lpfn is affected */
1846 amdgpu_ttm_set_buffer_funcs_status(adev, enable: false);
1847#ifdef CONFIG_64BIT
1848#ifdef CONFIG_X86
1849 if (adev->gmc.xgmi.connected_to_cpu)
1850 adev->mman.aper_base_kaddr = ioremap_cache(offset: adev->gmc.aper_base,
1851 size: adev->gmc.visible_vram_size);
1852
1853 else if (adev->gmc.is_app_apu)
1854 DRM_DEBUG_DRIVER(
1855 "No need to ioremap when real vram size is 0\n");
1856 else
1857#endif
1858 adev->mman.aper_base_kaddr = ioremap_wc(offset: adev->gmc.aper_base,
1859 size: adev->gmc.visible_vram_size);
1860#endif
1861
1862 /*
1863 *The reserved vram for firmware must be pinned to the specified
1864 *place on the VRAM, so reserve it early.
1865 */
1866 r = amdgpu_ttm_fw_reserve_vram_init(adev);
1867 if (r)
1868 return r;
1869
1870 /*
1871 *The reserved vram for driver must be pinned to the specified
1872 *place on the VRAM, so reserve it early.
1873 */
1874 r = amdgpu_ttm_drv_reserve_vram_init(adev);
1875 if (r)
1876 return r;
1877
1878 /*
1879 * only NAVI10 and onwards ASIC support for IP discovery.
1880 * If IP discovery enabled, a block of memory should be
1881 * reserved for IP discovey.
1882 */
1883 if (adev->mman.discovery_bin) {
1884 r = amdgpu_ttm_reserve_tmr(adev);
1885 if (r)
1886 return r;
1887 }
1888
1889 /* allocate memory as required for VGA
1890 * This is used for VGA emulation and pre-OS scanout buffers to
1891 * avoid display artifacts while transitioning between pre-OS
1892 * and driver.
1893 */
1894 if (!adev->gmc.is_app_apu) {
1895 r = amdgpu_bo_create_kernel_at(adev, offset: 0,
1896 size: adev->mman.stolen_vga_size,
1897 bo_ptr: &adev->mman.stolen_vga_memory,
1898 NULL);
1899 if (r)
1900 return r;
1901
1902 r = amdgpu_bo_create_kernel_at(adev, offset: adev->mman.stolen_vga_size,
1903 size: adev->mman.stolen_extended_size,
1904 bo_ptr: &adev->mman.stolen_extended_memory,
1905 NULL);
1906
1907 if (r)
1908 return r;
1909
1910 r = amdgpu_bo_create_kernel_at(adev,
1911 offset: adev->mman.stolen_reserved_offset,
1912 size: adev->mman.stolen_reserved_size,
1913 bo_ptr: &adev->mman.stolen_reserved_memory,
1914 NULL);
1915 if (r)
1916 return r;
1917 } else {
1918 DRM_DEBUG_DRIVER("Skipped stolen memory reservation\n");
1919 }
1920
1921 DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1922 (unsigned int)(adev->gmc.real_vram_size / (1024 * 1024)));
1923
1924 /* Compute GTT size, either based on TTM limit
1925 * or whatever the user passed on module init.
1926 */
1927 if (amdgpu_gtt_size == -1)
1928 gtt_size = ttm_tt_pages_limit() << PAGE_SHIFT;
1929 else
1930 gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1931
1932 /* Initialize GTT memory pool */
1933 r = amdgpu_gtt_mgr_init(adev, gtt_size);
1934 if (r) {
1935 DRM_ERROR("Failed initializing GTT heap.\n");
1936 return r;
1937 }
1938 DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1939 (unsigned int)(gtt_size / (1024 * 1024)));
1940
1941 /* Initiailize doorbell pool on PCI BAR */
1942 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_DOORBELL, size_in_page: adev->doorbell.size / PAGE_SIZE);
1943 if (r) {
1944 DRM_ERROR("Failed initializing doorbell heap.\n");
1945 return r;
1946 }
1947
1948 /* Create a boorbell page for kernel usages */
1949 r = amdgpu_doorbell_create_kernel_doorbells(adev);
1950 if (r) {
1951 DRM_ERROR("Failed to initialize kernel doorbells.\n");
1952 return r;
1953 }
1954
1955 /* Initialize preemptible memory pool */
1956 r = amdgpu_preempt_mgr_init(adev);
1957 if (r) {
1958 DRM_ERROR("Failed initializing PREEMPT heap.\n");
1959 return r;
1960 }
1961
1962 /* Initialize various on-chip memory pools */
1963 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, size_in_page: adev->gds.gds_size);
1964 if (r) {
1965 DRM_ERROR("Failed initializing GDS heap.\n");
1966 return r;
1967 }
1968
1969 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, size_in_page: adev->gds.gws_size);
1970 if (r) {
1971 DRM_ERROR("Failed initializing gws heap.\n");
1972 return r;
1973 }
1974
1975 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, size_in_page: adev->gds.oa_size);
1976 if (r) {
1977 DRM_ERROR("Failed initializing oa heap.\n");
1978 return r;
1979 }
1980 if (amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE,
1981 AMDGPU_GEM_DOMAIN_GTT,
1982 bo_ptr: &adev->mman.sdma_access_bo, NULL,
1983 cpu_addr: &adev->mman.sdma_access_ptr))
1984 DRM_WARN("Debug VRAM access will use slowpath MM access\n");
1985
1986 return 0;
1987}
1988
1989/*
1990 * amdgpu_ttm_fini - De-initialize the TTM memory pools
1991 */
1992void amdgpu_ttm_fini(struct amdgpu_device *adev)
1993{
1994 int idx;
1995
1996 if (!adev->mman.initialized)
1997 return;
1998
1999 amdgpu_ttm_pools_fini(adev);
2000
2001 amdgpu_ttm_training_reserve_vram_fini(adev);
2002 /* return the stolen vga memory back to VRAM */
2003 if (!adev->gmc.is_app_apu) {
2004 amdgpu_bo_free_kernel(bo: &adev->mman.stolen_vga_memory, NULL, NULL);
2005 amdgpu_bo_free_kernel(bo: &adev->mman.stolen_extended_memory, NULL, NULL);
2006 /* return the FW reserved memory back to VRAM */
2007 amdgpu_bo_free_kernel(bo: &adev->mman.fw_reserved_memory, NULL,
2008 NULL);
2009 if (adev->mman.stolen_reserved_size)
2010 amdgpu_bo_free_kernel(bo: &adev->mman.stolen_reserved_memory,
2011 NULL, NULL);
2012 }
2013 amdgpu_bo_free_kernel(bo: &adev->mman.sdma_access_bo, NULL,
2014 cpu_addr: &adev->mman.sdma_access_ptr);
2015 amdgpu_ttm_fw_reserve_vram_fini(adev);
2016 amdgpu_ttm_drv_reserve_vram_fini(adev);
2017
2018 if (drm_dev_enter(dev: adev_to_drm(adev), idx: &idx)) {
2019
2020 if (adev->mman.aper_base_kaddr)
2021 iounmap(addr: adev->mman.aper_base_kaddr);
2022 adev->mman.aper_base_kaddr = NULL;
2023
2024 drm_dev_exit(idx);
2025 }
2026
2027 amdgpu_vram_mgr_fini(adev);
2028 amdgpu_gtt_mgr_fini(adev);
2029 amdgpu_preempt_mgr_fini(adev);
2030 ttm_range_man_fini(bdev: &adev->mman.bdev, AMDGPU_PL_GDS);
2031 ttm_range_man_fini(bdev: &adev->mman.bdev, AMDGPU_PL_GWS);
2032 ttm_range_man_fini(bdev: &adev->mman.bdev, AMDGPU_PL_OA);
2033 ttm_device_fini(bdev: &adev->mman.bdev);
2034 adev->mman.initialized = false;
2035 DRM_INFO("amdgpu: ttm finalized\n");
2036}
2037
2038/**
2039 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
2040 *
2041 * @adev: amdgpu_device pointer
2042 * @enable: true when we can use buffer functions.
2043 *
2044 * Enable/disable use of buffer functions during suspend/resume. This should
2045 * only be called at bootup or when userspace isn't running.
2046 */
2047void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
2048{
2049 struct ttm_resource_manager *man = ttm_manager_type(bdev: &adev->mman.bdev, TTM_PL_VRAM);
2050 uint64_t size;
2051 int r;
2052
2053 if (!adev->mman.initialized || amdgpu_in_reset(adev) ||
2054 adev->mman.buffer_funcs_enabled == enable || adev->gmc.is_app_apu)
2055 return;
2056
2057 if (enable) {
2058 struct amdgpu_ring *ring;
2059 struct drm_gpu_scheduler *sched;
2060
2061 ring = adev->mman.buffer_funcs_ring;
2062 sched = &ring->sched;
2063 r = drm_sched_entity_init(entity: &adev->mman.high_pr,
2064 priority: DRM_SCHED_PRIORITY_KERNEL, sched_list: &sched,
2065 num_sched_list: 1, NULL);
2066 if (r) {
2067 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2068 r);
2069 return;
2070 }
2071
2072 r = drm_sched_entity_init(entity: &adev->mman.low_pr,
2073 priority: DRM_SCHED_PRIORITY_NORMAL, sched_list: &sched,
2074 num_sched_list: 1, NULL);
2075 if (r) {
2076 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2077 r);
2078 goto error_free_entity;
2079 }
2080 } else {
2081 drm_sched_entity_destroy(entity: &adev->mman.high_pr);
2082 drm_sched_entity_destroy(entity: &adev->mman.low_pr);
2083 dma_fence_put(fence: man->move);
2084 man->move = NULL;
2085 }
2086
2087 /* this just adjusts TTM size idea, which sets lpfn to the correct value */
2088 if (enable)
2089 size = adev->gmc.real_vram_size;
2090 else
2091 size = adev->gmc.visible_vram_size;
2092 man->size = size;
2093 adev->mman.buffer_funcs_enabled = enable;
2094
2095 return;
2096
2097error_free_entity:
2098 drm_sched_entity_destroy(entity: &adev->mman.high_pr);
2099}
2100
2101static int amdgpu_ttm_prepare_job(struct amdgpu_device *adev,
2102 bool direct_submit,
2103 unsigned int num_dw,
2104 struct dma_resv *resv,
2105 bool vm_needs_flush,
2106 struct amdgpu_job **job,
2107 bool delayed)
2108{
2109 enum amdgpu_ib_pool_type pool = direct_submit ?
2110 AMDGPU_IB_POOL_DIRECT :
2111 AMDGPU_IB_POOL_DELAYED;
2112 int r;
2113 struct drm_sched_entity *entity = delayed ? &adev->mman.low_pr :
2114 &adev->mman.high_pr;
2115 r = amdgpu_job_alloc_with_ib(adev, entity,
2116 AMDGPU_FENCE_OWNER_UNDEFINED,
2117 size: num_dw * 4, pool_type: pool, job);
2118 if (r)
2119 return r;
2120
2121 if (vm_needs_flush) {
2122 (*job)->vm_pd_addr = amdgpu_gmc_pd_addr(bo: adev->gmc.pdb0_bo ?
2123 adev->gmc.pdb0_bo :
2124 adev->gart.bo);
2125 (*job)->vm_needs_flush = true;
2126 }
2127 if (!resv)
2128 return 0;
2129
2130 return drm_sched_job_add_resv_dependencies(job: &(*job)->base, resv,
2131 usage: DMA_RESV_USAGE_BOOKKEEP);
2132}
2133
2134int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
2135 uint64_t dst_offset, uint32_t byte_count,
2136 struct dma_resv *resv,
2137 struct dma_fence **fence, bool direct_submit,
2138 bool vm_needs_flush, bool tmz)
2139{
2140 struct amdgpu_device *adev = ring->adev;
2141 unsigned int num_loops, num_dw;
2142 struct amdgpu_job *job;
2143 uint32_t max_bytes;
2144 unsigned int i;
2145 int r;
2146
2147 if (!direct_submit && !ring->sched.ready) {
2148 DRM_ERROR("Trying to move memory with ring turned off.\n");
2149 return -EINVAL;
2150 }
2151
2152 max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2153 num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2154 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
2155 r = amdgpu_ttm_prepare_job(adev, direct_submit, num_dw,
2156 resv, vm_needs_flush, job: &job, delayed: false);
2157 if (r)
2158 return r;
2159
2160 for (i = 0; i < num_loops; i++) {
2161 uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2162
2163 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2164 dst_offset, cur_size_in_bytes, tmz);
2165
2166 src_offset += cur_size_in_bytes;
2167 dst_offset += cur_size_in_bytes;
2168 byte_count -= cur_size_in_bytes;
2169 }
2170
2171 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2172 WARN_ON(job->ibs[0].length_dw > num_dw);
2173 if (direct_submit)
2174 r = amdgpu_job_submit_direct(job, ring, fence);
2175 else
2176 *fence = amdgpu_job_submit(job);
2177 if (r)
2178 goto error_free;
2179
2180 return r;
2181
2182error_free:
2183 amdgpu_job_free(job);
2184 DRM_ERROR("Error scheduling IBs (%d)\n", r);
2185 return r;
2186}
2187
2188static int amdgpu_ttm_fill_mem(struct amdgpu_ring *ring, uint32_t src_data,
2189 uint64_t dst_addr, uint32_t byte_count,
2190 struct dma_resv *resv,
2191 struct dma_fence **fence,
2192 bool vm_needs_flush, bool delayed)
2193{
2194 struct amdgpu_device *adev = ring->adev;
2195 unsigned int num_loops, num_dw;
2196 struct amdgpu_job *job;
2197 uint32_t max_bytes;
2198 unsigned int i;
2199 int r;
2200
2201 max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2202 num_loops = DIV_ROUND_UP_ULL(byte_count, max_bytes);
2203 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->fill_num_dw, 8);
2204 r = amdgpu_ttm_prepare_job(adev, direct_submit: false, num_dw, resv, vm_needs_flush,
2205 job: &job, delayed);
2206 if (r)
2207 return r;
2208
2209 for (i = 0; i < num_loops; i++) {
2210 uint32_t cur_size = min(byte_count, max_bytes);
2211
2212 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr,
2213 cur_size);
2214
2215 dst_addr += cur_size;
2216 byte_count -= cur_size;
2217 }
2218
2219 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2220 WARN_ON(job->ibs[0].length_dw > num_dw);
2221 *fence = amdgpu_job_submit(job);
2222 return 0;
2223}
2224
2225int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2226 uint32_t src_data,
2227 struct dma_resv *resv,
2228 struct dma_fence **f,
2229 bool delayed)
2230{
2231 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev: bo->tbo.bdev);
2232 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2233 struct dma_fence *fence = NULL;
2234 struct amdgpu_res_cursor dst;
2235 int r;
2236
2237 if (!adev->mman.buffer_funcs_enabled) {
2238 DRM_ERROR("Trying to clear memory with ring turned off.\n");
2239 return -EINVAL;
2240 }
2241
2242 amdgpu_res_first(res: bo->tbo.resource, start: 0, size: amdgpu_bo_size(bo), cur: &dst);
2243
2244 mutex_lock(&adev->mman.gtt_window_lock);
2245 while (dst.remaining) {
2246 struct dma_fence *next;
2247 uint64_t cur_size, to;
2248
2249 /* Never fill more than 256MiB at once to avoid timeouts */
2250 cur_size = min(dst.size, 256ULL << 20);
2251
2252 r = amdgpu_ttm_map_buffer(bo: &bo->tbo, mem: bo->tbo.resource, mm_cur: &dst,
2253 window: 1, ring, tmz: false, size: &cur_size, addr: &to);
2254 if (r)
2255 goto error;
2256
2257 r = amdgpu_ttm_fill_mem(ring, src_data, dst_addr: to, byte_count: cur_size, resv,
2258 fence: &next, vm_needs_flush: true, delayed);
2259 if (r)
2260 goto error;
2261
2262 dma_fence_put(fence);
2263 fence = next;
2264
2265 amdgpu_res_next(cur: &dst, size: cur_size);
2266 }
2267error:
2268 mutex_unlock(lock: &adev->mman.gtt_window_lock);
2269 if (f)
2270 *f = dma_fence_get(fence);
2271 dma_fence_put(fence);
2272 return r;
2273}
2274
2275/**
2276 * amdgpu_ttm_evict_resources - evict memory buffers
2277 * @adev: amdgpu device object
2278 * @mem_type: evicted BO's memory type
2279 *
2280 * Evicts all @mem_type buffers on the lru list of the memory type.
2281 *
2282 * Returns:
2283 * 0 for success or a negative error code on failure.
2284 */
2285int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type)
2286{
2287 struct ttm_resource_manager *man;
2288
2289 switch (mem_type) {
2290 case TTM_PL_VRAM:
2291 case TTM_PL_TT:
2292 case AMDGPU_PL_GWS:
2293 case AMDGPU_PL_GDS:
2294 case AMDGPU_PL_OA:
2295 man = ttm_manager_type(bdev: &adev->mman.bdev, mem_type);
2296 break;
2297 default:
2298 DRM_ERROR("Trying to evict invalid memory type\n");
2299 return -EINVAL;
2300 }
2301
2302 return ttm_resource_manager_evict_all(bdev: &adev->mman.bdev, man);
2303}
2304
2305#if defined(CONFIG_DEBUG_FS)
2306
2307static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused)
2308{
2309 struct amdgpu_device *adev = m->private;
2310
2311 return ttm_pool_debugfs(pool: &adev->mman.bdev.pool, m);
2312}
2313
2314DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool);
2315
2316/*
2317 * amdgpu_ttm_vram_read - Linear read access to VRAM
2318 *
2319 * Accesses VRAM via MMIO for debugging purposes.
2320 */
2321static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2322 size_t size, loff_t *pos)
2323{
2324 struct amdgpu_device *adev = file_inode(f)->i_private;
2325 ssize_t result = 0;
2326
2327 if (size & 0x3 || *pos & 0x3)
2328 return -EINVAL;
2329
2330 if (*pos >= adev->gmc.mc_vram_size)
2331 return -ENXIO;
2332
2333 size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2334 while (size) {
2335 size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2336 uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2337
2338 amdgpu_device_vram_access(adev, pos: *pos, buf: value, size: bytes, write: false);
2339 if (copy_to_user(to: buf, from: value, n: bytes))
2340 return -EFAULT;
2341
2342 result += bytes;
2343 buf += bytes;
2344 *pos += bytes;
2345 size -= bytes;
2346 }
2347
2348 return result;
2349}
2350
2351/*
2352 * amdgpu_ttm_vram_write - Linear write access to VRAM
2353 *
2354 * Accesses VRAM via MMIO for debugging purposes.
2355 */
2356static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2357 size_t size, loff_t *pos)
2358{
2359 struct amdgpu_device *adev = file_inode(f)->i_private;
2360 ssize_t result = 0;
2361 int r;
2362
2363 if (size & 0x3 || *pos & 0x3)
2364 return -EINVAL;
2365
2366 if (*pos >= adev->gmc.mc_vram_size)
2367 return -ENXIO;
2368
2369 while (size) {
2370 uint32_t value;
2371
2372 if (*pos >= adev->gmc.mc_vram_size)
2373 return result;
2374
2375 r = get_user(value, (uint32_t *)buf);
2376 if (r)
2377 return r;
2378
2379 amdgpu_device_mm_access(adev, pos: *pos, buf: &value, size: 4, write: true);
2380
2381 result += 4;
2382 buf += 4;
2383 *pos += 4;
2384 size -= 4;
2385 }
2386
2387 return result;
2388}
2389
2390static const struct file_operations amdgpu_ttm_vram_fops = {
2391 .owner = THIS_MODULE,
2392 .read = amdgpu_ttm_vram_read,
2393 .write = amdgpu_ttm_vram_write,
2394 .llseek = default_llseek,
2395};
2396
2397/*
2398 * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2399 *
2400 * This function is used to read memory that has been mapped to the
2401 * GPU and the known addresses are not physical addresses but instead
2402 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2403 */
2404static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2405 size_t size, loff_t *pos)
2406{
2407 struct amdgpu_device *adev = file_inode(f)->i_private;
2408 struct iommu_domain *dom;
2409 ssize_t result = 0;
2410 int r;
2411
2412 /* retrieve the IOMMU domain if any for this device */
2413 dom = iommu_get_domain_for_dev(dev: adev->dev);
2414
2415 while (size) {
2416 phys_addr_t addr = *pos & PAGE_MASK;
2417 loff_t off = *pos & ~PAGE_MASK;
2418 size_t bytes = PAGE_SIZE - off;
2419 unsigned long pfn;
2420 struct page *p;
2421 void *ptr;
2422
2423 bytes = min(bytes, size);
2424
2425 /* Translate the bus address to a physical address. If
2426 * the domain is NULL it means there is no IOMMU active
2427 * and the address translation is the identity
2428 */
2429 addr = dom ? iommu_iova_to_phys(domain: dom, iova: addr) : addr;
2430
2431 pfn = addr >> PAGE_SHIFT;
2432 if (!pfn_valid(pfn))
2433 return -EPERM;
2434
2435 p = pfn_to_page(pfn);
2436 if (p->mapping != adev->mman.bdev.dev_mapping)
2437 return -EPERM;
2438
2439 ptr = kmap_local_page(page: p);
2440 r = copy_to_user(to: buf, from: ptr + off, n: bytes);
2441 kunmap_local(ptr);
2442 if (r)
2443 return -EFAULT;
2444
2445 size -= bytes;
2446 *pos += bytes;
2447 result += bytes;
2448 }
2449
2450 return result;
2451}
2452
2453/*
2454 * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2455 *
2456 * This function is used to write memory that has been mapped to the
2457 * GPU and the known addresses are not physical addresses but instead
2458 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2459 */
2460static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2461 size_t size, loff_t *pos)
2462{
2463 struct amdgpu_device *adev = file_inode(f)->i_private;
2464 struct iommu_domain *dom;
2465 ssize_t result = 0;
2466 int r;
2467
2468 dom = iommu_get_domain_for_dev(dev: adev->dev);
2469
2470 while (size) {
2471 phys_addr_t addr = *pos & PAGE_MASK;
2472 loff_t off = *pos & ~PAGE_MASK;
2473 size_t bytes = PAGE_SIZE - off;
2474 unsigned long pfn;
2475 struct page *p;
2476 void *ptr;
2477
2478 bytes = min(bytes, size);
2479
2480 addr = dom ? iommu_iova_to_phys(domain: dom, iova: addr) : addr;
2481
2482 pfn = addr >> PAGE_SHIFT;
2483 if (!pfn_valid(pfn))
2484 return -EPERM;
2485
2486 p = pfn_to_page(pfn);
2487 if (p->mapping != adev->mman.bdev.dev_mapping)
2488 return -EPERM;
2489
2490 ptr = kmap_local_page(page: p);
2491 r = copy_from_user(to: ptr + off, from: buf, n: bytes);
2492 kunmap_local(ptr);
2493 if (r)
2494 return -EFAULT;
2495
2496 size -= bytes;
2497 *pos += bytes;
2498 result += bytes;
2499 }
2500
2501 return result;
2502}
2503
2504static const struct file_operations amdgpu_ttm_iomem_fops = {
2505 .owner = THIS_MODULE,
2506 .read = amdgpu_iomem_read,
2507 .write = amdgpu_iomem_write,
2508 .llseek = default_llseek
2509};
2510
2511#endif
2512
2513void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2514{
2515#if defined(CONFIG_DEBUG_FS)
2516 struct drm_minor *minor = adev_to_drm(adev)->primary;
2517 struct dentry *root = minor->debugfs_root;
2518
2519 debugfs_create_file_size(name: "amdgpu_vram", mode: 0444, parent: root, data: adev,
2520 fops: &amdgpu_ttm_vram_fops, file_size: adev->gmc.mc_vram_size);
2521 debugfs_create_file(name: "amdgpu_iomem", mode: 0444, parent: root, data: adev,
2522 fops: &amdgpu_ttm_iomem_fops);
2523 debugfs_create_file(name: "ttm_page_pool", mode: 0444, parent: root, data: adev,
2524 fops: &amdgpu_ttm_page_pool_fops);
2525 ttm_resource_manager_create_debugfs(man: ttm_manager_type(bdev: &adev->mman.bdev,
2526 TTM_PL_VRAM),
2527 parent: root, name: "amdgpu_vram_mm");
2528 ttm_resource_manager_create_debugfs(man: ttm_manager_type(bdev: &adev->mman.bdev,
2529 TTM_PL_TT),
2530 parent: root, name: "amdgpu_gtt_mm");
2531 ttm_resource_manager_create_debugfs(man: ttm_manager_type(bdev: &adev->mman.bdev,
2532 AMDGPU_PL_GDS),
2533 parent: root, name: "amdgpu_gds_mm");
2534 ttm_resource_manager_create_debugfs(man: ttm_manager_type(bdev: &adev->mman.bdev,
2535 AMDGPU_PL_GWS),
2536 parent: root, name: "amdgpu_gws_mm");
2537 ttm_resource_manager_create_debugfs(man: ttm_manager_type(bdev: &adev->mman.bdev,
2538 AMDGPU_PL_OA),
2539 parent: root, name: "amdgpu_oa_mm");
2540
2541#endif
2542}
2543

source code of linux/drivers/gpu/drm/amd/amdgpu/amdgpu_ttm.c