1/*
2 * Copyright 2014 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: Alex Deucher
23 */
24#include <linux/firmware.h>
25#include <drm/drmP.h>
26#include "amdgpu.h"
27#include "amdgpu_ucode.h"
28#include "amdgpu_trace.h"
29#include "vi.h"
30#include "vid.h"
31
32#include "oss/oss_3_0_d.h"
33#include "oss/oss_3_0_sh_mask.h"
34
35#include "gmc/gmc_8_1_d.h"
36#include "gmc/gmc_8_1_sh_mask.h"
37
38#include "gca/gfx_8_0_d.h"
39#include "gca/gfx_8_0_enum.h"
40#include "gca/gfx_8_0_sh_mask.h"
41
42#include "bif/bif_5_0_d.h"
43#include "bif/bif_5_0_sh_mask.h"
44
45#include "tonga_sdma_pkt_open.h"
46
47#include "ivsrcid/ivsrcid_vislands30.h"
48
49static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev);
50static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev);
51static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev);
52static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev);
53
54MODULE_FIRMWARE("amdgpu/tonga_sdma.bin");
55MODULE_FIRMWARE("amdgpu/tonga_sdma1.bin");
56MODULE_FIRMWARE("amdgpu/carrizo_sdma.bin");
57MODULE_FIRMWARE("amdgpu/carrizo_sdma1.bin");
58MODULE_FIRMWARE("amdgpu/fiji_sdma.bin");
59MODULE_FIRMWARE("amdgpu/fiji_sdma1.bin");
60MODULE_FIRMWARE("amdgpu/stoney_sdma.bin");
61MODULE_FIRMWARE("amdgpu/polaris10_sdma.bin");
62MODULE_FIRMWARE("amdgpu/polaris10_sdma1.bin");
63MODULE_FIRMWARE("amdgpu/polaris11_sdma.bin");
64MODULE_FIRMWARE("amdgpu/polaris11_sdma1.bin");
65MODULE_FIRMWARE("amdgpu/polaris12_sdma.bin");
66MODULE_FIRMWARE("amdgpu/polaris12_sdma1.bin");
67MODULE_FIRMWARE("amdgpu/vegam_sdma.bin");
68MODULE_FIRMWARE("amdgpu/vegam_sdma1.bin");
69
70
71static const u32 sdma_offsets[SDMA_MAX_INSTANCE] =
72{
73 SDMA0_REGISTER_OFFSET,
74 SDMA1_REGISTER_OFFSET
75};
76
77static const u32 golden_settings_tonga_a11[] =
78{
79 mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
80 mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
81 mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
82 mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
83 mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
84 mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
85 mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
86 mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
87 mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
88 mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
89};
90
91static const u32 tonga_mgcg_cgcg_init[] =
92{
93 mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
94 mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
95};
96
97static const u32 golden_settings_fiji_a10[] =
98{
99 mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
100 mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
101 mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
102 mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
103 mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
104 mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
105 mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
106 mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
107};
108
109static const u32 fiji_mgcg_cgcg_init[] =
110{
111 mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
112 mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
113};
114
115static const u32 golden_settings_polaris11_a11[] =
116{
117 mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
118 mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
119 mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
120 mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
121 mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
122 mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
123 mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
124 mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
125 mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
126 mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
127};
128
129static const u32 golden_settings_polaris10_a11[] =
130{
131 mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
132 mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
133 mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
134 mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
135 mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
136 mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
137 mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
138 mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
139 mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
140 mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
141};
142
143static const u32 cz_golden_settings_a11[] =
144{
145 mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
146 mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
147 mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
148 mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
149 mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
150 mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
151 mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
152 mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
153 mmSDMA1_GFX_IB_CNTL, 0x00000100, 0x00000100,
154 mmSDMA1_POWER_CNTL, 0x00000800, 0x0003c800,
155 mmSDMA1_RLC0_IB_CNTL, 0x00000100, 0x00000100,
156 mmSDMA1_RLC1_IB_CNTL, 0x00000100, 0x00000100,
157};
158
159static const u32 cz_mgcg_cgcg_init[] =
160{
161 mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
162 mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
163};
164
165static const u32 stoney_golden_settings_a11[] =
166{
167 mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
168 mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
169 mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
170 mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
171};
172
173static const u32 stoney_mgcg_cgcg_init[] =
174{
175 mmSDMA0_CLK_CTRL, 0xffffffff, 0x00000100,
176};
177
178/*
179 * sDMA - System DMA
180 * Starting with CIK, the GPU has new asynchronous
181 * DMA engines. These engines are used for compute
182 * and gfx. There are two DMA engines (SDMA0, SDMA1)
183 * and each one supports 1 ring buffer used for gfx
184 * and 2 queues used for compute.
185 *
186 * The programming model is very similar to the CP
187 * (ring buffer, IBs, etc.), but sDMA has it's own
188 * packet format that is different from the PM4 format
189 * used by the CP. sDMA supports copying data, writing
190 * embedded data, solid fills, and a number of other
191 * things. It also has support for tiling/detiling of
192 * buffers.
193 */
194
195static void sdma_v3_0_init_golden_registers(struct amdgpu_device *adev)
196{
197 switch (adev->asic_type) {
198 case CHIP_FIJI:
199 amdgpu_device_program_register_sequence(adev,
200 fiji_mgcg_cgcg_init,
201 ARRAY_SIZE(fiji_mgcg_cgcg_init));
202 amdgpu_device_program_register_sequence(adev,
203 golden_settings_fiji_a10,
204 ARRAY_SIZE(golden_settings_fiji_a10));
205 break;
206 case CHIP_TONGA:
207 amdgpu_device_program_register_sequence(adev,
208 tonga_mgcg_cgcg_init,
209 ARRAY_SIZE(tonga_mgcg_cgcg_init));
210 amdgpu_device_program_register_sequence(adev,
211 golden_settings_tonga_a11,
212 ARRAY_SIZE(golden_settings_tonga_a11));
213 break;
214 case CHIP_POLARIS11:
215 case CHIP_POLARIS12:
216 case CHIP_VEGAM:
217 amdgpu_device_program_register_sequence(adev,
218 golden_settings_polaris11_a11,
219 ARRAY_SIZE(golden_settings_polaris11_a11));
220 break;
221 case CHIP_POLARIS10:
222 amdgpu_device_program_register_sequence(adev,
223 golden_settings_polaris10_a11,
224 ARRAY_SIZE(golden_settings_polaris10_a11));
225 break;
226 case CHIP_CARRIZO:
227 amdgpu_device_program_register_sequence(adev,
228 cz_mgcg_cgcg_init,
229 ARRAY_SIZE(cz_mgcg_cgcg_init));
230 amdgpu_device_program_register_sequence(adev,
231 cz_golden_settings_a11,
232 ARRAY_SIZE(cz_golden_settings_a11));
233 break;
234 case CHIP_STONEY:
235 amdgpu_device_program_register_sequence(adev,
236 stoney_mgcg_cgcg_init,
237 ARRAY_SIZE(stoney_mgcg_cgcg_init));
238 amdgpu_device_program_register_sequence(adev,
239 stoney_golden_settings_a11,
240 ARRAY_SIZE(stoney_golden_settings_a11));
241 break;
242 default:
243 break;
244 }
245}
246
247static void sdma_v3_0_free_microcode(struct amdgpu_device *adev)
248{
249 int i;
250 for (i = 0; i < adev->sdma.num_instances; i++) {
251 release_firmware(adev->sdma.instance[i].fw);
252 adev->sdma.instance[i].fw = NULL;
253 }
254}
255
256/**
257 * sdma_v3_0_init_microcode - load ucode images from disk
258 *
259 * @adev: amdgpu_device pointer
260 *
261 * Use the firmware interface to load the ucode images into
262 * the driver (not loaded into hw).
263 * Returns 0 on success, error on failure.
264 */
265static int sdma_v3_0_init_microcode(struct amdgpu_device *adev)
266{
267 const char *chip_name;
268 char fw_name[30];
269 int err = 0, i;
270 struct amdgpu_firmware_info *info = NULL;
271 const struct common_firmware_header *header = NULL;
272 const struct sdma_firmware_header_v1_0 *hdr;
273
274 DRM_DEBUG("\n");
275
276 switch (adev->asic_type) {
277 case CHIP_TONGA:
278 chip_name = "tonga";
279 break;
280 case CHIP_FIJI:
281 chip_name = "fiji";
282 break;
283 case CHIP_POLARIS10:
284 chip_name = "polaris10";
285 break;
286 case CHIP_POLARIS11:
287 chip_name = "polaris11";
288 break;
289 case CHIP_POLARIS12:
290 chip_name = "polaris12";
291 break;
292 case CHIP_VEGAM:
293 chip_name = "vegam";
294 break;
295 case CHIP_CARRIZO:
296 chip_name = "carrizo";
297 break;
298 case CHIP_STONEY:
299 chip_name = "stoney";
300 break;
301 default: BUG();
302 }
303
304 for (i = 0; i < adev->sdma.num_instances; i++) {
305 if (i == 0)
306 snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
307 else
308 snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name);
309 err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
310 if (err)
311 goto out;
312 err = amdgpu_ucode_validate(adev->sdma.instance[i].fw);
313 if (err)
314 goto out;
315 hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
316 adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version);
317 adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version);
318 if (adev->sdma.instance[i].feature_version >= 20)
319 adev->sdma.instance[i].burst_nop = true;
320
321 info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
322 info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
323 info->fw = adev->sdma.instance[i].fw;
324 header = (const struct common_firmware_header *)info->fw->data;
325 adev->firmware.fw_size +=
326 ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
327
328 }
329out:
330 if (err) {
331 pr_err("sdma_v3_0: Failed to load firmware \"%s\"\n", fw_name);
332 for (i = 0; i < adev->sdma.num_instances; i++) {
333 release_firmware(adev->sdma.instance[i].fw);
334 adev->sdma.instance[i].fw = NULL;
335 }
336 }
337 return err;
338}
339
340/**
341 * sdma_v3_0_ring_get_rptr - get the current read pointer
342 *
343 * @ring: amdgpu ring pointer
344 *
345 * Get the current rptr from the hardware (VI+).
346 */
347static uint64_t sdma_v3_0_ring_get_rptr(struct amdgpu_ring *ring)
348{
349 /* XXX check if swapping is necessary on BE */
350 return ring->adev->wb.wb[ring->rptr_offs] >> 2;
351}
352
353/**
354 * sdma_v3_0_ring_get_wptr - get the current write pointer
355 *
356 * @ring: amdgpu ring pointer
357 *
358 * Get the current wptr from the hardware (VI+).
359 */
360static uint64_t sdma_v3_0_ring_get_wptr(struct amdgpu_ring *ring)
361{
362 struct amdgpu_device *adev = ring->adev;
363 u32 wptr;
364
365 if (ring->use_doorbell || ring->use_pollmem) {
366 /* XXX check if swapping is necessary on BE */
367 wptr = ring->adev->wb.wb[ring->wptr_offs] >> 2;
368 } else {
369 wptr = RREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[ring->me]) >> 2;
370 }
371
372 return wptr;
373}
374
375/**
376 * sdma_v3_0_ring_set_wptr - commit the write pointer
377 *
378 * @ring: amdgpu ring pointer
379 *
380 * Write the wptr back to the hardware (VI+).
381 */
382static void sdma_v3_0_ring_set_wptr(struct amdgpu_ring *ring)
383{
384 struct amdgpu_device *adev = ring->adev;
385
386 if (ring->use_doorbell) {
387 u32 *wb = (u32 *)&adev->wb.wb[ring->wptr_offs];
388 /* XXX check if swapping is necessary on BE */
389 WRITE_ONCE(*wb, (lower_32_bits(ring->wptr) << 2));
390 WDOORBELL32(ring->doorbell_index, lower_32_bits(ring->wptr) << 2);
391 } else if (ring->use_pollmem) {
392 u32 *wb = (u32 *)&adev->wb.wb[ring->wptr_offs];
393
394 WRITE_ONCE(*wb, (lower_32_bits(ring->wptr) << 2));
395 } else {
396 WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[ring->me], lower_32_bits(ring->wptr) << 2);
397 }
398}
399
400static void sdma_v3_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
401{
402 struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
403 int i;
404
405 for (i = 0; i < count; i++)
406 if (sdma && sdma->burst_nop && (i == 0))
407 amdgpu_ring_write(ring, ring->funcs->nop |
408 SDMA_PKT_NOP_HEADER_COUNT(count - 1));
409 else
410 amdgpu_ring_write(ring, ring->funcs->nop);
411}
412
413/**
414 * sdma_v3_0_ring_emit_ib - Schedule an IB on the DMA engine
415 *
416 * @ring: amdgpu ring pointer
417 * @ib: IB object to schedule
418 *
419 * Schedule an IB in the DMA ring (VI).
420 */
421static void sdma_v3_0_ring_emit_ib(struct amdgpu_ring *ring,
422 struct amdgpu_job *job,
423 struct amdgpu_ib *ib,
424 uint32_t flags)
425{
426 unsigned vmid = AMDGPU_JOB_GET_VMID(job);
427
428 /* IB packet must end on a 8 DW boundary */
429 sdma_v3_0_ring_insert_nop(ring, (10 - (lower_32_bits(ring->wptr) & 7)) % 8);
430
431 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
432 SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf));
433 /* base must be 32 byte aligned */
434 amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
435 amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
436 amdgpu_ring_write(ring, ib->length_dw);
437 amdgpu_ring_write(ring, 0);
438 amdgpu_ring_write(ring, 0);
439
440}
441
442/**
443 * sdma_v3_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
444 *
445 * @ring: amdgpu ring pointer
446 *
447 * Emit an hdp flush packet on the requested DMA ring.
448 */
449static void sdma_v3_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
450{
451 u32 ref_and_mask = 0;
452
453 if (ring->me == 0)
454 ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA0, 1);
455 else
456 ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA1, 1);
457
458 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
459 SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) |
460 SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
461 amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_DONE << 2);
462 amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_REQ << 2);
463 amdgpu_ring_write(ring, ref_and_mask); /* reference */
464 amdgpu_ring_write(ring, ref_and_mask); /* mask */
465 amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
466 SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
467}
468
469/**
470 * sdma_v3_0_ring_emit_fence - emit a fence on the DMA ring
471 *
472 * @ring: amdgpu ring pointer
473 * @fence: amdgpu fence object
474 *
475 * Add a DMA fence packet to the ring to write
476 * the fence seq number and DMA trap packet to generate
477 * an interrupt if needed (VI).
478 */
479static void sdma_v3_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
480 unsigned flags)
481{
482 bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
483 /* write the fence */
484 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
485 amdgpu_ring_write(ring, lower_32_bits(addr));
486 amdgpu_ring_write(ring, upper_32_bits(addr));
487 amdgpu_ring_write(ring, lower_32_bits(seq));
488
489 /* optionally write high bits as well */
490 if (write64bit) {
491 addr += 4;
492 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
493 amdgpu_ring_write(ring, lower_32_bits(addr));
494 amdgpu_ring_write(ring, upper_32_bits(addr));
495 amdgpu_ring_write(ring, upper_32_bits(seq));
496 }
497
498 /* generate an interrupt */
499 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
500 amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
501}
502
503/**
504 * sdma_v3_0_gfx_stop - stop the gfx async dma engines
505 *
506 * @adev: amdgpu_device pointer
507 *
508 * Stop the gfx async dma ring buffers (VI).
509 */
510static void sdma_v3_0_gfx_stop(struct amdgpu_device *adev)
511{
512 struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].ring;
513 struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].ring;
514 u32 rb_cntl, ib_cntl;
515 int i;
516
517 if ((adev->mman.buffer_funcs_ring == sdma0) ||
518 (adev->mman.buffer_funcs_ring == sdma1))
519 amdgpu_ttm_set_buffer_funcs_status(adev, false);
520
521 for (i = 0; i < adev->sdma.num_instances; i++) {
522 rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
523 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
524 WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
525 ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
526 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
527 WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
528 }
529 sdma0->sched.ready = false;
530 sdma1->sched.ready = false;
531}
532
533/**
534 * sdma_v3_0_rlc_stop - stop the compute async dma engines
535 *
536 * @adev: amdgpu_device pointer
537 *
538 * Stop the compute async dma queues (VI).
539 */
540static void sdma_v3_0_rlc_stop(struct amdgpu_device *adev)
541{
542 /* XXX todo */
543}
544
545/**
546 * sdma_v3_0_ctx_switch_enable - stop the async dma engines context switch
547 *
548 * @adev: amdgpu_device pointer
549 * @enable: enable/disable the DMA MEs context switch.
550 *
551 * Halt or unhalt the async dma engines context switch (VI).
552 */
553static void sdma_v3_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
554{
555 u32 f32_cntl, phase_quantum = 0;
556 int i;
557
558 if (amdgpu_sdma_phase_quantum) {
559 unsigned value = amdgpu_sdma_phase_quantum;
560 unsigned unit = 0;
561
562 while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
563 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) {
564 value = (value + 1) >> 1;
565 unit++;
566 }
567 if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
568 SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) {
569 value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
570 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT);
571 unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
572 SDMA0_PHASE0_QUANTUM__UNIT__SHIFT);
573 WARN_ONCE(1,
574 "clamping sdma_phase_quantum to %uK clock cycles\n",
575 value << unit);
576 }
577 phase_quantum =
578 value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT |
579 unit << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT;
580 }
581
582 for (i = 0; i < adev->sdma.num_instances; i++) {
583 f32_cntl = RREG32(mmSDMA0_CNTL + sdma_offsets[i]);
584 if (enable) {
585 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
586 AUTO_CTXSW_ENABLE, 1);
587 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
588 ATC_L1_ENABLE, 1);
589 if (amdgpu_sdma_phase_quantum) {
590 WREG32(mmSDMA0_PHASE0_QUANTUM + sdma_offsets[i],
591 phase_quantum);
592 WREG32(mmSDMA0_PHASE1_QUANTUM + sdma_offsets[i],
593 phase_quantum);
594 }
595 } else {
596 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
597 AUTO_CTXSW_ENABLE, 0);
598 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
599 ATC_L1_ENABLE, 1);
600 }
601
602 WREG32(mmSDMA0_CNTL + sdma_offsets[i], f32_cntl);
603 }
604}
605
606/**
607 * sdma_v3_0_enable - stop the async dma engines
608 *
609 * @adev: amdgpu_device pointer
610 * @enable: enable/disable the DMA MEs.
611 *
612 * Halt or unhalt the async dma engines (VI).
613 */
614static void sdma_v3_0_enable(struct amdgpu_device *adev, bool enable)
615{
616 u32 f32_cntl;
617 int i;
618
619 if (!enable) {
620 sdma_v3_0_gfx_stop(adev);
621 sdma_v3_0_rlc_stop(adev);
622 }
623
624 for (i = 0; i < adev->sdma.num_instances; i++) {
625 f32_cntl = RREG32(mmSDMA0_F32_CNTL + sdma_offsets[i]);
626 if (enable)
627 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 0);
628 else
629 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 1);
630 WREG32(mmSDMA0_F32_CNTL + sdma_offsets[i], f32_cntl);
631 }
632}
633
634/**
635 * sdma_v3_0_gfx_resume - setup and start the async dma engines
636 *
637 * @adev: amdgpu_device pointer
638 *
639 * Set up the gfx DMA ring buffers and enable them (VI).
640 * Returns 0 for success, error for failure.
641 */
642static int sdma_v3_0_gfx_resume(struct amdgpu_device *adev)
643{
644 struct amdgpu_ring *ring;
645 u32 rb_cntl, ib_cntl, wptr_poll_cntl;
646 u32 rb_bufsz;
647 u32 wb_offset;
648 u32 doorbell;
649 u64 wptr_gpu_addr;
650 int i, j, r;
651
652 for (i = 0; i < adev->sdma.num_instances; i++) {
653 ring = &adev->sdma.instance[i].ring;
654 amdgpu_ring_clear_ring(ring);
655 wb_offset = (ring->rptr_offs * 4);
656
657 mutex_lock(&adev->srbm_mutex);
658 for (j = 0; j < 16; j++) {
659 vi_srbm_select(adev, 0, 0, 0, j);
660 /* SDMA GFX */
661 WREG32(mmSDMA0_GFX_VIRTUAL_ADDR + sdma_offsets[i], 0);
662 WREG32(mmSDMA0_GFX_APE1_CNTL + sdma_offsets[i], 0);
663 }
664 vi_srbm_select(adev, 0, 0, 0, 0);
665 mutex_unlock(&adev->srbm_mutex);
666
667 WREG32(mmSDMA0_TILING_CONFIG + sdma_offsets[i],
668 adev->gfx.config.gb_addr_config & 0x70);
669
670 WREG32(mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL + sdma_offsets[i], 0);
671
672 /* Set ring buffer size in dwords */
673 rb_bufsz = order_base_2(ring->ring_size / 4);
674 rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
675 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
676#ifdef __BIG_ENDIAN
677 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
678 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
679 RPTR_WRITEBACK_SWAP_ENABLE, 1);
680#endif
681 WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
682
683 /* Initialize the ring buffer's read and write pointers */
684 ring->wptr = 0;
685 WREG32(mmSDMA0_GFX_RB_RPTR + sdma_offsets[i], 0);
686 sdma_v3_0_ring_set_wptr(ring);
687 WREG32(mmSDMA0_GFX_IB_RPTR + sdma_offsets[i], 0);
688 WREG32(mmSDMA0_GFX_IB_OFFSET + sdma_offsets[i], 0);
689
690 /* set the wb address whether it's enabled or not */
691 WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_HI + sdma_offsets[i],
692 upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
693 WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_LO + sdma_offsets[i],
694 lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
695
696 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1);
697
698 WREG32(mmSDMA0_GFX_RB_BASE + sdma_offsets[i], ring->gpu_addr >> 8);
699 WREG32(mmSDMA0_GFX_RB_BASE_HI + sdma_offsets[i], ring->gpu_addr >> 40);
700
701 doorbell = RREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i]);
702
703 if (ring->use_doorbell) {
704 doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL,
705 OFFSET, ring->doorbell_index);
706 doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1);
707 } else {
708 doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 0);
709 }
710 WREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i], doorbell);
711
712 /* setup the wptr shadow polling */
713 wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
714
715 WREG32(mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO + sdma_offsets[i],
716 lower_32_bits(wptr_gpu_addr));
717 WREG32(mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI + sdma_offsets[i],
718 upper_32_bits(wptr_gpu_addr));
719 wptr_poll_cntl = RREG32(mmSDMA0_GFX_RB_WPTR_POLL_CNTL + sdma_offsets[i]);
720 if (ring->use_pollmem) {
721 /*wptr polling is not enogh fast, directly clean the wptr register */
722 WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], 0);
723 wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
724 SDMA0_GFX_RB_WPTR_POLL_CNTL,
725 ENABLE, 1);
726 } else {
727 wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
728 SDMA0_GFX_RB_WPTR_POLL_CNTL,
729 ENABLE, 0);
730 }
731 WREG32(mmSDMA0_GFX_RB_WPTR_POLL_CNTL + sdma_offsets[i], wptr_poll_cntl);
732
733 /* enable DMA RB */
734 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
735 WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
736
737 ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
738 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
739#ifdef __BIG_ENDIAN
740 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
741#endif
742 /* enable DMA IBs */
743 WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
744
745 ring->sched.ready = true;
746 }
747
748 /* unhalt the MEs */
749 sdma_v3_0_enable(adev, true);
750 /* enable sdma ring preemption */
751 sdma_v3_0_ctx_switch_enable(adev, true);
752
753 for (i = 0; i < adev->sdma.num_instances; i++) {
754 ring = &adev->sdma.instance[i].ring;
755 r = amdgpu_ring_test_helper(ring);
756 if (r)
757 return r;
758
759 if (adev->mman.buffer_funcs_ring == ring)
760 amdgpu_ttm_set_buffer_funcs_status(adev, true);
761 }
762
763 return 0;
764}
765
766/**
767 * sdma_v3_0_rlc_resume - setup and start the async dma engines
768 *
769 * @adev: amdgpu_device pointer
770 *
771 * Set up the compute DMA queues and enable them (VI).
772 * Returns 0 for success, error for failure.
773 */
774static int sdma_v3_0_rlc_resume(struct amdgpu_device *adev)
775{
776 /* XXX todo */
777 return 0;
778}
779
780/**
781 * sdma_v3_0_start - setup and start the async dma engines
782 *
783 * @adev: amdgpu_device pointer
784 *
785 * Set up the DMA engines and enable them (VI).
786 * Returns 0 for success, error for failure.
787 */
788static int sdma_v3_0_start(struct amdgpu_device *adev)
789{
790 int r;
791
792 /* disable sdma engine before programing it */
793 sdma_v3_0_ctx_switch_enable(adev, false);
794 sdma_v3_0_enable(adev, false);
795
796 /* start the gfx rings and rlc compute queues */
797 r = sdma_v3_0_gfx_resume(adev);
798 if (r)
799 return r;
800 r = sdma_v3_0_rlc_resume(adev);
801 if (r)
802 return r;
803
804 return 0;
805}
806
807/**
808 * sdma_v3_0_ring_test_ring - simple async dma engine test
809 *
810 * @ring: amdgpu_ring structure holding ring information
811 *
812 * Test the DMA engine by writing using it to write an
813 * value to memory. (VI).
814 * Returns 0 for success, error for failure.
815 */
816static int sdma_v3_0_ring_test_ring(struct amdgpu_ring *ring)
817{
818 struct amdgpu_device *adev = ring->adev;
819 unsigned i;
820 unsigned index;
821 int r;
822 u32 tmp;
823 u64 gpu_addr;
824
825 r = amdgpu_device_wb_get(adev, &index);
826 if (r)
827 return r;
828
829 gpu_addr = adev->wb.gpu_addr + (index * 4);
830 tmp = 0xCAFEDEAD;
831 adev->wb.wb[index] = cpu_to_le32(tmp);
832
833 r = amdgpu_ring_alloc(ring, 5);
834 if (r)
835 goto error_free_wb;
836
837 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
838 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
839 amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
840 amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
841 amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1));
842 amdgpu_ring_write(ring, 0xDEADBEEF);
843 amdgpu_ring_commit(ring);
844
845 for (i = 0; i < adev->usec_timeout; i++) {
846 tmp = le32_to_cpu(adev->wb.wb[index]);
847 if (tmp == 0xDEADBEEF)
848 break;
849 DRM_UDELAY(1);
850 }
851
852 if (i >= adev->usec_timeout)
853 r = -ETIMEDOUT;
854
855error_free_wb:
856 amdgpu_device_wb_free(adev, index);
857 return r;
858}
859
860/**
861 * sdma_v3_0_ring_test_ib - test an IB on the DMA engine
862 *
863 * @ring: amdgpu_ring structure holding ring information
864 *
865 * Test a simple IB in the DMA ring (VI).
866 * Returns 0 on success, error on failure.
867 */
868static int sdma_v3_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
869{
870 struct amdgpu_device *adev = ring->adev;
871 struct amdgpu_ib ib;
872 struct dma_fence *f = NULL;
873 unsigned index;
874 u32 tmp = 0;
875 u64 gpu_addr;
876 long r;
877
878 r = amdgpu_device_wb_get(adev, &index);
879 if (r)
880 return r;
881
882 gpu_addr = adev->wb.gpu_addr + (index * 4);
883 tmp = 0xCAFEDEAD;
884 adev->wb.wb[index] = cpu_to_le32(tmp);
885 memset(&ib, 0, sizeof(ib));
886 r = amdgpu_ib_get(adev, NULL, 256, &ib);
887 if (r)
888 goto err0;
889
890 ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
891 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
892 ib.ptr[1] = lower_32_bits(gpu_addr);
893 ib.ptr[2] = upper_32_bits(gpu_addr);
894 ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1);
895 ib.ptr[4] = 0xDEADBEEF;
896 ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
897 ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
898 ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
899 ib.length_dw = 8;
900
901 r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
902 if (r)
903 goto err1;
904
905 r = dma_fence_wait_timeout(f, false, timeout);
906 if (r == 0) {
907 r = -ETIMEDOUT;
908 goto err1;
909 } else if (r < 0) {
910 goto err1;
911 }
912 tmp = le32_to_cpu(adev->wb.wb[index]);
913 if (tmp == 0xDEADBEEF)
914 r = 0;
915 else
916 r = -EINVAL;
917err1:
918 amdgpu_ib_free(adev, &ib, NULL);
919 dma_fence_put(f);
920err0:
921 amdgpu_device_wb_free(adev, index);
922 return r;
923}
924
925/**
926 * sdma_v3_0_vm_copy_pte - update PTEs by copying them from the GART
927 *
928 * @ib: indirect buffer to fill with commands
929 * @pe: addr of the page entry
930 * @src: src addr to copy from
931 * @count: number of page entries to update
932 *
933 * Update PTEs by copying them from the GART using sDMA (CIK).
934 */
935static void sdma_v3_0_vm_copy_pte(struct amdgpu_ib *ib,
936 uint64_t pe, uint64_t src,
937 unsigned count)
938{
939 unsigned bytes = count * 8;
940
941 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
942 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
943 ib->ptr[ib->length_dw++] = bytes;
944 ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
945 ib->ptr[ib->length_dw++] = lower_32_bits(src);
946 ib->ptr[ib->length_dw++] = upper_32_bits(src);
947 ib->ptr[ib->length_dw++] = lower_32_bits(pe);
948 ib->ptr[ib->length_dw++] = upper_32_bits(pe);
949}
950
951/**
952 * sdma_v3_0_vm_write_pte - update PTEs by writing them manually
953 *
954 * @ib: indirect buffer to fill with commands
955 * @pe: addr of the page entry
956 * @value: dst addr to write into pe
957 * @count: number of page entries to update
958 * @incr: increase next addr by incr bytes
959 *
960 * Update PTEs by writing them manually using sDMA (CIK).
961 */
962static void sdma_v3_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
963 uint64_t value, unsigned count,
964 uint32_t incr)
965{
966 unsigned ndw = count * 2;
967
968 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
969 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
970 ib->ptr[ib->length_dw++] = lower_32_bits(pe);
971 ib->ptr[ib->length_dw++] = upper_32_bits(pe);
972 ib->ptr[ib->length_dw++] = ndw;
973 for (; ndw > 0; ndw -= 2) {
974 ib->ptr[ib->length_dw++] = lower_32_bits(value);
975 ib->ptr[ib->length_dw++] = upper_32_bits(value);
976 value += incr;
977 }
978}
979
980/**
981 * sdma_v3_0_vm_set_pte_pde - update the page tables using sDMA
982 *
983 * @ib: indirect buffer to fill with commands
984 * @pe: addr of the page entry
985 * @addr: dst addr to write into pe
986 * @count: number of page entries to update
987 * @incr: increase next addr by incr bytes
988 * @flags: access flags
989 *
990 * Update the page tables using sDMA (CIK).
991 */
992static void sdma_v3_0_vm_set_pte_pde(struct amdgpu_ib *ib, uint64_t pe,
993 uint64_t addr, unsigned count,
994 uint32_t incr, uint64_t flags)
995{
996 /* for physically contiguous pages (vram) */
997 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_GEN_PTEPDE);
998 ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
999 ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1000 ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
1001 ib->ptr[ib->length_dw++] = upper_32_bits(flags);
1002 ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
1003 ib->ptr[ib->length_dw++] = upper_32_bits(addr);
1004 ib->ptr[ib->length_dw++] = incr; /* increment size */
1005 ib->ptr[ib->length_dw++] = 0;
1006 ib->ptr[ib->length_dw++] = count; /* number of entries */
1007}
1008
1009/**
1010 * sdma_v3_0_ring_pad_ib - pad the IB to the required number of dw
1011 *
1012 * @ib: indirect buffer to fill with padding
1013 *
1014 */
1015static void sdma_v3_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
1016{
1017 struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
1018 u32 pad_count;
1019 int i;
1020
1021 pad_count = (8 - (ib->length_dw & 0x7)) % 8;
1022 for (i = 0; i < pad_count; i++)
1023 if (sdma && sdma->burst_nop && (i == 0))
1024 ib->ptr[ib->length_dw++] =
1025 SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
1026 SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
1027 else
1028 ib->ptr[ib->length_dw++] =
1029 SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
1030}
1031
1032/**
1033 * sdma_v3_0_ring_emit_pipeline_sync - sync the pipeline
1034 *
1035 * @ring: amdgpu_ring pointer
1036 *
1037 * Make sure all previous operations are completed (CIK).
1038 */
1039static void sdma_v3_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
1040{
1041 uint32_t seq = ring->fence_drv.sync_seq;
1042 uint64_t addr = ring->fence_drv.gpu_addr;
1043
1044 /* wait for idle */
1045 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
1046 SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
1047 SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3) | /* equal */
1048 SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(1));
1049 amdgpu_ring_write(ring, addr & 0xfffffffc);
1050 amdgpu_ring_write(ring, upper_32_bits(addr) & 0xffffffff);
1051 amdgpu_ring_write(ring, seq); /* reference */
1052 amdgpu_ring_write(ring, 0xffffffff); /* mask */
1053 amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
1054 SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(4)); /* retry count, poll interval */
1055}
1056
1057/**
1058 * sdma_v3_0_ring_emit_vm_flush - cik vm flush using sDMA
1059 *
1060 * @ring: amdgpu_ring pointer
1061 * @vm: amdgpu_vm pointer
1062 *
1063 * Update the page table base and flush the VM TLB
1064 * using sDMA (VI).
1065 */
1066static void sdma_v3_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
1067 unsigned vmid, uint64_t pd_addr)
1068{
1069 amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr);
1070
1071 /* wait for flush */
1072 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
1073 SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
1074 SDMA_PKT_POLL_REGMEM_HEADER_FUNC(0)); /* always */
1075 amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST << 2);
1076 amdgpu_ring_write(ring, 0);
1077 amdgpu_ring_write(ring, 0); /* reference */
1078 amdgpu_ring_write(ring, 0); /* mask */
1079 amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
1080 SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
1081}
1082
1083static void sdma_v3_0_ring_emit_wreg(struct amdgpu_ring *ring,
1084 uint32_t reg, uint32_t val)
1085{
1086 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1087 SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1088 amdgpu_ring_write(ring, reg);
1089 amdgpu_ring_write(ring, val);
1090}
1091
1092static int sdma_v3_0_early_init(void *handle)
1093{
1094 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1095
1096 switch (adev->asic_type) {
1097 case CHIP_STONEY:
1098 adev->sdma.num_instances = 1;
1099 break;
1100 default:
1101 adev->sdma.num_instances = SDMA_MAX_INSTANCE;
1102 break;
1103 }
1104
1105 sdma_v3_0_set_ring_funcs(adev);
1106 sdma_v3_0_set_buffer_funcs(adev);
1107 sdma_v3_0_set_vm_pte_funcs(adev);
1108 sdma_v3_0_set_irq_funcs(adev);
1109
1110 return 0;
1111}
1112
1113static int sdma_v3_0_sw_init(void *handle)
1114{
1115 struct amdgpu_ring *ring;
1116 int r, i;
1117 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1118
1119 /* SDMA trap event */
1120 r = amdgpu_irq_add_id(adev, AMDGPU_IRQ_CLIENTID_LEGACY, VISLANDS30_IV_SRCID_SDMA_TRAP,
1121 &adev->sdma.trap_irq);
1122 if (r)
1123 return r;
1124
1125 /* SDMA Privileged inst */
1126 r = amdgpu_irq_add_id(adev, AMDGPU_IRQ_CLIENTID_LEGACY, 241,
1127 &adev->sdma.illegal_inst_irq);
1128 if (r)
1129 return r;
1130
1131 /* SDMA Privileged inst */
1132 r = amdgpu_irq_add_id(adev, AMDGPU_IRQ_CLIENTID_LEGACY, VISLANDS30_IV_SRCID_SDMA_SRBM_WRITE,
1133 &adev->sdma.illegal_inst_irq);
1134 if (r)
1135 return r;
1136
1137 r = sdma_v3_0_init_microcode(adev);
1138 if (r) {
1139 DRM_ERROR("Failed to load sdma firmware!\n");
1140 return r;
1141 }
1142
1143 for (i = 0; i < adev->sdma.num_instances; i++) {
1144 ring = &adev->sdma.instance[i].ring;
1145 ring->ring_obj = NULL;
1146 if (!amdgpu_sriov_vf(adev)) {
1147 ring->use_doorbell = true;
1148 ring->doorbell_index = adev->doorbell_index.sdma_engine[i];
1149 } else {
1150 ring->use_pollmem = true;
1151 }
1152
1153 sprintf(ring->name, "sdma%d", i);
1154 r = amdgpu_ring_init(adev, ring, 1024,
1155 &adev->sdma.trap_irq,
1156 (i == 0) ?
1157 AMDGPU_SDMA_IRQ_TRAP0 :
1158 AMDGPU_SDMA_IRQ_TRAP1);
1159 if (r)
1160 return r;
1161 }
1162
1163 return r;
1164}
1165
1166static int sdma_v3_0_sw_fini(void *handle)
1167{
1168 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1169 int i;
1170
1171 for (i = 0; i < adev->sdma.num_instances; i++)
1172 amdgpu_ring_fini(&adev->sdma.instance[i].ring);
1173
1174 sdma_v3_0_free_microcode(adev);
1175 return 0;
1176}
1177
1178static int sdma_v3_0_hw_init(void *handle)
1179{
1180 int r;
1181 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1182
1183 sdma_v3_0_init_golden_registers(adev);
1184
1185 r = sdma_v3_0_start(adev);
1186 if (r)
1187 return r;
1188
1189 return r;
1190}
1191
1192static int sdma_v3_0_hw_fini(void *handle)
1193{
1194 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1195
1196 sdma_v3_0_ctx_switch_enable(adev, false);
1197 sdma_v3_0_enable(adev, false);
1198
1199 return 0;
1200}
1201
1202static int sdma_v3_0_suspend(void *handle)
1203{
1204 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1205
1206 return sdma_v3_0_hw_fini(adev);
1207}
1208
1209static int sdma_v3_0_resume(void *handle)
1210{
1211 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1212
1213 return sdma_v3_0_hw_init(adev);
1214}
1215
1216static bool sdma_v3_0_is_idle(void *handle)
1217{
1218 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1219 u32 tmp = RREG32(mmSRBM_STATUS2);
1220
1221 if (tmp & (SRBM_STATUS2__SDMA_BUSY_MASK |
1222 SRBM_STATUS2__SDMA1_BUSY_MASK))
1223 return false;
1224
1225 return true;
1226}
1227
1228static int sdma_v3_0_wait_for_idle(void *handle)
1229{
1230 unsigned i;
1231 u32 tmp;
1232 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1233
1234 for (i = 0; i < adev->usec_timeout; i++) {
1235 tmp = RREG32(mmSRBM_STATUS2) & (SRBM_STATUS2__SDMA_BUSY_MASK |
1236 SRBM_STATUS2__SDMA1_BUSY_MASK);
1237
1238 if (!tmp)
1239 return 0;
1240 udelay(1);
1241 }
1242 return -ETIMEDOUT;
1243}
1244
1245static bool sdma_v3_0_check_soft_reset(void *handle)
1246{
1247 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1248 u32 srbm_soft_reset = 0;
1249 u32 tmp = RREG32(mmSRBM_STATUS2);
1250
1251 if ((tmp & SRBM_STATUS2__SDMA_BUSY_MASK) ||
1252 (tmp & SRBM_STATUS2__SDMA1_BUSY_MASK)) {
1253 srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA_MASK;
1254 srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA1_MASK;
1255 }
1256
1257 if (srbm_soft_reset) {
1258 adev->sdma.srbm_soft_reset = srbm_soft_reset;
1259 return true;
1260 } else {
1261 adev->sdma.srbm_soft_reset = 0;
1262 return false;
1263 }
1264}
1265
1266static int sdma_v3_0_pre_soft_reset(void *handle)
1267{
1268 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1269 u32 srbm_soft_reset = 0;
1270
1271 if (!adev->sdma.srbm_soft_reset)
1272 return 0;
1273
1274 srbm_soft_reset = adev->sdma.srbm_soft_reset;
1275
1276 if (REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA) ||
1277 REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA1)) {
1278 sdma_v3_0_ctx_switch_enable(adev, false);
1279 sdma_v3_0_enable(adev, false);
1280 }
1281
1282 return 0;
1283}
1284
1285static int sdma_v3_0_post_soft_reset(void *handle)
1286{
1287 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1288 u32 srbm_soft_reset = 0;
1289
1290 if (!adev->sdma.srbm_soft_reset)
1291 return 0;
1292
1293 srbm_soft_reset = adev->sdma.srbm_soft_reset;
1294
1295 if (REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA) ||
1296 REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA1)) {
1297 sdma_v3_0_gfx_resume(adev);
1298 sdma_v3_0_rlc_resume(adev);
1299 }
1300
1301 return 0;
1302}
1303
1304static int sdma_v3_0_soft_reset(void *handle)
1305{
1306 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1307 u32 srbm_soft_reset = 0;
1308 u32 tmp;
1309
1310 if (!adev->sdma.srbm_soft_reset)
1311 return 0;
1312
1313 srbm_soft_reset = adev->sdma.srbm_soft_reset;
1314
1315 if (srbm_soft_reset) {
1316 tmp = RREG32(mmSRBM_SOFT_RESET);
1317 tmp |= srbm_soft_reset;
1318 dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp);
1319 WREG32(mmSRBM_SOFT_RESET, tmp);
1320 tmp = RREG32(mmSRBM_SOFT_RESET);
1321
1322 udelay(50);
1323
1324 tmp &= ~srbm_soft_reset;
1325 WREG32(mmSRBM_SOFT_RESET, tmp);
1326 tmp = RREG32(mmSRBM_SOFT_RESET);
1327
1328 /* Wait a little for things to settle down */
1329 udelay(50);
1330 }
1331
1332 return 0;
1333}
1334
1335static int sdma_v3_0_set_trap_irq_state(struct amdgpu_device *adev,
1336 struct amdgpu_irq_src *source,
1337 unsigned type,
1338 enum amdgpu_interrupt_state state)
1339{
1340 u32 sdma_cntl;
1341
1342 switch (type) {
1343 case AMDGPU_SDMA_IRQ_TRAP0:
1344 switch (state) {
1345 case AMDGPU_IRQ_STATE_DISABLE:
1346 sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
1347 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
1348 WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
1349 break;
1350 case AMDGPU_IRQ_STATE_ENABLE:
1351 sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
1352 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
1353 WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
1354 break;
1355 default:
1356 break;
1357 }
1358 break;
1359 case AMDGPU_SDMA_IRQ_TRAP1:
1360 switch (state) {
1361 case AMDGPU_IRQ_STATE_DISABLE:
1362 sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
1363 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
1364 WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
1365 break;
1366 case AMDGPU_IRQ_STATE_ENABLE:
1367 sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
1368 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
1369 WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
1370 break;
1371 default:
1372 break;
1373 }
1374 break;
1375 default:
1376 break;
1377 }
1378 return 0;
1379}
1380
1381static int sdma_v3_0_process_trap_irq(struct amdgpu_device *adev,
1382 struct amdgpu_irq_src *source,
1383 struct amdgpu_iv_entry *entry)
1384{
1385 u8 instance_id, queue_id;
1386
1387 instance_id = (entry->ring_id & 0x3) >> 0;
1388 queue_id = (entry->ring_id & 0xc) >> 2;
1389 DRM_DEBUG("IH: SDMA trap\n");
1390 switch (instance_id) {
1391 case 0:
1392 switch (queue_id) {
1393 case 0:
1394 amdgpu_fence_process(&adev->sdma.instance[0].ring);
1395 break;
1396 case 1:
1397 /* XXX compute */
1398 break;
1399 case 2:
1400 /* XXX compute */
1401 break;
1402 }
1403 break;
1404 case 1:
1405 switch (queue_id) {
1406 case 0:
1407 amdgpu_fence_process(&adev->sdma.instance[1].ring);
1408 break;
1409 case 1:
1410 /* XXX compute */
1411 break;
1412 case 2:
1413 /* XXX compute */
1414 break;
1415 }
1416 break;
1417 }
1418 return 0;
1419}
1420
1421static int sdma_v3_0_process_illegal_inst_irq(struct amdgpu_device *adev,
1422 struct amdgpu_irq_src *source,
1423 struct amdgpu_iv_entry *entry)
1424{
1425 u8 instance_id, queue_id;
1426
1427 DRM_ERROR("Illegal instruction in SDMA command stream\n");
1428 instance_id = (entry->ring_id & 0x3) >> 0;
1429 queue_id = (entry->ring_id & 0xc) >> 2;
1430
1431 if (instance_id <= 1 && queue_id == 0)
1432 drm_sched_fault(&adev->sdma.instance[instance_id].ring.sched);
1433 return 0;
1434}
1435
1436static void sdma_v3_0_update_sdma_medium_grain_clock_gating(
1437 struct amdgpu_device *adev,
1438 bool enable)
1439{
1440 uint32_t temp, data;
1441 int i;
1442
1443 if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
1444 for (i = 0; i < adev->sdma.num_instances; i++) {
1445 temp = data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i]);
1446 data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1447 SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1448 SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1449 SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1450 SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1451 SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1452 SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1453 SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1454 if (data != temp)
1455 WREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i], data);
1456 }
1457 } else {
1458 for (i = 0; i < adev->sdma.num_instances; i++) {
1459 temp = data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i]);
1460 data |= SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1461 SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1462 SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1463 SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1464 SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1465 SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1466 SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1467 SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK;
1468
1469 if (data != temp)
1470 WREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i], data);
1471 }
1472 }
1473}
1474
1475static void sdma_v3_0_update_sdma_medium_grain_light_sleep(
1476 struct amdgpu_device *adev,
1477 bool enable)
1478{
1479 uint32_t temp, data;
1480 int i;
1481
1482 if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
1483 for (i = 0; i < adev->sdma.num_instances; i++) {
1484 temp = data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i]);
1485 data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1486
1487 if (temp != data)
1488 WREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i], data);
1489 }
1490 } else {
1491 for (i = 0; i < adev->sdma.num_instances; i++) {
1492 temp = data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i]);
1493 data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1494
1495 if (temp != data)
1496 WREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i], data);
1497 }
1498 }
1499}
1500
1501static int sdma_v3_0_set_clockgating_state(void *handle,
1502 enum amd_clockgating_state state)
1503{
1504 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1505
1506 if (amdgpu_sriov_vf(adev))
1507 return 0;
1508
1509 switch (adev->asic_type) {
1510 case CHIP_FIJI:
1511 case CHIP_CARRIZO:
1512 case CHIP_STONEY:
1513 sdma_v3_0_update_sdma_medium_grain_clock_gating(adev,
1514 state == AMD_CG_STATE_GATE);
1515 sdma_v3_0_update_sdma_medium_grain_light_sleep(adev,
1516 state == AMD_CG_STATE_GATE);
1517 break;
1518 default:
1519 break;
1520 }
1521 return 0;
1522}
1523
1524static int sdma_v3_0_set_powergating_state(void *handle,
1525 enum amd_powergating_state state)
1526{
1527 return 0;
1528}
1529
1530static void sdma_v3_0_get_clockgating_state(void *handle, u32 *flags)
1531{
1532 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1533 int data;
1534
1535 if (amdgpu_sriov_vf(adev))
1536 *flags = 0;
1537
1538 /* AMD_CG_SUPPORT_SDMA_MGCG */
1539 data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[0]);
1540 if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK))
1541 *flags |= AMD_CG_SUPPORT_SDMA_MGCG;
1542
1543 /* AMD_CG_SUPPORT_SDMA_LS */
1544 data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[0]);
1545 if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
1546 *flags |= AMD_CG_SUPPORT_SDMA_LS;
1547}
1548
1549static const struct amd_ip_funcs sdma_v3_0_ip_funcs = {
1550 .name = "sdma_v3_0",
1551 .early_init = sdma_v3_0_early_init,
1552 .late_init = NULL,
1553 .sw_init = sdma_v3_0_sw_init,
1554 .sw_fini = sdma_v3_0_sw_fini,
1555 .hw_init = sdma_v3_0_hw_init,
1556 .hw_fini = sdma_v3_0_hw_fini,
1557 .suspend = sdma_v3_0_suspend,
1558 .resume = sdma_v3_0_resume,
1559 .is_idle = sdma_v3_0_is_idle,
1560 .wait_for_idle = sdma_v3_0_wait_for_idle,
1561 .check_soft_reset = sdma_v3_0_check_soft_reset,
1562 .pre_soft_reset = sdma_v3_0_pre_soft_reset,
1563 .post_soft_reset = sdma_v3_0_post_soft_reset,
1564 .soft_reset = sdma_v3_0_soft_reset,
1565 .set_clockgating_state = sdma_v3_0_set_clockgating_state,
1566 .set_powergating_state = sdma_v3_0_set_powergating_state,
1567 .get_clockgating_state = sdma_v3_0_get_clockgating_state,
1568};
1569
1570static const struct amdgpu_ring_funcs sdma_v3_0_ring_funcs = {
1571 .type = AMDGPU_RING_TYPE_SDMA,
1572 .align_mask = 0xf,
1573 .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
1574 .support_64bit_ptrs = false,
1575 .get_rptr = sdma_v3_0_ring_get_rptr,
1576 .get_wptr = sdma_v3_0_ring_get_wptr,
1577 .set_wptr = sdma_v3_0_ring_set_wptr,
1578 .emit_frame_size =
1579 6 + /* sdma_v3_0_ring_emit_hdp_flush */
1580 3 + /* hdp invalidate */
1581 6 + /* sdma_v3_0_ring_emit_pipeline_sync */
1582 VI_FLUSH_GPU_TLB_NUM_WREG * 3 + 6 + /* sdma_v3_0_ring_emit_vm_flush */
1583 10 + 10 + 10, /* sdma_v3_0_ring_emit_fence x3 for user fence, vm fence */
1584 .emit_ib_size = 7 + 6, /* sdma_v3_0_ring_emit_ib */
1585 .emit_ib = sdma_v3_0_ring_emit_ib,
1586 .emit_fence = sdma_v3_0_ring_emit_fence,
1587 .emit_pipeline_sync = sdma_v3_0_ring_emit_pipeline_sync,
1588 .emit_vm_flush = sdma_v3_0_ring_emit_vm_flush,
1589 .emit_hdp_flush = sdma_v3_0_ring_emit_hdp_flush,
1590 .test_ring = sdma_v3_0_ring_test_ring,
1591 .test_ib = sdma_v3_0_ring_test_ib,
1592 .insert_nop = sdma_v3_0_ring_insert_nop,
1593 .pad_ib = sdma_v3_0_ring_pad_ib,
1594 .emit_wreg = sdma_v3_0_ring_emit_wreg,
1595};
1596
1597static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev)
1598{
1599 int i;
1600
1601 for (i = 0; i < adev->sdma.num_instances; i++) {
1602 adev->sdma.instance[i].ring.funcs = &sdma_v3_0_ring_funcs;
1603 adev->sdma.instance[i].ring.me = i;
1604 }
1605}
1606
1607static const struct amdgpu_irq_src_funcs sdma_v3_0_trap_irq_funcs = {
1608 .set = sdma_v3_0_set_trap_irq_state,
1609 .process = sdma_v3_0_process_trap_irq,
1610};
1611
1612static const struct amdgpu_irq_src_funcs sdma_v3_0_illegal_inst_irq_funcs = {
1613 .process = sdma_v3_0_process_illegal_inst_irq,
1614};
1615
1616static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev)
1617{
1618 adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
1619 adev->sdma.trap_irq.funcs = &sdma_v3_0_trap_irq_funcs;
1620 adev->sdma.illegal_inst_irq.funcs = &sdma_v3_0_illegal_inst_irq_funcs;
1621}
1622
1623/**
1624 * sdma_v3_0_emit_copy_buffer - copy buffer using the sDMA engine
1625 *
1626 * @ring: amdgpu_ring structure holding ring information
1627 * @src_offset: src GPU address
1628 * @dst_offset: dst GPU address
1629 * @byte_count: number of bytes to xfer
1630 *
1631 * Copy GPU buffers using the DMA engine (VI).
1632 * Used by the amdgpu ttm implementation to move pages if
1633 * registered as the asic copy callback.
1634 */
1635static void sdma_v3_0_emit_copy_buffer(struct amdgpu_ib *ib,
1636 uint64_t src_offset,
1637 uint64_t dst_offset,
1638 uint32_t byte_count)
1639{
1640 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1641 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1642 ib->ptr[ib->length_dw++] = byte_count;
1643 ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1644 ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
1645 ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
1646 ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1647 ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1648}
1649
1650/**
1651 * sdma_v3_0_emit_fill_buffer - fill buffer using the sDMA engine
1652 *
1653 * @ring: amdgpu_ring structure holding ring information
1654 * @src_data: value to write to buffer
1655 * @dst_offset: dst GPU address
1656 * @byte_count: number of bytes to xfer
1657 *
1658 * Fill GPU buffers using the DMA engine (VI).
1659 */
1660static void sdma_v3_0_emit_fill_buffer(struct amdgpu_ib *ib,
1661 uint32_t src_data,
1662 uint64_t dst_offset,
1663 uint32_t byte_count)
1664{
1665 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
1666 ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1667 ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1668 ib->ptr[ib->length_dw++] = src_data;
1669 ib->ptr[ib->length_dw++] = byte_count;
1670}
1671
1672static const struct amdgpu_buffer_funcs sdma_v3_0_buffer_funcs = {
1673 .copy_max_bytes = 0x3fffe0, /* not 0x3fffff due to HW limitation */
1674 .copy_num_dw = 7,
1675 .emit_copy_buffer = sdma_v3_0_emit_copy_buffer,
1676
1677 .fill_max_bytes = 0x3fffe0, /* not 0x3fffff due to HW limitation */
1678 .fill_num_dw = 5,
1679 .emit_fill_buffer = sdma_v3_0_emit_fill_buffer,
1680};
1681
1682static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev)
1683{
1684 adev->mman.buffer_funcs = &sdma_v3_0_buffer_funcs;
1685 adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
1686}
1687
1688static const struct amdgpu_vm_pte_funcs sdma_v3_0_vm_pte_funcs = {
1689 .copy_pte_num_dw = 7,
1690 .copy_pte = sdma_v3_0_vm_copy_pte,
1691
1692 .write_pte = sdma_v3_0_vm_write_pte,
1693 .set_pte_pde = sdma_v3_0_vm_set_pte_pde,
1694};
1695
1696static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev)
1697{
1698 struct drm_gpu_scheduler *sched;
1699 unsigned i;
1700
1701 adev->vm_manager.vm_pte_funcs = &sdma_v3_0_vm_pte_funcs;
1702 for (i = 0; i < adev->sdma.num_instances; i++) {
1703 sched = &adev->sdma.instance[i].ring.sched;
1704 adev->vm_manager.vm_pte_rqs[i] =
1705 &sched->sched_rq[DRM_SCHED_PRIORITY_KERNEL];
1706 }
1707 adev->vm_manager.vm_pte_num_rqs = adev->sdma.num_instances;
1708}
1709
1710const struct amdgpu_ip_block_version sdma_v3_0_ip_block =
1711{
1712 .type = AMD_IP_BLOCK_TYPE_SDMA,
1713 .major = 3,
1714 .minor = 0,
1715 .rev = 0,
1716 .funcs = &sdma_v3_0_ip_funcs,
1717};
1718
1719const struct amdgpu_ip_block_version sdma_v3_1_ip_block =
1720{
1721 .type = AMD_IP_BLOCK_TYPE_SDMA,
1722 .major = 3,
1723 .minor = 1,
1724 .rev = 0,
1725 .funcs = &sdma_v3_0_ip_funcs,
1726};
1727