1 | /* |
2 | * Copyright 2016 Advanced Micro Devices, Inc. |
3 | * |
4 | * Permission is hereby granted, free of charge, to any person obtaining a |
5 | * copy of this software and associated documentation files (the "Software"), |
6 | * to deal in the Software without restriction, including without limitation |
7 | * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
8 | * and/or sell copies of the Software, and to permit persons to whom the |
9 | * Software is furnished to do so, subject to the following conditions: |
10 | * |
11 | * The above copyright notice and this permission notice shall be included in |
12 | * all copies or substantial portions of the Software. |
13 | * |
14 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
15 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
16 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
17 | * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR |
18 | * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, |
19 | * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |
20 | * OTHER DEALINGS IN THE SOFTWARE. |
21 | * |
22 | */ |
23 | |
24 | #include <linux/firmware.h> |
25 | #include <drm/drmP.h> |
26 | #include "amdgpu.h" |
27 | #include "amdgpu_ucode.h" |
28 | #include "amdgpu_trace.h" |
29 | |
30 | #include "sdma0/sdma0_4_2_offset.h" |
31 | #include "sdma0/sdma0_4_2_sh_mask.h" |
32 | #include "sdma1/sdma1_4_2_offset.h" |
33 | #include "sdma1/sdma1_4_2_sh_mask.h" |
34 | #include "hdp/hdp_4_0_offset.h" |
35 | #include "sdma0/sdma0_4_1_default.h" |
36 | |
37 | #include "soc15_common.h" |
38 | #include "soc15.h" |
39 | #include "vega10_sdma_pkt_open.h" |
40 | |
41 | #include "ivsrcid/sdma0/irqsrcs_sdma0_4_0.h" |
42 | #include "ivsrcid/sdma1/irqsrcs_sdma1_4_0.h" |
43 | |
44 | MODULE_FIRMWARE("amdgpu/vega10_sdma.bin" ); |
45 | MODULE_FIRMWARE("amdgpu/vega10_sdma1.bin" ); |
46 | MODULE_FIRMWARE("amdgpu/vega12_sdma.bin" ); |
47 | MODULE_FIRMWARE("amdgpu/vega12_sdma1.bin" ); |
48 | MODULE_FIRMWARE("amdgpu/vega20_sdma.bin" ); |
49 | MODULE_FIRMWARE("amdgpu/vega20_sdma1.bin" ); |
50 | MODULE_FIRMWARE("amdgpu/raven_sdma.bin" ); |
51 | MODULE_FIRMWARE("amdgpu/picasso_sdma.bin" ); |
52 | MODULE_FIRMWARE("amdgpu/raven2_sdma.bin" ); |
53 | |
54 | #define SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK 0x000000F8L |
55 | #define SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK 0xFC000000L |
56 | |
57 | #define WREG32_SDMA(instance, offset, value) \ |
58 | WREG32(sdma_v4_0_get_reg_offset(adev, (instance), (offset)), value) |
59 | #define RREG32_SDMA(instance, offset) \ |
60 | RREG32(sdma_v4_0_get_reg_offset(adev, (instance), (offset))) |
61 | |
62 | static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev); |
63 | static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev); |
64 | static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev); |
65 | static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev); |
66 | |
67 | static const struct soc15_reg_golden golden_settings_sdma_4[] = { |
68 | SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07), |
69 | SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xff000ff0, 0x3f000100), |
70 | SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0100, 0x00000100), |
71 | SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), |
72 | SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_IB_CNTL, 0x800f0100, 0x00000100), |
73 | SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000), |
74 | SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0x003ff006, 0x0003c000), |
75 | SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0100, 0x00000100), |
76 | SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000), |
77 | SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0100, 0x00000100), |
78 | SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000), |
79 | SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0), |
80 | SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000), |
81 | SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100), |
82 | SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_IB_CNTL, 0x800f0100, 0x00000100), |
83 | SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000), |
84 | SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_IB_CNTL, 0x800f0100, 0x00000100), |
85 | SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000), |
86 | SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_POWER_CNTL, 0x003ff000, 0x0003c000), |
87 | SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_IB_CNTL, 0x800f0100, 0x00000100), |
88 | SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000), |
89 | SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_IB_CNTL, 0x800f0100, 0x00000100), |
90 | SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000), |
91 | SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0), |
92 | SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_WATERMK, 0xfc000000, 0x00000000) |
93 | }; |
94 | |
95 | static const struct soc15_reg_golden golden_settings_sdma_vg10[] = { |
96 | SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104002), |
97 | SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002), |
98 | SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831d07), |
99 | SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104002), |
100 | SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002) |
101 | }; |
102 | |
103 | static const struct soc15_reg_golden golden_settings_sdma_vg12[] = { |
104 | SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104001), |
105 | SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001), |
106 | SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831d07), |
107 | SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104001), |
108 | SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001) |
109 | }; |
110 | |
111 | static const struct soc15_reg_golden golden_settings_sdma_4_1[] = { |
112 | SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07), |
113 | SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100), |
114 | SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100), |
115 | SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), |
116 | SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0xfc3fffff, 0x40000051), |
117 | SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100), |
118 | SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), |
119 | SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100), |
120 | SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), |
121 | SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0), |
122 | SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000) |
123 | }; |
124 | |
125 | static const struct soc15_reg_golden golden_settings_sdma0_4_2_init[] = { |
126 | SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000), |
127 | }; |
128 | |
129 | static const struct soc15_reg_golden golden_settings_sdma0_4_2[] = |
130 | { |
131 | SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07), |
132 | SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100), |
133 | SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0000773f, 0x00004002), |
134 | SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002), |
135 | SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), |
136 | SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), |
137 | SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), |
138 | SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), |
139 | SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RD_BURST_CNTL, 0x0000000f, 0x00000003), |
140 | SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), |
141 | SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000), |
142 | SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), |
143 | SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), |
144 | SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC2_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), |
145 | SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), |
146 | SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC3_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), |
147 | SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), |
148 | SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC4_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), |
149 | SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), |
150 | SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC5_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), |
151 | SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), |
152 | SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC6_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), |
153 | SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), |
154 | SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC7_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), |
155 | SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), |
156 | SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0), |
157 | SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xFE000000, 0x00000000), |
158 | }; |
159 | |
160 | static const struct soc15_reg_golden golden_settings_sdma1_4_2[] = { |
161 | SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831f07), |
162 | SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100), |
163 | SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0000773f, 0x00004002), |
164 | SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002), |
165 | SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), |
166 | SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), |
167 | SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), |
168 | SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), |
169 | SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RD_BURST_CNTL, 0x0000000f, 0x00000003), |
170 | SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), |
171 | SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000), |
172 | SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), |
173 | SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), |
174 | SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC2_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), |
175 | SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), |
176 | SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC3_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), |
177 | SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), |
178 | SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC4_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), |
179 | SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), |
180 | SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC5_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), |
181 | SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), |
182 | SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC6_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), |
183 | SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), |
184 | SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC7_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001), |
185 | SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000), |
186 | SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0), |
187 | SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_WATERMK, 0xFE000000, 0x00000000), |
188 | }; |
189 | |
190 | static const struct soc15_reg_golden golden_settings_sdma_rv1[] = |
191 | { |
192 | SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00000002), |
193 | SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00000002) |
194 | }; |
195 | |
196 | static const struct soc15_reg_golden golden_settings_sdma_rv2[] = |
197 | { |
198 | SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00003001), |
199 | SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00003001) |
200 | }; |
201 | |
202 | static u32 sdma_v4_0_get_reg_offset(struct amdgpu_device *adev, |
203 | u32 instance, u32 offset) |
204 | { |
205 | return ( 0 == instance ? (adev->reg_offset[SDMA0_HWIP][0][0] + offset) : |
206 | (adev->reg_offset[SDMA1_HWIP][0][0] + offset)); |
207 | } |
208 | |
209 | static void sdma_v4_0_init_golden_registers(struct amdgpu_device *adev) |
210 | { |
211 | switch (adev->asic_type) { |
212 | case CHIP_VEGA10: |
213 | soc15_program_register_sequence(adev, |
214 | golden_settings_sdma_4, |
215 | ARRAY_SIZE(golden_settings_sdma_4)); |
216 | soc15_program_register_sequence(adev, |
217 | golden_settings_sdma_vg10, |
218 | ARRAY_SIZE(golden_settings_sdma_vg10)); |
219 | break; |
220 | case CHIP_VEGA12: |
221 | soc15_program_register_sequence(adev, |
222 | golden_settings_sdma_4, |
223 | ARRAY_SIZE(golden_settings_sdma_4)); |
224 | soc15_program_register_sequence(adev, |
225 | golden_settings_sdma_vg12, |
226 | ARRAY_SIZE(golden_settings_sdma_vg12)); |
227 | break; |
228 | case CHIP_VEGA20: |
229 | soc15_program_register_sequence(adev, |
230 | golden_settings_sdma0_4_2_init, |
231 | ARRAY_SIZE(golden_settings_sdma0_4_2_init)); |
232 | soc15_program_register_sequence(adev, |
233 | golden_settings_sdma0_4_2, |
234 | ARRAY_SIZE(golden_settings_sdma0_4_2)); |
235 | soc15_program_register_sequence(adev, |
236 | golden_settings_sdma1_4_2, |
237 | ARRAY_SIZE(golden_settings_sdma1_4_2)); |
238 | break; |
239 | case CHIP_RAVEN: |
240 | soc15_program_register_sequence(adev, |
241 | golden_settings_sdma_4_1, |
242 | ARRAY_SIZE(golden_settings_sdma_4_1)); |
243 | if (adev->rev_id >= 8) |
244 | soc15_program_register_sequence(adev, |
245 | golden_settings_sdma_rv2, |
246 | ARRAY_SIZE(golden_settings_sdma_rv2)); |
247 | else |
248 | soc15_program_register_sequence(adev, |
249 | golden_settings_sdma_rv1, |
250 | ARRAY_SIZE(golden_settings_sdma_rv1)); |
251 | break; |
252 | default: |
253 | break; |
254 | } |
255 | } |
256 | |
257 | /** |
258 | * sdma_v4_0_init_microcode - load ucode images from disk |
259 | * |
260 | * @adev: amdgpu_device pointer |
261 | * |
262 | * Use the firmware interface to load the ucode images into |
263 | * the driver (not loaded into hw). |
264 | * Returns 0 on success, error on failure. |
265 | */ |
266 | |
267 | // emulation only, won't work on real chip |
268 | // vega10 real chip need to use PSP to load firmware |
269 | static int sdma_v4_0_init_microcode(struct amdgpu_device *adev) |
270 | { |
271 | const char *chip_name; |
272 | char fw_name[30]; |
273 | int err = 0, i; |
274 | struct amdgpu_firmware_info *info = NULL; |
275 | const struct common_firmware_header * = NULL; |
276 | const struct sdma_firmware_header_v1_0 *hdr; |
277 | |
278 | DRM_DEBUG("\n" ); |
279 | |
280 | switch (adev->asic_type) { |
281 | case CHIP_VEGA10: |
282 | chip_name = "vega10" ; |
283 | break; |
284 | case CHIP_VEGA12: |
285 | chip_name = "vega12" ; |
286 | break; |
287 | case CHIP_VEGA20: |
288 | chip_name = "vega20" ; |
289 | break; |
290 | case CHIP_RAVEN: |
291 | if (adev->rev_id >= 8) |
292 | chip_name = "raven2" ; |
293 | else if (adev->pdev->device == 0x15d8) |
294 | chip_name = "picasso" ; |
295 | else |
296 | chip_name = "raven" ; |
297 | break; |
298 | default: |
299 | BUG(); |
300 | } |
301 | |
302 | for (i = 0; i < adev->sdma.num_instances; i++) { |
303 | if (i == 0) |
304 | snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin" , chip_name); |
305 | else |
306 | snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin" , chip_name); |
307 | err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev); |
308 | if (err) |
309 | goto out; |
310 | err = amdgpu_ucode_validate(adev->sdma.instance[i].fw); |
311 | if (err) |
312 | goto out; |
313 | hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data; |
314 | adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version); |
315 | adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version); |
316 | if (adev->sdma.instance[i].feature_version >= 20) |
317 | adev->sdma.instance[i].burst_nop = true; |
318 | DRM_DEBUG("psp_load == '%s'\n" , |
319 | adev->firmware.load_type == AMDGPU_FW_LOAD_PSP ? "true" : "false" ); |
320 | |
321 | if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) { |
322 | info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i]; |
323 | info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i; |
324 | info->fw = adev->sdma.instance[i].fw; |
325 | header = (const struct common_firmware_header *)info->fw->data; |
326 | adev->firmware.fw_size += |
327 | ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE); |
328 | } |
329 | } |
330 | out: |
331 | if (err) { |
332 | DRM_ERROR("sdma_v4_0: Failed to load firmware \"%s\"\n" , fw_name); |
333 | for (i = 0; i < adev->sdma.num_instances; i++) { |
334 | release_firmware(adev->sdma.instance[i].fw); |
335 | adev->sdma.instance[i].fw = NULL; |
336 | } |
337 | } |
338 | return err; |
339 | } |
340 | |
341 | /** |
342 | * sdma_v4_0_ring_get_rptr - get the current read pointer |
343 | * |
344 | * @ring: amdgpu ring pointer |
345 | * |
346 | * Get the current rptr from the hardware (VEGA10+). |
347 | */ |
348 | static uint64_t sdma_v4_0_ring_get_rptr(struct amdgpu_ring *ring) |
349 | { |
350 | u64 *rptr; |
351 | |
352 | /* XXX check if swapping is necessary on BE */ |
353 | rptr = ((u64 *)&ring->adev->wb.wb[ring->rptr_offs]); |
354 | |
355 | DRM_DEBUG("rptr before shift == 0x%016llx\n" , *rptr); |
356 | return ((*rptr) >> 2); |
357 | } |
358 | |
359 | /** |
360 | * sdma_v4_0_ring_get_wptr - get the current write pointer |
361 | * |
362 | * @ring: amdgpu ring pointer |
363 | * |
364 | * Get the current wptr from the hardware (VEGA10+). |
365 | */ |
366 | static uint64_t sdma_v4_0_ring_get_wptr(struct amdgpu_ring *ring) |
367 | { |
368 | struct amdgpu_device *adev = ring->adev; |
369 | u64 wptr; |
370 | |
371 | if (ring->use_doorbell) { |
372 | /* XXX check if swapping is necessary on BE */ |
373 | wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs])); |
374 | DRM_DEBUG("wptr/doorbell before shift == 0x%016llx\n" , wptr); |
375 | } else { |
376 | wptr = RREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR_HI); |
377 | wptr = wptr << 32; |
378 | wptr |= RREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR); |
379 | DRM_DEBUG("wptr before shift [%i] wptr == 0x%016llx\n" , |
380 | ring->me, wptr); |
381 | } |
382 | |
383 | return wptr >> 2; |
384 | } |
385 | |
386 | /** |
387 | * sdma_v4_0_ring_set_wptr - commit the write pointer |
388 | * |
389 | * @ring: amdgpu ring pointer |
390 | * |
391 | * Write the wptr back to the hardware (VEGA10+). |
392 | */ |
393 | static void sdma_v4_0_ring_set_wptr(struct amdgpu_ring *ring) |
394 | { |
395 | struct amdgpu_device *adev = ring->adev; |
396 | |
397 | DRM_DEBUG("Setting write pointer\n" ); |
398 | if (ring->use_doorbell) { |
399 | u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs]; |
400 | |
401 | DRM_DEBUG("Using doorbell -- " |
402 | "wptr_offs == 0x%08x " |
403 | "lower_32_bits(ring->wptr) << 2 == 0x%08x " |
404 | "upper_32_bits(ring->wptr) << 2 == 0x%08x\n" , |
405 | ring->wptr_offs, |
406 | lower_32_bits(ring->wptr << 2), |
407 | upper_32_bits(ring->wptr << 2)); |
408 | /* XXX check if swapping is necessary on BE */ |
409 | WRITE_ONCE(*wb, (ring->wptr << 2)); |
410 | DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n" , |
411 | ring->doorbell_index, ring->wptr << 2); |
412 | WDOORBELL64(ring->doorbell_index, ring->wptr << 2); |
413 | } else { |
414 | DRM_DEBUG("Not using doorbell -- " |
415 | "mmSDMA%i_GFX_RB_WPTR == 0x%08x " |
416 | "mmSDMA%i_GFX_RB_WPTR_HI == 0x%08x\n" , |
417 | ring->me, |
418 | lower_32_bits(ring->wptr << 2), |
419 | ring->me, |
420 | upper_32_bits(ring->wptr << 2)); |
421 | WREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR, |
422 | lower_32_bits(ring->wptr << 2)); |
423 | WREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR_HI, |
424 | upper_32_bits(ring->wptr << 2)); |
425 | } |
426 | } |
427 | |
428 | /** |
429 | * sdma_v4_0_page_ring_get_wptr - get the current write pointer |
430 | * |
431 | * @ring: amdgpu ring pointer |
432 | * |
433 | * Get the current wptr from the hardware (VEGA10+). |
434 | */ |
435 | static uint64_t sdma_v4_0_page_ring_get_wptr(struct amdgpu_ring *ring) |
436 | { |
437 | struct amdgpu_device *adev = ring->adev; |
438 | u64 wptr; |
439 | |
440 | if (ring->use_doorbell) { |
441 | /* XXX check if swapping is necessary on BE */ |
442 | wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs])); |
443 | } else { |
444 | wptr = RREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR_HI); |
445 | wptr = wptr << 32; |
446 | wptr |= RREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR); |
447 | } |
448 | |
449 | return wptr >> 2; |
450 | } |
451 | |
452 | /** |
453 | * sdma_v4_0_ring_set_wptr - commit the write pointer |
454 | * |
455 | * @ring: amdgpu ring pointer |
456 | * |
457 | * Write the wptr back to the hardware (VEGA10+). |
458 | */ |
459 | static void sdma_v4_0_page_ring_set_wptr(struct amdgpu_ring *ring) |
460 | { |
461 | struct amdgpu_device *adev = ring->adev; |
462 | |
463 | if (ring->use_doorbell) { |
464 | u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs]; |
465 | |
466 | /* XXX check if swapping is necessary on BE */ |
467 | WRITE_ONCE(*wb, (ring->wptr << 2)); |
468 | WDOORBELL64(ring->doorbell_index, ring->wptr << 2); |
469 | } else { |
470 | uint64_t wptr = ring->wptr << 2; |
471 | |
472 | WREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR, |
473 | lower_32_bits(wptr)); |
474 | WREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR_HI, |
475 | upper_32_bits(wptr)); |
476 | } |
477 | } |
478 | |
479 | static void sdma_v4_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count) |
480 | { |
481 | struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring); |
482 | int i; |
483 | |
484 | for (i = 0; i < count; i++) |
485 | if (sdma && sdma->burst_nop && (i == 0)) |
486 | amdgpu_ring_write(ring, ring->funcs->nop | |
487 | SDMA_PKT_NOP_HEADER_COUNT(count - 1)); |
488 | else |
489 | amdgpu_ring_write(ring, ring->funcs->nop); |
490 | } |
491 | |
492 | /** |
493 | * sdma_v4_0_ring_emit_ib - Schedule an IB on the DMA engine |
494 | * |
495 | * @ring: amdgpu ring pointer |
496 | * @ib: IB object to schedule |
497 | * |
498 | * Schedule an IB in the DMA ring (VEGA10). |
499 | */ |
500 | static void sdma_v4_0_ring_emit_ib(struct amdgpu_ring *ring, |
501 | struct amdgpu_job *job, |
502 | struct amdgpu_ib *ib, |
503 | uint32_t flags) |
504 | { |
505 | unsigned vmid = AMDGPU_JOB_GET_VMID(job); |
506 | |
507 | /* IB packet must end on a 8 DW boundary */ |
508 | sdma_v4_0_ring_insert_nop(ring, (10 - (lower_32_bits(ring->wptr) & 7)) % 8); |
509 | |
510 | amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) | |
511 | SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf)); |
512 | /* base must be 32 byte aligned */ |
513 | amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0); |
514 | amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr)); |
515 | amdgpu_ring_write(ring, ib->length_dw); |
516 | amdgpu_ring_write(ring, 0); |
517 | amdgpu_ring_write(ring, 0); |
518 | |
519 | } |
520 | |
521 | static void sdma_v4_0_wait_reg_mem(struct amdgpu_ring *ring, |
522 | int mem_space, int hdp, |
523 | uint32_t addr0, uint32_t addr1, |
524 | uint32_t ref, uint32_t mask, |
525 | uint32_t inv) |
526 | { |
527 | amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) | |
528 | SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(hdp) | |
529 | SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(mem_space) | |
530 | SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */ |
531 | if (mem_space) { |
532 | /* memory */ |
533 | amdgpu_ring_write(ring, addr0); |
534 | amdgpu_ring_write(ring, addr1); |
535 | } else { |
536 | /* registers */ |
537 | amdgpu_ring_write(ring, addr0 << 2); |
538 | amdgpu_ring_write(ring, addr1 << 2); |
539 | } |
540 | amdgpu_ring_write(ring, ref); /* reference */ |
541 | amdgpu_ring_write(ring, mask); /* mask */ |
542 | amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) | |
543 | SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(inv)); /* retry count, poll interval */ |
544 | } |
545 | |
546 | /** |
547 | * sdma_v4_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring |
548 | * |
549 | * @ring: amdgpu ring pointer |
550 | * |
551 | * Emit an hdp flush packet on the requested DMA ring. |
552 | */ |
553 | static void sdma_v4_0_ring_emit_hdp_flush(struct amdgpu_ring *ring) |
554 | { |
555 | struct amdgpu_device *adev = ring->adev; |
556 | u32 ref_and_mask = 0; |
557 | const struct nbio_hdp_flush_reg *nbio_hf_reg = adev->nbio_funcs->hdp_flush_reg; |
558 | |
559 | if (ring->me == 0) |
560 | ref_and_mask = nbio_hf_reg->ref_and_mask_sdma0; |
561 | else |
562 | ref_and_mask = nbio_hf_reg->ref_and_mask_sdma1; |
563 | |
564 | sdma_v4_0_wait_reg_mem(ring, 0, 1, |
565 | adev->nbio_funcs->get_hdp_flush_done_offset(adev), |
566 | adev->nbio_funcs->get_hdp_flush_req_offset(adev), |
567 | ref_and_mask, ref_and_mask, 10); |
568 | } |
569 | |
570 | /** |
571 | * sdma_v4_0_ring_emit_fence - emit a fence on the DMA ring |
572 | * |
573 | * @ring: amdgpu ring pointer |
574 | * @fence: amdgpu fence object |
575 | * |
576 | * Add a DMA fence packet to the ring to write |
577 | * the fence seq number and DMA trap packet to generate |
578 | * an interrupt if needed (VEGA10). |
579 | */ |
580 | static void sdma_v4_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq, |
581 | unsigned flags) |
582 | { |
583 | bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT; |
584 | /* write the fence */ |
585 | amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE)); |
586 | /* zero in first two bits */ |
587 | BUG_ON(addr & 0x3); |
588 | amdgpu_ring_write(ring, lower_32_bits(addr)); |
589 | amdgpu_ring_write(ring, upper_32_bits(addr)); |
590 | amdgpu_ring_write(ring, lower_32_bits(seq)); |
591 | |
592 | /* optionally write high bits as well */ |
593 | if (write64bit) { |
594 | addr += 4; |
595 | amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE)); |
596 | /* zero in first two bits */ |
597 | BUG_ON(addr & 0x3); |
598 | amdgpu_ring_write(ring, lower_32_bits(addr)); |
599 | amdgpu_ring_write(ring, upper_32_bits(addr)); |
600 | amdgpu_ring_write(ring, upper_32_bits(seq)); |
601 | } |
602 | |
603 | /* generate an interrupt */ |
604 | amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP)); |
605 | amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0)); |
606 | } |
607 | |
608 | |
609 | /** |
610 | * sdma_v4_0_gfx_stop - stop the gfx async dma engines |
611 | * |
612 | * @adev: amdgpu_device pointer |
613 | * |
614 | * Stop the gfx async dma ring buffers (VEGA10). |
615 | */ |
616 | static void sdma_v4_0_gfx_stop(struct amdgpu_device *adev) |
617 | { |
618 | struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].ring; |
619 | struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].ring; |
620 | u32 rb_cntl, ib_cntl; |
621 | int i; |
622 | |
623 | if ((adev->mman.buffer_funcs_ring == sdma0) || |
624 | (adev->mman.buffer_funcs_ring == sdma1)) |
625 | amdgpu_ttm_set_buffer_funcs_status(adev, false); |
626 | |
627 | for (i = 0; i < adev->sdma.num_instances; i++) { |
628 | rb_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL); |
629 | rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0); |
630 | WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl); |
631 | ib_cntl = RREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL); |
632 | ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0); |
633 | WREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL, ib_cntl); |
634 | } |
635 | |
636 | sdma0->sched.ready = false; |
637 | sdma1->sched.ready = false; |
638 | } |
639 | |
640 | /** |
641 | * sdma_v4_0_rlc_stop - stop the compute async dma engines |
642 | * |
643 | * @adev: amdgpu_device pointer |
644 | * |
645 | * Stop the compute async dma queues (VEGA10). |
646 | */ |
647 | static void sdma_v4_0_rlc_stop(struct amdgpu_device *adev) |
648 | { |
649 | /* XXX todo */ |
650 | } |
651 | |
652 | /** |
653 | * sdma_v4_0_page_stop - stop the page async dma engines |
654 | * |
655 | * @adev: amdgpu_device pointer |
656 | * |
657 | * Stop the page async dma ring buffers (VEGA10). |
658 | */ |
659 | static void sdma_v4_0_page_stop(struct amdgpu_device *adev) |
660 | { |
661 | struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].page; |
662 | struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].page; |
663 | u32 rb_cntl, ib_cntl; |
664 | int i; |
665 | |
666 | if ((adev->mman.buffer_funcs_ring == sdma0) || |
667 | (adev->mman.buffer_funcs_ring == sdma1)) |
668 | amdgpu_ttm_set_buffer_funcs_status(adev, false); |
669 | |
670 | for (i = 0; i < adev->sdma.num_instances; i++) { |
671 | rb_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL); |
672 | rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL, |
673 | RB_ENABLE, 0); |
674 | WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl); |
675 | ib_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL); |
676 | ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL, |
677 | IB_ENABLE, 0); |
678 | WREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL, ib_cntl); |
679 | } |
680 | |
681 | sdma0->sched.ready = false; |
682 | sdma1->sched.ready = false; |
683 | } |
684 | |
685 | /** |
686 | * sdma_v_0_ctx_switch_enable - stop the async dma engines context switch |
687 | * |
688 | * @adev: amdgpu_device pointer |
689 | * @enable: enable/disable the DMA MEs context switch. |
690 | * |
691 | * Halt or unhalt the async dma engines context switch (VEGA10). |
692 | */ |
693 | static void sdma_v4_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable) |
694 | { |
695 | u32 f32_cntl, phase_quantum = 0; |
696 | int i; |
697 | |
698 | if (amdgpu_sdma_phase_quantum) { |
699 | unsigned value = amdgpu_sdma_phase_quantum; |
700 | unsigned unit = 0; |
701 | |
702 | while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >> |
703 | SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) { |
704 | value = (value + 1) >> 1; |
705 | unit++; |
706 | } |
707 | if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >> |
708 | SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) { |
709 | value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >> |
710 | SDMA0_PHASE0_QUANTUM__VALUE__SHIFT); |
711 | unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >> |
712 | SDMA0_PHASE0_QUANTUM__UNIT__SHIFT); |
713 | WARN_ONCE(1, |
714 | "clamping sdma_phase_quantum to %uK clock cycles\n" , |
715 | value << unit); |
716 | } |
717 | phase_quantum = |
718 | value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT | |
719 | unit << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT; |
720 | } |
721 | |
722 | for (i = 0; i < adev->sdma.num_instances; i++) { |
723 | f32_cntl = RREG32_SDMA(i, mmSDMA0_CNTL); |
724 | f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL, |
725 | AUTO_CTXSW_ENABLE, enable ? 1 : 0); |
726 | if (enable && amdgpu_sdma_phase_quantum) { |
727 | WREG32_SDMA(i, mmSDMA0_PHASE0_QUANTUM, phase_quantum); |
728 | WREG32_SDMA(i, mmSDMA0_PHASE1_QUANTUM, phase_quantum); |
729 | WREG32_SDMA(i, mmSDMA0_PHASE2_QUANTUM, phase_quantum); |
730 | } |
731 | WREG32_SDMA(i, mmSDMA0_CNTL, f32_cntl); |
732 | } |
733 | |
734 | } |
735 | |
736 | /** |
737 | * sdma_v4_0_enable - stop the async dma engines |
738 | * |
739 | * @adev: amdgpu_device pointer |
740 | * @enable: enable/disable the DMA MEs. |
741 | * |
742 | * Halt or unhalt the async dma engines (VEGA10). |
743 | */ |
744 | static void sdma_v4_0_enable(struct amdgpu_device *adev, bool enable) |
745 | { |
746 | u32 f32_cntl; |
747 | int i; |
748 | |
749 | if (enable == false) { |
750 | sdma_v4_0_gfx_stop(adev); |
751 | sdma_v4_0_rlc_stop(adev); |
752 | if (adev->sdma.has_page_queue) |
753 | sdma_v4_0_page_stop(adev); |
754 | } |
755 | |
756 | for (i = 0; i < adev->sdma.num_instances; i++) { |
757 | f32_cntl = RREG32_SDMA(i, mmSDMA0_F32_CNTL); |
758 | f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, enable ? 0 : 1); |
759 | WREG32_SDMA(i, mmSDMA0_F32_CNTL, f32_cntl); |
760 | } |
761 | } |
762 | |
763 | /** |
764 | * sdma_v4_0_rb_cntl - get parameters for rb_cntl |
765 | */ |
766 | static uint32_t sdma_v4_0_rb_cntl(struct amdgpu_ring *ring, uint32_t rb_cntl) |
767 | { |
768 | /* Set ring buffer size in dwords */ |
769 | uint32_t rb_bufsz = order_base_2(ring->ring_size / 4); |
770 | |
771 | rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz); |
772 | #ifdef __BIG_ENDIAN |
773 | rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1); |
774 | rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, |
775 | RPTR_WRITEBACK_SWAP_ENABLE, 1); |
776 | #endif |
777 | return rb_cntl; |
778 | } |
779 | |
780 | /** |
781 | * sdma_v4_0_gfx_resume - setup and start the async dma engines |
782 | * |
783 | * @adev: amdgpu_device pointer |
784 | * @i: instance to resume |
785 | * |
786 | * Set up the gfx DMA ring buffers and enable them (VEGA10). |
787 | * Returns 0 for success, error for failure. |
788 | */ |
789 | static void sdma_v4_0_gfx_resume(struct amdgpu_device *adev, unsigned int i) |
790 | { |
791 | struct amdgpu_ring *ring = &adev->sdma.instance[i].ring; |
792 | u32 rb_cntl, ib_cntl, wptr_poll_cntl; |
793 | u32 wb_offset; |
794 | u32 doorbell; |
795 | u32 doorbell_offset; |
796 | u64 wptr_gpu_addr; |
797 | |
798 | wb_offset = (ring->rptr_offs * 4); |
799 | |
800 | rb_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL); |
801 | rb_cntl = sdma_v4_0_rb_cntl(ring, rb_cntl); |
802 | WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl); |
803 | |
804 | /* Initialize the ring buffer's read and write pointers */ |
805 | WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR, 0); |
806 | WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_HI, 0); |
807 | WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR, 0); |
808 | WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_HI, 0); |
809 | |
810 | /* set the wb address whether it's enabled or not */ |
811 | WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_ADDR_HI, |
812 | upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF); |
813 | WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_ADDR_LO, |
814 | lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC); |
815 | |
816 | rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, |
817 | RPTR_WRITEBACK_ENABLE, 1); |
818 | |
819 | WREG32_SDMA(i, mmSDMA0_GFX_RB_BASE, ring->gpu_addr >> 8); |
820 | WREG32_SDMA(i, mmSDMA0_GFX_RB_BASE_HI, ring->gpu_addr >> 40); |
821 | |
822 | ring->wptr = 0; |
823 | |
824 | /* before programing wptr to a less value, need set minor_ptr_update first */ |
825 | WREG32_SDMA(i, mmSDMA0_GFX_MINOR_PTR_UPDATE, 1); |
826 | |
827 | doorbell = RREG32_SDMA(i, mmSDMA0_GFX_DOORBELL); |
828 | doorbell_offset = RREG32_SDMA(i, mmSDMA0_GFX_DOORBELL_OFFSET); |
829 | |
830 | doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, |
831 | ring->use_doorbell); |
832 | doorbell_offset = REG_SET_FIELD(doorbell_offset, |
833 | SDMA0_GFX_DOORBELL_OFFSET, |
834 | OFFSET, ring->doorbell_index); |
835 | WREG32_SDMA(i, mmSDMA0_GFX_DOORBELL, doorbell); |
836 | WREG32_SDMA(i, mmSDMA0_GFX_DOORBELL_OFFSET, doorbell_offset); |
837 | |
838 | sdma_v4_0_ring_set_wptr(ring); |
839 | |
840 | /* set minor_ptr_update to 0 after wptr programed */ |
841 | WREG32_SDMA(i, mmSDMA0_GFX_MINOR_PTR_UPDATE, 0); |
842 | |
843 | /* setup the wptr shadow polling */ |
844 | wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4); |
845 | WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO, |
846 | lower_32_bits(wptr_gpu_addr)); |
847 | WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI, |
848 | upper_32_bits(wptr_gpu_addr)); |
849 | wptr_poll_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL); |
850 | wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl, |
851 | SDMA0_GFX_RB_WPTR_POLL_CNTL, |
852 | F32_POLL_ENABLE, amdgpu_sriov_vf(adev)); |
853 | WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, wptr_poll_cntl); |
854 | |
855 | /* enable DMA RB */ |
856 | rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1); |
857 | WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl); |
858 | |
859 | ib_cntl = RREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL); |
860 | ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1); |
861 | #ifdef __BIG_ENDIAN |
862 | ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1); |
863 | #endif |
864 | /* enable DMA IBs */ |
865 | WREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL, ib_cntl); |
866 | |
867 | ring->sched.ready = true; |
868 | } |
869 | |
870 | /** |
871 | * sdma_v4_0_page_resume - setup and start the async dma engines |
872 | * |
873 | * @adev: amdgpu_device pointer |
874 | * @i: instance to resume |
875 | * |
876 | * Set up the page DMA ring buffers and enable them (VEGA10). |
877 | * Returns 0 for success, error for failure. |
878 | */ |
879 | static void sdma_v4_0_page_resume(struct amdgpu_device *adev, unsigned int i) |
880 | { |
881 | struct amdgpu_ring *ring = &adev->sdma.instance[i].page; |
882 | u32 rb_cntl, ib_cntl, wptr_poll_cntl; |
883 | u32 wb_offset; |
884 | u32 doorbell; |
885 | u32 doorbell_offset; |
886 | u64 wptr_gpu_addr; |
887 | |
888 | wb_offset = (ring->rptr_offs * 4); |
889 | |
890 | rb_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL); |
891 | rb_cntl = sdma_v4_0_rb_cntl(ring, rb_cntl); |
892 | WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl); |
893 | |
894 | /* Initialize the ring buffer's read and write pointers */ |
895 | WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR, 0); |
896 | WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_HI, 0); |
897 | WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR, 0); |
898 | WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_HI, 0); |
899 | |
900 | /* set the wb address whether it's enabled or not */ |
901 | WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_ADDR_HI, |
902 | upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF); |
903 | WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_ADDR_LO, |
904 | lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC); |
905 | |
906 | rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL, |
907 | RPTR_WRITEBACK_ENABLE, 1); |
908 | |
909 | WREG32_SDMA(i, mmSDMA0_PAGE_RB_BASE, ring->gpu_addr >> 8); |
910 | WREG32_SDMA(i, mmSDMA0_PAGE_RB_BASE_HI, ring->gpu_addr >> 40); |
911 | |
912 | ring->wptr = 0; |
913 | |
914 | /* before programing wptr to a less value, need set minor_ptr_update first */ |
915 | WREG32_SDMA(i, mmSDMA0_PAGE_MINOR_PTR_UPDATE, 1); |
916 | |
917 | doorbell = RREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL); |
918 | doorbell_offset = RREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL_OFFSET); |
919 | |
920 | doorbell = REG_SET_FIELD(doorbell, SDMA0_PAGE_DOORBELL, ENABLE, |
921 | ring->use_doorbell); |
922 | doorbell_offset = REG_SET_FIELD(doorbell_offset, |
923 | SDMA0_PAGE_DOORBELL_OFFSET, |
924 | OFFSET, ring->doorbell_index); |
925 | WREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL, doorbell); |
926 | WREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL_OFFSET, doorbell_offset); |
927 | |
928 | /* paging queue doorbell range is setup at sdma_v4_0_gfx_resume */ |
929 | sdma_v4_0_page_ring_set_wptr(ring); |
930 | |
931 | /* set minor_ptr_update to 0 after wptr programed */ |
932 | WREG32_SDMA(i, mmSDMA0_PAGE_MINOR_PTR_UPDATE, 0); |
933 | |
934 | /* setup the wptr shadow polling */ |
935 | wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4); |
936 | WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_ADDR_LO, |
937 | lower_32_bits(wptr_gpu_addr)); |
938 | WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_ADDR_HI, |
939 | upper_32_bits(wptr_gpu_addr)); |
940 | wptr_poll_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL); |
941 | wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl, |
942 | SDMA0_PAGE_RB_WPTR_POLL_CNTL, |
943 | F32_POLL_ENABLE, amdgpu_sriov_vf(adev)); |
944 | WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, wptr_poll_cntl); |
945 | |
946 | /* enable DMA RB */ |
947 | rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL, RB_ENABLE, 1); |
948 | WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl); |
949 | |
950 | ib_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL); |
951 | ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL, IB_ENABLE, 1); |
952 | #ifdef __BIG_ENDIAN |
953 | ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL, IB_SWAP_ENABLE, 1); |
954 | #endif |
955 | /* enable DMA IBs */ |
956 | WREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL, ib_cntl); |
957 | |
958 | ring->sched.ready = true; |
959 | } |
960 | |
961 | static void |
962 | sdma_v4_1_update_power_gating(struct amdgpu_device *adev, bool enable) |
963 | { |
964 | uint32_t def, data; |
965 | |
966 | if (enable && (adev->pg_flags & AMD_PG_SUPPORT_SDMA)) { |
967 | /* enable idle interrupt */ |
968 | def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL)); |
969 | data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK; |
970 | |
971 | if (data != def) |
972 | WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data); |
973 | } else { |
974 | /* disable idle interrupt */ |
975 | def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL)); |
976 | data &= ~SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK; |
977 | if (data != def) |
978 | WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data); |
979 | } |
980 | } |
981 | |
982 | static void sdma_v4_1_init_power_gating(struct amdgpu_device *adev) |
983 | { |
984 | uint32_t def, data; |
985 | |
986 | /* Enable HW based PG. */ |
987 | def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL)); |
988 | data |= SDMA0_POWER_CNTL__PG_CNTL_ENABLE_MASK; |
989 | if (data != def) |
990 | WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data); |
991 | |
992 | /* enable interrupt */ |
993 | def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL)); |
994 | data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK; |
995 | if (data != def) |
996 | WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data); |
997 | |
998 | /* Configure hold time to filter in-valid power on/off request. Use default right now */ |
999 | def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL)); |
1000 | data &= ~SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK; |
1001 | data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK); |
1002 | /* Configure switch time for hysteresis purpose. Use default right now */ |
1003 | data &= ~SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK; |
1004 | data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK); |
1005 | if(data != def) |
1006 | WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data); |
1007 | } |
1008 | |
1009 | static void sdma_v4_0_init_pg(struct amdgpu_device *adev) |
1010 | { |
1011 | if (!(adev->pg_flags & AMD_PG_SUPPORT_SDMA)) |
1012 | return; |
1013 | |
1014 | switch (adev->asic_type) { |
1015 | case CHIP_RAVEN: |
1016 | sdma_v4_1_init_power_gating(adev); |
1017 | sdma_v4_1_update_power_gating(adev, true); |
1018 | break; |
1019 | default: |
1020 | break; |
1021 | } |
1022 | } |
1023 | |
1024 | /** |
1025 | * sdma_v4_0_rlc_resume - setup and start the async dma engines |
1026 | * |
1027 | * @adev: amdgpu_device pointer |
1028 | * |
1029 | * Set up the compute DMA queues and enable them (VEGA10). |
1030 | * Returns 0 for success, error for failure. |
1031 | */ |
1032 | static int sdma_v4_0_rlc_resume(struct amdgpu_device *adev) |
1033 | { |
1034 | sdma_v4_0_init_pg(adev); |
1035 | |
1036 | return 0; |
1037 | } |
1038 | |
1039 | /** |
1040 | * sdma_v4_0_load_microcode - load the sDMA ME ucode |
1041 | * |
1042 | * @adev: amdgpu_device pointer |
1043 | * |
1044 | * Loads the sDMA0/1 ucode. |
1045 | * Returns 0 for success, -EINVAL if the ucode is not available. |
1046 | */ |
1047 | static int sdma_v4_0_load_microcode(struct amdgpu_device *adev) |
1048 | { |
1049 | const struct sdma_firmware_header_v1_0 *hdr; |
1050 | const __le32 *fw_data; |
1051 | u32 fw_size; |
1052 | int i, j; |
1053 | |
1054 | /* halt the MEs */ |
1055 | sdma_v4_0_enable(adev, false); |
1056 | |
1057 | for (i = 0; i < adev->sdma.num_instances; i++) { |
1058 | if (!adev->sdma.instance[i].fw) |
1059 | return -EINVAL; |
1060 | |
1061 | hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data; |
1062 | amdgpu_ucode_print_sdma_hdr(&hdr->header); |
1063 | fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4; |
1064 | |
1065 | fw_data = (const __le32 *) |
1066 | (adev->sdma.instance[i].fw->data + |
1067 | le32_to_cpu(hdr->header.ucode_array_offset_bytes)); |
1068 | |
1069 | WREG32_SDMA(i, mmSDMA0_UCODE_ADDR, 0); |
1070 | |
1071 | for (j = 0; j < fw_size; j++) |
1072 | WREG32_SDMA(i, mmSDMA0_UCODE_DATA, |
1073 | le32_to_cpup(fw_data++)); |
1074 | |
1075 | WREG32_SDMA(i, mmSDMA0_UCODE_ADDR, |
1076 | adev->sdma.instance[i].fw_version); |
1077 | } |
1078 | |
1079 | return 0; |
1080 | } |
1081 | |
1082 | /** |
1083 | * sdma_v4_0_start - setup and start the async dma engines |
1084 | * |
1085 | * @adev: amdgpu_device pointer |
1086 | * |
1087 | * Set up the DMA engines and enable them (VEGA10). |
1088 | * Returns 0 for success, error for failure. |
1089 | */ |
1090 | static int sdma_v4_0_start(struct amdgpu_device *adev) |
1091 | { |
1092 | struct amdgpu_ring *ring; |
1093 | int i, r; |
1094 | |
1095 | if (amdgpu_sriov_vf(adev)) { |
1096 | sdma_v4_0_ctx_switch_enable(adev, false); |
1097 | sdma_v4_0_enable(adev, false); |
1098 | } else { |
1099 | |
1100 | if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) { |
1101 | r = sdma_v4_0_load_microcode(adev); |
1102 | if (r) |
1103 | return r; |
1104 | } |
1105 | |
1106 | /* unhalt the MEs */ |
1107 | sdma_v4_0_enable(adev, true); |
1108 | /* enable sdma ring preemption */ |
1109 | sdma_v4_0_ctx_switch_enable(adev, true); |
1110 | } |
1111 | |
1112 | /* start the gfx rings and rlc compute queues */ |
1113 | for (i = 0; i < adev->sdma.num_instances; i++) { |
1114 | uint32_t temp; |
1115 | |
1116 | WREG32_SDMA(i, mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL, 0); |
1117 | sdma_v4_0_gfx_resume(adev, i); |
1118 | if (adev->sdma.has_page_queue) |
1119 | sdma_v4_0_page_resume(adev, i); |
1120 | |
1121 | /* set utc l1 enable flag always to 1 */ |
1122 | temp = RREG32_SDMA(i, mmSDMA0_CNTL); |
1123 | temp = REG_SET_FIELD(temp, SDMA0_CNTL, UTC_L1_ENABLE, 1); |
1124 | WREG32_SDMA(i, mmSDMA0_CNTL, temp); |
1125 | |
1126 | if (!amdgpu_sriov_vf(adev)) { |
1127 | /* unhalt engine */ |
1128 | temp = RREG32_SDMA(i, mmSDMA0_F32_CNTL); |
1129 | temp = REG_SET_FIELD(temp, SDMA0_F32_CNTL, HALT, 0); |
1130 | WREG32_SDMA(i, mmSDMA0_F32_CNTL, temp); |
1131 | } |
1132 | } |
1133 | |
1134 | if (amdgpu_sriov_vf(adev)) { |
1135 | sdma_v4_0_ctx_switch_enable(adev, true); |
1136 | sdma_v4_0_enable(adev, true); |
1137 | } else { |
1138 | r = sdma_v4_0_rlc_resume(adev); |
1139 | if (r) |
1140 | return r; |
1141 | } |
1142 | |
1143 | for (i = 0; i < adev->sdma.num_instances; i++) { |
1144 | ring = &adev->sdma.instance[i].ring; |
1145 | |
1146 | r = amdgpu_ring_test_helper(ring); |
1147 | if (r) |
1148 | return r; |
1149 | |
1150 | if (adev->sdma.has_page_queue) { |
1151 | struct amdgpu_ring *page = &adev->sdma.instance[i].page; |
1152 | |
1153 | r = amdgpu_ring_test_helper(page); |
1154 | if (r) |
1155 | return r; |
1156 | |
1157 | if (adev->mman.buffer_funcs_ring == page) |
1158 | amdgpu_ttm_set_buffer_funcs_status(adev, true); |
1159 | } |
1160 | |
1161 | if (adev->mman.buffer_funcs_ring == ring) |
1162 | amdgpu_ttm_set_buffer_funcs_status(adev, true); |
1163 | } |
1164 | |
1165 | return r; |
1166 | } |
1167 | |
1168 | /** |
1169 | * sdma_v4_0_ring_test_ring - simple async dma engine test |
1170 | * |
1171 | * @ring: amdgpu_ring structure holding ring information |
1172 | * |
1173 | * Test the DMA engine by writing using it to write an |
1174 | * value to memory. (VEGA10). |
1175 | * Returns 0 for success, error for failure. |
1176 | */ |
1177 | static int sdma_v4_0_ring_test_ring(struct amdgpu_ring *ring) |
1178 | { |
1179 | struct amdgpu_device *adev = ring->adev; |
1180 | unsigned i; |
1181 | unsigned index; |
1182 | int r; |
1183 | u32 tmp; |
1184 | u64 gpu_addr; |
1185 | |
1186 | r = amdgpu_device_wb_get(adev, &index); |
1187 | if (r) |
1188 | return r; |
1189 | |
1190 | gpu_addr = adev->wb.gpu_addr + (index * 4); |
1191 | tmp = 0xCAFEDEAD; |
1192 | adev->wb.wb[index] = cpu_to_le32(tmp); |
1193 | |
1194 | r = amdgpu_ring_alloc(ring, 5); |
1195 | if (r) |
1196 | goto error_free_wb; |
1197 | |
1198 | amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) | |
1199 | SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR)); |
1200 | amdgpu_ring_write(ring, lower_32_bits(gpu_addr)); |
1201 | amdgpu_ring_write(ring, upper_32_bits(gpu_addr)); |
1202 | amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0)); |
1203 | amdgpu_ring_write(ring, 0xDEADBEEF); |
1204 | amdgpu_ring_commit(ring); |
1205 | |
1206 | for (i = 0; i < adev->usec_timeout; i++) { |
1207 | tmp = le32_to_cpu(adev->wb.wb[index]); |
1208 | if (tmp == 0xDEADBEEF) |
1209 | break; |
1210 | DRM_UDELAY(1); |
1211 | } |
1212 | |
1213 | if (i >= adev->usec_timeout) |
1214 | r = -ETIMEDOUT; |
1215 | |
1216 | error_free_wb: |
1217 | amdgpu_device_wb_free(adev, index); |
1218 | return r; |
1219 | } |
1220 | |
1221 | /** |
1222 | * sdma_v4_0_ring_test_ib - test an IB on the DMA engine |
1223 | * |
1224 | * @ring: amdgpu_ring structure holding ring information |
1225 | * |
1226 | * Test a simple IB in the DMA ring (VEGA10). |
1227 | * Returns 0 on success, error on failure. |
1228 | */ |
1229 | static int sdma_v4_0_ring_test_ib(struct amdgpu_ring *ring, long timeout) |
1230 | { |
1231 | struct amdgpu_device *adev = ring->adev; |
1232 | struct amdgpu_ib ib; |
1233 | struct dma_fence *f = NULL; |
1234 | unsigned index; |
1235 | long r; |
1236 | u32 tmp = 0; |
1237 | u64 gpu_addr; |
1238 | |
1239 | r = amdgpu_device_wb_get(adev, &index); |
1240 | if (r) |
1241 | return r; |
1242 | |
1243 | gpu_addr = adev->wb.gpu_addr + (index * 4); |
1244 | tmp = 0xCAFEDEAD; |
1245 | adev->wb.wb[index] = cpu_to_le32(tmp); |
1246 | memset(&ib, 0, sizeof(ib)); |
1247 | r = amdgpu_ib_get(adev, NULL, 256, &ib); |
1248 | if (r) |
1249 | goto err0; |
1250 | |
1251 | ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) | |
1252 | SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR); |
1253 | ib.ptr[1] = lower_32_bits(gpu_addr); |
1254 | ib.ptr[2] = upper_32_bits(gpu_addr); |
1255 | ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0); |
1256 | ib.ptr[4] = 0xDEADBEEF; |
1257 | ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP); |
1258 | ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP); |
1259 | ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP); |
1260 | ib.length_dw = 8; |
1261 | |
1262 | r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f); |
1263 | if (r) |
1264 | goto err1; |
1265 | |
1266 | r = dma_fence_wait_timeout(f, false, timeout); |
1267 | if (r == 0) { |
1268 | r = -ETIMEDOUT; |
1269 | goto err1; |
1270 | } else if (r < 0) { |
1271 | goto err1; |
1272 | } |
1273 | tmp = le32_to_cpu(adev->wb.wb[index]); |
1274 | if (tmp == 0xDEADBEEF) |
1275 | r = 0; |
1276 | else |
1277 | r = -EINVAL; |
1278 | |
1279 | err1: |
1280 | amdgpu_ib_free(adev, &ib, NULL); |
1281 | dma_fence_put(f); |
1282 | err0: |
1283 | amdgpu_device_wb_free(adev, index); |
1284 | return r; |
1285 | } |
1286 | |
1287 | |
1288 | /** |
1289 | * sdma_v4_0_vm_copy_pte - update PTEs by copying them from the GART |
1290 | * |
1291 | * @ib: indirect buffer to fill with commands |
1292 | * @pe: addr of the page entry |
1293 | * @src: src addr to copy from |
1294 | * @count: number of page entries to update |
1295 | * |
1296 | * Update PTEs by copying them from the GART using sDMA (VEGA10). |
1297 | */ |
1298 | static void sdma_v4_0_vm_copy_pte(struct amdgpu_ib *ib, |
1299 | uint64_t pe, uint64_t src, |
1300 | unsigned count) |
1301 | { |
1302 | unsigned bytes = count * 8; |
1303 | |
1304 | ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) | |
1305 | SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR); |
1306 | ib->ptr[ib->length_dw++] = bytes - 1; |
1307 | ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */ |
1308 | ib->ptr[ib->length_dw++] = lower_32_bits(src); |
1309 | ib->ptr[ib->length_dw++] = upper_32_bits(src); |
1310 | ib->ptr[ib->length_dw++] = lower_32_bits(pe); |
1311 | ib->ptr[ib->length_dw++] = upper_32_bits(pe); |
1312 | |
1313 | } |
1314 | |
1315 | /** |
1316 | * sdma_v4_0_vm_write_pte - update PTEs by writing them manually |
1317 | * |
1318 | * @ib: indirect buffer to fill with commands |
1319 | * @pe: addr of the page entry |
1320 | * @addr: dst addr to write into pe |
1321 | * @count: number of page entries to update |
1322 | * @incr: increase next addr by incr bytes |
1323 | * @flags: access flags |
1324 | * |
1325 | * Update PTEs by writing them manually using sDMA (VEGA10). |
1326 | */ |
1327 | static void sdma_v4_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe, |
1328 | uint64_t value, unsigned count, |
1329 | uint32_t incr) |
1330 | { |
1331 | unsigned ndw = count * 2; |
1332 | |
1333 | ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) | |
1334 | SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR); |
1335 | ib->ptr[ib->length_dw++] = lower_32_bits(pe); |
1336 | ib->ptr[ib->length_dw++] = upper_32_bits(pe); |
1337 | ib->ptr[ib->length_dw++] = ndw - 1; |
1338 | for (; ndw > 0; ndw -= 2) { |
1339 | ib->ptr[ib->length_dw++] = lower_32_bits(value); |
1340 | ib->ptr[ib->length_dw++] = upper_32_bits(value); |
1341 | value += incr; |
1342 | } |
1343 | } |
1344 | |
1345 | /** |
1346 | * sdma_v4_0_vm_set_pte_pde - update the page tables using sDMA |
1347 | * |
1348 | * @ib: indirect buffer to fill with commands |
1349 | * @pe: addr of the page entry |
1350 | * @addr: dst addr to write into pe |
1351 | * @count: number of page entries to update |
1352 | * @incr: increase next addr by incr bytes |
1353 | * @flags: access flags |
1354 | * |
1355 | * Update the page tables using sDMA (VEGA10). |
1356 | */ |
1357 | static void sdma_v4_0_vm_set_pte_pde(struct amdgpu_ib *ib, |
1358 | uint64_t pe, |
1359 | uint64_t addr, unsigned count, |
1360 | uint32_t incr, uint64_t flags) |
1361 | { |
1362 | /* for physically contiguous pages (vram) */ |
1363 | ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_PTEPDE); |
1364 | ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */ |
1365 | ib->ptr[ib->length_dw++] = upper_32_bits(pe); |
1366 | ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */ |
1367 | ib->ptr[ib->length_dw++] = upper_32_bits(flags); |
1368 | ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */ |
1369 | ib->ptr[ib->length_dw++] = upper_32_bits(addr); |
1370 | ib->ptr[ib->length_dw++] = incr; /* increment size */ |
1371 | ib->ptr[ib->length_dw++] = 0; |
1372 | ib->ptr[ib->length_dw++] = count - 1; /* number of entries */ |
1373 | } |
1374 | |
1375 | /** |
1376 | * sdma_v4_0_ring_pad_ib - pad the IB to the required number of dw |
1377 | * |
1378 | * @ib: indirect buffer to fill with padding |
1379 | * |
1380 | */ |
1381 | static void sdma_v4_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib) |
1382 | { |
1383 | struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring); |
1384 | u32 pad_count; |
1385 | int i; |
1386 | |
1387 | pad_count = (8 - (ib->length_dw & 0x7)) % 8; |
1388 | for (i = 0; i < pad_count; i++) |
1389 | if (sdma && sdma->burst_nop && (i == 0)) |
1390 | ib->ptr[ib->length_dw++] = |
1391 | SDMA_PKT_HEADER_OP(SDMA_OP_NOP) | |
1392 | SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1); |
1393 | else |
1394 | ib->ptr[ib->length_dw++] = |
1395 | SDMA_PKT_HEADER_OP(SDMA_OP_NOP); |
1396 | } |
1397 | |
1398 | |
1399 | /** |
1400 | * sdma_v4_0_ring_emit_pipeline_sync - sync the pipeline |
1401 | * |
1402 | * @ring: amdgpu_ring pointer |
1403 | * |
1404 | * Make sure all previous operations are completed (CIK). |
1405 | */ |
1406 | static void sdma_v4_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring) |
1407 | { |
1408 | uint32_t seq = ring->fence_drv.sync_seq; |
1409 | uint64_t addr = ring->fence_drv.gpu_addr; |
1410 | |
1411 | /* wait for idle */ |
1412 | sdma_v4_0_wait_reg_mem(ring, 1, 0, |
1413 | addr & 0xfffffffc, |
1414 | upper_32_bits(addr) & 0xffffffff, |
1415 | seq, 0xffffffff, 4); |
1416 | } |
1417 | |
1418 | |
1419 | /** |
1420 | * sdma_v4_0_ring_emit_vm_flush - vm flush using sDMA |
1421 | * |
1422 | * @ring: amdgpu_ring pointer |
1423 | * @vm: amdgpu_vm pointer |
1424 | * |
1425 | * Update the page table base and flush the VM TLB |
1426 | * using sDMA (VEGA10). |
1427 | */ |
1428 | static void sdma_v4_0_ring_emit_vm_flush(struct amdgpu_ring *ring, |
1429 | unsigned vmid, uint64_t pd_addr) |
1430 | { |
1431 | amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr); |
1432 | } |
1433 | |
1434 | static void sdma_v4_0_ring_emit_wreg(struct amdgpu_ring *ring, |
1435 | uint32_t reg, uint32_t val) |
1436 | { |
1437 | amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) | |
1438 | SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf)); |
1439 | amdgpu_ring_write(ring, reg); |
1440 | amdgpu_ring_write(ring, val); |
1441 | } |
1442 | |
1443 | static void sdma_v4_0_ring_emit_reg_wait(struct amdgpu_ring *ring, uint32_t reg, |
1444 | uint32_t val, uint32_t mask) |
1445 | { |
1446 | sdma_v4_0_wait_reg_mem(ring, 0, 0, reg, 0, val, mask, 10); |
1447 | } |
1448 | |
1449 | static bool sdma_v4_0_fw_support_paging_queue(struct amdgpu_device *adev) |
1450 | { |
1451 | uint fw_version = adev->sdma.instance[0].fw_version; |
1452 | |
1453 | switch (adev->asic_type) { |
1454 | case CHIP_VEGA10: |
1455 | return fw_version >= 430; |
1456 | case CHIP_VEGA12: |
1457 | /*return fw_version >= 31;*/ |
1458 | return false; |
1459 | case CHIP_VEGA20: |
1460 | return fw_version >= 123; |
1461 | default: |
1462 | return false; |
1463 | } |
1464 | } |
1465 | |
1466 | static int sdma_v4_0_early_init(void *handle) |
1467 | { |
1468 | struct amdgpu_device *adev = (struct amdgpu_device *)handle; |
1469 | int r; |
1470 | |
1471 | if (adev->asic_type == CHIP_RAVEN) |
1472 | adev->sdma.num_instances = 1; |
1473 | else |
1474 | adev->sdma.num_instances = 2; |
1475 | |
1476 | r = sdma_v4_0_init_microcode(adev); |
1477 | if (r) { |
1478 | DRM_ERROR("Failed to load sdma firmware!\n" ); |
1479 | return r; |
1480 | } |
1481 | |
1482 | /* TODO: Page queue breaks driver reload under SRIOV */ |
1483 | if ((adev->asic_type == CHIP_VEGA10) && amdgpu_sriov_vf((adev))) |
1484 | adev->sdma.has_page_queue = false; |
1485 | else if (sdma_v4_0_fw_support_paging_queue(adev)) |
1486 | adev->sdma.has_page_queue = true; |
1487 | |
1488 | sdma_v4_0_set_ring_funcs(adev); |
1489 | sdma_v4_0_set_buffer_funcs(adev); |
1490 | sdma_v4_0_set_vm_pte_funcs(adev); |
1491 | sdma_v4_0_set_irq_funcs(adev); |
1492 | |
1493 | return 0; |
1494 | } |
1495 | |
1496 | static int sdma_v4_0_sw_init(void *handle) |
1497 | { |
1498 | struct amdgpu_ring *ring; |
1499 | int r, i; |
1500 | struct amdgpu_device *adev = (struct amdgpu_device *)handle; |
1501 | |
1502 | /* SDMA trap event */ |
1503 | r = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_SDMA0, SDMA0_4_0__SRCID__SDMA_TRAP, |
1504 | &adev->sdma.trap_irq); |
1505 | if (r) |
1506 | return r; |
1507 | |
1508 | /* SDMA trap event */ |
1509 | r = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_SDMA1, SDMA1_4_0__SRCID__SDMA_TRAP, |
1510 | &adev->sdma.trap_irq); |
1511 | if (r) |
1512 | return r; |
1513 | |
1514 | for (i = 0; i < adev->sdma.num_instances; i++) { |
1515 | ring = &adev->sdma.instance[i].ring; |
1516 | ring->ring_obj = NULL; |
1517 | ring->use_doorbell = true; |
1518 | |
1519 | DRM_INFO("use_doorbell being set to: [%s]\n" , |
1520 | ring->use_doorbell?"true" :"false" ); |
1521 | |
1522 | /* doorbell size is 2 dwords, get DWORD offset */ |
1523 | ring->doorbell_index = adev->doorbell_index.sdma_engine[i] << 1; |
1524 | |
1525 | sprintf(ring->name, "sdma%d" , i); |
1526 | r = amdgpu_ring_init(adev, ring, 1024, |
1527 | &adev->sdma.trap_irq, |
1528 | (i == 0) ? |
1529 | AMDGPU_SDMA_IRQ_TRAP0 : |
1530 | AMDGPU_SDMA_IRQ_TRAP1); |
1531 | if (r) |
1532 | return r; |
1533 | |
1534 | if (adev->sdma.has_page_queue) { |
1535 | ring = &adev->sdma.instance[i].page; |
1536 | ring->ring_obj = NULL; |
1537 | ring->use_doorbell = true; |
1538 | |
1539 | /* paging queue use same doorbell index/routing as gfx queue |
1540 | * with 0x400 (4096 dwords) offset on second doorbell page |
1541 | */ |
1542 | ring->doorbell_index = adev->doorbell_index.sdma_engine[i] << 1; |
1543 | ring->doorbell_index += 0x400; |
1544 | |
1545 | sprintf(ring->name, "page%d" , i); |
1546 | r = amdgpu_ring_init(adev, ring, 1024, |
1547 | &adev->sdma.trap_irq, |
1548 | (i == 0) ? |
1549 | AMDGPU_SDMA_IRQ_TRAP0 : |
1550 | AMDGPU_SDMA_IRQ_TRAP1); |
1551 | if (r) |
1552 | return r; |
1553 | } |
1554 | } |
1555 | |
1556 | return r; |
1557 | } |
1558 | |
1559 | static int sdma_v4_0_sw_fini(void *handle) |
1560 | { |
1561 | struct amdgpu_device *adev = (struct amdgpu_device *)handle; |
1562 | int i; |
1563 | |
1564 | for (i = 0; i < adev->sdma.num_instances; i++) { |
1565 | amdgpu_ring_fini(&adev->sdma.instance[i].ring); |
1566 | if (adev->sdma.has_page_queue) |
1567 | amdgpu_ring_fini(&adev->sdma.instance[i].page); |
1568 | } |
1569 | |
1570 | for (i = 0; i < adev->sdma.num_instances; i++) { |
1571 | release_firmware(adev->sdma.instance[i].fw); |
1572 | adev->sdma.instance[i].fw = NULL; |
1573 | } |
1574 | |
1575 | return 0; |
1576 | } |
1577 | |
1578 | static int sdma_v4_0_hw_init(void *handle) |
1579 | { |
1580 | int r; |
1581 | struct amdgpu_device *adev = (struct amdgpu_device *)handle; |
1582 | |
1583 | if (adev->asic_type == CHIP_RAVEN && adev->powerplay.pp_funcs && |
1584 | adev->powerplay.pp_funcs->set_powergating_by_smu) |
1585 | amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_SDMA, false); |
1586 | |
1587 | sdma_v4_0_init_golden_registers(adev); |
1588 | |
1589 | r = sdma_v4_0_start(adev); |
1590 | |
1591 | return r; |
1592 | } |
1593 | |
1594 | static int sdma_v4_0_hw_fini(void *handle) |
1595 | { |
1596 | struct amdgpu_device *adev = (struct amdgpu_device *)handle; |
1597 | |
1598 | if (amdgpu_sriov_vf(adev)) |
1599 | return 0; |
1600 | |
1601 | sdma_v4_0_ctx_switch_enable(adev, false); |
1602 | sdma_v4_0_enable(adev, false); |
1603 | |
1604 | if (adev->asic_type == CHIP_RAVEN && adev->powerplay.pp_funcs |
1605 | && adev->powerplay.pp_funcs->set_powergating_by_smu) |
1606 | amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_SDMA, true); |
1607 | |
1608 | return 0; |
1609 | } |
1610 | |
1611 | static int sdma_v4_0_suspend(void *handle) |
1612 | { |
1613 | struct amdgpu_device *adev = (struct amdgpu_device *)handle; |
1614 | |
1615 | return sdma_v4_0_hw_fini(adev); |
1616 | } |
1617 | |
1618 | static int sdma_v4_0_resume(void *handle) |
1619 | { |
1620 | struct amdgpu_device *adev = (struct amdgpu_device *)handle; |
1621 | |
1622 | return sdma_v4_0_hw_init(adev); |
1623 | } |
1624 | |
1625 | static bool sdma_v4_0_is_idle(void *handle) |
1626 | { |
1627 | struct amdgpu_device *adev = (struct amdgpu_device *)handle; |
1628 | u32 i; |
1629 | |
1630 | for (i = 0; i < adev->sdma.num_instances; i++) { |
1631 | u32 tmp = RREG32_SDMA(i, mmSDMA0_STATUS_REG); |
1632 | |
1633 | if (!(tmp & SDMA0_STATUS_REG__IDLE_MASK)) |
1634 | return false; |
1635 | } |
1636 | |
1637 | return true; |
1638 | } |
1639 | |
1640 | static int sdma_v4_0_wait_for_idle(void *handle) |
1641 | { |
1642 | unsigned i; |
1643 | u32 sdma0, sdma1; |
1644 | struct amdgpu_device *adev = (struct amdgpu_device *)handle; |
1645 | |
1646 | for (i = 0; i < adev->usec_timeout; i++) { |
1647 | sdma0 = RREG32_SDMA(0, mmSDMA0_STATUS_REG); |
1648 | sdma1 = RREG32_SDMA(1, mmSDMA0_STATUS_REG); |
1649 | |
1650 | if (sdma0 & sdma1 & SDMA0_STATUS_REG__IDLE_MASK) |
1651 | return 0; |
1652 | udelay(1); |
1653 | } |
1654 | return -ETIMEDOUT; |
1655 | } |
1656 | |
1657 | static int sdma_v4_0_soft_reset(void *handle) |
1658 | { |
1659 | /* todo */ |
1660 | |
1661 | return 0; |
1662 | } |
1663 | |
1664 | static int sdma_v4_0_set_trap_irq_state(struct amdgpu_device *adev, |
1665 | struct amdgpu_irq_src *source, |
1666 | unsigned type, |
1667 | enum amdgpu_interrupt_state state) |
1668 | { |
1669 | unsigned int instance = (type == AMDGPU_SDMA_IRQ_TRAP0) ? 0 : 1; |
1670 | u32 sdma_cntl; |
1671 | |
1672 | sdma_cntl = RREG32_SDMA(instance, mmSDMA0_CNTL); |
1673 | sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, |
1674 | state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0); |
1675 | WREG32_SDMA(instance, mmSDMA0_CNTL, sdma_cntl); |
1676 | |
1677 | return 0; |
1678 | } |
1679 | |
1680 | static int sdma_v4_0_process_trap_irq(struct amdgpu_device *adev, |
1681 | struct amdgpu_irq_src *source, |
1682 | struct amdgpu_iv_entry *entry) |
1683 | { |
1684 | uint32_t instance; |
1685 | |
1686 | DRM_DEBUG("IH: SDMA trap\n" ); |
1687 | switch (entry->client_id) { |
1688 | case SOC15_IH_CLIENTID_SDMA0: |
1689 | instance = 0; |
1690 | break; |
1691 | case SOC15_IH_CLIENTID_SDMA1: |
1692 | instance = 1; |
1693 | break; |
1694 | default: |
1695 | return 0; |
1696 | } |
1697 | |
1698 | switch (entry->ring_id) { |
1699 | case 0: |
1700 | amdgpu_fence_process(&adev->sdma.instance[instance].ring); |
1701 | break; |
1702 | case 1: |
1703 | if (adev->asic_type == CHIP_VEGA20) |
1704 | amdgpu_fence_process(&adev->sdma.instance[instance].page); |
1705 | break; |
1706 | case 2: |
1707 | /* XXX compute */ |
1708 | break; |
1709 | case 3: |
1710 | if (adev->asic_type != CHIP_VEGA20) |
1711 | amdgpu_fence_process(&adev->sdma.instance[instance].page); |
1712 | break; |
1713 | } |
1714 | return 0; |
1715 | } |
1716 | |
1717 | static int sdma_v4_0_process_illegal_inst_irq(struct amdgpu_device *adev, |
1718 | struct amdgpu_irq_src *source, |
1719 | struct amdgpu_iv_entry *entry) |
1720 | { |
1721 | int instance; |
1722 | |
1723 | DRM_ERROR("Illegal instruction in SDMA command stream\n" ); |
1724 | |
1725 | switch (entry->client_id) { |
1726 | case SOC15_IH_CLIENTID_SDMA0: |
1727 | instance = 0; |
1728 | break; |
1729 | case SOC15_IH_CLIENTID_SDMA1: |
1730 | instance = 1; |
1731 | break; |
1732 | default: |
1733 | return 0; |
1734 | } |
1735 | |
1736 | switch (entry->ring_id) { |
1737 | case 0: |
1738 | drm_sched_fault(&adev->sdma.instance[instance].ring.sched); |
1739 | break; |
1740 | } |
1741 | return 0; |
1742 | } |
1743 | |
1744 | static void sdma_v4_0_update_medium_grain_clock_gating( |
1745 | struct amdgpu_device *adev, |
1746 | bool enable) |
1747 | { |
1748 | uint32_t data, def; |
1749 | |
1750 | if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) { |
1751 | /* enable sdma0 clock gating */ |
1752 | def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL)); |
1753 | data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK | |
1754 | SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK | |
1755 | SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK | |
1756 | SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK | |
1757 | SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK | |
1758 | SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK | |
1759 | SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK | |
1760 | SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK); |
1761 | if (def != data) |
1762 | WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL), data); |
1763 | |
1764 | if (adev->sdma.num_instances > 1) { |
1765 | def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL)); |
1766 | data &= ~(SDMA1_CLK_CTRL__SOFT_OVERRIDE7_MASK | |
1767 | SDMA1_CLK_CTRL__SOFT_OVERRIDE6_MASK | |
1768 | SDMA1_CLK_CTRL__SOFT_OVERRIDE5_MASK | |
1769 | SDMA1_CLK_CTRL__SOFT_OVERRIDE4_MASK | |
1770 | SDMA1_CLK_CTRL__SOFT_OVERRIDE3_MASK | |
1771 | SDMA1_CLK_CTRL__SOFT_OVERRIDE2_MASK | |
1772 | SDMA1_CLK_CTRL__SOFT_OVERRIDE1_MASK | |
1773 | SDMA1_CLK_CTRL__SOFT_OVERRIDE0_MASK); |
1774 | if (def != data) |
1775 | WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL), data); |
1776 | } |
1777 | } else { |
1778 | /* disable sdma0 clock gating */ |
1779 | def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL)); |
1780 | data |= (SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK | |
1781 | SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK | |
1782 | SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK | |
1783 | SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK | |
1784 | SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK | |
1785 | SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK | |
1786 | SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK | |
1787 | SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK); |
1788 | |
1789 | if (def != data) |
1790 | WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL), data); |
1791 | |
1792 | if (adev->sdma.num_instances > 1) { |
1793 | def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL)); |
1794 | data |= (SDMA1_CLK_CTRL__SOFT_OVERRIDE7_MASK | |
1795 | SDMA1_CLK_CTRL__SOFT_OVERRIDE6_MASK | |
1796 | SDMA1_CLK_CTRL__SOFT_OVERRIDE5_MASK | |
1797 | SDMA1_CLK_CTRL__SOFT_OVERRIDE4_MASK | |
1798 | SDMA1_CLK_CTRL__SOFT_OVERRIDE3_MASK | |
1799 | SDMA1_CLK_CTRL__SOFT_OVERRIDE2_MASK | |
1800 | SDMA1_CLK_CTRL__SOFT_OVERRIDE1_MASK | |
1801 | SDMA1_CLK_CTRL__SOFT_OVERRIDE0_MASK); |
1802 | if (def != data) |
1803 | WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL), data); |
1804 | } |
1805 | } |
1806 | } |
1807 | |
1808 | |
1809 | static void sdma_v4_0_update_medium_grain_light_sleep( |
1810 | struct amdgpu_device *adev, |
1811 | bool enable) |
1812 | { |
1813 | uint32_t data, def; |
1814 | |
1815 | if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) { |
1816 | /* 1-not override: enable sdma0 mem light sleep */ |
1817 | def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL)); |
1818 | data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK; |
1819 | if (def != data) |
1820 | WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data); |
1821 | |
1822 | /* 1-not override: enable sdma1 mem light sleep */ |
1823 | if (adev->sdma.num_instances > 1) { |
1824 | def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL)); |
1825 | data |= SDMA1_POWER_CNTL__MEM_POWER_OVERRIDE_MASK; |
1826 | if (def != data) |
1827 | WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL), data); |
1828 | } |
1829 | } else { |
1830 | /* 0-override:disable sdma0 mem light sleep */ |
1831 | def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL)); |
1832 | data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK; |
1833 | if (def != data) |
1834 | WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data); |
1835 | |
1836 | /* 0-override:disable sdma1 mem light sleep */ |
1837 | if (adev->sdma.num_instances > 1) { |
1838 | def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL)); |
1839 | data &= ~SDMA1_POWER_CNTL__MEM_POWER_OVERRIDE_MASK; |
1840 | if (def != data) |
1841 | WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL), data); |
1842 | } |
1843 | } |
1844 | } |
1845 | |
1846 | static int sdma_v4_0_set_clockgating_state(void *handle, |
1847 | enum amd_clockgating_state state) |
1848 | { |
1849 | struct amdgpu_device *adev = (struct amdgpu_device *)handle; |
1850 | |
1851 | if (amdgpu_sriov_vf(adev)) |
1852 | return 0; |
1853 | |
1854 | switch (adev->asic_type) { |
1855 | case CHIP_VEGA10: |
1856 | case CHIP_VEGA12: |
1857 | case CHIP_VEGA20: |
1858 | case CHIP_RAVEN: |
1859 | sdma_v4_0_update_medium_grain_clock_gating(adev, |
1860 | state == AMD_CG_STATE_GATE ? true : false); |
1861 | sdma_v4_0_update_medium_grain_light_sleep(adev, |
1862 | state == AMD_CG_STATE_GATE ? true : false); |
1863 | break; |
1864 | default: |
1865 | break; |
1866 | } |
1867 | return 0; |
1868 | } |
1869 | |
1870 | static int sdma_v4_0_set_powergating_state(void *handle, |
1871 | enum amd_powergating_state state) |
1872 | { |
1873 | struct amdgpu_device *adev = (struct amdgpu_device *)handle; |
1874 | |
1875 | switch (adev->asic_type) { |
1876 | case CHIP_RAVEN: |
1877 | sdma_v4_1_update_power_gating(adev, |
1878 | state == AMD_PG_STATE_GATE ? true : false); |
1879 | break; |
1880 | default: |
1881 | break; |
1882 | } |
1883 | |
1884 | return 0; |
1885 | } |
1886 | |
1887 | static void sdma_v4_0_get_clockgating_state(void *handle, u32 *flags) |
1888 | { |
1889 | struct amdgpu_device *adev = (struct amdgpu_device *)handle; |
1890 | int data; |
1891 | |
1892 | if (amdgpu_sriov_vf(adev)) |
1893 | *flags = 0; |
1894 | |
1895 | /* AMD_CG_SUPPORT_SDMA_MGCG */ |
1896 | data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL)); |
1897 | if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK)) |
1898 | *flags |= AMD_CG_SUPPORT_SDMA_MGCG; |
1899 | |
1900 | /* AMD_CG_SUPPORT_SDMA_LS */ |
1901 | data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL)); |
1902 | if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK) |
1903 | *flags |= AMD_CG_SUPPORT_SDMA_LS; |
1904 | } |
1905 | |
1906 | const struct amd_ip_funcs sdma_v4_0_ip_funcs = { |
1907 | .name = "sdma_v4_0" , |
1908 | .early_init = sdma_v4_0_early_init, |
1909 | .late_init = NULL, |
1910 | .sw_init = sdma_v4_0_sw_init, |
1911 | .sw_fini = sdma_v4_0_sw_fini, |
1912 | .hw_init = sdma_v4_0_hw_init, |
1913 | .hw_fini = sdma_v4_0_hw_fini, |
1914 | .suspend = sdma_v4_0_suspend, |
1915 | .resume = sdma_v4_0_resume, |
1916 | .is_idle = sdma_v4_0_is_idle, |
1917 | .wait_for_idle = sdma_v4_0_wait_for_idle, |
1918 | .soft_reset = sdma_v4_0_soft_reset, |
1919 | .set_clockgating_state = sdma_v4_0_set_clockgating_state, |
1920 | .set_powergating_state = sdma_v4_0_set_powergating_state, |
1921 | .get_clockgating_state = sdma_v4_0_get_clockgating_state, |
1922 | }; |
1923 | |
1924 | static const struct amdgpu_ring_funcs sdma_v4_0_ring_funcs = { |
1925 | .type = AMDGPU_RING_TYPE_SDMA, |
1926 | .align_mask = 0xf, |
1927 | .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP), |
1928 | .support_64bit_ptrs = true, |
1929 | .vmhub = AMDGPU_MMHUB, |
1930 | .get_rptr = sdma_v4_0_ring_get_rptr, |
1931 | .get_wptr = sdma_v4_0_ring_get_wptr, |
1932 | .set_wptr = sdma_v4_0_ring_set_wptr, |
1933 | .emit_frame_size = |
1934 | 6 + /* sdma_v4_0_ring_emit_hdp_flush */ |
1935 | 3 + /* hdp invalidate */ |
1936 | 6 + /* sdma_v4_0_ring_emit_pipeline_sync */ |
1937 | /* sdma_v4_0_ring_emit_vm_flush */ |
1938 | SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 + |
1939 | SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 + |
1940 | 10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */ |
1941 | .emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */ |
1942 | .emit_ib = sdma_v4_0_ring_emit_ib, |
1943 | .emit_fence = sdma_v4_0_ring_emit_fence, |
1944 | .emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync, |
1945 | .emit_vm_flush = sdma_v4_0_ring_emit_vm_flush, |
1946 | .emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush, |
1947 | .test_ring = sdma_v4_0_ring_test_ring, |
1948 | .test_ib = sdma_v4_0_ring_test_ib, |
1949 | .insert_nop = sdma_v4_0_ring_insert_nop, |
1950 | .pad_ib = sdma_v4_0_ring_pad_ib, |
1951 | .emit_wreg = sdma_v4_0_ring_emit_wreg, |
1952 | .emit_reg_wait = sdma_v4_0_ring_emit_reg_wait, |
1953 | .emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper, |
1954 | }; |
1955 | |
1956 | static const struct amdgpu_ring_funcs sdma_v4_0_page_ring_funcs = { |
1957 | .type = AMDGPU_RING_TYPE_SDMA, |
1958 | .align_mask = 0xf, |
1959 | .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP), |
1960 | .support_64bit_ptrs = true, |
1961 | .vmhub = AMDGPU_MMHUB, |
1962 | .get_rptr = sdma_v4_0_ring_get_rptr, |
1963 | .get_wptr = sdma_v4_0_page_ring_get_wptr, |
1964 | .set_wptr = sdma_v4_0_page_ring_set_wptr, |
1965 | .emit_frame_size = |
1966 | 6 + /* sdma_v4_0_ring_emit_hdp_flush */ |
1967 | 3 + /* hdp invalidate */ |
1968 | 6 + /* sdma_v4_0_ring_emit_pipeline_sync */ |
1969 | /* sdma_v4_0_ring_emit_vm_flush */ |
1970 | SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 + |
1971 | SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 + |
1972 | 10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */ |
1973 | .emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */ |
1974 | .emit_ib = sdma_v4_0_ring_emit_ib, |
1975 | .emit_fence = sdma_v4_0_ring_emit_fence, |
1976 | .emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync, |
1977 | .emit_vm_flush = sdma_v4_0_ring_emit_vm_flush, |
1978 | .emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush, |
1979 | .test_ring = sdma_v4_0_ring_test_ring, |
1980 | .test_ib = sdma_v4_0_ring_test_ib, |
1981 | .insert_nop = sdma_v4_0_ring_insert_nop, |
1982 | .pad_ib = sdma_v4_0_ring_pad_ib, |
1983 | .emit_wreg = sdma_v4_0_ring_emit_wreg, |
1984 | .emit_reg_wait = sdma_v4_0_ring_emit_reg_wait, |
1985 | .emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper, |
1986 | }; |
1987 | |
1988 | static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev) |
1989 | { |
1990 | int i; |
1991 | |
1992 | for (i = 0; i < adev->sdma.num_instances; i++) { |
1993 | adev->sdma.instance[i].ring.funcs = &sdma_v4_0_ring_funcs; |
1994 | adev->sdma.instance[i].ring.me = i; |
1995 | if (adev->sdma.has_page_queue) { |
1996 | adev->sdma.instance[i].page.funcs = &sdma_v4_0_page_ring_funcs; |
1997 | adev->sdma.instance[i].page.me = i; |
1998 | } |
1999 | } |
2000 | } |
2001 | |
2002 | static const struct amdgpu_irq_src_funcs sdma_v4_0_trap_irq_funcs = { |
2003 | .set = sdma_v4_0_set_trap_irq_state, |
2004 | .process = sdma_v4_0_process_trap_irq, |
2005 | }; |
2006 | |
2007 | static const struct amdgpu_irq_src_funcs sdma_v4_0_illegal_inst_irq_funcs = { |
2008 | .process = sdma_v4_0_process_illegal_inst_irq, |
2009 | }; |
2010 | |
2011 | static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev) |
2012 | { |
2013 | adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST; |
2014 | adev->sdma.trap_irq.funcs = &sdma_v4_0_trap_irq_funcs; |
2015 | adev->sdma.illegal_inst_irq.funcs = &sdma_v4_0_illegal_inst_irq_funcs; |
2016 | } |
2017 | |
2018 | /** |
2019 | * sdma_v4_0_emit_copy_buffer - copy buffer using the sDMA engine |
2020 | * |
2021 | * @ring: amdgpu_ring structure holding ring information |
2022 | * @src_offset: src GPU address |
2023 | * @dst_offset: dst GPU address |
2024 | * @byte_count: number of bytes to xfer |
2025 | * |
2026 | * Copy GPU buffers using the DMA engine (VEGA10/12). |
2027 | * Used by the amdgpu ttm implementation to move pages if |
2028 | * registered as the asic copy callback. |
2029 | */ |
2030 | static void sdma_v4_0_emit_copy_buffer(struct amdgpu_ib *ib, |
2031 | uint64_t src_offset, |
2032 | uint64_t dst_offset, |
2033 | uint32_t byte_count) |
2034 | { |
2035 | ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) | |
2036 | SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR); |
2037 | ib->ptr[ib->length_dw++] = byte_count - 1; |
2038 | ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */ |
2039 | ib->ptr[ib->length_dw++] = lower_32_bits(src_offset); |
2040 | ib->ptr[ib->length_dw++] = upper_32_bits(src_offset); |
2041 | ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset); |
2042 | ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset); |
2043 | } |
2044 | |
2045 | /** |
2046 | * sdma_v4_0_emit_fill_buffer - fill buffer using the sDMA engine |
2047 | * |
2048 | * @ring: amdgpu_ring structure holding ring information |
2049 | * @src_data: value to write to buffer |
2050 | * @dst_offset: dst GPU address |
2051 | * @byte_count: number of bytes to xfer |
2052 | * |
2053 | * Fill GPU buffers using the DMA engine (VEGA10/12). |
2054 | */ |
2055 | static void sdma_v4_0_emit_fill_buffer(struct amdgpu_ib *ib, |
2056 | uint32_t src_data, |
2057 | uint64_t dst_offset, |
2058 | uint32_t byte_count) |
2059 | { |
2060 | ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL); |
2061 | ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset); |
2062 | ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset); |
2063 | ib->ptr[ib->length_dw++] = src_data; |
2064 | ib->ptr[ib->length_dw++] = byte_count - 1; |
2065 | } |
2066 | |
2067 | static const struct amdgpu_buffer_funcs sdma_v4_0_buffer_funcs = { |
2068 | .copy_max_bytes = 0x400000, |
2069 | .copy_num_dw = 7, |
2070 | .emit_copy_buffer = sdma_v4_0_emit_copy_buffer, |
2071 | |
2072 | .fill_max_bytes = 0x400000, |
2073 | .fill_num_dw = 5, |
2074 | .emit_fill_buffer = sdma_v4_0_emit_fill_buffer, |
2075 | }; |
2076 | |
2077 | static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev) |
2078 | { |
2079 | adev->mman.buffer_funcs = &sdma_v4_0_buffer_funcs; |
2080 | if (adev->sdma.has_page_queue) |
2081 | adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].page; |
2082 | else |
2083 | adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring; |
2084 | } |
2085 | |
2086 | static const struct amdgpu_vm_pte_funcs sdma_v4_0_vm_pte_funcs = { |
2087 | .copy_pte_num_dw = 7, |
2088 | .copy_pte = sdma_v4_0_vm_copy_pte, |
2089 | |
2090 | .write_pte = sdma_v4_0_vm_write_pte, |
2091 | .set_pte_pde = sdma_v4_0_vm_set_pte_pde, |
2092 | }; |
2093 | |
2094 | static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev) |
2095 | { |
2096 | struct drm_gpu_scheduler *sched; |
2097 | unsigned i; |
2098 | |
2099 | adev->vm_manager.vm_pte_funcs = &sdma_v4_0_vm_pte_funcs; |
2100 | for (i = 0; i < adev->sdma.num_instances; i++) { |
2101 | if (adev->sdma.has_page_queue) |
2102 | sched = &adev->sdma.instance[i].page.sched; |
2103 | else |
2104 | sched = &adev->sdma.instance[i].ring.sched; |
2105 | adev->vm_manager.vm_pte_rqs[i] = |
2106 | &sched->sched_rq[DRM_SCHED_PRIORITY_KERNEL]; |
2107 | } |
2108 | adev->vm_manager.vm_pte_num_rqs = adev->sdma.num_instances; |
2109 | } |
2110 | |
2111 | const struct amdgpu_ip_block_version sdma_v4_0_ip_block = { |
2112 | .type = AMD_IP_BLOCK_TYPE_SDMA, |
2113 | .major = 4, |
2114 | .minor = 0, |
2115 | .rev = 0, |
2116 | .funcs = &sdma_v4_0_ip_funcs, |
2117 | }; |
2118 | |