1/*
2 * Copyright 2016 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 */
23
24#include <linux/delay.h>
25#include <linux/firmware.h>
26#include <linux/module.h>
27#include <linux/pci.h>
28
29#include "amdgpu.h"
30#include "amdgpu_ucode.h"
31#include "amdgpu_trace.h"
32
33#include "sdma0/sdma0_4_2_offset.h"
34#include "sdma0/sdma0_4_2_sh_mask.h"
35#include "sdma1/sdma1_4_2_offset.h"
36#include "sdma1/sdma1_4_2_sh_mask.h"
37#include "sdma2/sdma2_4_2_2_offset.h"
38#include "sdma2/sdma2_4_2_2_sh_mask.h"
39#include "sdma3/sdma3_4_2_2_offset.h"
40#include "sdma3/sdma3_4_2_2_sh_mask.h"
41#include "sdma4/sdma4_4_2_2_offset.h"
42#include "sdma4/sdma4_4_2_2_sh_mask.h"
43#include "sdma5/sdma5_4_2_2_offset.h"
44#include "sdma5/sdma5_4_2_2_sh_mask.h"
45#include "sdma6/sdma6_4_2_2_offset.h"
46#include "sdma6/sdma6_4_2_2_sh_mask.h"
47#include "sdma7/sdma7_4_2_2_offset.h"
48#include "sdma7/sdma7_4_2_2_sh_mask.h"
49#include "sdma0/sdma0_4_1_default.h"
50
51#include "soc15_common.h"
52#include "soc15.h"
53#include "vega10_sdma_pkt_open.h"
54
55#include "ivsrcid/sdma0/irqsrcs_sdma0_4_0.h"
56#include "ivsrcid/sdma1/irqsrcs_sdma1_4_0.h"
57
58#include "amdgpu_ras.h"
59#include "sdma_v4_4.h"
60
61MODULE_FIRMWARE("amdgpu/vega10_sdma.bin");
62MODULE_FIRMWARE("amdgpu/vega10_sdma1.bin");
63MODULE_FIRMWARE("amdgpu/vega12_sdma.bin");
64MODULE_FIRMWARE("amdgpu/vega12_sdma1.bin");
65MODULE_FIRMWARE("amdgpu/vega20_sdma.bin");
66MODULE_FIRMWARE("amdgpu/vega20_sdma1.bin");
67MODULE_FIRMWARE("amdgpu/raven_sdma.bin");
68MODULE_FIRMWARE("amdgpu/picasso_sdma.bin");
69MODULE_FIRMWARE("amdgpu/raven2_sdma.bin");
70MODULE_FIRMWARE("amdgpu/arcturus_sdma.bin");
71MODULE_FIRMWARE("amdgpu/renoir_sdma.bin");
72MODULE_FIRMWARE("amdgpu/green_sardine_sdma.bin");
73MODULE_FIRMWARE("amdgpu/aldebaran_sdma.bin");
74
75#define SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK 0x000000F8L
76#define SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK 0xFC000000L
77
78#define WREG32_SDMA(instance, offset, value) \
79 WREG32(sdma_v4_0_get_reg_offset(adev, (instance), (offset)), value)
80#define RREG32_SDMA(instance, offset) \
81 RREG32(sdma_v4_0_get_reg_offset(adev, (instance), (offset)))
82
83static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev);
84static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev);
85static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev);
86static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev);
87static void sdma_v4_0_set_ras_funcs(struct amdgpu_device *adev);
88
89static const struct soc15_reg_golden golden_settings_sdma_4[] = {
90 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
91 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xff000ff0, 0x3f000100),
92 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0100, 0x00000100),
93 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
94 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_IB_CNTL, 0x800f0100, 0x00000100),
95 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
96 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0x003ff006, 0x0003c000),
97 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0100, 0x00000100),
98 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
99 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0100, 0x00000100),
100 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
101 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
102 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000),
103 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100),
104 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_IB_CNTL, 0x800f0100, 0x00000100),
105 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
106 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_IB_CNTL, 0x800f0100, 0x00000100),
107 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
108 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_POWER_CNTL, 0x003ff000, 0x0003c000),
109 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_IB_CNTL, 0x800f0100, 0x00000100),
110 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
111 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_IB_CNTL, 0x800f0100, 0x00000100),
112 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
113 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0),
114 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_WATERMK, 0xfc000000, 0x00000000)
115};
116
117static const struct soc15_reg_golden golden_settings_sdma_vg10[] = {
118 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
119 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
120 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
121 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
122 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
123 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
124 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
125};
126
127static const struct soc15_reg_golden golden_settings_sdma_vg12[] = {
128 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104001),
129 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001),
130 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
131 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
132 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104001),
133 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001),
134 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
135};
136
137static const struct soc15_reg_golden golden_settings_sdma_4_1[] = {
138 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
139 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
140 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100),
141 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
142 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0xfc3fffff, 0x40000051),
143 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100),
144 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
145 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100),
146 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
147 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003e0),
148 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000)
149};
150
151static const struct soc15_reg_golden golden_settings_sdma0_4_2_init[] = {
152 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
153};
154
155static const struct soc15_reg_golden golden_settings_sdma0_4_2[] =
156{
157 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
158 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
159 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
160 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
161 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
162 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
163 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
164 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
165 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RD_BURST_CNTL, 0x0000000f, 0x00000003),
166 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
167 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
168 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
169 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
170 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC2_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
171 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
172 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC3_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
173 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
174 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC4_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
175 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
176 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC5_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
177 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
178 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC6_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
179 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
180 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC7_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
181 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
182 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
183 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
184};
185
186static const struct soc15_reg_golden golden_settings_sdma1_4_2[] = {
187 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
188 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100),
189 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
190 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
191 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
192 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
193 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
194 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
195 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RD_BURST_CNTL, 0x0000000f, 0x00000003),
196 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
197 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
198 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
199 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
200 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC2_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
201 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
202 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC3_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
203 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
204 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC4_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
205 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
206 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC5_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
207 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
208 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC6_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
209 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
210 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC7_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
211 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
212 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0),
213 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
214};
215
216static const struct soc15_reg_golden golden_settings_sdma_rv1[] =
217{
218 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00000002),
219 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00000002)
220};
221
222static const struct soc15_reg_golden golden_settings_sdma_rv2[] =
223{
224 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00003001),
225 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00003001)
226};
227
228static const struct soc15_reg_golden golden_settings_sdma_arct[] =
229{
230 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
231 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
232 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
233 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
234 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
235 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
236 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
237 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
238 SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
239 SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
240 SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
241 SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
242 SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
243 SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
244 SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
245 SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
246 SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
247 SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
248 SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
249 SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
250 SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
251 SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
252 SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
253 SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
254 SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
255 SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
256 SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
257 SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
258 SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
259 SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
260 SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
261 SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_UTCL1_TIMEOUT, 0xffffffff, 0x00010001)
262};
263
264static const struct soc15_reg_golden golden_settings_sdma_aldebaran[] = {
265 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
266 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
267 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
268 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
269 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
270 SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
271 SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
272 SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
273 SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA2_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
274 SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
275 SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
276 SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
277 SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
278 SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
279 SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
280};
281
282static const struct soc15_reg_golden golden_settings_sdma_4_3[] = {
283 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
284 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
285 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00000002),
286 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00000002),
287 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
288 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0x003fff07, 0x40000051),
289 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
290 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
291 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003e0),
292 SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x03fbe1fe)
293};
294
295static const struct soc15_ras_field_entry sdma_v4_0_ras_fields[] = {
296 { "SDMA_UCODE_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
297 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_UCODE_BUF_SED),
298 0, 0,
299 },
300 { "SDMA_RB_CMD_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
301 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_RB_CMD_BUF_SED),
302 0, 0,
303 },
304 { "SDMA_IB_CMD_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
305 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_IB_CMD_BUF_SED),
306 0, 0,
307 },
308 { "SDMA_UTCL1_RD_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
309 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_UTCL1_RD_FIFO_SED),
310 0, 0,
311 },
312 { "SDMA_UTCL1_RDBST_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
313 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_UTCL1_RDBST_FIFO_SED),
314 0, 0,
315 },
316 { "SDMA_DATA_LUT_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
317 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_DATA_LUT_FIFO_SED),
318 0, 0,
319 },
320 { "SDMA_MBANK_DATA_BUF0_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
321 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF0_SED),
322 0, 0,
323 },
324 { "SDMA_MBANK_DATA_BUF1_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
325 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF1_SED),
326 0, 0,
327 },
328 { "SDMA_MBANK_DATA_BUF2_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
329 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF2_SED),
330 0, 0,
331 },
332 { "SDMA_MBANK_DATA_BUF3_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
333 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF3_SED),
334 0, 0,
335 },
336 { "SDMA_MBANK_DATA_BUF4_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
337 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF4_SED),
338 0, 0,
339 },
340 { "SDMA_MBANK_DATA_BUF5_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
341 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF5_SED),
342 0, 0,
343 },
344 { "SDMA_MBANK_DATA_BUF6_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
345 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF6_SED),
346 0, 0,
347 },
348 { "SDMA_MBANK_DATA_BUF7_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
349 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF7_SED),
350 0, 0,
351 },
352 { "SDMA_MBANK_DATA_BUF8_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
353 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF8_SED),
354 0, 0,
355 },
356 { "SDMA_MBANK_DATA_BUF9_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
357 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF9_SED),
358 0, 0,
359 },
360 { "SDMA_MBANK_DATA_BUF10_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
361 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF10_SED),
362 0, 0,
363 },
364 { "SDMA_MBANK_DATA_BUF11_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
365 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF11_SED),
366 0, 0,
367 },
368 { "SDMA_MBANK_DATA_BUF12_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
369 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF12_SED),
370 0, 0,
371 },
372 { "SDMA_MBANK_DATA_BUF13_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
373 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF13_SED),
374 0, 0,
375 },
376 { "SDMA_MBANK_DATA_BUF14_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
377 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF14_SED),
378 0, 0,
379 },
380 { "SDMA_MBANK_DATA_BUF15_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
381 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF15_SED),
382 0, 0,
383 },
384 { "SDMA_SPLIT_DAT_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
385 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_SPLIT_DAT_BUF_SED),
386 0, 0,
387 },
388 { "SDMA_MC_WR_ADDR_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
389 SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MC_WR_ADDR_FIFO_SED),
390 0, 0,
391 },
392};
393
394static u32 sdma_v4_0_get_reg_offset(struct amdgpu_device *adev,
395 u32 instance, u32 offset)
396{
397 switch (instance) {
398 case 0:
399 return (adev->reg_offset[SDMA0_HWIP][0][0] + offset);
400 case 1:
401 return (adev->reg_offset[SDMA1_HWIP][0][0] + offset);
402 case 2:
403 return (adev->reg_offset[SDMA2_HWIP][0][1] + offset);
404 case 3:
405 return (adev->reg_offset[SDMA3_HWIP][0][1] + offset);
406 case 4:
407 return (adev->reg_offset[SDMA4_HWIP][0][1] + offset);
408 case 5:
409 return (adev->reg_offset[SDMA5_HWIP][0][1] + offset);
410 case 6:
411 return (adev->reg_offset[SDMA6_HWIP][0][1] + offset);
412 case 7:
413 return (adev->reg_offset[SDMA7_HWIP][0][1] + offset);
414 default:
415 break;
416 }
417 return 0;
418}
419
420static unsigned sdma_v4_0_seq_to_irq_id(int seq_num)
421{
422 switch (seq_num) {
423 case 0:
424 return SOC15_IH_CLIENTID_SDMA0;
425 case 1:
426 return SOC15_IH_CLIENTID_SDMA1;
427 case 2:
428 return SOC15_IH_CLIENTID_SDMA2;
429 case 3:
430 return SOC15_IH_CLIENTID_SDMA3;
431 case 4:
432 return SOC15_IH_CLIENTID_SDMA4;
433 case 5:
434 return SOC15_IH_CLIENTID_SDMA5;
435 case 6:
436 return SOC15_IH_CLIENTID_SDMA6;
437 case 7:
438 return SOC15_IH_CLIENTID_SDMA7;
439 default:
440 break;
441 }
442 return -EINVAL;
443}
444
445static int sdma_v4_0_irq_id_to_seq(unsigned client_id)
446{
447 switch (client_id) {
448 case SOC15_IH_CLIENTID_SDMA0:
449 return 0;
450 case SOC15_IH_CLIENTID_SDMA1:
451 return 1;
452 case SOC15_IH_CLIENTID_SDMA2:
453 return 2;
454 case SOC15_IH_CLIENTID_SDMA3:
455 return 3;
456 case SOC15_IH_CLIENTID_SDMA4:
457 return 4;
458 case SOC15_IH_CLIENTID_SDMA5:
459 return 5;
460 case SOC15_IH_CLIENTID_SDMA6:
461 return 6;
462 case SOC15_IH_CLIENTID_SDMA7:
463 return 7;
464 default:
465 break;
466 }
467 return -EINVAL;
468}
469
470static void sdma_v4_0_init_golden_registers(struct amdgpu_device *adev)
471{
472 switch (amdgpu_ip_version(adev, ip: SDMA0_HWIP, inst: 0)) {
473 case IP_VERSION(4, 0, 0):
474 soc15_program_register_sequence(adev,
475 registers: golden_settings_sdma_4,
476 ARRAY_SIZE(golden_settings_sdma_4));
477 soc15_program_register_sequence(adev,
478 registers: golden_settings_sdma_vg10,
479 ARRAY_SIZE(golden_settings_sdma_vg10));
480 break;
481 case IP_VERSION(4, 0, 1):
482 soc15_program_register_sequence(adev,
483 registers: golden_settings_sdma_4,
484 ARRAY_SIZE(golden_settings_sdma_4));
485 soc15_program_register_sequence(adev,
486 registers: golden_settings_sdma_vg12,
487 ARRAY_SIZE(golden_settings_sdma_vg12));
488 break;
489 case IP_VERSION(4, 2, 0):
490 soc15_program_register_sequence(adev,
491 registers: golden_settings_sdma0_4_2_init,
492 ARRAY_SIZE(golden_settings_sdma0_4_2_init));
493 soc15_program_register_sequence(adev,
494 registers: golden_settings_sdma0_4_2,
495 ARRAY_SIZE(golden_settings_sdma0_4_2));
496 soc15_program_register_sequence(adev,
497 registers: golden_settings_sdma1_4_2,
498 ARRAY_SIZE(golden_settings_sdma1_4_2));
499 break;
500 case IP_VERSION(4, 2, 2):
501 soc15_program_register_sequence(adev,
502 registers: golden_settings_sdma_arct,
503 ARRAY_SIZE(golden_settings_sdma_arct));
504 break;
505 case IP_VERSION(4, 4, 0):
506 soc15_program_register_sequence(adev,
507 registers: golden_settings_sdma_aldebaran,
508 ARRAY_SIZE(golden_settings_sdma_aldebaran));
509 break;
510 case IP_VERSION(4, 1, 0):
511 case IP_VERSION(4, 1, 1):
512 soc15_program_register_sequence(adev,
513 registers: golden_settings_sdma_4_1,
514 ARRAY_SIZE(golden_settings_sdma_4_1));
515 if (adev->apu_flags & AMD_APU_IS_RAVEN2)
516 soc15_program_register_sequence(adev,
517 registers: golden_settings_sdma_rv2,
518 ARRAY_SIZE(golden_settings_sdma_rv2));
519 else
520 soc15_program_register_sequence(adev,
521 registers: golden_settings_sdma_rv1,
522 ARRAY_SIZE(golden_settings_sdma_rv1));
523 break;
524 case IP_VERSION(4, 1, 2):
525 soc15_program_register_sequence(adev,
526 registers: golden_settings_sdma_4_3,
527 ARRAY_SIZE(golden_settings_sdma_4_3));
528 break;
529 default:
530 break;
531 }
532}
533
534static void sdma_v4_0_setup_ulv(struct amdgpu_device *adev)
535{
536 int i;
537
538 /*
539 * The only chips with SDMAv4 and ULV are VG10 and VG20.
540 * Server SKUs take a different hysteresis setting from other SKUs.
541 */
542 switch (amdgpu_ip_version(adev, ip: SDMA0_HWIP, inst: 0)) {
543 case IP_VERSION(4, 0, 0):
544 if (adev->pdev->device == 0x6860)
545 break;
546 return;
547 case IP_VERSION(4, 2, 0):
548 if (adev->pdev->device == 0x66a1)
549 break;
550 return;
551 default:
552 return;
553 }
554
555 for (i = 0; i < adev->sdma.num_instances; i++) {
556 uint32_t temp;
557
558 temp = RREG32_SDMA(i, mmSDMA0_ULV_CNTL);
559 temp = REG_SET_FIELD(temp, SDMA0_ULV_CNTL, HYSTERESIS, 0x0);
560 WREG32_SDMA(i, mmSDMA0_ULV_CNTL, temp);
561 }
562}
563
564/**
565 * sdma_v4_0_init_microcode - load ucode images from disk
566 *
567 * @adev: amdgpu_device pointer
568 *
569 * Use the firmware interface to load the ucode images into
570 * the driver (not loaded into hw).
571 * Returns 0 on success, error on failure.
572 */
573
574// emulation only, won't work on real chip
575// vega10 real chip need to use PSP to load firmware
576static int sdma_v4_0_init_microcode(struct amdgpu_device *adev)
577{
578 int ret, i;
579
580 for (i = 0; i < adev->sdma.num_instances; i++) {
581 if (amdgpu_ip_version(adev, ip: SDMA0_HWIP, inst: 0) ==
582 IP_VERSION(4, 2, 2) ||
583 amdgpu_ip_version(adev, ip: SDMA0_HWIP, inst: 0) ==
584 IP_VERSION(4, 4, 0)) {
585 /* Acturus & Aldebaran will leverage the same FW memory
586 for every SDMA instance */
587 ret = amdgpu_sdma_init_microcode(adev, instance: 0, duplicate: true);
588 break;
589 } else {
590 ret = amdgpu_sdma_init_microcode(adev, instance: i, duplicate: false);
591 if (ret)
592 return ret;
593 }
594 }
595
596 return ret;
597}
598
599/**
600 * sdma_v4_0_ring_get_rptr - get the current read pointer
601 *
602 * @ring: amdgpu ring pointer
603 *
604 * Get the current rptr from the hardware (VEGA10+).
605 */
606static uint64_t sdma_v4_0_ring_get_rptr(struct amdgpu_ring *ring)
607{
608 u64 *rptr;
609
610 /* XXX check if swapping is necessary on BE */
611 rptr = ((u64 *)ring->rptr_cpu_addr);
612
613 DRM_DEBUG("rptr before shift == 0x%016llx\n", *rptr);
614 return ((*rptr) >> 2);
615}
616
617/**
618 * sdma_v4_0_ring_get_wptr - get the current write pointer
619 *
620 * @ring: amdgpu ring pointer
621 *
622 * Get the current wptr from the hardware (VEGA10+).
623 */
624static uint64_t sdma_v4_0_ring_get_wptr(struct amdgpu_ring *ring)
625{
626 struct amdgpu_device *adev = ring->adev;
627 u64 wptr;
628
629 if (ring->use_doorbell) {
630 /* XXX check if swapping is necessary on BE */
631 wptr = READ_ONCE(*((u64 *)ring->wptr_cpu_addr));
632 DRM_DEBUG("wptr/doorbell before shift == 0x%016llx\n", wptr);
633 } else {
634 wptr = RREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR_HI);
635 wptr = wptr << 32;
636 wptr |= RREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR);
637 DRM_DEBUG("wptr before shift [%i] wptr == 0x%016llx\n",
638 ring->me, wptr);
639 }
640
641 return wptr >> 2;
642}
643
644/**
645 * sdma_v4_0_ring_set_wptr - commit the write pointer
646 *
647 * @ring: amdgpu ring pointer
648 *
649 * Write the wptr back to the hardware (VEGA10+).
650 */
651static void sdma_v4_0_ring_set_wptr(struct amdgpu_ring *ring)
652{
653 struct amdgpu_device *adev = ring->adev;
654
655 DRM_DEBUG("Setting write pointer\n");
656 if (ring->use_doorbell) {
657 u64 *wb = (u64 *)ring->wptr_cpu_addr;
658
659 DRM_DEBUG("Using doorbell -- "
660 "wptr_offs == 0x%08x "
661 "lower_32_bits(ring->wptr << 2) == 0x%08x "
662 "upper_32_bits(ring->wptr << 2) == 0x%08x\n",
663 ring->wptr_offs,
664 lower_32_bits(ring->wptr << 2),
665 upper_32_bits(ring->wptr << 2));
666 /* XXX check if swapping is necessary on BE */
667 WRITE_ONCE(*wb, (ring->wptr << 2));
668 DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n",
669 ring->doorbell_index, ring->wptr << 2);
670 WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
671 } else {
672 DRM_DEBUG("Not using doorbell -- "
673 "mmSDMA%i_GFX_RB_WPTR == 0x%08x "
674 "mmSDMA%i_GFX_RB_WPTR_HI == 0x%08x\n",
675 ring->me,
676 lower_32_bits(ring->wptr << 2),
677 ring->me,
678 upper_32_bits(ring->wptr << 2));
679 WREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR,
680 lower_32_bits(ring->wptr << 2));
681 WREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR_HI,
682 upper_32_bits(ring->wptr << 2));
683 }
684}
685
686/**
687 * sdma_v4_0_page_ring_get_wptr - get the current write pointer
688 *
689 * @ring: amdgpu ring pointer
690 *
691 * Get the current wptr from the hardware (VEGA10+).
692 */
693static uint64_t sdma_v4_0_page_ring_get_wptr(struct amdgpu_ring *ring)
694{
695 struct amdgpu_device *adev = ring->adev;
696 u64 wptr;
697
698 if (ring->use_doorbell) {
699 /* XXX check if swapping is necessary on BE */
700 wptr = READ_ONCE(*((u64 *)ring->wptr_cpu_addr));
701 } else {
702 wptr = RREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR_HI);
703 wptr = wptr << 32;
704 wptr |= RREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR);
705 }
706
707 return wptr >> 2;
708}
709
710/**
711 * sdma_v4_0_page_ring_set_wptr - commit the write pointer
712 *
713 * @ring: amdgpu ring pointer
714 *
715 * Write the wptr back to the hardware (VEGA10+).
716 */
717static void sdma_v4_0_page_ring_set_wptr(struct amdgpu_ring *ring)
718{
719 struct amdgpu_device *adev = ring->adev;
720
721 if (ring->use_doorbell) {
722 u64 *wb = (u64 *)ring->wptr_cpu_addr;
723
724 /* XXX check if swapping is necessary on BE */
725 WRITE_ONCE(*wb, (ring->wptr << 2));
726 WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
727 } else {
728 uint64_t wptr = ring->wptr << 2;
729
730 WREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR,
731 lower_32_bits(wptr));
732 WREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR_HI,
733 upper_32_bits(wptr));
734 }
735}
736
737static void sdma_v4_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
738{
739 struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
740 int i;
741
742 for (i = 0; i < count; i++)
743 if (sdma && sdma->burst_nop && (i == 0))
744 amdgpu_ring_write(ring, v: ring->funcs->nop |
745 SDMA_PKT_NOP_HEADER_COUNT(count - 1));
746 else
747 amdgpu_ring_write(ring, v: ring->funcs->nop);
748}
749
750/**
751 * sdma_v4_0_ring_emit_ib - Schedule an IB on the DMA engine
752 *
753 * @ring: amdgpu ring pointer
754 * @job: job to retrieve vmid from
755 * @ib: IB object to schedule
756 * @flags: unused
757 *
758 * Schedule an IB in the DMA ring (VEGA10).
759 */
760static void sdma_v4_0_ring_emit_ib(struct amdgpu_ring *ring,
761 struct amdgpu_job *job,
762 struct amdgpu_ib *ib,
763 uint32_t flags)
764{
765 unsigned vmid = AMDGPU_JOB_GET_VMID(job);
766
767 /* IB packet must end on a 8 DW boundary */
768 sdma_v4_0_ring_insert_nop(ring, count: (2 - lower_32_bits(ring->wptr)) & 7);
769
770 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
771 SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf));
772 /* base must be 32 byte aligned */
773 amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
774 amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
775 amdgpu_ring_write(ring, v: ib->length_dw);
776 amdgpu_ring_write(ring, v: 0);
777 amdgpu_ring_write(ring, v: 0);
778
779}
780
781static void sdma_v4_0_wait_reg_mem(struct amdgpu_ring *ring,
782 int mem_space, int hdp,
783 uint32_t addr0, uint32_t addr1,
784 uint32_t ref, uint32_t mask,
785 uint32_t inv)
786{
787 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
788 SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(hdp) |
789 SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(mem_space) |
790 SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
791 if (mem_space) {
792 /* memory */
793 amdgpu_ring_write(ring, v: addr0);
794 amdgpu_ring_write(ring, v: addr1);
795 } else {
796 /* registers */
797 amdgpu_ring_write(ring, v: addr0 << 2);
798 amdgpu_ring_write(ring, v: addr1 << 2);
799 }
800 amdgpu_ring_write(ring, v: ref); /* reference */
801 amdgpu_ring_write(ring, v: mask); /* mask */
802 amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
803 SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(inv)); /* retry count, poll interval */
804}
805
806/**
807 * sdma_v4_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
808 *
809 * @ring: amdgpu ring pointer
810 *
811 * Emit an hdp flush packet on the requested DMA ring.
812 */
813static void sdma_v4_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
814{
815 struct amdgpu_device *adev = ring->adev;
816 u32 ref_and_mask = 0;
817 const struct nbio_hdp_flush_reg *nbio_hf_reg = adev->nbio.hdp_flush_reg;
818
819 ref_and_mask = nbio_hf_reg->ref_and_mask_sdma0 << ring->me;
820
821 sdma_v4_0_wait_reg_mem(ring, mem_space: 0, hdp: 1,
822 addr0: adev->nbio.funcs->get_hdp_flush_done_offset(adev),
823 addr1: adev->nbio.funcs->get_hdp_flush_req_offset(adev),
824 ref: ref_and_mask, mask: ref_and_mask, inv: 10);
825}
826
827/**
828 * sdma_v4_0_ring_emit_fence - emit a fence on the DMA ring
829 *
830 * @ring: amdgpu ring pointer
831 * @addr: address
832 * @seq: sequence number
833 * @flags: fence related flags
834 *
835 * Add a DMA fence packet to the ring to write
836 * the fence seq number and DMA trap packet to generate
837 * an interrupt if needed (VEGA10).
838 */
839static void sdma_v4_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
840 unsigned flags)
841{
842 bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
843 /* write the fence */
844 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
845 /* zero in first two bits */
846 BUG_ON(addr & 0x3);
847 amdgpu_ring_write(ring, lower_32_bits(addr));
848 amdgpu_ring_write(ring, upper_32_bits(addr));
849 amdgpu_ring_write(ring, lower_32_bits(seq));
850
851 /* optionally write high bits as well */
852 if (write64bit) {
853 addr += 4;
854 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
855 /* zero in first two bits */
856 BUG_ON(addr & 0x3);
857 amdgpu_ring_write(ring, lower_32_bits(addr));
858 amdgpu_ring_write(ring, upper_32_bits(addr));
859 amdgpu_ring_write(ring, upper_32_bits(seq));
860 }
861
862 /* generate an interrupt */
863 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
864 amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
865}
866
867
868/**
869 * sdma_v4_0_gfx_enable - enable the gfx async dma engines
870 *
871 * @adev: amdgpu_device pointer
872 * @enable: enable SDMA RB/IB
873 * control the gfx async dma ring buffers (VEGA10).
874 */
875static void sdma_v4_0_gfx_enable(struct amdgpu_device *adev, bool enable)
876{
877 u32 rb_cntl, ib_cntl;
878 int i;
879
880 for (i = 0; i < adev->sdma.num_instances; i++) {
881 rb_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL);
882 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, enable ? 1 : 0);
883 WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
884 ib_cntl = RREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL);
885 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, enable ? 1 : 0);
886 WREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL, ib_cntl);
887 }
888}
889
890/**
891 * sdma_v4_0_rlc_stop - stop the compute async dma engines
892 *
893 * @adev: amdgpu_device pointer
894 *
895 * Stop the compute async dma queues (VEGA10).
896 */
897static void sdma_v4_0_rlc_stop(struct amdgpu_device *adev)
898{
899 /* XXX todo */
900}
901
902/**
903 * sdma_v4_0_page_stop - stop the page async dma engines
904 *
905 * @adev: amdgpu_device pointer
906 *
907 * Stop the page async dma ring buffers (VEGA10).
908 */
909static void sdma_v4_0_page_stop(struct amdgpu_device *adev)
910{
911 u32 rb_cntl, ib_cntl;
912 int i;
913
914 for (i = 0; i < adev->sdma.num_instances; i++) {
915 rb_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL);
916 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL,
917 RB_ENABLE, 0);
918 WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
919 ib_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL);
920 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL,
921 IB_ENABLE, 0);
922 WREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL, ib_cntl);
923 }
924}
925
926/**
927 * sdma_v4_0_ctx_switch_enable - stop the async dma engines context switch
928 *
929 * @adev: amdgpu_device pointer
930 * @enable: enable/disable the DMA MEs context switch.
931 *
932 * Halt or unhalt the async dma engines context switch (VEGA10).
933 */
934static void sdma_v4_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
935{
936 u32 f32_cntl, phase_quantum = 0;
937 int i;
938
939 if (amdgpu_sdma_phase_quantum) {
940 unsigned value = amdgpu_sdma_phase_quantum;
941 unsigned unit = 0;
942
943 while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
944 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) {
945 value = (value + 1) >> 1;
946 unit++;
947 }
948 if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
949 SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) {
950 value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
951 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT);
952 unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
953 SDMA0_PHASE0_QUANTUM__UNIT__SHIFT);
954 WARN_ONCE(1,
955 "clamping sdma_phase_quantum to %uK clock cycles\n",
956 value << unit);
957 }
958 phase_quantum =
959 value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT |
960 unit << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT;
961 }
962
963 for (i = 0; i < adev->sdma.num_instances; i++) {
964 f32_cntl = RREG32_SDMA(i, mmSDMA0_CNTL);
965 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
966 AUTO_CTXSW_ENABLE, enable ? 1 : 0);
967 if (enable && amdgpu_sdma_phase_quantum) {
968 WREG32_SDMA(i, mmSDMA0_PHASE0_QUANTUM, phase_quantum);
969 WREG32_SDMA(i, mmSDMA0_PHASE1_QUANTUM, phase_quantum);
970 WREG32_SDMA(i, mmSDMA0_PHASE2_QUANTUM, phase_quantum);
971 }
972 WREG32_SDMA(i, mmSDMA0_CNTL, f32_cntl);
973
974 /*
975 * Enable SDMA utilization. Its only supported on
976 * Arcturus for the moment and firmware version 14
977 * and above.
978 */
979 if (amdgpu_ip_version(adev, ip: SDMA0_HWIP, inst: 0) ==
980 IP_VERSION(4, 2, 2) &&
981 adev->sdma.instance[i].fw_version >= 14)
982 WREG32_SDMA(i, mmSDMA0_PUB_DUMMY_REG2, enable);
983 /* Extend page fault timeout to avoid interrupt storm */
984 WREG32_SDMA(i, mmSDMA0_UTCL1_TIMEOUT, 0x00800080);
985 }
986
987}
988
989/**
990 * sdma_v4_0_enable - stop the async dma engines
991 *
992 * @adev: amdgpu_device pointer
993 * @enable: enable/disable the DMA MEs.
994 *
995 * Halt or unhalt the async dma engines (VEGA10).
996 */
997static void sdma_v4_0_enable(struct amdgpu_device *adev, bool enable)
998{
999 u32 f32_cntl;
1000 int i;
1001
1002 if (!enable) {
1003 sdma_v4_0_gfx_enable(adev, enable);
1004 sdma_v4_0_rlc_stop(adev);
1005 if (adev->sdma.has_page_queue)
1006 sdma_v4_0_page_stop(adev);
1007 }
1008
1009 for (i = 0; i < adev->sdma.num_instances; i++) {
1010 f32_cntl = RREG32_SDMA(i, mmSDMA0_F32_CNTL);
1011 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, enable ? 0 : 1);
1012 WREG32_SDMA(i, mmSDMA0_F32_CNTL, f32_cntl);
1013 }
1014}
1015
1016/*
1017 * sdma_v4_0_rb_cntl - get parameters for rb_cntl
1018 */
1019static uint32_t sdma_v4_0_rb_cntl(struct amdgpu_ring *ring, uint32_t rb_cntl)
1020{
1021 /* Set ring buffer size in dwords */
1022 uint32_t rb_bufsz = order_base_2(ring->ring_size / 4);
1023
1024 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
1025#ifdef __BIG_ENDIAN
1026 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
1027 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
1028 RPTR_WRITEBACK_SWAP_ENABLE, 1);
1029#endif
1030 return rb_cntl;
1031}
1032
1033/**
1034 * sdma_v4_0_gfx_resume - setup and start the async dma engines
1035 *
1036 * @adev: amdgpu_device pointer
1037 * @i: instance to resume
1038 *
1039 * Set up the gfx DMA ring buffers and enable them (VEGA10).
1040 * Returns 0 for success, error for failure.
1041 */
1042static void sdma_v4_0_gfx_resume(struct amdgpu_device *adev, unsigned int i)
1043{
1044 struct amdgpu_ring *ring = &adev->sdma.instance[i].ring;
1045 u32 rb_cntl, ib_cntl, wptr_poll_cntl;
1046 u32 doorbell;
1047 u32 doorbell_offset;
1048 u64 wptr_gpu_addr;
1049
1050 rb_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL);
1051 rb_cntl = sdma_v4_0_rb_cntl(ring, rb_cntl);
1052 WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
1053
1054 /* Initialize the ring buffer's read and write pointers */
1055 WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR, 0);
1056 WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_HI, 0);
1057 WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR, 0);
1058 WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_HI, 0);
1059
1060 /* set the wb address whether it's enabled or not */
1061 WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_ADDR_HI,
1062 upper_32_bits(ring->rptr_gpu_addr) & 0xFFFFFFFF);
1063 WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_ADDR_LO,
1064 lower_32_bits(ring->rptr_gpu_addr) & 0xFFFFFFFC);
1065
1066 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
1067 RPTR_WRITEBACK_ENABLE, 1);
1068
1069 WREG32_SDMA(i, mmSDMA0_GFX_RB_BASE, ring->gpu_addr >> 8);
1070 WREG32_SDMA(i, mmSDMA0_GFX_RB_BASE_HI, ring->gpu_addr >> 40);
1071
1072 ring->wptr = 0;
1073
1074 /* before programing wptr to a less value, need set minor_ptr_update first */
1075 WREG32_SDMA(i, mmSDMA0_GFX_MINOR_PTR_UPDATE, 1);
1076
1077 doorbell = RREG32_SDMA(i, mmSDMA0_GFX_DOORBELL);
1078 doorbell_offset = RREG32_SDMA(i, mmSDMA0_GFX_DOORBELL_OFFSET);
1079
1080 doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE,
1081 ring->use_doorbell);
1082 doorbell_offset = REG_SET_FIELD(doorbell_offset,
1083 SDMA0_GFX_DOORBELL_OFFSET,
1084 OFFSET, ring->doorbell_index);
1085 WREG32_SDMA(i, mmSDMA0_GFX_DOORBELL, doorbell);
1086 WREG32_SDMA(i, mmSDMA0_GFX_DOORBELL_OFFSET, doorbell_offset);
1087
1088 sdma_v4_0_ring_set_wptr(ring);
1089
1090 /* set minor_ptr_update to 0 after wptr programed */
1091 WREG32_SDMA(i, mmSDMA0_GFX_MINOR_PTR_UPDATE, 0);
1092
1093 /* setup the wptr shadow polling */
1094 wptr_gpu_addr = ring->wptr_gpu_addr;
1095 WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO,
1096 lower_32_bits(wptr_gpu_addr));
1097 WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI,
1098 upper_32_bits(wptr_gpu_addr));
1099 wptr_poll_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL);
1100 wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
1101 SDMA0_GFX_RB_WPTR_POLL_CNTL,
1102 F32_POLL_ENABLE, amdgpu_sriov_vf(adev)? 1 : 0);
1103 WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, wptr_poll_cntl);
1104
1105 /* enable DMA RB */
1106 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
1107 WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
1108
1109 ib_cntl = RREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL);
1110 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
1111#ifdef __BIG_ENDIAN
1112 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
1113#endif
1114 /* enable DMA IBs */
1115 WREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL, ib_cntl);
1116}
1117
1118/**
1119 * sdma_v4_0_page_resume - setup and start the async dma engines
1120 *
1121 * @adev: amdgpu_device pointer
1122 * @i: instance to resume
1123 *
1124 * Set up the page DMA ring buffers and enable them (VEGA10).
1125 * Returns 0 for success, error for failure.
1126 */
1127static void sdma_v4_0_page_resume(struct amdgpu_device *adev, unsigned int i)
1128{
1129 struct amdgpu_ring *ring = &adev->sdma.instance[i].page;
1130 u32 rb_cntl, ib_cntl, wptr_poll_cntl;
1131 u32 doorbell;
1132 u32 doorbell_offset;
1133 u64 wptr_gpu_addr;
1134
1135 rb_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL);
1136 rb_cntl = sdma_v4_0_rb_cntl(ring, rb_cntl);
1137 WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
1138
1139 /* Initialize the ring buffer's read and write pointers */
1140 WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR, 0);
1141 WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_HI, 0);
1142 WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR, 0);
1143 WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_HI, 0);
1144
1145 /* set the wb address whether it's enabled or not */
1146 WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_ADDR_HI,
1147 upper_32_bits(ring->rptr_gpu_addr) & 0xFFFFFFFF);
1148 WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_ADDR_LO,
1149 lower_32_bits(ring->rptr_gpu_addr) & 0xFFFFFFFC);
1150
1151 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL,
1152 RPTR_WRITEBACK_ENABLE, 1);
1153
1154 WREG32_SDMA(i, mmSDMA0_PAGE_RB_BASE, ring->gpu_addr >> 8);
1155 WREG32_SDMA(i, mmSDMA0_PAGE_RB_BASE_HI, ring->gpu_addr >> 40);
1156
1157 ring->wptr = 0;
1158
1159 /* before programing wptr to a less value, need set minor_ptr_update first */
1160 WREG32_SDMA(i, mmSDMA0_PAGE_MINOR_PTR_UPDATE, 1);
1161
1162 doorbell = RREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL);
1163 doorbell_offset = RREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL_OFFSET);
1164
1165 doorbell = REG_SET_FIELD(doorbell, SDMA0_PAGE_DOORBELL, ENABLE,
1166 ring->use_doorbell);
1167 doorbell_offset = REG_SET_FIELD(doorbell_offset,
1168 SDMA0_PAGE_DOORBELL_OFFSET,
1169 OFFSET, ring->doorbell_index);
1170 WREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL, doorbell);
1171 WREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL_OFFSET, doorbell_offset);
1172
1173 /* paging queue doorbell range is setup at sdma_v4_0_gfx_resume */
1174 sdma_v4_0_page_ring_set_wptr(ring);
1175
1176 /* set minor_ptr_update to 0 after wptr programed */
1177 WREG32_SDMA(i, mmSDMA0_PAGE_MINOR_PTR_UPDATE, 0);
1178
1179 /* setup the wptr shadow polling */
1180 wptr_gpu_addr = ring->wptr_gpu_addr;
1181 WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_ADDR_LO,
1182 lower_32_bits(wptr_gpu_addr));
1183 WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_ADDR_HI,
1184 upper_32_bits(wptr_gpu_addr));
1185 wptr_poll_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL);
1186 wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
1187 SDMA0_PAGE_RB_WPTR_POLL_CNTL,
1188 F32_POLL_ENABLE, amdgpu_sriov_vf(adev)? 1 : 0);
1189 WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, wptr_poll_cntl);
1190
1191 /* enable DMA RB */
1192 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL, RB_ENABLE, 1);
1193 WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
1194
1195 ib_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL);
1196 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL, IB_ENABLE, 1);
1197#ifdef __BIG_ENDIAN
1198 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL, IB_SWAP_ENABLE, 1);
1199#endif
1200 /* enable DMA IBs */
1201 WREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL, ib_cntl);
1202}
1203
1204static void
1205sdma_v4_1_update_power_gating(struct amdgpu_device *adev, bool enable)
1206{
1207 uint32_t def, data;
1208
1209 if (enable && (adev->pg_flags & AMD_PG_SUPPORT_SDMA)) {
1210 /* enable idle interrupt */
1211 def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
1212 data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
1213
1214 if (data != def)
1215 WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
1216 } else {
1217 /* disable idle interrupt */
1218 def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
1219 data &= ~SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
1220 if (data != def)
1221 WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
1222 }
1223}
1224
1225static void sdma_v4_1_init_power_gating(struct amdgpu_device *adev)
1226{
1227 uint32_t def, data;
1228
1229 /* Enable HW based PG. */
1230 def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
1231 data |= SDMA0_POWER_CNTL__PG_CNTL_ENABLE_MASK;
1232 if (data != def)
1233 WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
1234
1235 /* enable interrupt */
1236 def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
1237 data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
1238 if (data != def)
1239 WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
1240
1241 /* Configure hold time to filter in-valid power on/off request. Use default right now */
1242 def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
1243 data &= ~SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK;
1244 data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK);
1245 /* Configure switch time for hysteresis purpose. Use default right now */
1246 data &= ~SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK;
1247 data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK);
1248 if(data != def)
1249 WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
1250}
1251
1252static void sdma_v4_0_init_pg(struct amdgpu_device *adev)
1253{
1254 if (!(adev->pg_flags & AMD_PG_SUPPORT_SDMA))
1255 return;
1256
1257 switch (amdgpu_ip_version(adev, ip: SDMA0_HWIP, inst: 0)) {
1258 case IP_VERSION(4, 1, 0):
1259 case IP_VERSION(4, 1, 1):
1260 case IP_VERSION(4, 1, 2):
1261 sdma_v4_1_init_power_gating(adev);
1262 sdma_v4_1_update_power_gating(adev, enable: true);
1263 break;
1264 default:
1265 break;
1266 }
1267}
1268
1269/**
1270 * sdma_v4_0_rlc_resume - setup and start the async dma engines
1271 *
1272 * @adev: amdgpu_device pointer
1273 *
1274 * Set up the compute DMA queues and enable them (VEGA10).
1275 * Returns 0 for success, error for failure.
1276 */
1277static int sdma_v4_0_rlc_resume(struct amdgpu_device *adev)
1278{
1279 sdma_v4_0_init_pg(adev);
1280
1281 return 0;
1282}
1283
1284/**
1285 * sdma_v4_0_load_microcode - load the sDMA ME ucode
1286 *
1287 * @adev: amdgpu_device pointer
1288 *
1289 * Loads the sDMA0/1 ucode.
1290 * Returns 0 for success, -EINVAL if the ucode is not available.
1291 */
1292static int sdma_v4_0_load_microcode(struct amdgpu_device *adev)
1293{
1294 const struct sdma_firmware_header_v1_0 *hdr;
1295 const __le32 *fw_data;
1296 u32 fw_size;
1297 int i, j;
1298
1299 /* halt the MEs */
1300 sdma_v4_0_enable(adev, enable: false);
1301
1302 for (i = 0; i < adev->sdma.num_instances; i++) {
1303 if (!adev->sdma.instance[i].fw)
1304 return -EINVAL;
1305
1306 hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
1307 amdgpu_ucode_print_sdma_hdr(hdr: &hdr->header);
1308 fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
1309
1310 fw_data = (const __le32 *)
1311 (adev->sdma.instance[i].fw->data +
1312 le32_to_cpu(hdr->header.ucode_array_offset_bytes));
1313
1314 WREG32_SDMA(i, mmSDMA0_UCODE_ADDR, 0);
1315
1316 for (j = 0; j < fw_size; j++)
1317 WREG32_SDMA(i, mmSDMA0_UCODE_DATA,
1318 le32_to_cpup(fw_data++));
1319
1320 WREG32_SDMA(i, mmSDMA0_UCODE_ADDR,
1321 adev->sdma.instance[i].fw_version);
1322 }
1323
1324 return 0;
1325}
1326
1327/**
1328 * sdma_v4_0_start - setup and start the async dma engines
1329 *
1330 * @adev: amdgpu_device pointer
1331 *
1332 * Set up the DMA engines and enable them (VEGA10).
1333 * Returns 0 for success, error for failure.
1334 */
1335static int sdma_v4_0_start(struct amdgpu_device *adev)
1336{
1337 struct amdgpu_ring *ring;
1338 int i, r = 0;
1339
1340 if (amdgpu_sriov_vf(adev)) {
1341 sdma_v4_0_ctx_switch_enable(adev, enable: false);
1342 sdma_v4_0_enable(adev, enable: false);
1343 } else {
1344
1345 if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) {
1346 r = sdma_v4_0_load_microcode(adev);
1347 if (r)
1348 return r;
1349 }
1350
1351 /* unhalt the MEs */
1352 sdma_v4_0_enable(adev, enable: true);
1353 /* enable sdma ring preemption */
1354 sdma_v4_0_ctx_switch_enable(adev, enable: true);
1355 }
1356
1357 /* start the gfx rings and rlc compute queues */
1358 for (i = 0; i < adev->sdma.num_instances; i++) {
1359 uint32_t temp;
1360
1361 WREG32_SDMA(i, mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL, 0);
1362 sdma_v4_0_gfx_resume(adev, i);
1363 if (adev->sdma.has_page_queue)
1364 sdma_v4_0_page_resume(adev, i);
1365
1366 /* set utc l1 enable flag always to 1 */
1367 temp = RREG32_SDMA(i, mmSDMA0_CNTL);
1368 temp = REG_SET_FIELD(temp, SDMA0_CNTL, UTC_L1_ENABLE, 1);
1369 WREG32_SDMA(i, mmSDMA0_CNTL, temp);
1370
1371 if (!amdgpu_sriov_vf(adev)) {
1372 /* unhalt engine */
1373 temp = RREG32_SDMA(i, mmSDMA0_F32_CNTL);
1374 temp = REG_SET_FIELD(temp, SDMA0_F32_CNTL, HALT, 0);
1375 WREG32_SDMA(i, mmSDMA0_F32_CNTL, temp);
1376 }
1377 }
1378
1379 if (amdgpu_sriov_vf(adev)) {
1380 sdma_v4_0_ctx_switch_enable(adev, enable: true);
1381 sdma_v4_0_enable(adev, enable: true);
1382 } else {
1383 r = sdma_v4_0_rlc_resume(adev);
1384 if (r)
1385 return r;
1386 }
1387
1388 for (i = 0; i < adev->sdma.num_instances; i++) {
1389 ring = &adev->sdma.instance[i].ring;
1390
1391 r = amdgpu_ring_test_helper(ring);
1392 if (r)
1393 return r;
1394
1395 if (adev->sdma.has_page_queue) {
1396 struct amdgpu_ring *page = &adev->sdma.instance[i].page;
1397
1398 r = amdgpu_ring_test_helper(ring: page);
1399 if (r)
1400 return r;
1401 }
1402 }
1403
1404 return r;
1405}
1406
1407/**
1408 * sdma_v4_0_ring_test_ring - simple async dma engine test
1409 *
1410 * @ring: amdgpu_ring structure holding ring information
1411 *
1412 * Test the DMA engine by writing using it to write an
1413 * value to memory. (VEGA10).
1414 * Returns 0 for success, error for failure.
1415 */
1416static int sdma_v4_0_ring_test_ring(struct amdgpu_ring *ring)
1417{
1418 struct amdgpu_device *adev = ring->adev;
1419 unsigned i;
1420 unsigned index;
1421 int r;
1422 u32 tmp;
1423 u64 gpu_addr;
1424
1425 r = amdgpu_device_wb_get(adev, wb: &index);
1426 if (r)
1427 return r;
1428
1429 gpu_addr = adev->wb.gpu_addr + (index * 4);
1430 tmp = 0xCAFEDEAD;
1431 adev->wb.wb[index] = cpu_to_le32(tmp);
1432
1433 r = amdgpu_ring_alloc(ring, ndw: 5);
1434 if (r)
1435 goto error_free_wb;
1436
1437 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1438 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
1439 amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
1440 amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
1441 amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0));
1442 amdgpu_ring_write(ring, v: 0xDEADBEEF);
1443 amdgpu_ring_commit(ring);
1444
1445 for (i = 0; i < adev->usec_timeout; i++) {
1446 tmp = le32_to_cpu(adev->wb.wb[index]);
1447 if (tmp == 0xDEADBEEF)
1448 break;
1449 udelay(1);
1450 }
1451
1452 if (i >= adev->usec_timeout)
1453 r = -ETIMEDOUT;
1454
1455error_free_wb:
1456 amdgpu_device_wb_free(adev, wb: index);
1457 return r;
1458}
1459
1460/**
1461 * sdma_v4_0_ring_test_ib - test an IB on the DMA engine
1462 *
1463 * @ring: amdgpu_ring structure holding ring information
1464 * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
1465 *
1466 * Test a simple IB in the DMA ring (VEGA10).
1467 * Returns 0 on success, error on failure.
1468 */
1469static int sdma_v4_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
1470{
1471 struct amdgpu_device *adev = ring->adev;
1472 struct amdgpu_ib ib;
1473 struct dma_fence *f = NULL;
1474 unsigned index;
1475 long r;
1476 u32 tmp = 0;
1477 u64 gpu_addr;
1478
1479 r = amdgpu_device_wb_get(adev, wb: &index);
1480 if (r)
1481 return r;
1482
1483 gpu_addr = adev->wb.gpu_addr + (index * 4);
1484 tmp = 0xCAFEDEAD;
1485 adev->wb.wb[index] = cpu_to_le32(tmp);
1486 memset(&ib, 0, sizeof(ib));
1487 r = amdgpu_ib_get(adev, NULL, size: 256,
1488 pool: AMDGPU_IB_POOL_DIRECT, ib: &ib);
1489 if (r)
1490 goto err0;
1491
1492 ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1493 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1494 ib.ptr[1] = lower_32_bits(gpu_addr);
1495 ib.ptr[2] = upper_32_bits(gpu_addr);
1496 ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0);
1497 ib.ptr[4] = 0xDEADBEEF;
1498 ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1499 ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1500 ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1501 ib.length_dw = 8;
1502
1503 r = amdgpu_ib_schedule(ring, num_ibs: 1, ibs: &ib, NULL, f: &f);
1504 if (r)
1505 goto err1;
1506
1507 r = dma_fence_wait_timeout(f, intr: false, timeout);
1508 if (r == 0) {
1509 r = -ETIMEDOUT;
1510 goto err1;
1511 } else if (r < 0) {
1512 goto err1;
1513 }
1514 tmp = le32_to_cpu(adev->wb.wb[index]);
1515 if (tmp == 0xDEADBEEF)
1516 r = 0;
1517 else
1518 r = -EINVAL;
1519
1520err1:
1521 amdgpu_ib_free(adev, ib: &ib, NULL);
1522 dma_fence_put(fence: f);
1523err0:
1524 amdgpu_device_wb_free(adev, wb: index);
1525 return r;
1526}
1527
1528
1529/**
1530 * sdma_v4_0_vm_copy_pte - update PTEs by copying them from the GART
1531 *
1532 * @ib: indirect buffer to fill with commands
1533 * @pe: addr of the page entry
1534 * @src: src addr to copy from
1535 * @count: number of page entries to update
1536 *
1537 * Update PTEs by copying them from the GART using sDMA (VEGA10).
1538 */
1539static void sdma_v4_0_vm_copy_pte(struct amdgpu_ib *ib,
1540 uint64_t pe, uint64_t src,
1541 unsigned count)
1542{
1543 unsigned bytes = count * 8;
1544
1545 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1546 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1547 ib->ptr[ib->length_dw++] = bytes - 1;
1548 ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1549 ib->ptr[ib->length_dw++] = lower_32_bits(src);
1550 ib->ptr[ib->length_dw++] = upper_32_bits(src);
1551 ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1552 ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1553
1554}
1555
1556/**
1557 * sdma_v4_0_vm_write_pte - update PTEs by writing them manually
1558 *
1559 * @ib: indirect buffer to fill with commands
1560 * @pe: addr of the page entry
1561 * @value: dst addr to write into pe
1562 * @count: number of page entries to update
1563 * @incr: increase next addr by incr bytes
1564 *
1565 * Update PTEs by writing them manually using sDMA (VEGA10).
1566 */
1567static void sdma_v4_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
1568 uint64_t value, unsigned count,
1569 uint32_t incr)
1570{
1571 unsigned ndw = count * 2;
1572
1573 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1574 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1575 ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1576 ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1577 ib->ptr[ib->length_dw++] = ndw - 1;
1578 for (; ndw > 0; ndw -= 2) {
1579 ib->ptr[ib->length_dw++] = lower_32_bits(value);
1580 ib->ptr[ib->length_dw++] = upper_32_bits(value);
1581 value += incr;
1582 }
1583}
1584
1585/**
1586 * sdma_v4_0_vm_set_pte_pde - update the page tables using sDMA
1587 *
1588 * @ib: indirect buffer to fill with commands
1589 * @pe: addr of the page entry
1590 * @addr: dst addr to write into pe
1591 * @count: number of page entries to update
1592 * @incr: increase next addr by incr bytes
1593 * @flags: access flags
1594 *
1595 * Update the page tables using sDMA (VEGA10).
1596 */
1597static void sdma_v4_0_vm_set_pte_pde(struct amdgpu_ib *ib,
1598 uint64_t pe,
1599 uint64_t addr, unsigned count,
1600 uint32_t incr, uint64_t flags)
1601{
1602 /* for physically contiguous pages (vram) */
1603 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_PTEPDE);
1604 ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
1605 ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1606 ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
1607 ib->ptr[ib->length_dw++] = upper_32_bits(flags);
1608 ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
1609 ib->ptr[ib->length_dw++] = upper_32_bits(addr);
1610 ib->ptr[ib->length_dw++] = incr; /* increment size */
1611 ib->ptr[ib->length_dw++] = 0;
1612 ib->ptr[ib->length_dw++] = count - 1; /* number of entries */
1613}
1614
1615/**
1616 * sdma_v4_0_ring_pad_ib - pad the IB to the required number of dw
1617 *
1618 * @ring: amdgpu_ring structure holding ring information
1619 * @ib: indirect buffer to fill with padding
1620 */
1621static void sdma_v4_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
1622{
1623 struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
1624 u32 pad_count;
1625 int i;
1626
1627 pad_count = (-ib->length_dw) & 7;
1628 for (i = 0; i < pad_count; i++)
1629 if (sdma && sdma->burst_nop && (i == 0))
1630 ib->ptr[ib->length_dw++] =
1631 SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
1632 SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
1633 else
1634 ib->ptr[ib->length_dw++] =
1635 SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
1636}
1637
1638
1639/**
1640 * sdma_v4_0_ring_emit_pipeline_sync - sync the pipeline
1641 *
1642 * @ring: amdgpu_ring pointer
1643 *
1644 * Make sure all previous operations are completed (CIK).
1645 */
1646static void sdma_v4_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
1647{
1648 uint32_t seq = ring->fence_drv.sync_seq;
1649 uint64_t addr = ring->fence_drv.gpu_addr;
1650
1651 /* wait for idle */
1652 sdma_v4_0_wait_reg_mem(ring, mem_space: 1, hdp: 0,
1653 addr0: addr & 0xfffffffc,
1654 upper_32_bits(addr) & 0xffffffff,
1655 ref: seq, mask: 0xffffffff, inv: 4);
1656}
1657
1658
1659/**
1660 * sdma_v4_0_ring_emit_vm_flush - vm flush using sDMA
1661 *
1662 * @ring: amdgpu_ring pointer
1663 * @vmid: vmid number to use
1664 * @pd_addr: address
1665 *
1666 * Update the page table base and flush the VM TLB
1667 * using sDMA (VEGA10).
1668 */
1669static void sdma_v4_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
1670 unsigned vmid, uint64_t pd_addr)
1671{
1672 amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr);
1673}
1674
1675static void sdma_v4_0_ring_emit_wreg(struct amdgpu_ring *ring,
1676 uint32_t reg, uint32_t val)
1677{
1678 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1679 SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1680 amdgpu_ring_write(ring, v: reg);
1681 amdgpu_ring_write(ring, v: val);
1682}
1683
1684static void sdma_v4_0_ring_emit_reg_wait(struct amdgpu_ring *ring, uint32_t reg,
1685 uint32_t val, uint32_t mask)
1686{
1687 sdma_v4_0_wait_reg_mem(ring, mem_space: 0, hdp: 0, addr0: reg, addr1: 0, ref: val, mask, inv: 10);
1688}
1689
1690static bool sdma_v4_0_fw_support_paging_queue(struct amdgpu_device *adev)
1691{
1692 uint fw_version = adev->sdma.instance[0].fw_version;
1693
1694 switch (amdgpu_ip_version(adev, ip: SDMA0_HWIP, inst: 0)) {
1695 case IP_VERSION(4, 0, 0):
1696 return fw_version >= 430;
1697 case IP_VERSION(4, 0, 1):
1698 /*return fw_version >= 31;*/
1699 return false;
1700 case IP_VERSION(4, 2, 0):
1701 return fw_version >= 123;
1702 default:
1703 return false;
1704 }
1705}
1706
1707static int sdma_v4_0_early_init(void *handle)
1708{
1709 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1710 int r;
1711
1712 r = sdma_v4_0_init_microcode(adev);
1713 if (r)
1714 return r;
1715
1716 /* TODO: Page queue breaks driver reload under SRIOV */
1717 if ((amdgpu_ip_version(adev, ip: SDMA0_HWIP, inst: 0) == IP_VERSION(4, 0, 0)) &&
1718 amdgpu_sriov_vf((adev)))
1719 adev->sdma.has_page_queue = false;
1720 else if (sdma_v4_0_fw_support_paging_queue(adev))
1721 adev->sdma.has_page_queue = true;
1722
1723 sdma_v4_0_set_ring_funcs(adev);
1724 sdma_v4_0_set_buffer_funcs(adev);
1725 sdma_v4_0_set_vm_pte_funcs(adev);
1726 sdma_v4_0_set_irq_funcs(adev);
1727 sdma_v4_0_set_ras_funcs(adev);
1728
1729 return 0;
1730}
1731
1732static int sdma_v4_0_process_ras_data_cb(struct amdgpu_device *adev,
1733 void *err_data,
1734 struct amdgpu_iv_entry *entry);
1735
1736static int sdma_v4_0_late_init(void *handle)
1737{
1738 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1739
1740 sdma_v4_0_setup_ulv(adev);
1741
1742 if (!amdgpu_persistent_edc_harvesting_supported(adev))
1743 amdgpu_ras_reset_error_count(adev, block: AMDGPU_RAS_BLOCK__SDMA);
1744
1745 return 0;
1746}
1747
1748static int sdma_v4_0_sw_init(void *handle)
1749{
1750 struct amdgpu_ring *ring;
1751 int r, i;
1752 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1753
1754 /* SDMA trap event */
1755 for (i = 0; i < adev->sdma.num_instances; i++) {
1756 r = amdgpu_irq_add_id(adev, client_id: sdma_v4_0_seq_to_irq_id(seq_num: i),
1757 SDMA0_4_0__SRCID__SDMA_TRAP,
1758 source: &adev->sdma.trap_irq);
1759 if (r)
1760 return r;
1761 }
1762
1763 /* SDMA SRAM ECC event */
1764 for (i = 0; i < adev->sdma.num_instances; i++) {
1765 r = amdgpu_irq_add_id(adev, client_id: sdma_v4_0_seq_to_irq_id(seq_num: i),
1766 SDMA0_4_0__SRCID__SDMA_SRAM_ECC,
1767 source: &adev->sdma.ecc_irq);
1768 if (r)
1769 return r;
1770 }
1771
1772 /* SDMA VM_HOLE/DOORBELL_INV/POLL_TIMEOUT/SRBM_WRITE_PROTECTION event*/
1773 for (i = 0; i < adev->sdma.num_instances; i++) {
1774 r = amdgpu_irq_add_id(adev, client_id: sdma_v4_0_seq_to_irq_id(seq_num: i),
1775 SDMA0_4_0__SRCID__SDMA_VM_HOLE,
1776 source: &adev->sdma.vm_hole_irq);
1777 if (r)
1778 return r;
1779
1780 r = amdgpu_irq_add_id(adev, client_id: sdma_v4_0_seq_to_irq_id(seq_num: i),
1781 SDMA0_4_0__SRCID__SDMA_DOORBELL_INVALID,
1782 source: &adev->sdma.doorbell_invalid_irq);
1783 if (r)
1784 return r;
1785
1786 r = amdgpu_irq_add_id(adev, client_id: sdma_v4_0_seq_to_irq_id(seq_num: i),
1787 SDMA0_4_0__SRCID__SDMA_POLL_TIMEOUT,
1788 source: &adev->sdma.pool_timeout_irq);
1789 if (r)
1790 return r;
1791
1792 r = amdgpu_irq_add_id(adev, client_id: sdma_v4_0_seq_to_irq_id(seq_num: i),
1793 SDMA0_4_0__SRCID__SDMA_SRBMWRITE,
1794 source: &adev->sdma.srbm_write_irq);
1795 if (r)
1796 return r;
1797 }
1798
1799 for (i = 0; i < adev->sdma.num_instances; i++) {
1800 ring = &adev->sdma.instance[i].ring;
1801 ring->ring_obj = NULL;
1802 ring->use_doorbell = true;
1803
1804 DRM_DEBUG("SDMA %d use_doorbell being set to: [%s]\n", i,
1805 ring->use_doorbell?"true":"false");
1806
1807 /* doorbell size is 2 dwords, get DWORD offset */
1808 ring->doorbell_index = adev->doorbell_index.sdma_engine[i] << 1;
1809
1810 /*
1811 * On Arcturus, SDMA instance 5~7 has a different vmhub
1812 * type(AMDGPU_MMHUB1).
1813 */
1814 if (amdgpu_ip_version(adev, ip: SDMA0_HWIP, inst: 0) ==
1815 IP_VERSION(4, 2, 2) &&
1816 i >= 5)
1817 ring->vm_hub = AMDGPU_MMHUB1(0);
1818 else
1819 ring->vm_hub = AMDGPU_MMHUB0(0);
1820
1821 sprintf(buf: ring->name, fmt: "sdma%d", i);
1822 r = amdgpu_ring_init(adev, ring, max_dw: 1024, irq_src: &adev->sdma.trap_irq,
1823 irq_type: AMDGPU_SDMA_IRQ_INSTANCE0 + i,
1824 hw_prio: AMDGPU_RING_PRIO_DEFAULT, NULL);
1825 if (r)
1826 return r;
1827
1828 if (adev->sdma.has_page_queue) {
1829 ring = &adev->sdma.instance[i].page;
1830 ring->ring_obj = NULL;
1831 ring->use_doorbell = true;
1832
1833 /* paging queue use same doorbell index/routing as gfx queue
1834 * with 0x400 (4096 dwords) offset on second doorbell page
1835 */
1836 if (amdgpu_ip_version(adev, ip: SDMA0_HWIP, inst: 0) >=
1837 IP_VERSION(4, 0, 0) &&
1838 amdgpu_ip_version(adev, ip: SDMA0_HWIP, inst: 0) <
1839 IP_VERSION(4, 2, 0)) {
1840 ring->doorbell_index =
1841 adev->doorbell_index.sdma_engine[i] << 1;
1842 ring->doorbell_index += 0x400;
1843 } else {
1844 /* From vega20, the sdma_doorbell_range in 1st
1845 * doorbell page is reserved for page queue.
1846 */
1847 ring->doorbell_index =
1848 (adev->doorbell_index.sdma_engine[i] + 1) << 1;
1849 }
1850
1851 if (amdgpu_ip_version(adev, ip: SDMA0_HWIP, inst: 0) ==
1852 IP_VERSION(4, 2, 2) &&
1853 i >= 5)
1854 ring->vm_hub = AMDGPU_MMHUB1(0);
1855 else
1856 ring->vm_hub = AMDGPU_MMHUB0(0);
1857
1858 sprintf(buf: ring->name, fmt: "page%d", i);
1859 r = amdgpu_ring_init(adev, ring, max_dw: 1024,
1860 irq_src: &adev->sdma.trap_irq,
1861 irq_type: AMDGPU_SDMA_IRQ_INSTANCE0 + i,
1862 hw_prio: AMDGPU_RING_PRIO_DEFAULT, NULL);
1863 if (r)
1864 return r;
1865 }
1866 }
1867
1868 if (amdgpu_sdma_ras_sw_init(adev)) {
1869 dev_err(adev->dev, "Failed to initialize sdma ras block!\n");
1870 return -EINVAL;
1871 }
1872
1873 return r;
1874}
1875
1876static int sdma_v4_0_sw_fini(void *handle)
1877{
1878 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1879 int i;
1880
1881 for (i = 0; i < adev->sdma.num_instances; i++) {
1882 amdgpu_ring_fini(ring: &adev->sdma.instance[i].ring);
1883 if (adev->sdma.has_page_queue)
1884 amdgpu_ring_fini(ring: &adev->sdma.instance[i].page);
1885 }
1886
1887 if (amdgpu_ip_version(adev, ip: SDMA0_HWIP, inst: 0) == IP_VERSION(4, 2, 2) ||
1888 amdgpu_ip_version(adev, ip: SDMA0_HWIP, inst: 0) == IP_VERSION(4, 4, 0))
1889 amdgpu_sdma_destroy_inst_ctx(adev, duplicate: true);
1890 else
1891 amdgpu_sdma_destroy_inst_ctx(adev, duplicate: false);
1892
1893 return 0;
1894}
1895
1896static int sdma_v4_0_hw_init(void *handle)
1897{
1898 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1899
1900 if (adev->flags & AMD_IS_APU)
1901 amdgpu_dpm_set_powergating_by_smu(adev, block_type: AMD_IP_BLOCK_TYPE_SDMA, gate: false);
1902
1903 if (!amdgpu_sriov_vf(adev))
1904 sdma_v4_0_init_golden_registers(adev);
1905
1906 return sdma_v4_0_start(adev);
1907}
1908
1909static int sdma_v4_0_hw_fini(void *handle)
1910{
1911 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1912 int i;
1913
1914 if (amdgpu_sriov_vf(adev))
1915 return 0;
1916
1917 if (amdgpu_ras_is_supported(adev, block: AMDGPU_RAS_BLOCK__SDMA)) {
1918 for (i = 0; i < adev->sdma.num_instances; i++) {
1919 amdgpu_irq_put(adev, src: &adev->sdma.ecc_irq,
1920 type: AMDGPU_SDMA_IRQ_INSTANCE0 + i);
1921 }
1922 }
1923
1924 sdma_v4_0_ctx_switch_enable(adev, enable: false);
1925 sdma_v4_0_enable(adev, enable: false);
1926
1927 if (adev->flags & AMD_IS_APU)
1928 amdgpu_dpm_set_powergating_by_smu(adev, block_type: AMD_IP_BLOCK_TYPE_SDMA, gate: true);
1929
1930 return 0;
1931}
1932
1933static int sdma_v4_0_suspend(void *handle)
1934{
1935 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1936
1937 /* SMU saves SDMA state for us */
1938 if (adev->in_s0ix) {
1939 sdma_v4_0_gfx_enable(adev, enable: false);
1940 return 0;
1941 }
1942
1943 return sdma_v4_0_hw_fini(handle: adev);
1944}
1945
1946static int sdma_v4_0_resume(void *handle)
1947{
1948 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1949
1950 /* SMU restores SDMA state for us */
1951 if (adev->in_s0ix) {
1952 sdma_v4_0_enable(adev, enable: true);
1953 sdma_v4_0_gfx_enable(adev, enable: true);
1954 return 0;
1955 }
1956
1957 return sdma_v4_0_hw_init(handle: adev);
1958}
1959
1960static bool sdma_v4_0_is_idle(void *handle)
1961{
1962 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1963 u32 i;
1964
1965 for (i = 0; i < adev->sdma.num_instances; i++) {
1966 u32 tmp = RREG32_SDMA(i, mmSDMA0_STATUS_REG);
1967
1968 if (!(tmp & SDMA0_STATUS_REG__IDLE_MASK))
1969 return false;
1970 }
1971
1972 return true;
1973}
1974
1975static int sdma_v4_0_wait_for_idle(void *handle)
1976{
1977 unsigned i, j;
1978 u32 sdma[AMDGPU_MAX_SDMA_INSTANCES];
1979 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1980
1981 for (i = 0; i < adev->usec_timeout; i++) {
1982 for (j = 0; j < adev->sdma.num_instances; j++) {
1983 sdma[j] = RREG32_SDMA(j, mmSDMA0_STATUS_REG);
1984 if (!(sdma[j] & SDMA0_STATUS_REG__IDLE_MASK))
1985 break;
1986 }
1987 if (j == adev->sdma.num_instances)
1988 return 0;
1989 udelay(1);
1990 }
1991 return -ETIMEDOUT;
1992}
1993
1994static int sdma_v4_0_soft_reset(void *handle)
1995{
1996 /* todo */
1997
1998 return 0;
1999}
2000
2001static int sdma_v4_0_set_trap_irq_state(struct amdgpu_device *adev,
2002 struct amdgpu_irq_src *source,
2003 unsigned type,
2004 enum amdgpu_interrupt_state state)
2005{
2006 u32 sdma_cntl;
2007
2008 sdma_cntl = RREG32_SDMA(type, mmSDMA0_CNTL);
2009 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE,
2010 state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
2011 WREG32_SDMA(type, mmSDMA0_CNTL, sdma_cntl);
2012
2013 return 0;
2014}
2015
2016static int sdma_v4_0_process_trap_irq(struct amdgpu_device *adev,
2017 struct amdgpu_irq_src *source,
2018 struct amdgpu_iv_entry *entry)
2019{
2020 uint32_t instance;
2021
2022 DRM_DEBUG("IH: SDMA trap\n");
2023 instance = sdma_v4_0_irq_id_to_seq(client_id: entry->client_id);
2024 switch (entry->ring_id) {
2025 case 0:
2026 amdgpu_fence_process(ring: &adev->sdma.instance[instance].ring);
2027 break;
2028 case 1:
2029 if (amdgpu_ip_version(adev, ip: SDMA0_HWIP, inst: 0) ==
2030 IP_VERSION(4, 2, 0))
2031 amdgpu_fence_process(ring: &adev->sdma.instance[instance].page);
2032 break;
2033 case 2:
2034 /* XXX compute */
2035 break;
2036 case 3:
2037 if (amdgpu_ip_version(adev, ip: SDMA0_HWIP, inst: 0) !=
2038 IP_VERSION(4, 2, 0))
2039 amdgpu_fence_process(ring: &adev->sdma.instance[instance].page);
2040 break;
2041 }
2042 return 0;
2043}
2044
2045static int sdma_v4_0_process_ras_data_cb(struct amdgpu_device *adev,
2046 void *err_data,
2047 struct amdgpu_iv_entry *entry)
2048{
2049 int instance;
2050
2051 /* When “Full RAS” is enabled, the per-IP interrupt sources should
2052 * be disabled and the driver should only look for the aggregated
2053 * interrupt via sync flood
2054 */
2055 if (amdgpu_ras_is_supported(adev, block: AMDGPU_RAS_BLOCK__GFX))
2056 goto out;
2057
2058 instance = sdma_v4_0_irq_id_to_seq(client_id: entry->client_id);
2059 if (instance < 0)
2060 goto out;
2061
2062 amdgpu_sdma_process_ras_data_cb(adev, err_data, entry);
2063
2064out:
2065 return AMDGPU_RAS_SUCCESS;
2066}
2067
2068static int sdma_v4_0_process_illegal_inst_irq(struct amdgpu_device *adev,
2069 struct amdgpu_irq_src *source,
2070 struct amdgpu_iv_entry *entry)
2071{
2072 int instance;
2073
2074 DRM_ERROR("Illegal instruction in SDMA command stream\n");
2075
2076 instance = sdma_v4_0_irq_id_to_seq(client_id: entry->client_id);
2077 if (instance < 0)
2078 return 0;
2079
2080 switch (entry->ring_id) {
2081 case 0:
2082 drm_sched_fault(sched: &adev->sdma.instance[instance].ring.sched);
2083 break;
2084 }
2085 return 0;
2086}
2087
2088static int sdma_v4_0_set_ecc_irq_state(struct amdgpu_device *adev,
2089 struct amdgpu_irq_src *source,
2090 unsigned type,
2091 enum amdgpu_interrupt_state state)
2092{
2093 u32 sdma_edc_config;
2094
2095 sdma_edc_config = RREG32_SDMA(type, mmSDMA0_EDC_CONFIG);
2096 sdma_edc_config = REG_SET_FIELD(sdma_edc_config, SDMA0_EDC_CONFIG, ECC_INT_ENABLE,
2097 state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
2098 WREG32_SDMA(type, mmSDMA0_EDC_CONFIG, sdma_edc_config);
2099
2100 return 0;
2101}
2102
2103static int sdma_v4_0_print_iv_entry(struct amdgpu_device *adev,
2104 struct amdgpu_iv_entry *entry)
2105{
2106 int instance;
2107 struct amdgpu_task_info task_info;
2108 u64 addr;
2109
2110 instance = sdma_v4_0_irq_id_to_seq(client_id: entry->client_id);
2111 if (instance < 0 || instance >= adev->sdma.num_instances) {
2112 dev_err(adev->dev, "sdma instance invalid %d\n", instance);
2113 return -EINVAL;
2114 }
2115
2116 addr = (u64)entry->src_data[0] << 12;
2117 addr |= ((u64)entry->src_data[1] & 0xf) << 44;
2118
2119 memset(&task_info, 0, sizeof(struct amdgpu_task_info));
2120 amdgpu_vm_get_task_info(adev, pasid: entry->pasid, task_info: &task_info);
2121
2122 dev_dbg_ratelimited(adev->dev,
2123 "[sdma%d] address:0x%016llx src_id:%u ring:%u vmid:%u "
2124 "pasid:%u, for process %s pid %d thread %s pid %d\n",
2125 instance, addr, entry->src_id, entry->ring_id, entry->vmid,
2126 entry->pasid, task_info.process_name, task_info.tgid,
2127 task_info.task_name, task_info.pid);
2128 return 0;
2129}
2130
2131static int sdma_v4_0_process_vm_hole_irq(struct amdgpu_device *adev,
2132 struct amdgpu_irq_src *source,
2133 struct amdgpu_iv_entry *entry)
2134{
2135 dev_dbg_ratelimited(adev->dev, "MC or SEM address in VM hole\n");
2136 sdma_v4_0_print_iv_entry(adev, entry);
2137 return 0;
2138}
2139
2140static int sdma_v4_0_process_doorbell_invalid_irq(struct amdgpu_device *adev,
2141 struct amdgpu_irq_src *source,
2142 struct amdgpu_iv_entry *entry)
2143{
2144 dev_dbg_ratelimited(adev->dev, "SDMA received a doorbell from BIF with byte_enable !=0xff\n");
2145 sdma_v4_0_print_iv_entry(adev, entry);
2146 return 0;
2147}
2148
2149static int sdma_v4_0_process_pool_timeout_irq(struct amdgpu_device *adev,
2150 struct amdgpu_irq_src *source,
2151 struct amdgpu_iv_entry *entry)
2152{
2153 dev_dbg_ratelimited(adev->dev,
2154 "Polling register/memory timeout executing POLL_REG/MEM with finite timer\n");
2155 sdma_v4_0_print_iv_entry(adev, entry);
2156 return 0;
2157}
2158
2159static int sdma_v4_0_process_srbm_write_irq(struct amdgpu_device *adev,
2160 struct amdgpu_irq_src *source,
2161 struct amdgpu_iv_entry *entry)
2162{
2163 dev_dbg_ratelimited(adev->dev,
2164 "SDMA gets an Register Write SRBM_WRITE command in non-privilege command buffer\n");
2165 sdma_v4_0_print_iv_entry(adev, entry);
2166 return 0;
2167}
2168
2169static void sdma_v4_0_update_medium_grain_clock_gating(
2170 struct amdgpu_device *adev,
2171 bool enable)
2172{
2173 uint32_t data, def;
2174 int i;
2175
2176 if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
2177 for (i = 0; i < adev->sdma.num_instances; i++) {
2178 def = data = RREG32_SDMA(i, mmSDMA0_CLK_CTRL);
2179 data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
2180 SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
2181 SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
2182 SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
2183 SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
2184 SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
2185 SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
2186 SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
2187 if (def != data)
2188 WREG32_SDMA(i, mmSDMA0_CLK_CTRL, data);
2189 }
2190 } else {
2191 for (i = 0; i < adev->sdma.num_instances; i++) {
2192 def = data = RREG32_SDMA(i, mmSDMA0_CLK_CTRL);
2193 data |= (SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
2194 SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
2195 SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
2196 SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
2197 SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
2198 SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
2199 SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
2200 SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
2201 if (def != data)
2202 WREG32_SDMA(i, mmSDMA0_CLK_CTRL, data);
2203 }
2204 }
2205}
2206
2207
2208static void sdma_v4_0_update_medium_grain_light_sleep(
2209 struct amdgpu_device *adev,
2210 bool enable)
2211{
2212 uint32_t data, def;
2213 int i;
2214
2215 if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
2216 for (i = 0; i < adev->sdma.num_instances; i++) {
2217 /* 1-not override: enable sdma mem light sleep */
2218 def = data = RREG32_SDMA(0, mmSDMA0_POWER_CNTL);
2219 data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
2220 if (def != data)
2221 WREG32_SDMA(0, mmSDMA0_POWER_CNTL, data);
2222 }
2223 } else {
2224 for (i = 0; i < adev->sdma.num_instances; i++) {
2225 /* 0-override:disable sdma mem light sleep */
2226 def = data = RREG32_SDMA(0, mmSDMA0_POWER_CNTL);
2227 data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
2228 if (def != data)
2229 WREG32_SDMA(0, mmSDMA0_POWER_CNTL, data);
2230 }
2231 }
2232}
2233
2234static int sdma_v4_0_set_clockgating_state(void *handle,
2235 enum amd_clockgating_state state)
2236{
2237 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2238
2239 if (amdgpu_sriov_vf(adev))
2240 return 0;
2241
2242 sdma_v4_0_update_medium_grain_clock_gating(adev,
2243 enable: state == AMD_CG_STATE_GATE);
2244 sdma_v4_0_update_medium_grain_light_sleep(adev,
2245 enable: state == AMD_CG_STATE_GATE);
2246 return 0;
2247}
2248
2249static int sdma_v4_0_set_powergating_state(void *handle,
2250 enum amd_powergating_state state)
2251{
2252 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2253
2254 switch (amdgpu_ip_version(adev, ip: SDMA0_HWIP, inst: 0)) {
2255 case IP_VERSION(4, 1, 0):
2256 case IP_VERSION(4, 1, 1):
2257 case IP_VERSION(4, 1, 2):
2258 sdma_v4_1_update_power_gating(adev,
2259 enable: state == AMD_PG_STATE_GATE);
2260 break;
2261 default:
2262 break;
2263 }
2264
2265 return 0;
2266}
2267
2268static void sdma_v4_0_get_clockgating_state(void *handle, u64 *flags)
2269{
2270 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2271 int data;
2272
2273 if (amdgpu_sriov_vf(adev))
2274 *flags = 0;
2275
2276 /* AMD_CG_SUPPORT_SDMA_MGCG */
2277 data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
2278 if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK))
2279 *flags |= AMD_CG_SUPPORT_SDMA_MGCG;
2280
2281 /* AMD_CG_SUPPORT_SDMA_LS */
2282 data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
2283 if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
2284 *flags |= AMD_CG_SUPPORT_SDMA_LS;
2285}
2286
2287const struct amd_ip_funcs sdma_v4_0_ip_funcs = {
2288 .name = "sdma_v4_0",
2289 .early_init = sdma_v4_0_early_init,
2290 .late_init = sdma_v4_0_late_init,
2291 .sw_init = sdma_v4_0_sw_init,
2292 .sw_fini = sdma_v4_0_sw_fini,
2293 .hw_init = sdma_v4_0_hw_init,
2294 .hw_fini = sdma_v4_0_hw_fini,
2295 .suspend = sdma_v4_0_suspend,
2296 .resume = sdma_v4_0_resume,
2297 .is_idle = sdma_v4_0_is_idle,
2298 .wait_for_idle = sdma_v4_0_wait_for_idle,
2299 .soft_reset = sdma_v4_0_soft_reset,
2300 .set_clockgating_state = sdma_v4_0_set_clockgating_state,
2301 .set_powergating_state = sdma_v4_0_set_powergating_state,
2302 .get_clockgating_state = sdma_v4_0_get_clockgating_state,
2303};
2304
2305static const struct amdgpu_ring_funcs sdma_v4_0_ring_funcs = {
2306 .type = AMDGPU_RING_TYPE_SDMA,
2307 .align_mask = 0xff,
2308 .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2309 .support_64bit_ptrs = true,
2310 .secure_submission_supported = true,
2311 .get_rptr = sdma_v4_0_ring_get_rptr,
2312 .get_wptr = sdma_v4_0_ring_get_wptr,
2313 .set_wptr = sdma_v4_0_ring_set_wptr,
2314 .emit_frame_size =
2315 6 + /* sdma_v4_0_ring_emit_hdp_flush */
2316 3 + /* hdp invalidate */
2317 6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2318 /* sdma_v4_0_ring_emit_vm_flush */
2319 SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2320 SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2321 10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2322 .emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2323 .emit_ib = sdma_v4_0_ring_emit_ib,
2324 .emit_fence = sdma_v4_0_ring_emit_fence,
2325 .emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2326 .emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2327 .emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2328 .test_ring = sdma_v4_0_ring_test_ring,
2329 .test_ib = sdma_v4_0_ring_test_ib,
2330 .insert_nop = sdma_v4_0_ring_insert_nop,
2331 .pad_ib = sdma_v4_0_ring_pad_ib,
2332 .emit_wreg = sdma_v4_0_ring_emit_wreg,
2333 .emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2334 .emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2335};
2336
2337static const struct amdgpu_ring_funcs sdma_v4_0_page_ring_funcs = {
2338 .type = AMDGPU_RING_TYPE_SDMA,
2339 .align_mask = 0xff,
2340 .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2341 .support_64bit_ptrs = true,
2342 .secure_submission_supported = true,
2343 .get_rptr = sdma_v4_0_ring_get_rptr,
2344 .get_wptr = sdma_v4_0_page_ring_get_wptr,
2345 .set_wptr = sdma_v4_0_page_ring_set_wptr,
2346 .emit_frame_size =
2347 6 + /* sdma_v4_0_ring_emit_hdp_flush */
2348 3 + /* hdp invalidate */
2349 6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2350 /* sdma_v4_0_ring_emit_vm_flush */
2351 SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2352 SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2353 10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2354 .emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2355 .emit_ib = sdma_v4_0_ring_emit_ib,
2356 .emit_fence = sdma_v4_0_ring_emit_fence,
2357 .emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2358 .emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2359 .emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2360 .test_ring = sdma_v4_0_ring_test_ring,
2361 .test_ib = sdma_v4_0_ring_test_ib,
2362 .insert_nop = sdma_v4_0_ring_insert_nop,
2363 .pad_ib = sdma_v4_0_ring_pad_ib,
2364 .emit_wreg = sdma_v4_0_ring_emit_wreg,
2365 .emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2366 .emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2367};
2368
2369static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev)
2370{
2371 int i;
2372
2373 for (i = 0; i < adev->sdma.num_instances; i++) {
2374 adev->sdma.instance[i].ring.funcs = &sdma_v4_0_ring_funcs;
2375 adev->sdma.instance[i].ring.me = i;
2376 if (adev->sdma.has_page_queue) {
2377 adev->sdma.instance[i].page.funcs =
2378 &sdma_v4_0_page_ring_funcs;
2379 adev->sdma.instance[i].page.me = i;
2380 }
2381 }
2382}
2383
2384static const struct amdgpu_irq_src_funcs sdma_v4_0_trap_irq_funcs = {
2385 .set = sdma_v4_0_set_trap_irq_state,
2386 .process = sdma_v4_0_process_trap_irq,
2387};
2388
2389static const struct amdgpu_irq_src_funcs sdma_v4_0_illegal_inst_irq_funcs = {
2390 .process = sdma_v4_0_process_illegal_inst_irq,
2391};
2392
2393static const struct amdgpu_irq_src_funcs sdma_v4_0_ecc_irq_funcs = {
2394 .set = sdma_v4_0_set_ecc_irq_state,
2395 .process = amdgpu_sdma_process_ecc_irq,
2396};
2397
2398static const struct amdgpu_irq_src_funcs sdma_v4_0_vm_hole_irq_funcs = {
2399 .process = sdma_v4_0_process_vm_hole_irq,
2400};
2401
2402static const struct amdgpu_irq_src_funcs sdma_v4_0_doorbell_invalid_irq_funcs = {
2403 .process = sdma_v4_0_process_doorbell_invalid_irq,
2404};
2405
2406static const struct amdgpu_irq_src_funcs sdma_v4_0_pool_timeout_irq_funcs = {
2407 .process = sdma_v4_0_process_pool_timeout_irq,
2408};
2409
2410static const struct amdgpu_irq_src_funcs sdma_v4_0_srbm_write_irq_funcs = {
2411 .process = sdma_v4_0_process_srbm_write_irq,
2412};
2413
2414static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev)
2415{
2416 adev->sdma.trap_irq.num_types = adev->sdma.num_instances;
2417 adev->sdma.ecc_irq.num_types = adev->sdma.num_instances;
2418 /*For Arcturus and Aldebaran, add another 4 irq handler*/
2419 switch (adev->sdma.num_instances) {
2420 case 5:
2421 case 8:
2422 adev->sdma.vm_hole_irq.num_types = adev->sdma.num_instances;
2423 adev->sdma.doorbell_invalid_irq.num_types = adev->sdma.num_instances;
2424 adev->sdma.pool_timeout_irq.num_types = adev->sdma.num_instances;
2425 adev->sdma.srbm_write_irq.num_types = adev->sdma.num_instances;
2426 break;
2427 default:
2428 break;
2429 }
2430 adev->sdma.trap_irq.funcs = &sdma_v4_0_trap_irq_funcs;
2431 adev->sdma.illegal_inst_irq.funcs = &sdma_v4_0_illegal_inst_irq_funcs;
2432 adev->sdma.ecc_irq.funcs = &sdma_v4_0_ecc_irq_funcs;
2433 adev->sdma.vm_hole_irq.funcs = &sdma_v4_0_vm_hole_irq_funcs;
2434 adev->sdma.doorbell_invalid_irq.funcs = &sdma_v4_0_doorbell_invalid_irq_funcs;
2435 adev->sdma.pool_timeout_irq.funcs = &sdma_v4_0_pool_timeout_irq_funcs;
2436 adev->sdma.srbm_write_irq.funcs = &sdma_v4_0_srbm_write_irq_funcs;
2437}
2438
2439/**
2440 * sdma_v4_0_emit_copy_buffer - copy buffer using the sDMA engine
2441 *
2442 * @ib: indirect buffer to copy to
2443 * @src_offset: src GPU address
2444 * @dst_offset: dst GPU address
2445 * @byte_count: number of bytes to xfer
2446 * @tmz: if a secure copy should be used
2447 *
2448 * Copy GPU buffers using the DMA engine (VEGA10/12).
2449 * Used by the amdgpu ttm implementation to move pages if
2450 * registered as the asic copy callback.
2451 */
2452static void sdma_v4_0_emit_copy_buffer(struct amdgpu_ib *ib,
2453 uint64_t src_offset,
2454 uint64_t dst_offset,
2455 uint32_t byte_count,
2456 bool tmz)
2457{
2458 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
2459 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR) |
2460 SDMA_PKT_COPY_LINEAR_HEADER_TMZ(tmz ? 1 : 0);
2461 ib->ptr[ib->length_dw++] = byte_count - 1;
2462 ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
2463 ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
2464 ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
2465 ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
2466 ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
2467}
2468
2469/**
2470 * sdma_v4_0_emit_fill_buffer - fill buffer using the sDMA engine
2471 *
2472 * @ib: indirect buffer to copy to
2473 * @src_data: value to write to buffer
2474 * @dst_offset: dst GPU address
2475 * @byte_count: number of bytes to xfer
2476 *
2477 * Fill GPU buffers using the DMA engine (VEGA10/12).
2478 */
2479static void sdma_v4_0_emit_fill_buffer(struct amdgpu_ib *ib,
2480 uint32_t src_data,
2481 uint64_t dst_offset,
2482 uint32_t byte_count)
2483{
2484 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
2485 ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
2486 ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
2487 ib->ptr[ib->length_dw++] = src_data;
2488 ib->ptr[ib->length_dw++] = byte_count - 1;
2489}
2490
2491static const struct amdgpu_buffer_funcs sdma_v4_0_buffer_funcs = {
2492 .copy_max_bytes = 0x400000,
2493 .copy_num_dw = 7,
2494 .emit_copy_buffer = sdma_v4_0_emit_copy_buffer,
2495
2496 .fill_max_bytes = 0x400000,
2497 .fill_num_dw = 5,
2498 .emit_fill_buffer = sdma_v4_0_emit_fill_buffer,
2499};
2500
2501static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev)
2502{
2503 adev->mman.buffer_funcs = &sdma_v4_0_buffer_funcs;
2504 if (adev->sdma.has_page_queue)
2505 adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].page;
2506 else
2507 adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
2508}
2509
2510static const struct amdgpu_vm_pte_funcs sdma_v4_0_vm_pte_funcs = {
2511 .copy_pte_num_dw = 7,
2512 .copy_pte = sdma_v4_0_vm_copy_pte,
2513
2514 .write_pte = sdma_v4_0_vm_write_pte,
2515 .set_pte_pde = sdma_v4_0_vm_set_pte_pde,
2516};
2517
2518static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev)
2519{
2520 struct drm_gpu_scheduler *sched;
2521 unsigned i;
2522
2523 adev->vm_manager.vm_pte_funcs = &sdma_v4_0_vm_pte_funcs;
2524 for (i = 0; i < adev->sdma.num_instances; i++) {
2525 if (adev->sdma.has_page_queue)
2526 sched = &adev->sdma.instance[i].page.sched;
2527 else
2528 sched = &adev->sdma.instance[i].ring.sched;
2529 adev->vm_manager.vm_pte_scheds[i] = sched;
2530 }
2531 adev->vm_manager.vm_pte_num_scheds = adev->sdma.num_instances;
2532}
2533
2534static void sdma_v4_0_get_ras_error_count(uint32_t value,
2535 uint32_t instance,
2536 uint32_t *sec_count)
2537{
2538 uint32_t i;
2539 uint32_t sec_cnt;
2540
2541 /* double bits error (multiple bits) error detection is not supported */
2542 for (i = 0; i < ARRAY_SIZE(sdma_v4_0_ras_fields); i++) {
2543 /* the SDMA_EDC_COUNTER register in each sdma instance
2544 * shares the same sed shift_mask
2545 * */
2546 sec_cnt = (value &
2547 sdma_v4_0_ras_fields[i].sec_count_mask) >>
2548 sdma_v4_0_ras_fields[i].sec_count_shift;
2549 if (sec_cnt) {
2550 DRM_INFO("Detected %s in SDMA%d, SED %d\n",
2551 sdma_v4_0_ras_fields[i].name,
2552 instance, sec_cnt);
2553 *sec_count += sec_cnt;
2554 }
2555 }
2556}
2557
2558static int sdma_v4_0_query_ras_error_count_by_instance(struct amdgpu_device *adev,
2559 uint32_t instance, void *ras_error_status)
2560{
2561 struct ras_err_data *err_data = (struct ras_err_data *)ras_error_status;
2562 uint32_t sec_count = 0;
2563 uint32_t reg_value = 0;
2564
2565 reg_value = RREG32_SDMA(instance, mmSDMA0_EDC_COUNTER);
2566 /* double bit error is not supported */
2567 if (reg_value)
2568 sdma_v4_0_get_ras_error_count(value: reg_value,
2569 instance, sec_count: &sec_count);
2570 /* err_data->ce_count should be initialized to 0
2571 * before calling into this function */
2572 err_data->ce_count += sec_count;
2573 /* double bit error is not supported
2574 * set ue count to 0 */
2575 err_data->ue_count = 0;
2576
2577 return 0;
2578};
2579
2580static void sdma_v4_0_query_ras_error_count(struct amdgpu_device *adev, void *ras_error_status)
2581{
2582 int i = 0;
2583
2584 for (i = 0; i < adev->sdma.num_instances; i++) {
2585 if (sdma_v4_0_query_ras_error_count_by_instance(adev, instance: i, ras_error_status)) {
2586 dev_err(adev->dev, "Query ras error count failed in SDMA%d\n", i);
2587 return;
2588 }
2589 }
2590}
2591
2592static void sdma_v4_0_reset_ras_error_count(struct amdgpu_device *adev)
2593{
2594 int i;
2595
2596 /* read back edc counter registers to clear the counters */
2597 if (amdgpu_ras_is_supported(adev, block: AMDGPU_RAS_BLOCK__SDMA)) {
2598 for (i = 0; i < adev->sdma.num_instances; i++)
2599 RREG32_SDMA(i, mmSDMA0_EDC_COUNTER);
2600 }
2601}
2602
2603const struct amdgpu_ras_block_hw_ops sdma_v4_0_ras_hw_ops = {
2604 .query_ras_error_count = sdma_v4_0_query_ras_error_count,
2605 .reset_ras_error_count = sdma_v4_0_reset_ras_error_count,
2606};
2607
2608static struct amdgpu_sdma_ras sdma_v4_0_ras = {
2609 .ras_block = {
2610 .hw_ops = &sdma_v4_0_ras_hw_ops,
2611 .ras_cb = sdma_v4_0_process_ras_data_cb,
2612 },
2613};
2614
2615static void sdma_v4_0_set_ras_funcs(struct amdgpu_device *adev)
2616{
2617 switch (amdgpu_ip_version(adev, ip: SDMA0_HWIP, inst: 0)) {
2618 case IP_VERSION(4, 2, 0):
2619 case IP_VERSION(4, 2, 2):
2620 adev->sdma.ras = &sdma_v4_0_ras;
2621 break;
2622 case IP_VERSION(4, 4, 0):
2623 adev->sdma.ras = &sdma_v4_4_ras;
2624 break;
2625 default:
2626 break;
2627 }
2628}
2629
2630const struct amdgpu_ip_block_version sdma_v4_0_ip_block = {
2631 .type = AMD_IP_BLOCK_TYPE_SDMA,
2632 .major = 4,
2633 .minor = 0,
2634 .rev = 0,
2635 .funcs = &sdma_v4_0_ip_funcs,
2636};
2637

source code of linux/drivers/gpu/drm/amd/amdgpu/sdma_v4_0.c