1// SPDX-License-Identifier: GPL-2.0 OR MIT
2/*
3 * Copyright 2014-2022 Advanced Micro Devices, Inc.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice shall be included in
13 * all copies or substantial portions of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21 * OTHER DEALINGS IN THE SOFTWARE.
22 */
23
24#include <linux/device.h>
25#include <linux/export.h>
26#include <linux/err.h>
27#include <linux/fs.h>
28#include <linux/file.h>
29#include <linux/sched.h>
30#include <linux/slab.h>
31#include <linux/uaccess.h>
32#include <linux/compat.h>
33#include <uapi/linux/kfd_ioctl.h>
34#include <linux/time.h>
35#include <linux/mm.h>
36#include <linux/mman.h>
37#include <linux/ptrace.h>
38#include <linux/dma-buf.h>
39#include <linux/fdtable.h>
40#include <linux/processor.h>
41#include "kfd_priv.h"
42#include "kfd_device_queue_manager.h"
43#include "kfd_svm.h"
44#include "amdgpu_amdkfd.h"
45#include "kfd_smi_events.h"
46#include "amdgpu_dma_buf.h"
47#include "kfd_debug.h"
48
49static long kfd_ioctl(struct file *, unsigned int, unsigned long);
50static int kfd_open(struct inode *, struct file *);
51static int kfd_release(struct inode *, struct file *);
52static int kfd_mmap(struct file *, struct vm_area_struct *);
53
54static const char kfd_dev_name[] = "kfd";
55
56static const struct file_operations kfd_fops = {
57 .owner = THIS_MODULE,
58 .unlocked_ioctl = kfd_ioctl,
59 .compat_ioctl = compat_ptr_ioctl,
60 .open = kfd_open,
61 .release = kfd_release,
62 .mmap = kfd_mmap,
63};
64
65static int kfd_char_dev_major = -1;
66static struct class *kfd_class;
67struct device *kfd_device;
68
69static inline struct kfd_process_device *kfd_lock_pdd_by_id(struct kfd_process *p, __u32 gpu_id)
70{
71 struct kfd_process_device *pdd;
72
73 mutex_lock(&p->mutex);
74 pdd = kfd_process_device_data_by_id(process: p, gpu_id);
75
76 if (pdd)
77 return pdd;
78
79 mutex_unlock(lock: &p->mutex);
80 return NULL;
81}
82
83static inline void kfd_unlock_pdd(struct kfd_process_device *pdd)
84{
85 mutex_unlock(lock: &pdd->process->mutex);
86}
87
88int kfd_chardev_init(void)
89{
90 int err = 0;
91
92 kfd_char_dev_major = register_chrdev(major: 0, name: kfd_dev_name, fops: &kfd_fops);
93 err = kfd_char_dev_major;
94 if (err < 0)
95 goto err_register_chrdev;
96
97 kfd_class = class_create(name: kfd_dev_name);
98 err = PTR_ERR(ptr: kfd_class);
99 if (IS_ERR(ptr: kfd_class))
100 goto err_class_create;
101
102 kfd_device = device_create(cls: kfd_class, NULL,
103 MKDEV(kfd_char_dev_major, 0),
104 NULL, fmt: kfd_dev_name);
105 err = PTR_ERR(ptr: kfd_device);
106 if (IS_ERR(ptr: kfd_device))
107 goto err_device_create;
108
109 return 0;
110
111err_device_create:
112 class_destroy(cls: kfd_class);
113err_class_create:
114 unregister_chrdev(major: kfd_char_dev_major, name: kfd_dev_name);
115err_register_chrdev:
116 return err;
117}
118
119void kfd_chardev_exit(void)
120{
121 device_destroy(cls: kfd_class, MKDEV(kfd_char_dev_major, 0));
122 class_destroy(cls: kfd_class);
123 unregister_chrdev(major: kfd_char_dev_major, name: kfd_dev_name);
124 kfd_device = NULL;
125}
126
127
128static int kfd_open(struct inode *inode, struct file *filep)
129{
130 struct kfd_process *process;
131 bool is_32bit_user_mode;
132
133 if (iminor(inode) != 0)
134 return -ENODEV;
135
136 is_32bit_user_mode = in_compat_syscall();
137
138 if (is_32bit_user_mode) {
139 dev_warn(kfd_device,
140 "Process %d (32-bit) failed to open /dev/kfd\n"
141 "32-bit processes are not supported by amdkfd\n",
142 current->pid);
143 return -EPERM;
144 }
145
146 process = kfd_create_process(current);
147 if (IS_ERR(ptr: process))
148 return PTR_ERR(ptr: process);
149
150 if (kfd_process_init_cwsr_apu(process, filep)) {
151 kfd_unref_process(p: process);
152 return -EFAULT;
153 }
154
155 /* filep now owns the reference returned by kfd_create_process */
156 filep->private_data = process;
157
158 dev_dbg(kfd_device, "process %d opened, compat mode (32 bit) - %d\n",
159 process->pasid, process->is_32bit_user_mode);
160
161 return 0;
162}
163
164static int kfd_release(struct inode *inode, struct file *filep)
165{
166 struct kfd_process *process = filep->private_data;
167
168 if (process)
169 kfd_unref_process(p: process);
170
171 return 0;
172}
173
174static int kfd_ioctl_get_version(struct file *filep, struct kfd_process *p,
175 void *data)
176{
177 struct kfd_ioctl_get_version_args *args = data;
178
179 args->major_version = KFD_IOCTL_MAJOR_VERSION;
180 args->minor_version = KFD_IOCTL_MINOR_VERSION;
181
182 return 0;
183}
184
185static int set_queue_properties_from_user(struct queue_properties *q_properties,
186 struct kfd_ioctl_create_queue_args *args)
187{
188 /*
189 * Repurpose queue percentage to accommodate new features:
190 * bit 0-7: queue percentage
191 * bit 8-15: pm4_target_xcc
192 */
193 if ((args->queue_percentage & 0xFF) > KFD_MAX_QUEUE_PERCENTAGE) {
194 pr_err("Queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n");
195 return -EINVAL;
196 }
197
198 if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) {
199 pr_err("Queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n");
200 return -EINVAL;
201 }
202
203 if ((args->ring_base_address) &&
204 (!access_ok((const void __user *) args->ring_base_address,
205 sizeof(uint64_t)))) {
206 pr_err("Can't access ring base address\n");
207 return -EFAULT;
208 }
209
210 if (!is_power_of_2(n: args->ring_size) && (args->ring_size != 0)) {
211 pr_err("Ring size must be a power of 2 or 0\n");
212 return -EINVAL;
213 }
214
215 if (!access_ok((const void __user *) args->read_pointer_address,
216 sizeof(uint32_t))) {
217 pr_err("Can't access read pointer\n");
218 return -EFAULT;
219 }
220
221 if (!access_ok((const void __user *) args->write_pointer_address,
222 sizeof(uint32_t))) {
223 pr_err("Can't access write pointer\n");
224 return -EFAULT;
225 }
226
227 if (args->eop_buffer_address &&
228 !access_ok((const void __user *) args->eop_buffer_address,
229 sizeof(uint32_t))) {
230 pr_debug("Can't access eop buffer");
231 return -EFAULT;
232 }
233
234 if (args->ctx_save_restore_address &&
235 !access_ok((const void __user *) args->ctx_save_restore_address,
236 sizeof(uint32_t))) {
237 pr_debug("Can't access ctx save restore buffer");
238 return -EFAULT;
239 }
240
241 q_properties->is_interop = false;
242 q_properties->is_gws = false;
243 q_properties->queue_percent = args->queue_percentage & 0xFF;
244 /* bit 8-15 are repurposed to be PM4 target XCC */
245 q_properties->pm4_target_xcc = (args->queue_percentage >> 8) & 0xFF;
246 q_properties->priority = args->queue_priority;
247 q_properties->queue_address = args->ring_base_address;
248 q_properties->queue_size = args->ring_size;
249 q_properties->read_ptr = (uint32_t *) args->read_pointer_address;
250 q_properties->write_ptr = (uint32_t *) args->write_pointer_address;
251 q_properties->eop_ring_buffer_address = args->eop_buffer_address;
252 q_properties->eop_ring_buffer_size = args->eop_buffer_size;
253 q_properties->ctx_save_restore_area_address =
254 args->ctx_save_restore_address;
255 q_properties->ctx_save_restore_area_size = args->ctx_save_restore_size;
256 q_properties->ctl_stack_size = args->ctl_stack_size;
257 if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE ||
258 args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL)
259 q_properties->type = KFD_QUEUE_TYPE_COMPUTE;
260 else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA)
261 q_properties->type = KFD_QUEUE_TYPE_SDMA;
262 else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA_XGMI)
263 q_properties->type = KFD_QUEUE_TYPE_SDMA_XGMI;
264 else
265 return -ENOTSUPP;
266
267 if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL)
268 q_properties->format = KFD_QUEUE_FORMAT_AQL;
269 else
270 q_properties->format = KFD_QUEUE_FORMAT_PM4;
271
272 pr_debug("Queue Percentage: %d, %d\n",
273 q_properties->queue_percent, args->queue_percentage);
274
275 pr_debug("Queue Priority: %d, %d\n",
276 q_properties->priority, args->queue_priority);
277
278 pr_debug("Queue Address: 0x%llX, 0x%llX\n",
279 q_properties->queue_address, args->ring_base_address);
280
281 pr_debug("Queue Size: 0x%llX, %u\n",
282 q_properties->queue_size, args->ring_size);
283
284 pr_debug("Queue r/w Pointers: %px, %px\n",
285 q_properties->read_ptr,
286 q_properties->write_ptr);
287
288 pr_debug("Queue Format: %d\n", q_properties->format);
289
290 pr_debug("Queue EOP: 0x%llX\n", q_properties->eop_ring_buffer_address);
291
292 pr_debug("Queue CTX save area: 0x%llX\n",
293 q_properties->ctx_save_restore_area_address);
294
295 return 0;
296}
297
298static int kfd_ioctl_create_queue(struct file *filep, struct kfd_process *p,
299 void *data)
300{
301 struct kfd_ioctl_create_queue_args *args = data;
302 struct kfd_node *dev;
303 int err = 0;
304 unsigned int queue_id;
305 struct kfd_process_device *pdd;
306 struct queue_properties q_properties;
307 uint32_t doorbell_offset_in_process = 0;
308 struct amdgpu_bo *wptr_bo = NULL;
309
310 memset(&q_properties, 0, sizeof(struct queue_properties));
311
312 pr_debug("Creating queue ioctl\n");
313
314 err = set_queue_properties_from_user(q_properties: &q_properties, args);
315 if (err)
316 return err;
317
318 pr_debug("Looking for gpu id 0x%x\n", args->gpu_id);
319
320 mutex_lock(&p->mutex);
321
322 pdd = kfd_process_device_data_by_id(process: p, gpu_id: args->gpu_id);
323 if (!pdd) {
324 pr_debug("Could not find gpu id 0x%x\n", args->gpu_id);
325 err = -EINVAL;
326 goto err_pdd;
327 }
328 dev = pdd->dev;
329
330 pdd = kfd_bind_process_to_device(dev, p);
331 if (IS_ERR(ptr: pdd)) {
332 err = -ESRCH;
333 goto err_bind_process;
334 }
335
336 if (!pdd->qpd.proc_doorbells) {
337 err = kfd_alloc_process_doorbells(kfd: dev->kfd, pdd);
338 if (err) {
339 pr_debug("failed to allocate process doorbells\n");
340 goto err_bind_process;
341 }
342 }
343
344 /* Starting with GFX11, wptr BOs must be mapped to GART for MES to determine work
345 * on unmapped queues for usermode queue oversubscription (no aggregated doorbell)
346 */
347 if (dev->kfd->shared_resources.enable_mes &&
348 ((dev->adev->mes.sched_version & AMDGPU_MES_API_VERSION_MASK)
349 >> AMDGPU_MES_API_VERSION_SHIFT) >= 2) {
350 struct amdgpu_bo_va_mapping *wptr_mapping;
351 struct amdgpu_vm *wptr_vm;
352
353 wptr_vm = drm_priv_to_vm(pdd->drm_priv);
354 err = amdgpu_bo_reserve(bo: wptr_vm->root.bo, no_intr: false);
355 if (err)
356 goto err_wptr_map_gart;
357
358 wptr_mapping = amdgpu_vm_bo_lookup_mapping(
359 vm: wptr_vm, addr: args->write_pointer_address >> PAGE_SHIFT);
360 amdgpu_bo_unreserve(bo: wptr_vm->root.bo);
361 if (!wptr_mapping) {
362 pr_err("Failed to lookup wptr bo\n");
363 err = -EINVAL;
364 goto err_wptr_map_gart;
365 }
366
367 wptr_bo = wptr_mapping->bo_va->base.bo;
368 if (wptr_bo->tbo.base.size > PAGE_SIZE) {
369 pr_err("Requested GART mapping for wptr bo larger than one page\n");
370 err = -EINVAL;
371 goto err_wptr_map_gart;
372 }
373
374 err = amdgpu_amdkfd_map_gtt_bo_to_gart(adev: dev->adev, bo: wptr_bo);
375 if (err) {
376 pr_err("Failed to map wptr bo to GART\n");
377 goto err_wptr_map_gart;
378 }
379 }
380
381 pr_debug("Creating queue for PASID 0x%x on gpu 0x%x\n",
382 p->pasid,
383 dev->id);
384
385 err = pqm_create_queue(pqm: &p->pqm, dev, f: filep, properties: &q_properties, qid: &queue_id, wptr_bo,
386 NULL, NULL, NULL, p_doorbell_offset_in_process: &doorbell_offset_in_process);
387 if (err != 0)
388 goto err_create_queue;
389
390 args->queue_id = queue_id;
391
392
393 /* Return gpu_id as doorbell offset for mmap usage */
394 args->doorbell_offset = KFD_MMAP_TYPE_DOORBELL;
395 args->doorbell_offset |= KFD_MMAP_GPU_ID(args->gpu_id);
396 if (KFD_IS_SOC15(dev))
397 /* On SOC15 ASICs, include the doorbell offset within the
398 * process doorbell frame, which is 2 pages.
399 */
400 args->doorbell_offset |= doorbell_offset_in_process;
401
402 mutex_unlock(lock: &p->mutex);
403
404 pr_debug("Queue id %d was created successfully\n", args->queue_id);
405
406 pr_debug("Ring buffer address == 0x%016llX\n",
407 args->ring_base_address);
408
409 pr_debug("Read ptr address == 0x%016llX\n",
410 args->read_pointer_address);
411
412 pr_debug("Write ptr address == 0x%016llX\n",
413 args->write_pointer_address);
414
415 kfd_dbg_ev_raise(KFD_EC_MASK(EC_QUEUE_NEW), process: p, dev, source_id: queue_id, use_worker: false, NULL, exception_data_size: 0);
416 return 0;
417
418err_create_queue:
419 if (wptr_bo)
420 amdgpu_amdkfd_free_gtt_mem(adev: dev->adev, mem_obj: wptr_bo);
421err_wptr_map_gart:
422err_bind_process:
423err_pdd:
424 mutex_unlock(lock: &p->mutex);
425 return err;
426}
427
428static int kfd_ioctl_destroy_queue(struct file *filp, struct kfd_process *p,
429 void *data)
430{
431 int retval;
432 struct kfd_ioctl_destroy_queue_args *args = data;
433
434 pr_debug("Destroying queue id %d for pasid 0x%x\n",
435 args->queue_id,
436 p->pasid);
437
438 mutex_lock(&p->mutex);
439
440 retval = pqm_destroy_queue(pqm: &p->pqm, qid: args->queue_id);
441
442 mutex_unlock(lock: &p->mutex);
443 return retval;
444}
445
446static int kfd_ioctl_update_queue(struct file *filp, struct kfd_process *p,
447 void *data)
448{
449 int retval;
450 struct kfd_ioctl_update_queue_args *args = data;
451 struct queue_properties properties;
452
453 /*
454 * Repurpose queue percentage to accommodate new features:
455 * bit 0-7: queue percentage
456 * bit 8-15: pm4_target_xcc
457 */
458 if ((args->queue_percentage & 0xFF) > KFD_MAX_QUEUE_PERCENTAGE) {
459 pr_err("Queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n");
460 return -EINVAL;
461 }
462
463 if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) {
464 pr_err("Queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n");
465 return -EINVAL;
466 }
467
468 if ((args->ring_base_address) &&
469 (!access_ok((const void __user *) args->ring_base_address,
470 sizeof(uint64_t)))) {
471 pr_err("Can't access ring base address\n");
472 return -EFAULT;
473 }
474
475 if (!is_power_of_2(n: args->ring_size) && (args->ring_size != 0)) {
476 pr_err("Ring size must be a power of 2 or 0\n");
477 return -EINVAL;
478 }
479
480 properties.queue_address = args->ring_base_address;
481 properties.queue_size = args->ring_size;
482 properties.queue_percent = args->queue_percentage & 0xFF;
483 /* bit 8-15 are repurposed to be PM4 target XCC */
484 properties.pm4_target_xcc = (args->queue_percentage >> 8) & 0xFF;
485 properties.priority = args->queue_priority;
486
487 pr_debug("Updating queue id %d for pasid 0x%x\n",
488 args->queue_id, p->pasid);
489
490 mutex_lock(&p->mutex);
491
492 retval = pqm_update_queue_properties(pqm: &p->pqm, qid: args->queue_id, p: &properties);
493
494 mutex_unlock(lock: &p->mutex);
495
496 return retval;
497}
498
499static int kfd_ioctl_set_cu_mask(struct file *filp, struct kfd_process *p,
500 void *data)
501{
502 int retval;
503 const int max_num_cus = 1024;
504 struct kfd_ioctl_set_cu_mask_args *args = data;
505 struct mqd_update_info minfo = {0};
506 uint32_t __user *cu_mask_ptr = (uint32_t __user *)args->cu_mask_ptr;
507 size_t cu_mask_size = sizeof(uint32_t) * (args->num_cu_mask / 32);
508
509 if ((args->num_cu_mask % 32) != 0) {
510 pr_debug("num_cu_mask 0x%x must be a multiple of 32",
511 args->num_cu_mask);
512 return -EINVAL;
513 }
514
515 minfo.cu_mask.count = args->num_cu_mask;
516 if (minfo.cu_mask.count == 0) {
517 pr_debug("CU mask cannot be 0");
518 return -EINVAL;
519 }
520
521 /* To prevent an unreasonably large CU mask size, set an arbitrary
522 * limit of max_num_cus bits. We can then just drop any CU mask bits
523 * past max_num_cus bits and just use the first max_num_cus bits.
524 */
525 if (minfo.cu_mask.count > max_num_cus) {
526 pr_debug("CU mask cannot be greater than 1024 bits");
527 minfo.cu_mask.count = max_num_cus;
528 cu_mask_size = sizeof(uint32_t) * (max_num_cus/32);
529 }
530
531 minfo.cu_mask.ptr = kzalloc(size: cu_mask_size, GFP_KERNEL);
532 if (!minfo.cu_mask.ptr)
533 return -ENOMEM;
534
535 retval = copy_from_user(to: minfo.cu_mask.ptr, from: cu_mask_ptr, n: cu_mask_size);
536 if (retval) {
537 pr_debug("Could not copy CU mask from userspace");
538 retval = -EFAULT;
539 goto out;
540 }
541
542 mutex_lock(&p->mutex);
543
544 retval = pqm_update_mqd(pqm: &p->pqm, qid: args->queue_id, minfo: &minfo);
545
546 mutex_unlock(lock: &p->mutex);
547
548out:
549 kfree(objp: minfo.cu_mask.ptr);
550 return retval;
551}
552
553static int kfd_ioctl_get_queue_wave_state(struct file *filep,
554 struct kfd_process *p, void *data)
555{
556 struct kfd_ioctl_get_queue_wave_state_args *args = data;
557 int r;
558
559 mutex_lock(&p->mutex);
560
561 r = pqm_get_wave_state(pqm: &p->pqm, qid: args->queue_id,
562 ctl_stack: (void __user *)args->ctl_stack_address,
563 ctl_stack_used_size: &args->ctl_stack_used_size,
564 save_area_used_size: &args->save_area_used_size);
565
566 mutex_unlock(lock: &p->mutex);
567
568 return r;
569}
570
571static int kfd_ioctl_set_memory_policy(struct file *filep,
572 struct kfd_process *p, void *data)
573{
574 struct kfd_ioctl_set_memory_policy_args *args = data;
575 int err = 0;
576 struct kfd_process_device *pdd;
577 enum cache_policy default_policy, alternate_policy;
578
579 if (args->default_policy != KFD_IOC_CACHE_POLICY_COHERENT
580 && args->default_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) {
581 return -EINVAL;
582 }
583
584 if (args->alternate_policy != KFD_IOC_CACHE_POLICY_COHERENT
585 && args->alternate_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) {
586 return -EINVAL;
587 }
588
589 mutex_lock(&p->mutex);
590 pdd = kfd_process_device_data_by_id(process: p, gpu_id: args->gpu_id);
591 if (!pdd) {
592 pr_debug("Could not find gpu id 0x%x\n", args->gpu_id);
593 err = -EINVAL;
594 goto err_pdd;
595 }
596
597 pdd = kfd_bind_process_to_device(dev: pdd->dev, p);
598 if (IS_ERR(ptr: pdd)) {
599 err = -ESRCH;
600 goto out;
601 }
602
603 default_policy = (args->default_policy == KFD_IOC_CACHE_POLICY_COHERENT)
604 ? cache_policy_coherent : cache_policy_noncoherent;
605
606 alternate_policy =
607 (args->alternate_policy == KFD_IOC_CACHE_POLICY_COHERENT)
608 ? cache_policy_coherent : cache_policy_noncoherent;
609
610 if (!pdd->dev->dqm->ops.set_cache_memory_policy(pdd->dev->dqm,
611 &pdd->qpd,
612 default_policy,
613 alternate_policy,
614 (void __user *)args->alternate_aperture_base,
615 args->alternate_aperture_size))
616 err = -EINVAL;
617
618out:
619err_pdd:
620 mutex_unlock(lock: &p->mutex);
621
622 return err;
623}
624
625static int kfd_ioctl_set_trap_handler(struct file *filep,
626 struct kfd_process *p, void *data)
627{
628 struct kfd_ioctl_set_trap_handler_args *args = data;
629 int err = 0;
630 struct kfd_process_device *pdd;
631
632 mutex_lock(&p->mutex);
633
634 pdd = kfd_process_device_data_by_id(process: p, gpu_id: args->gpu_id);
635 if (!pdd) {
636 err = -EINVAL;
637 goto err_pdd;
638 }
639
640 pdd = kfd_bind_process_to_device(dev: pdd->dev, p);
641 if (IS_ERR(ptr: pdd)) {
642 err = -ESRCH;
643 goto out;
644 }
645
646 kfd_process_set_trap_handler(qpd: &pdd->qpd, tba_addr: args->tba_addr, tma_addr: args->tma_addr);
647
648out:
649err_pdd:
650 mutex_unlock(lock: &p->mutex);
651
652 return err;
653}
654
655static int kfd_ioctl_dbg_register(struct file *filep,
656 struct kfd_process *p, void *data)
657{
658 return -EPERM;
659}
660
661static int kfd_ioctl_dbg_unregister(struct file *filep,
662 struct kfd_process *p, void *data)
663{
664 return -EPERM;
665}
666
667static int kfd_ioctl_dbg_address_watch(struct file *filep,
668 struct kfd_process *p, void *data)
669{
670 return -EPERM;
671}
672
673/* Parse and generate fixed size data structure for wave control */
674static int kfd_ioctl_dbg_wave_control(struct file *filep,
675 struct kfd_process *p, void *data)
676{
677 return -EPERM;
678}
679
680static int kfd_ioctl_get_clock_counters(struct file *filep,
681 struct kfd_process *p, void *data)
682{
683 struct kfd_ioctl_get_clock_counters_args *args = data;
684 struct kfd_process_device *pdd;
685
686 mutex_lock(&p->mutex);
687 pdd = kfd_process_device_data_by_id(process: p, gpu_id: args->gpu_id);
688 mutex_unlock(lock: &p->mutex);
689 if (pdd)
690 /* Reading GPU clock counter from KGD */
691 args->gpu_clock_counter = amdgpu_amdkfd_get_gpu_clock_counter(adev: pdd->dev->adev);
692 else
693 /* Node without GPU resource */
694 args->gpu_clock_counter = 0;
695
696 /* No access to rdtsc. Using raw monotonic time */
697 args->cpu_clock_counter = ktime_get_raw_ns();
698 args->system_clock_counter = ktime_get_boottime_ns();
699
700 /* Since the counter is in nano-seconds we use 1GHz frequency */
701 args->system_clock_freq = 1000000000;
702
703 return 0;
704}
705
706
707static int kfd_ioctl_get_process_apertures(struct file *filp,
708 struct kfd_process *p, void *data)
709{
710 struct kfd_ioctl_get_process_apertures_args *args = data;
711 struct kfd_process_device_apertures *pAperture;
712 int i;
713
714 dev_dbg(kfd_device, "get apertures for PASID 0x%x", p->pasid);
715
716 args->num_of_nodes = 0;
717
718 mutex_lock(&p->mutex);
719 /* Run over all pdd of the process */
720 for (i = 0; i < p->n_pdds; i++) {
721 struct kfd_process_device *pdd = p->pdds[i];
722
723 pAperture =
724 &args->process_apertures[args->num_of_nodes];
725 pAperture->gpu_id = pdd->dev->id;
726 pAperture->lds_base = pdd->lds_base;
727 pAperture->lds_limit = pdd->lds_limit;
728 pAperture->gpuvm_base = pdd->gpuvm_base;
729 pAperture->gpuvm_limit = pdd->gpuvm_limit;
730 pAperture->scratch_base = pdd->scratch_base;
731 pAperture->scratch_limit = pdd->scratch_limit;
732
733 dev_dbg(kfd_device,
734 "node id %u\n", args->num_of_nodes);
735 dev_dbg(kfd_device,
736 "gpu id %u\n", pdd->dev->id);
737 dev_dbg(kfd_device,
738 "lds_base %llX\n", pdd->lds_base);
739 dev_dbg(kfd_device,
740 "lds_limit %llX\n", pdd->lds_limit);
741 dev_dbg(kfd_device,
742 "gpuvm_base %llX\n", pdd->gpuvm_base);
743 dev_dbg(kfd_device,
744 "gpuvm_limit %llX\n", pdd->gpuvm_limit);
745 dev_dbg(kfd_device,
746 "scratch_base %llX\n", pdd->scratch_base);
747 dev_dbg(kfd_device,
748 "scratch_limit %llX\n", pdd->scratch_limit);
749
750 if (++args->num_of_nodes >= NUM_OF_SUPPORTED_GPUS)
751 break;
752 }
753 mutex_unlock(lock: &p->mutex);
754
755 return 0;
756}
757
758static int kfd_ioctl_get_process_apertures_new(struct file *filp,
759 struct kfd_process *p, void *data)
760{
761 struct kfd_ioctl_get_process_apertures_new_args *args = data;
762 struct kfd_process_device_apertures *pa;
763 int ret;
764 int i;
765
766 dev_dbg(kfd_device, "get apertures for PASID 0x%x", p->pasid);
767
768 if (args->num_of_nodes == 0) {
769 /* Return number of nodes, so that user space can alloacate
770 * sufficient memory
771 */
772 mutex_lock(&p->mutex);
773 args->num_of_nodes = p->n_pdds;
774 goto out_unlock;
775 }
776
777 /* Fill in process-aperture information for all available
778 * nodes, but not more than args->num_of_nodes as that is
779 * the amount of memory allocated by user
780 */
781 pa = kzalloc(size: (sizeof(struct kfd_process_device_apertures) *
782 args->num_of_nodes), GFP_KERNEL);
783 if (!pa)
784 return -ENOMEM;
785
786 mutex_lock(&p->mutex);
787
788 if (!p->n_pdds) {
789 args->num_of_nodes = 0;
790 kfree(objp: pa);
791 goto out_unlock;
792 }
793
794 /* Run over all pdd of the process */
795 for (i = 0; i < min(p->n_pdds, args->num_of_nodes); i++) {
796 struct kfd_process_device *pdd = p->pdds[i];
797
798 pa[i].gpu_id = pdd->dev->id;
799 pa[i].lds_base = pdd->lds_base;
800 pa[i].lds_limit = pdd->lds_limit;
801 pa[i].gpuvm_base = pdd->gpuvm_base;
802 pa[i].gpuvm_limit = pdd->gpuvm_limit;
803 pa[i].scratch_base = pdd->scratch_base;
804 pa[i].scratch_limit = pdd->scratch_limit;
805
806 dev_dbg(kfd_device,
807 "gpu id %u\n", pdd->dev->id);
808 dev_dbg(kfd_device,
809 "lds_base %llX\n", pdd->lds_base);
810 dev_dbg(kfd_device,
811 "lds_limit %llX\n", pdd->lds_limit);
812 dev_dbg(kfd_device,
813 "gpuvm_base %llX\n", pdd->gpuvm_base);
814 dev_dbg(kfd_device,
815 "gpuvm_limit %llX\n", pdd->gpuvm_limit);
816 dev_dbg(kfd_device,
817 "scratch_base %llX\n", pdd->scratch_base);
818 dev_dbg(kfd_device,
819 "scratch_limit %llX\n", pdd->scratch_limit);
820 }
821 mutex_unlock(lock: &p->mutex);
822
823 args->num_of_nodes = i;
824 ret = copy_to_user(
825 to: (void __user *)args->kfd_process_device_apertures_ptr,
826 from: pa,
827 n: (i * sizeof(struct kfd_process_device_apertures)));
828 kfree(objp: pa);
829 return ret ? -EFAULT : 0;
830
831out_unlock:
832 mutex_unlock(lock: &p->mutex);
833 return 0;
834}
835
836static int kfd_ioctl_create_event(struct file *filp, struct kfd_process *p,
837 void *data)
838{
839 struct kfd_ioctl_create_event_args *args = data;
840 int err;
841
842 /* For dGPUs the event page is allocated in user mode. The
843 * handle is passed to KFD with the first call to this IOCTL
844 * through the event_page_offset field.
845 */
846 if (args->event_page_offset) {
847 mutex_lock(&p->mutex);
848 err = kfd_kmap_event_page(p, event_page_offset: args->event_page_offset);
849 mutex_unlock(lock: &p->mutex);
850 if (err)
851 return err;
852 }
853
854 err = kfd_event_create(devkfd: filp, p, event_type: args->event_type,
855 auto_reset: args->auto_reset != 0, node_id: args->node_id,
856 event_id: &args->event_id, event_trigger_data: &args->event_trigger_data,
857 event_page_offset: &args->event_page_offset,
858 event_slot_index: &args->event_slot_index);
859
860 pr_debug("Created event (id:0x%08x) (%s)\n", args->event_id, __func__);
861 return err;
862}
863
864static int kfd_ioctl_destroy_event(struct file *filp, struct kfd_process *p,
865 void *data)
866{
867 struct kfd_ioctl_destroy_event_args *args = data;
868
869 return kfd_event_destroy(p, event_id: args->event_id);
870}
871
872static int kfd_ioctl_set_event(struct file *filp, struct kfd_process *p,
873 void *data)
874{
875 struct kfd_ioctl_set_event_args *args = data;
876
877 return kfd_set_event(p, event_id: args->event_id);
878}
879
880static int kfd_ioctl_reset_event(struct file *filp, struct kfd_process *p,
881 void *data)
882{
883 struct kfd_ioctl_reset_event_args *args = data;
884
885 return kfd_reset_event(p, event_id: args->event_id);
886}
887
888static int kfd_ioctl_wait_events(struct file *filp, struct kfd_process *p,
889 void *data)
890{
891 struct kfd_ioctl_wait_events_args *args = data;
892
893 return kfd_wait_on_events(p, num_events: args->num_events,
894 data: (void __user *)args->events_ptr,
895 all: (args->wait_for_all != 0),
896 user_timeout_ms: &args->timeout, wait_result: &args->wait_result);
897}
898static int kfd_ioctl_set_scratch_backing_va(struct file *filep,
899 struct kfd_process *p, void *data)
900{
901 struct kfd_ioctl_set_scratch_backing_va_args *args = data;
902 struct kfd_process_device *pdd;
903 struct kfd_node *dev;
904 long err;
905
906 mutex_lock(&p->mutex);
907 pdd = kfd_process_device_data_by_id(process: p, gpu_id: args->gpu_id);
908 if (!pdd) {
909 err = -EINVAL;
910 goto err_pdd;
911 }
912 dev = pdd->dev;
913
914 pdd = kfd_bind_process_to_device(dev, p);
915 if (IS_ERR(ptr: pdd)) {
916 err = PTR_ERR(ptr: pdd);
917 goto bind_process_to_device_fail;
918 }
919
920 pdd->qpd.sh_hidden_private_base = args->va_addr;
921
922 mutex_unlock(lock: &p->mutex);
923
924 if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS &&
925 pdd->qpd.vmid != 0 && dev->kfd2kgd->set_scratch_backing_va)
926 dev->kfd2kgd->set_scratch_backing_va(
927 dev->adev, args->va_addr, pdd->qpd.vmid);
928
929 return 0;
930
931bind_process_to_device_fail:
932err_pdd:
933 mutex_unlock(lock: &p->mutex);
934 return err;
935}
936
937static int kfd_ioctl_get_tile_config(struct file *filep,
938 struct kfd_process *p, void *data)
939{
940 struct kfd_ioctl_get_tile_config_args *args = data;
941 struct kfd_process_device *pdd;
942 struct tile_config config;
943 int err = 0;
944
945 mutex_lock(&p->mutex);
946 pdd = kfd_process_device_data_by_id(process: p, gpu_id: args->gpu_id);
947 mutex_unlock(lock: &p->mutex);
948 if (!pdd)
949 return -EINVAL;
950
951 amdgpu_amdkfd_get_tile_config(adev: pdd->dev->adev, config: &config);
952
953 args->gb_addr_config = config.gb_addr_config;
954 args->num_banks = config.num_banks;
955 args->num_ranks = config.num_ranks;
956
957 if (args->num_tile_configs > config.num_tile_configs)
958 args->num_tile_configs = config.num_tile_configs;
959 err = copy_to_user(to: (void __user *)args->tile_config_ptr,
960 from: config.tile_config_ptr,
961 n: args->num_tile_configs * sizeof(uint32_t));
962 if (err) {
963 args->num_tile_configs = 0;
964 return -EFAULT;
965 }
966
967 if (args->num_macro_tile_configs > config.num_macro_tile_configs)
968 args->num_macro_tile_configs =
969 config.num_macro_tile_configs;
970 err = copy_to_user(to: (void __user *)args->macro_tile_config_ptr,
971 from: config.macro_tile_config_ptr,
972 n: args->num_macro_tile_configs * sizeof(uint32_t));
973 if (err) {
974 args->num_macro_tile_configs = 0;
975 return -EFAULT;
976 }
977
978 return 0;
979}
980
981static int kfd_ioctl_acquire_vm(struct file *filep, struct kfd_process *p,
982 void *data)
983{
984 struct kfd_ioctl_acquire_vm_args *args = data;
985 struct kfd_process_device *pdd;
986 struct file *drm_file;
987 int ret;
988
989 drm_file = fget(fd: args->drm_fd);
990 if (!drm_file)
991 return -EINVAL;
992
993 mutex_lock(&p->mutex);
994 pdd = kfd_process_device_data_by_id(process: p, gpu_id: args->gpu_id);
995 if (!pdd) {
996 ret = -EINVAL;
997 goto err_pdd;
998 }
999
1000 if (pdd->drm_file) {
1001 ret = pdd->drm_file == drm_file ? 0 : -EBUSY;
1002 goto err_drm_file;
1003 }
1004
1005 ret = kfd_process_device_init_vm(pdd, drm_file);
1006 if (ret)
1007 goto err_unlock;
1008
1009 /* On success, the PDD keeps the drm_file reference */
1010 mutex_unlock(lock: &p->mutex);
1011
1012 return 0;
1013
1014err_unlock:
1015err_pdd:
1016err_drm_file:
1017 mutex_unlock(lock: &p->mutex);
1018 fput(drm_file);
1019 return ret;
1020}
1021
1022bool kfd_dev_is_large_bar(struct kfd_node *dev)
1023{
1024 if (dev->kfd->adev->debug_largebar) {
1025 pr_debug("Simulate large-bar allocation on non large-bar machine\n");
1026 return true;
1027 }
1028
1029 if (dev->local_mem_info.local_mem_size_private == 0 &&
1030 dev->local_mem_info.local_mem_size_public > 0)
1031 return true;
1032
1033 if (dev->local_mem_info.local_mem_size_public == 0 &&
1034 dev->kfd->adev->gmc.is_app_apu) {
1035 pr_debug("APP APU, Consider like a large bar system\n");
1036 return true;
1037 }
1038
1039 return false;
1040}
1041
1042static int kfd_ioctl_get_available_memory(struct file *filep,
1043 struct kfd_process *p, void *data)
1044{
1045 struct kfd_ioctl_get_available_memory_args *args = data;
1046 struct kfd_process_device *pdd = kfd_lock_pdd_by_id(p, gpu_id: args->gpu_id);
1047
1048 if (!pdd)
1049 return -EINVAL;
1050 args->available = amdgpu_amdkfd_get_available_memory(adev: pdd->dev->adev,
1051 xcp_id: pdd->dev->node_id);
1052 kfd_unlock_pdd(pdd);
1053 return 0;
1054}
1055
1056static int kfd_ioctl_alloc_memory_of_gpu(struct file *filep,
1057 struct kfd_process *p, void *data)
1058{
1059 struct kfd_ioctl_alloc_memory_of_gpu_args *args = data;
1060 struct kfd_process_device *pdd;
1061 void *mem;
1062 struct kfd_node *dev;
1063 int idr_handle;
1064 long err;
1065 uint64_t offset = args->mmap_offset;
1066 uint32_t flags = args->flags;
1067
1068 if (args->size == 0)
1069 return -EINVAL;
1070
1071#if IS_ENABLED(CONFIG_HSA_AMD_SVM)
1072 /* Flush pending deferred work to avoid racing with deferred actions
1073 * from previous memory map changes (e.g. munmap).
1074 */
1075 svm_range_list_lock_and_flush_work(svms: &p->svms, current->mm);
1076 mutex_lock(&p->svms.lock);
1077 mmap_write_unlock(current->mm);
1078 if (interval_tree_iter_first(root: &p->svms.objects,
1079 start: args->va_addr >> PAGE_SHIFT,
1080 last: (args->va_addr + args->size - 1) >> PAGE_SHIFT)) {
1081 pr_err("Address: 0x%llx already allocated by SVM\n",
1082 args->va_addr);
1083 mutex_unlock(lock: &p->svms.lock);
1084 return -EADDRINUSE;
1085 }
1086
1087 /* When register user buffer check if it has been registered by svm by
1088 * buffer cpu virtual address.
1089 */
1090 if ((flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) &&
1091 interval_tree_iter_first(root: &p->svms.objects,
1092 start: args->mmap_offset >> PAGE_SHIFT,
1093 last: (args->mmap_offset + args->size - 1) >> PAGE_SHIFT)) {
1094 pr_err("User Buffer Address: 0x%llx already allocated by SVM\n",
1095 args->mmap_offset);
1096 mutex_unlock(lock: &p->svms.lock);
1097 return -EADDRINUSE;
1098 }
1099
1100 mutex_unlock(lock: &p->svms.lock);
1101#endif
1102 mutex_lock(&p->mutex);
1103 pdd = kfd_process_device_data_by_id(process: p, gpu_id: args->gpu_id);
1104 if (!pdd) {
1105 err = -EINVAL;
1106 goto err_pdd;
1107 }
1108
1109 dev = pdd->dev;
1110
1111 if ((flags & KFD_IOC_ALLOC_MEM_FLAGS_PUBLIC) &&
1112 (flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) &&
1113 !kfd_dev_is_large_bar(dev)) {
1114 pr_err("Alloc host visible vram on small bar is not allowed\n");
1115 err = -EINVAL;
1116 goto err_large_bar;
1117 }
1118
1119 pdd = kfd_bind_process_to_device(dev, p);
1120 if (IS_ERR(ptr: pdd)) {
1121 err = PTR_ERR(ptr: pdd);
1122 goto err_unlock;
1123 }
1124
1125 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) {
1126 if (args->size != kfd_doorbell_process_slice(kfd: dev->kfd)) {
1127 err = -EINVAL;
1128 goto err_unlock;
1129 }
1130 offset = kfd_get_process_doorbells(pdd);
1131 if (!offset) {
1132 err = -ENOMEM;
1133 goto err_unlock;
1134 }
1135 } else if (flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) {
1136 if (args->size != PAGE_SIZE) {
1137 err = -EINVAL;
1138 goto err_unlock;
1139 }
1140 offset = dev->adev->rmmio_remap.bus_addr;
1141 if (!offset) {
1142 err = -ENOMEM;
1143 goto err_unlock;
1144 }
1145 }
1146
1147 err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(
1148 adev: dev->adev, va: args->va_addr, size: args->size,
1149 drm_priv: pdd->drm_priv, mem: (struct kgd_mem **) &mem, offset: &offset,
1150 flags, criu_resume: false);
1151
1152 if (err)
1153 goto err_unlock;
1154
1155 idr_handle = kfd_process_device_create_obj_handle(pdd, mem);
1156 if (idr_handle < 0) {
1157 err = -EFAULT;
1158 goto err_free;
1159 }
1160
1161 /* Update the VRAM usage count */
1162 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) {
1163 uint64_t size = args->size;
1164
1165 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_AQL_QUEUE_MEM)
1166 size >>= 1;
1167 WRITE_ONCE(pdd->vram_usage, pdd->vram_usage + PAGE_ALIGN(size));
1168 }
1169
1170 mutex_unlock(lock: &p->mutex);
1171
1172 args->handle = MAKE_HANDLE(args->gpu_id, idr_handle);
1173 args->mmap_offset = offset;
1174
1175 /* MMIO is mapped through kfd device
1176 * Generate a kfd mmap offset
1177 */
1178 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)
1179 args->mmap_offset = KFD_MMAP_TYPE_MMIO
1180 | KFD_MMAP_GPU_ID(args->gpu_id);
1181
1182 return 0;
1183
1184err_free:
1185 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(adev: dev->adev, mem: (struct kgd_mem *)mem,
1186 drm_priv: pdd->drm_priv, NULL);
1187err_unlock:
1188err_pdd:
1189err_large_bar:
1190 mutex_unlock(lock: &p->mutex);
1191 return err;
1192}
1193
1194static int kfd_ioctl_free_memory_of_gpu(struct file *filep,
1195 struct kfd_process *p, void *data)
1196{
1197 struct kfd_ioctl_free_memory_of_gpu_args *args = data;
1198 struct kfd_process_device *pdd;
1199 void *mem;
1200 int ret;
1201 uint64_t size = 0;
1202
1203 mutex_lock(&p->mutex);
1204 /*
1205 * Safeguard to prevent user space from freeing signal BO.
1206 * It will be freed at process termination.
1207 */
1208 if (p->signal_handle && (p->signal_handle == args->handle)) {
1209 pr_err("Free signal BO is not allowed\n");
1210 ret = -EPERM;
1211 goto err_unlock;
1212 }
1213
1214 pdd = kfd_process_device_data_by_id(process: p, GET_GPU_ID(args->handle));
1215 if (!pdd) {
1216 pr_err("Process device data doesn't exist\n");
1217 ret = -EINVAL;
1218 goto err_pdd;
1219 }
1220
1221 mem = kfd_process_device_translate_handle(
1222 p: pdd, GET_IDR_HANDLE(args->handle));
1223 if (!mem) {
1224 ret = -EINVAL;
1225 goto err_unlock;
1226 }
1227
1228 ret = amdgpu_amdkfd_gpuvm_free_memory_of_gpu(adev: pdd->dev->adev,
1229 mem: (struct kgd_mem *)mem, drm_priv: pdd->drm_priv, size: &size);
1230
1231 /* If freeing the buffer failed, leave the handle in place for
1232 * clean-up during process tear-down.
1233 */
1234 if (!ret)
1235 kfd_process_device_remove_obj_handle(
1236 pdd, GET_IDR_HANDLE(args->handle));
1237
1238 WRITE_ONCE(pdd->vram_usage, pdd->vram_usage - size);
1239
1240err_unlock:
1241err_pdd:
1242 mutex_unlock(lock: &p->mutex);
1243 return ret;
1244}
1245
1246static int kfd_ioctl_map_memory_to_gpu(struct file *filep,
1247 struct kfd_process *p, void *data)
1248{
1249 struct kfd_ioctl_map_memory_to_gpu_args *args = data;
1250 struct kfd_process_device *pdd, *peer_pdd;
1251 void *mem;
1252 struct kfd_node *dev;
1253 long err = 0;
1254 int i;
1255 uint32_t *devices_arr = NULL;
1256
1257 if (!args->n_devices) {
1258 pr_debug("Device IDs array empty\n");
1259 return -EINVAL;
1260 }
1261 if (args->n_success > args->n_devices) {
1262 pr_debug("n_success exceeds n_devices\n");
1263 return -EINVAL;
1264 }
1265
1266 devices_arr = kmalloc_array(n: args->n_devices, size: sizeof(*devices_arr),
1267 GFP_KERNEL);
1268 if (!devices_arr)
1269 return -ENOMEM;
1270
1271 err = copy_from_user(to: devices_arr,
1272 from: (void __user *)args->device_ids_array_ptr,
1273 n: args->n_devices * sizeof(*devices_arr));
1274 if (err != 0) {
1275 err = -EFAULT;
1276 goto copy_from_user_failed;
1277 }
1278
1279 mutex_lock(&p->mutex);
1280 pdd = kfd_process_device_data_by_id(process: p, GET_GPU_ID(args->handle));
1281 if (!pdd) {
1282 err = -EINVAL;
1283 goto get_process_device_data_failed;
1284 }
1285 dev = pdd->dev;
1286
1287 pdd = kfd_bind_process_to_device(dev, p);
1288 if (IS_ERR(ptr: pdd)) {
1289 err = PTR_ERR(ptr: pdd);
1290 goto bind_process_to_device_failed;
1291 }
1292
1293 mem = kfd_process_device_translate_handle(p: pdd,
1294 GET_IDR_HANDLE(args->handle));
1295 if (!mem) {
1296 err = -ENOMEM;
1297 goto get_mem_obj_from_handle_failed;
1298 }
1299
1300 for (i = args->n_success; i < args->n_devices; i++) {
1301 peer_pdd = kfd_process_device_data_by_id(process: p, gpu_id: devices_arr[i]);
1302 if (!peer_pdd) {
1303 pr_debug("Getting device by id failed for 0x%x\n",
1304 devices_arr[i]);
1305 err = -EINVAL;
1306 goto get_mem_obj_from_handle_failed;
1307 }
1308
1309 peer_pdd = kfd_bind_process_to_device(dev: peer_pdd->dev, p);
1310 if (IS_ERR(ptr: peer_pdd)) {
1311 err = PTR_ERR(ptr: peer_pdd);
1312 goto get_mem_obj_from_handle_failed;
1313 }
1314
1315 err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(
1316 adev: peer_pdd->dev->adev, mem: (struct kgd_mem *)mem,
1317 drm_priv: peer_pdd->drm_priv);
1318 if (err) {
1319 struct pci_dev *pdev = peer_pdd->dev->adev->pdev;
1320
1321 dev_err(dev->adev->dev,
1322 "Failed to map peer:%04x:%02x:%02x.%d mem_domain:%d\n",
1323 pci_domain_nr(pdev->bus),
1324 pdev->bus->number,
1325 PCI_SLOT(pdev->devfn),
1326 PCI_FUNC(pdev->devfn),
1327 ((struct kgd_mem *)mem)->domain);
1328 goto map_memory_to_gpu_failed;
1329 }
1330 args->n_success = i+1;
1331 }
1332
1333 err = amdgpu_amdkfd_gpuvm_sync_memory(adev: dev->adev, mem: (struct kgd_mem *) mem, intr: true);
1334 if (err) {
1335 pr_debug("Sync memory failed, wait interrupted by user signal\n");
1336 goto sync_memory_failed;
1337 }
1338
1339 mutex_unlock(lock: &p->mutex);
1340
1341 /* Flush TLBs after waiting for the page table updates to complete */
1342 for (i = 0; i < args->n_devices; i++) {
1343 peer_pdd = kfd_process_device_data_by_id(process: p, gpu_id: devices_arr[i]);
1344 if (WARN_ON_ONCE(!peer_pdd))
1345 continue;
1346 kfd_flush_tlb(pdd: peer_pdd, type: TLB_FLUSH_LEGACY);
1347 }
1348 kfree(objp: devices_arr);
1349
1350 return err;
1351
1352get_process_device_data_failed:
1353bind_process_to_device_failed:
1354get_mem_obj_from_handle_failed:
1355map_memory_to_gpu_failed:
1356sync_memory_failed:
1357 mutex_unlock(lock: &p->mutex);
1358copy_from_user_failed:
1359 kfree(objp: devices_arr);
1360
1361 return err;
1362}
1363
1364static int kfd_ioctl_unmap_memory_from_gpu(struct file *filep,
1365 struct kfd_process *p, void *data)
1366{
1367 struct kfd_ioctl_unmap_memory_from_gpu_args *args = data;
1368 struct kfd_process_device *pdd, *peer_pdd;
1369 void *mem;
1370 long err = 0;
1371 uint32_t *devices_arr = NULL, i;
1372 bool flush_tlb;
1373
1374 if (!args->n_devices) {
1375 pr_debug("Device IDs array empty\n");
1376 return -EINVAL;
1377 }
1378 if (args->n_success > args->n_devices) {
1379 pr_debug("n_success exceeds n_devices\n");
1380 return -EINVAL;
1381 }
1382
1383 devices_arr = kmalloc_array(n: args->n_devices, size: sizeof(*devices_arr),
1384 GFP_KERNEL);
1385 if (!devices_arr)
1386 return -ENOMEM;
1387
1388 err = copy_from_user(to: devices_arr,
1389 from: (void __user *)args->device_ids_array_ptr,
1390 n: args->n_devices * sizeof(*devices_arr));
1391 if (err != 0) {
1392 err = -EFAULT;
1393 goto copy_from_user_failed;
1394 }
1395
1396 mutex_lock(&p->mutex);
1397 pdd = kfd_process_device_data_by_id(process: p, GET_GPU_ID(args->handle));
1398 if (!pdd) {
1399 err = -EINVAL;
1400 goto bind_process_to_device_failed;
1401 }
1402
1403 mem = kfd_process_device_translate_handle(p: pdd,
1404 GET_IDR_HANDLE(args->handle));
1405 if (!mem) {
1406 err = -ENOMEM;
1407 goto get_mem_obj_from_handle_failed;
1408 }
1409
1410 for (i = args->n_success; i < args->n_devices; i++) {
1411 peer_pdd = kfd_process_device_data_by_id(process: p, gpu_id: devices_arr[i]);
1412 if (!peer_pdd) {
1413 err = -EINVAL;
1414 goto get_mem_obj_from_handle_failed;
1415 }
1416 err = amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
1417 adev: peer_pdd->dev->adev, mem: (struct kgd_mem *)mem, drm_priv: peer_pdd->drm_priv);
1418 if (err) {
1419 pr_err("Failed to unmap from gpu %d/%d\n",
1420 i, args->n_devices);
1421 goto unmap_memory_from_gpu_failed;
1422 }
1423 args->n_success = i+1;
1424 }
1425
1426 flush_tlb = kfd_flush_tlb_after_unmap(dev: pdd->dev->kfd);
1427 if (flush_tlb) {
1428 err = amdgpu_amdkfd_gpuvm_sync_memory(adev: pdd->dev->adev,
1429 mem: (struct kgd_mem *) mem, intr: true);
1430 if (err) {
1431 pr_debug("Sync memory failed, wait interrupted by user signal\n");
1432 goto sync_memory_failed;
1433 }
1434 }
1435
1436 /* Flush TLBs after waiting for the page table updates to complete */
1437 for (i = 0; i < args->n_devices; i++) {
1438 peer_pdd = kfd_process_device_data_by_id(process: p, gpu_id: devices_arr[i]);
1439 if (WARN_ON_ONCE(!peer_pdd))
1440 continue;
1441 if (flush_tlb)
1442 kfd_flush_tlb(pdd: peer_pdd, type: TLB_FLUSH_HEAVYWEIGHT);
1443
1444 /* Remove dma mapping after tlb flush to avoid IO_PAGE_FAULT */
1445 amdgpu_amdkfd_gpuvm_dmaunmap_mem(mem, drm_priv: peer_pdd->drm_priv);
1446 }
1447
1448 mutex_unlock(lock: &p->mutex);
1449
1450 kfree(objp: devices_arr);
1451
1452 return 0;
1453
1454bind_process_to_device_failed:
1455get_mem_obj_from_handle_failed:
1456unmap_memory_from_gpu_failed:
1457sync_memory_failed:
1458 mutex_unlock(lock: &p->mutex);
1459copy_from_user_failed:
1460 kfree(objp: devices_arr);
1461 return err;
1462}
1463
1464static int kfd_ioctl_alloc_queue_gws(struct file *filep,
1465 struct kfd_process *p, void *data)
1466{
1467 int retval;
1468 struct kfd_ioctl_alloc_queue_gws_args *args = data;
1469 struct queue *q;
1470 struct kfd_node *dev;
1471
1472 mutex_lock(&p->mutex);
1473 q = pqm_get_user_queue(pqm: &p->pqm, qid: args->queue_id);
1474
1475 if (q) {
1476 dev = q->device;
1477 } else {
1478 retval = -EINVAL;
1479 goto out_unlock;
1480 }
1481
1482 if (!dev->gws) {
1483 retval = -ENODEV;
1484 goto out_unlock;
1485 }
1486
1487 if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
1488 retval = -ENODEV;
1489 goto out_unlock;
1490 }
1491
1492 if (p->debug_trap_enabled && (!kfd_dbg_has_gws_support(dev) ||
1493 kfd_dbg_has_cwsr_workaround(dev))) {
1494 retval = -EBUSY;
1495 goto out_unlock;
1496 }
1497
1498 retval = pqm_set_gws(pqm: &p->pqm, qid: args->queue_id, gws: args->num_gws ? dev->gws : NULL);
1499 mutex_unlock(lock: &p->mutex);
1500
1501 args->first_gws = 0;
1502 return retval;
1503
1504out_unlock:
1505 mutex_unlock(lock: &p->mutex);
1506 return retval;
1507}
1508
1509static int kfd_ioctl_get_dmabuf_info(struct file *filep,
1510 struct kfd_process *p, void *data)
1511{
1512 struct kfd_ioctl_get_dmabuf_info_args *args = data;
1513 struct kfd_node *dev = NULL;
1514 struct amdgpu_device *dmabuf_adev;
1515 void *metadata_buffer = NULL;
1516 uint32_t flags;
1517 int8_t xcp_id;
1518 unsigned int i;
1519 int r;
1520
1521 /* Find a KFD GPU device that supports the get_dmabuf_info query */
1522 for (i = 0; kfd_topology_enum_kfd_devices(idx: i, kdev: &dev) == 0; i++)
1523 if (dev)
1524 break;
1525 if (!dev)
1526 return -EINVAL;
1527
1528 if (args->metadata_ptr) {
1529 metadata_buffer = kzalloc(size: args->metadata_size, GFP_KERNEL);
1530 if (!metadata_buffer)
1531 return -ENOMEM;
1532 }
1533
1534 /* Get dmabuf info from KGD */
1535 r = amdgpu_amdkfd_get_dmabuf_info(adev: dev->adev, dma_buf_fd: args->dmabuf_fd,
1536 dmabuf_adev: &dmabuf_adev, bo_size: &args->size,
1537 metadata_buffer, buffer_size: args->metadata_size,
1538 metadata_size: &args->metadata_size, flags: &flags, xcp_id: &xcp_id);
1539 if (r)
1540 goto exit;
1541
1542 if (xcp_id >= 0)
1543 args->gpu_id = dmabuf_adev->kfd.dev->nodes[xcp_id]->id;
1544 else
1545 args->gpu_id = dmabuf_adev->kfd.dev->nodes[0]->id;
1546 args->flags = flags;
1547
1548 /* Copy metadata buffer to user mode */
1549 if (metadata_buffer) {
1550 r = copy_to_user(to: (void __user *)args->metadata_ptr,
1551 from: metadata_buffer, n: args->metadata_size);
1552 if (r != 0)
1553 r = -EFAULT;
1554 }
1555
1556exit:
1557 kfree(objp: metadata_buffer);
1558
1559 return r;
1560}
1561
1562static int kfd_ioctl_import_dmabuf(struct file *filep,
1563 struct kfd_process *p, void *data)
1564{
1565 struct kfd_ioctl_import_dmabuf_args *args = data;
1566 struct kfd_process_device *pdd;
1567 struct dma_buf *dmabuf;
1568 int idr_handle;
1569 uint64_t size;
1570 void *mem;
1571 int r;
1572
1573 dmabuf = dma_buf_get(fd: args->dmabuf_fd);
1574 if (IS_ERR(ptr: dmabuf))
1575 return PTR_ERR(ptr: dmabuf);
1576
1577 mutex_lock(&p->mutex);
1578 pdd = kfd_process_device_data_by_id(process: p, gpu_id: args->gpu_id);
1579 if (!pdd) {
1580 r = -EINVAL;
1581 goto err_unlock;
1582 }
1583
1584 pdd = kfd_bind_process_to_device(dev: pdd->dev, p);
1585 if (IS_ERR(ptr: pdd)) {
1586 r = PTR_ERR(ptr: pdd);
1587 goto err_unlock;
1588 }
1589
1590 r = amdgpu_amdkfd_gpuvm_import_dmabuf(adev: pdd->dev->adev, dmabuf,
1591 va: args->va_addr, drm_priv: pdd->drm_priv,
1592 mem: (struct kgd_mem **)&mem, size: &size,
1593 NULL);
1594 if (r)
1595 goto err_unlock;
1596
1597 idr_handle = kfd_process_device_create_obj_handle(pdd, mem);
1598 if (idr_handle < 0) {
1599 r = -EFAULT;
1600 goto err_free;
1601 }
1602
1603 mutex_unlock(lock: &p->mutex);
1604 dma_buf_put(dmabuf);
1605
1606 args->handle = MAKE_HANDLE(args->gpu_id, idr_handle);
1607
1608 return 0;
1609
1610err_free:
1611 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(adev: pdd->dev->adev, mem: (struct kgd_mem *)mem,
1612 drm_priv: pdd->drm_priv, NULL);
1613err_unlock:
1614 mutex_unlock(lock: &p->mutex);
1615 dma_buf_put(dmabuf);
1616 return r;
1617}
1618
1619static int kfd_ioctl_export_dmabuf(struct file *filep,
1620 struct kfd_process *p, void *data)
1621{
1622 struct kfd_ioctl_export_dmabuf_args *args = data;
1623 struct kfd_process_device *pdd;
1624 struct dma_buf *dmabuf;
1625 struct kfd_node *dev;
1626 void *mem;
1627 int ret = 0;
1628
1629 dev = kfd_device_by_id(GET_GPU_ID(args->handle));
1630 if (!dev)
1631 return -EINVAL;
1632
1633 mutex_lock(&p->mutex);
1634
1635 pdd = kfd_get_process_device_data(dev, p);
1636 if (!pdd) {
1637 ret = -EINVAL;
1638 goto err_unlock;
1639 }
1640
1641 mem = kfd_process_device_translate_handle(p: pdd,
1642 GET_IDR_HANDLE(args->handle));
1643 if (!mem) {
1644 ret = -EINVAL;
1645 goto err_unlock;
1646 }
1647
1648 ret = amdgpu_amdkfd_gpuvm_export_dmabuf(mem, dmabuf: &dmabuf);
1649 mutex_unlock(lock: &p->mutex);
1650 if (ret)
1651 goto err_out;
1652
1653 ret = dma_buf_fd(dmabuf, flags: args->flags);
1654 if (ret < 0) {
1655 dma_buf_put(dmabuf);
1656 goto err_out;
1657 }
1658 /* dma_buf_fd assigns the reference count to the fd, no need to
1659 * put the reference here.
1660 */
1661 args->dmabuf_fd = ret;
1662
1663 return 0;
1664
1665err_unlock:
1666 mutex_unlock(lock: &p->mutex);
1667err_out:
1668 return ret;
1669}
1670
1671/* Handle requests for watching SMI events */
1672static int kfd_ioctl_smi_events(struct file *filep,
1673 struct kfd_process *p, void *data)
1674{
1675 struct kfd_ioctl_smi_events_args *args = data;
1676 struct kfd_process_device *pdd;
1677
1678 mutex_lock(&p->mutex);
1679
1680 pdd = kfd_process_device_data_by_id(process: p, gpu_id: args->gpuid);
1681 mutex_unlock(lock: &p->mutex);
1682 if (!pdd)
1683 return -EINVAL;
1684
1685 return kfd_smi_event_open(dev: pdd->dev, fd: &args->anon_fd);
1686}
1687
1688#if IS_ENABLED(CONFIG_HSA_AMD_SVM)
1689
1690static int kfd_ioctl_set_xnack_mode(struct file *filep,
1691 struct kfd_process *p, void *data)
1692{
1693 struct kfd_ioctl_set_xnack_mode_args *args = data;
1694 int r = 0;
1695
1696 mutex_lock(&p->mutex);
1697 if (args->xnack_enabled >= 0) {
1698 if (!list_empty(head: &p->pqm.queues)) {
1699 pr_debug("Process has user queues running\n");
1700 r = -EBUSY;
1701 goto out_unlock;
1702 }
1703
1704 if (p->xnack_enabled == args->xnack_enabled)
1705 goto out_unlock;
1706
1707 if (args->xnack_enabled && !kfd_process_xnack_mode(p, supported: true)) {
1708 r = -EPERM;
1709 goto out_unlock;
1710 }
1711
1712 r = svm_range_switch_xnack_reserve_mem(p, xnack_enabled: args->xnack_enabled);
1713 } else {
1714 args->xnack_enabled = p->xnack_enabled;
1715 }
1716
1717out_unlock:
1718 mutex_unlock(lock: &p->mutex);
1719
1720 return r;
1721}
1722
1723static int kfd_ioctl_svm(struct file *filep, struct kfd_process *p, void *data)
1724{
1725 struct kfd_ioctl_svm_args *args = data;
1726 int r = 0;
1727
1728 pr_debug("start 0x%llx size 0x%llx op 0x%x nattr 0x%x\n",
1729 args->start_addr, args->size, args->op, args->nattr);
1730
1731 if ((args->start_addr & ~PAGE_MASK) || (args->size & ~PAGE_MASK))
1732 return -EINVAL;
1733 if (!args->start_addr || !args->size)
1734 return -EINVAL;
1735
1736 r = svm_ioctl(p, op: args->op, start: args->start_addr, size: args->size, nattrs: args->nattr,
1737 attrs: args->attrs);
1738
1739 return r;
1740}
1741#else
1742static int kfd_ioctl_set_xnack_mode(struct file *filep,
1743 struct kfd_process *p, void *data)
1744{
1745 return -EPERM;
1746}
1747static int kfd_ioctl_svm(struct file *filep, struct kfd_process *p, void *data)
1748{
1749 return -EPERM;
1750}
1751#endif
1752
1753static int criu_checkpoint_process(struct kfd_process *p,
1754 uint8_t __user *user_priv_data,
1755 uint64_t *priv_offset)
1756{
1757 struct kfd_criu_process_priv_data process_priv;
1758 int ret;
1759
1760 memset(&process_priv, 0, sizeof(process_priv));
1761
1762 process_priv.version = KFD_CRIU_PRIV_VERSION;
1763 /* For CR, we don't consider negative xnack mode which is used for
1764 * querying without changing it, here 0 simply means disabled and 1
1765 * means enabled so retry for finding a valid PTE.
1766 */
1767 process_priv.xnack_mode = p->xnack_enabled ? 1 : 0;
1768
1769 ret = copy_to_user(to: user_priv_data + *priv_offset,
1770 from: &process_priv, n: sizeof(process_priv));
1771
1772 if (ret) {
1773 pr_err("Failed to copy process information to user\n");
1774 ret = -EFAULT;
1775 }
1776
1777 *priv_offset += sizeof(process_priv);
1778 return ret;
1779}
1780
1781static int criu_checkpoint_devices(struct kfd_process *p,
1782 uint32_t num_devices,
1783 uint8_t __user *user_addr,
1784 uint8_t __user *user_priv_data,
1785 uint64_t *priv_offset)
1786{
1787 struct kfd_criu_device_priv_data *device_priv = NULL;
1788 struct kfd_criu_device_bucket *device_buckets = NULL;
1789 int ret = 0, i;
1790
1791 device_buckets = kvzalloc(size: num_devices * sizeof(*device_buckets), GFP_KERNEL);
1792 if (!device_buckets) {
1793 ret = -ENOMEM;
1794 goto exit;
1795 }
1796
1797 device_priv = kvzalloc(size: num_devices * sizeof(*device_priv), GFP_KERNEL);
1798 if (!device_priv) {
1799 ret = -ENOMEM;
1800 goto exit;
1801 }
1802
1803 for (i = 0; i < num_devices; i++) {
1804 struct kfd_process_device *pdd = p->pdds[i];
1805
1806 device_buckets[i].user_gpu_id = pdd->user_gpu_id;
1807 device_buckets[i].actual_gpu_id = pdd->dev->id;
1808
1809 /*
1810 * priv_data does not contain useful information for now and is reserved for
1811 * future use, so we do not set its contents.
1812 */
1813 }
1814
1815 ret = copy_to_user(to: user_addr, from: device_buckets, n: num_devices * sizeof(*device_buckets));
1816 if (ret) {
1817 pr_err("Failed to copy device information to user\n");
1818 ret = -EFAULT;
1819 goto exit;
1820 }
1821
1822 ret = copy_to_user(to: user_priv_data + *priv_offset,
1823 from: device_priv,
1824 n: num_devices * sizeof(*device_priv));
1825 if (ret) {
1826 pr_err("Failed to copy device information to user\n");
1827 ret = -EFAULT;
1828 }
1829 *priv_offset += num_devices * sizeof(*device_priv);
1830
1831exit:
1832 kvfree(addr: device_buckets);
1833 kvfree(addr: device_priv);
1834 return ret;
1835}
1836
1837static uint32_t get_process_num_bos(struct kfd_process *p)
1838{
1839 uint32_t num_of_bos = 0;
1840 int i;
1841
1842 /* Run over all PDDs of the process */
1843 for (i = 0; i < p->n_pdds; i++) {
1844 struct kfd_process_device *pdd = p->pdds[i];
1845 void *mem;
1846 int id;
1847
1848 idr_for_each_entry(&pdd->alloc_idr, mem, id) {
1849 struct kgd_mem *kgd_mem = (struct kgd_mem *)mem;
1850
1851 if (!kgd_mem->va || kgd_mem->va > pdd->gpuvm_base)
1852 num_of_bos++;
1853 }
1854 }
1855 return num_of_bos;
1856}
1857
1858static int criu_get_prime_handle(struct kgd_mem *mem, int flags,
1859 u32 *shared_fd)
1860{
1861 struct dma_buf *dmabuf;
1862 int ret;
1863
1864 ret = amdgpu_amdkfd_gpuvm_export_dmabuf(mem, dmabuf: &dmabuf);
1865 if (ret) {
1866 pr_err("dmabuf export failed for the BO\n");
1867 return ret;
1868 }
1869
1870 ret = dma_buf_fd(dmabuf, flags);
1871 if (ret < 0) {
1872 pr_err("dmabuf create fd failed, ret:%d\n", ret);
1873 goto out_free_dmabuf;
1874 }
1875
1876 *shared_fd = ret;
1877 return 0;
1878
1879out_free_dmabuf:
1880 dma_buf_put(dmabuf);
1881 return ret;
1882}
1883
1884static int criu_checkpoint_bos(struct kfd_process *p,
1885 uint32_t num_bos,
1886 uint8_t __user *user_bos,
1887 uint8_t __user *user_priv_data,
1888 uint64_t *priv_offset)
1889{
1890 struct kfd_criu_bo_bucket *bo_buckets;
1891 struct kfd_criu_bo_priv_data *bo_privs;
1892 int ret = 0, pdd_index, bo_index = 0, id;
1893 void *mem;
1894
1895 bo_buckets = kvzalloc(size: num_bos * sizeof(*bo_buckets), GFP_KERNEL);
1896 if (!bo_buckets)
1897 return -ENOMEM;
1898
1899 bo_privs = kvzalloc(size: num_bos * sizeof(*bo_privs), GFP_KERNEL);
1900 if (!bo_privs) {
1901 ret = -ENOMEM;
1902 goto exit;
1903 }
1904
1905 for (pdd_index = 0; pdd_index < p->n_pdds; pdd_index++) {
1906 struct kfd_process_device *pdd = p->pdds[pdd_index];
1907 struct amdgpu_bo *dumper_bo;
1908 struct kgd_mem *kgd_mem;
1909
1910 idr_for_each_entry(&pdd->alloc_idr, mem, id) {
1911 struct kfd_criu_bo_bucket *bo_bucket;
1912 struct kfd_criu_bo_priv_data *bo_priv;
1913 int i, dev_idx = 0;
1914
1915 if (!mem) {
1916 ret = -ENOMEM;
1917 goto exit;
1918 }
1919
1920 kgd_mem = (struct kgd_mem *)mem;
1921 dumper_bo = kgd_mem->bo;
1922
1923 /* Skip checkpointing BOs that are used for Trap handler
1924 * code and state. Currently, these BOs have a VA that
1925 * is less GPUVM Base
1926 */
1927 if (kgd_mem->va && kgd_mem->va <= pdd->gpuvm_base)
1928 continue;
1929
1930 bo_bucket = &bo_buckets[bo_index];
1931 bo_priv = &bo_privs[bo_index];
1932
1933 bo_bucket->gpu_id = pdd->user_gpu_id;
1934 bo_bucket->addr = (uint64_t)kgd_mem->va;
1935 bo_bucket->size = amdgpu_bo_size(bo: dumper_bo);
1936 bo_bucket->alloc_flags = (uint32_t)kgd_mem->alloc_flags;
1937 bo_priv->idr_handle = id;
1938
1939 if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) {
1940 ret = amdgpu_ttm_tt_get_userptr(tbo: &dumper_bo->tbo,
1941 user_addr: &bo_priv->user_addr);
1942 if (ret) {
1943 pr_err("Failed to obtain user address for user-pointer bo\n");
1944 goto exit;
1945 }
1946 }
1947 if (bo_bucket->alloc_flags
1948 & (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT)) {
1949 ret = criu_get_prime_handle(mem: kgd_mem,
1950 flags: bo_bucket->alloc_flags &
1951 KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? DRM_RDWR : 0,
1952 shared_fd: &bo_bucket->dmabuf_fd);
1953 if (ret)
1954 goto exit;
1955 } else {
1956 bo_bucket->dmabuf_fd = KFD_INVALID_FD;
1957 }
1958
1959 if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL)
1960 bo_bucket->offset = KFD_MMAP_TYPE_DOORBELL |
1961 KFD_MMAP_GPU_ID(pdd->dev->id);
1962 else if (bo_bucket->alloc_flags &
1963 KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)
1964 bo_bucket->offset = KFD_MMAP_TYPE_MMIO |
1965 KFD_MMAP_GPU_ID(pdd->dev->id);
1966 else
1967 bo_bucket->offset = amdgpu_bo_mmap_offset(bo: dumper_bo);
1968
1969 for (i = 0; i < p->n_pdds; i++) {
1970 if (amdgpu_amdkfd_bo_mapped_to_dev(adev: p->pdds[i]->dev->adev, mem: kgd_mem))
1971 bo_priv->mapped_gpuids[dev_idx++] = p->pdds[i]->user_gpu_id;
1972 }
1973
1974 pr_debug("bo_size = 0x%llx, bo_addr = 0x%llx bo_offset = 0x%llx\n"
1975 "gpu_id = 0x%x alloc_flags = 0x%x idr_handle = 0x%x",
1976 bo_bucket->size,
1977 bo_bucket->addr,
1978 bo_bucket->offset,
1979 bo_bucket->gpu_id,
1980 bo_bucket->alloc_flags,
1981 bo_priv->idr_handle);
1982 bo_index++;
1983 }
1984 }
1985
1986 ret = copy_to_user(to: user_bos, from: bo_buckets, n: num_bos * sizeof(*bo_buckets));
1987 if (ret) {
1988 pr_err("Failed to copy BO information to user\n");
1989 ret = -EFAULT;
1990 goto exit;
1991 }
1992
1993 ret = copy_to_user(to: user_priv_data + *priv_offset, from: bo_privs, n: num_bos * sizeof(*bo_privs));
1994 if (ret) {
1995 pr_err("Failed to copy BO priv information to user\n");
1996 ret = -EFAULT;
1997 goto exit;
1998 }
1999
2000 *priv_offset += num_bos * sizeof(*bo_privs);
2001
2002exit:
2003 while (ret && bo_index--) {
2004 if (bo_buckets[bo_index].alloc_flags
2005 & (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT))
2006 close_fd(fd: bo_buckets[bo_index].dmabuf_fd);
2007 }
2008
2009 kvfree(addr: bo_buckets);
2010 kvfree(addr: bo_privs);
2011 return ret;
2012}
2013
2014static int criu_get_process_object_info(struct kfd_process *p,
2015 uint32_t *num_devices,
2016 uint32_t *num_bos,
2017 uint32_t *num_objects,
2018 uint64_t *objs_priv_size)
2019{
2020 uint64_t queues_priv_data_size, svm_priv_data_size, priv_size;
2021 uint32_t num_queues, num_events, num_svm_ranges;
2022 int ret;
2023
2024 *num_devices = p->n_pdds;
2025 *num_bos = get_process_num_bos(p);
2026
2027 ret = kfd_process_get_queue_info(p, num_queues: &num_queues, priv_data_sizes: &queues_priv_data_size);
2028 if (ret)
2029 return ret;
2030
2031 num_events = kfd_get_num_events(p);
2032
2033 ret = svm_range_get_info(p, num_svm_ranges: &num_svm_ranges, svm_priv_data_size: &svm_priv_data_size);
2034 if (ret)
2035 return ret;
2036
2037 *num_objects = num_queues + num_events + num_svm_ranges;
2038
2039 if (objs_priv_size) {
2040 priv_size = sizeof(struct kfd_criu_process_priv_data);
2041 priv_size += *num_devices * sizeof(struct kfd_criu_device_priv_data);
2042 priv_size += *num_bos * sizeof(struct kfd_criu_bo_priv_data);
2043 priv_size += queues_priv_data_size;
2044 priv_size += num_events * sizeof(struct kfd_criu_event_priv_data);
2045 priv_size += svm_priv_data_size;
2046 *objs_priv_size = priv_size;
2047 }
2048 return 0;
2049}
2050
2051static int criu_checkpoint(struct file *filep,
2052 struct kfd_process *p,
2053 struct kfd_ioctl_criu_args *args)
2054{
2055 int ret;
2056 uint32_t num_devices, num_bos, num_objects;
2057 uint64_t priv_size, priv_offset = 0, bo_priv_offset;
2058
2059 if (!args->devices || !args->bos || !args->priv_data)
2060 return -EINVAL;
2061
2062 mutex_lock(&p->mutex);
2063
2064 if (!p->n_pdds) {
2065 pr_err("No pdd for given process\n");
2066 ret = -ENODEV;
2067 goto exit_unlock;
2068 }
2069
2070 /* Confirm all process queues are evicted */
2071 if (!p->queues_paused) {
2072 pr_err("Cannot dump process when queues are not in evicted state\n");
2073 /* CRIU plugin did not call op PROCESS_INFO before checkpointing */
2074 ret = -EINVAL;
2075 goto exit_unlock;
2076 }
2077
2078 ret = criu_get_process_object_info(p, num_devices: &num_devices, num_bos: &num_bos, num_objects: &num_objects, objs_priv_size: &priv_size);
2079 if (ret)
2080 goto exit_unlock;
2081
2082 if (num_devices != args->num_devices ||
2083 num_bos != args->num_bos ||
2084 num_objects != args->num_objects ||
2085 priv_size != args->priv_data_size) {
2086
2087 ret = -EINVAL;
2088 goto exit_unlock;
2089 }
2090
2091 /* each function will store private data inside priv_data and adjust priv_offset */
2092 ret = criu_checkpoint_process(p, user_priv_data: (uint8_t __user *)args->priv_data, priv_offset: &priv_offset);
2093 if (ret)
2094 goto exit_unlock;
2095
2096 ret = criu_checkpoint_devices(p, num_devices, user_addr: (uint8_t __user *)args->devices,
2097 user_priv_data: (uint8_t __user *)args->priv_data, priv_offset: &priv_offset);
2098 if (ret)
2099 goto exit_unlock;
2100
2101 /* Leave room for BOs in the private data. They need to be restored
2102 * before events, but we checkpoint them last to simplify the error
2103 * handling.
2104 */
2105 bo_priv_offset = priv_offset;
2106 priv_offset += num_bos * sizeof(struct kfd_criu_bo_priv_data);
2107
2108 if (num_objects) {
2109 ret = kfd_criu_checkpoint_queues(p, user_priv_data: (uint8_t __user *)args->priv_data,
2110 priv_data_offset: &priv_offset);
2111 if (ret)
2112 goto exit_unlock;
2113
2114 ret = kfd_criu_checkpoint_events(p, user_priv_data: (uint8_t __user *)args->priv_data,
2115 priv_data_offset: &priv_offset);
2116 if (ret)
2117 goto exit_unlock;
2118
2119 ret = kfd_criu_checkpoint_svm(p, user_priv_data: (uint8_t __user *)args->priv_data, priv_offset: &priv_offset);
2120 if (ret)
2121 goto exit_unlock;
2122 }
2123
2124 /* This must be the last thing in this function that can fail.
2125 * Otherwise we leak dmabuf file descriptors.
2126 */
2127 ret = criu_checkpoint_bos(p, num_bos, user_bos: (uint8_t __user *)args->bos,
2128 user_priv_data: (uint8_t __user *)args->priv_data, priv_offset: &bo_priv_offset);
2129
2130exit_unlock:
2131 mutex_unlock(lock: &p->mutex);
2132 if (ret)
2133 pr_err("Failed to dump CRIU ret:%d\n", ret);
2134 else
2135 pr_debug("CRIU dump ret:%d\n", ret);
2136
2137 return ret;
2138}
2139
2140static int criu_restore_process(struct kfd_process *p,
2141 struct kfd_ioctl_criu_args *args,
2142 uint64_t *priv_offset,
2143 uint64_t max_priv_data_size)
2144{
2145 int ret = 0;
2146 struct kfd_criu_process_priv_data process_priv;
2147
2148 if (*priv_offset + sizeof(process_priv) > max_priv_data_size)
2149 return -EINVAL;
2150
2151 ret = copy_from_user(to: &process_priv,
2152 from: (void __user *)(args->priv_data + *priv_offset),
2153 n: sizeof(process_priv));
2154 if (ret) {
2155 pr_err("Failed to copy process private information from user\n");
2156 ret = -EFAULT;
2157 goto exit;
2158 }
2159 *priv_offset += sizeof(process_priv);
2160
2161 if (process_priv.version != KFD_CRIU_PRIV_VERSION) {
2162 pr_err("Invalid CRIU API version (checkpointed:%d current:%d)\n",
2163 process_priv.version, KFD_CRIU_PRIV_VERSION);
2164 return -EINVAL;
2165 }
2166
2167 pr_debug("Setting XNACK mode\n");
2168 if (process_priv.xnack_mode && !kfd_process_xnack_mode(p, supported: true)) {
2169 pr_err("xnack mode cannot be set\n");
2170 ret = -EPERM;
2171 goto exit;
2172 } else {
2173 pr_debug("set xnack mode: %d\n", process_priv.xnack_mode);
2174 p->xnack_enabled = process_priv.xnack_mode;
2175 }
2176
2177exit:
2178 return ret;
2179}
2180
2181static int criu_restore_devices(struct kfd_process *p,
2182 struct kfd_ioctl_criu_args *args,
2183 uint64_t *priv_offset,
2184 uint64_t max_priv_data_size)
2185{
2186 struct kfd_criu_device_bucket *device_buckets;
2187 struct kfd_criu_device_priv_data *device_privs;
2188 int ret = 0;
2189 uint32_t i;
2190
2191 if (args->num_devices != p->n_pdds)
2192 return -EINVAL;
2193
2194 if (*priv_offset + (args->num_devices * sizeof(*device_privs)) > max_priv_data_size)
2195 return -EINVAL;
2196
2197 device_buckets = kmalloc_array(n: args->num_devices, size: sizeof(*device_buckets), GFP_KERNEL);
2198 if (!device_buckets)
2199 return -ENOMEM;
2200
2201 ret = copy_from_user(to: device_buckets, from: (void __user *)args->devices,
2202 n: args->num_devices * sizeof(*device_buckets));
2203 if (ret) {
2204 pr_err("Failed to copy devices buckets from user\n");
2205 ret = -EFAULT;
2206 goto exit;
2207 }
2208
2209 for (i = 0; i < args->num_devices; i++) {
2210 struct kfd_node *dev;
2211 struct kfd_process_device *pdd;
2212 struct file *drm_file;
2213
2214 /* device private data is not currently used */
2215
2216 if (!device_buckets[i].user_gpu_id) {
2217 pr_err("Invalid user gpu_id\n");
2218 ret = -EINVAL;
2219 goto exit;
2220 }
2221
2222 dev = kfd_device_by_id(gpu_id: device_buckets[i].actual_gpu_id);
2223 if (!dev) {
2224 pr_err("Failed to find device with gpu_id = %x\n",
2225 device_buckets[i].actual_gpu_id);
2226 ret = -EINVAL;
2227 goto exit;
2228 }
2229
2230 pdd = kfd_get_process_device_data(dev, p);
2231 if (!pdd) {
2232 pr_err("Failed to get pdd for gpu_id = %x\n",
2233 device_buckets[i].actual_gpu_id);
2234 ret = -EINVAL;
2235 goto exit;
2236 }
2237 pdd->user_gpu_id = device_buckets[i].user_gpu_id;
2238
2239 drm_file = fget(fd: device_buckets[i].drm_fd);
2240 if (!drm_file) {
2241 pr_err("Invalid render node file descriptor sent from plugin (%d)\n",
2242 device_buckets[i].drm_fd);
2243 ret = -EINVAL;
2244 goto exit;
2245 }
2246
2247 if (pdd->drm_file) {
2248 ret = -EINVAL;
2249 goto exit;
2250 }
2251
2252 /* create the vm using render nodes for kfd pdd */
2253 if (kfd_process_device_init_vm(pdd, drm_file)) {
2254 pr_err("could not init vm for given pdd\n");
2255 /* On success, the PDD keeps the drm_file reference */
2256 fput(drm_file);
2257 ret = -EINVAL;
2258 goto exit;
2259 }
2260 /*
2261 * pdd now already has the vm bound to render node so below api won't create a new
2262 * exclusive kfd mapping but use existing one with renderDXXX but is still needed
2263 * for iommu v2 binding and runtime pm.
2264 */
2265 pdd = kfd_bind_process_to_device(dev, p);
2266 if (IS_ERR(ptr: pdd)) {
2267 ret = PTR_ERR(ptr: pdd);
2268 goto exit;
2269 }
2270
2271 if (!pdd->qpd.proc_doorbells) {
2272 ret = kfd_alloc_process_doorbells(kfd: dev->kfd, pdd);
2273 if (ret)
2274 goto exit;
2275 }
2276 }
2277
2278 /*
2279 * We are not copying device private data from user as we are not using the data for now,
2280 * but we still adjust for its private data.
2281 */
2282 *priv_offset += args->num_devices * sizeof(*device_privs);
2283
2284exit:
2285 kfree(objp: device_buckets);
2286 return ret;
2287}
2288
2289static int criu_restore_memory_of_gpu(struct kfd_process_device *pdd,
2290 struct kfd_criu_bo_bucket *bo_bucket,
2291 struct kfd_criu_bo_priv_data *bo_priv,
2292 struct kgd_mem **kgd_mem)
2293{
2294 int idr_handle;
2295 int ret;
2296 const bool criu_resume = true;
2297 u64 offset;
2298
2299 if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) {
2300 if (bo_bucket->size !=
2301 kfd_doorbell_process_slice(kfd: pdd->dev->kfd))
2302 return -EINVAL;
2303
2304 offset = kfd_get_process_doorbells(pdd);
2305 if (!offset)
2306 return -ENOMEM;
2307 } else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) {
2308 /* MMIO BOs need remapped bus address */
2309 if (bo_bucket->size != PAGE_SIZE) {
2310 pr_err("Invalid page size\n");
2311 return -EINVAL;
2312 }
2313 offset = pdd->dev->adev->rmmio_remap.bus_addr;
2314 if (!offset) {
2315 pr_err("amdgpu_amdkfd_get_mmio_remap_phys_addr failed\n");
2316 return -ENOMEM;
2317 }
2318 } else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) {
2319 offset = bo_priv->user_addr;
2320 }
2321 /* Create the BO */
2322 ret = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(adev: pdd->dev->adev, va: bo_bucket->addr,
2323 size: bo_bucket->size, drm_priv: pdd->drm_priv, mem: kgd_mem,
2324 offset: &offset, flags: bo_bucket->alloc_flags, criu_resume);
2325 if (ret) {
2326 pr_err("Could not create the BO\n");
2327 return ret;
2328 }
2329 pr_debug("New BO created: size:0x%llx addr:0x%llx offset:0x%llx\n",
2330 bo_bucket->size, bo_bucket->addr, offset);
2331
2332 /* Restore previous IDR handle */
2333 pr_debug("Restoring old IDR handle for the BO");
2334 idr_handle = idr_alloc(&pdd->alloc_idr, ptr: *kgd_mem, start: bo_priv->idr_handle,
2335 end: bo_priv->idr_handle + 1, GFP_KERNEL);
2336
2337 if (idr_handle < 0) {
2338 pr_err("Could not allocate idr\n");
2339 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(adev: pdd->dev->adev, mem: *kgd_mem, drm_priv: pdd->drm_priv,
2340 NULL);
2341 return -ENOMEM;
2342 }
2343
2344 if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL)
2345 bo_bucket->restored_offset = KFD_MMAP_TYPE_DOORBELL | KFD_MMAP_GPU_ID(pdd->dev->id);
2346 if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) {
2347 bo_bucket->restored_offset = KFD_MMAP_TYPE_MMIO | KFD_MMAP_GPU_ID(pdd->dev->id);
2348 } else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_GTT) {
2349 bo_bucket->restored_offset = offset;
2350 } else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) {
2351 bo_bucket->restored_offset = offset;
2352 /* Update the VRAM usage count */
2353 WRITE_ONCE(pdd->vram_usage, pdd->vram_usage + bo_bucket->size);
2354 }
2355 return 0;
2356}
2357
2358static int criu_restore_bo(struct kfd_process *p,
2359 struct kfd_criu_bo_bucket *bo_bucket,
2360 struct kfd_criu_bo_priv_data *bo_priv)
2361{
2362 struct kfd_process_device *pdd;
2363 struct kgd_mem *kgd_mem;
2364 int ret;
2365 int j;
2366
2367 pr_debug("Restoring BO size:0x%llx addr:0x%llx gpu_id:0x%x flags:0x%x idr_handle:0x%x\n",
2368 bo_bucket->size, bo_bucket->addr, bo_bucket->gpu_id, bo_bucket->alloc_flags,
2369 bo_priv->idr_handle);
2370
2371 pdd = kfd_process_device_data_by_id(process: p, gpu_id: bo_bucket->gpu_id);
2372 if (!pdd) {
2373 pr_err("Failed to get pdd\n");
2374 return -ENODEV;
2375 }
2376
2377 ret = criu_restore_memory_of_gpu(pdd, bo_bucket, bo_priv, kgd_mem: &kgd_mem);
2378 if (ret)
2379 return ret;
2380
2381 /* now map these BOs to GPU/s */
2382 for (j = 0; j < p->n_pdds; j++) {
2383 struct kfd_node *peer;
2384 struct kfd_process_device *peer_pdd;
2385
2386 if (!bo_priv->mapped_gpuids[j])
2387 break;
2388
2389 peer_pdd = kfd_process_device_data_by_id(process: p, gpu_id: bo_priv->mapped_gpuids[j]);
2390 if (!peer_pdd)
2391 return -EINVAL;
2392
2393 peer = peer_pdd->dev;
2394
2395 peer_pdd = kfd_bind_process_to_device(dev: peer, p);
2396 if (IS_ERR(ptr: peer_pdd))
2397 return PTR_ERR(ptr: peer_pdd);
2398
2399 ret = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(adev: peer->adev, mem: kgd_mem,
2400 drm_priv: peer_pdd->drm_priv);
2401 if (ret) {
2402 pr_err("Failed to map to gpu %d/%d\n", j, p->n_pdds);
2403 return ret;
2404 }
2405 }
2406
2407 pr_debug("map memory was successful for the BO\n");
2408 /* create the dmabuf object and export the bo */
2409 if (bo_bucket->alloc_flags
2410 & (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT)) {
2411 ret = criu_get_prime_handle(mem: kgd_mem, DRM_RDWR,
2412 shared_fd: &bo_bucket->dmabuf_fd);
2413 if (ret)
2414 return ret;
2415 } else {
2416 bo_bucket->dmabuf_fd = KFD_INVALID_FD;
2417 }
2418
2419 return 0;
2420}
2421
2422static int criu_restore_bos(struct kfd_process *p,
2423 struct kfd_ioctl_criu_args *args,
2424 uint64_t *priv_offset,
2425 uint64_t max_priv_data_size)
2426{
2427 struct kfd_criu_bo_bucket *bo_buckets = NULL;
2428 struct kfd_criu_bo_priv_data *bo_privs = NULL;
2429 int ret = 0;
2430 uint32_t i = 0;
2431
2432 if (*priv_offset + (args->num_bos * sizeof(*bo_privs)) > max_priv_data_size)
2433 return -EINVAL;
2434
2435 /* Prevent MMU notifications until stage-4 IOCTL (CRIU_RESUME) is received */
2436 amdgpu_amdkfd_block_mmu_notifications(p: p->kgd_process_info);
2437
2438 bo_buckets = kvmalloc_array(n: args->num_bos, size: sizeof(*bo_buckets), GFP_KERNEL);
2439 if (!bo_buckets)
2440 return -ENOMEM;
2441
2442 ret = copy_from_user(to: bo_buckets, from: (void __user *)args->bos,
2443 n: args->num_bos * sizeof(*bo_buckets));
2444 if (ret) {
2445 pr_err("Failed to copy BOs information from user\n");
2446 ret = -EFAULT;
2447 goto exit;
2448 }
2449
2450 bo_privs = kvmalloc_array(n: args->num_bos, size: sizeof(*bo_privs), GFP_KERNEL);
2451 if (!bo_privs) {
2452 ret = -ENOMEM;
2453 goto exit;
2454 }
2455
2456 ret = copy_from_user(to: bo_privs, from: (void __user *)args->priv_data + *priv_offset,
2457 n: args->num_bos * sizeof(*bo_privs));
2458 if (ret) {
2459 pr_err("Failed to copy BOs information from user\n");
2460 ret = -EFAULT;
2461 goto exit;
2462 }
2463 *priv_offset += args->num_bos * sizeof(*bo_privs);
2464
2465 /* Create and map new BOs */
2466 for (; i < args->num_bos; i++) {
2467 ret = criu_restore_bo(p, bo_bucket: &bo_buckets[i], bo_priv: &bo_privs[i]);
2468 if (ret) {
2469 pr_debug("Failed to restore BO[%d] ret%d\n", i, ret);
2470 goto exit;
2471 }
2472 } /* done */
2473
2474 /* Copy only the buckets back so user can read bo_buckets[N].restored_offset */
2475 ret = copy_to_user(to: (void __user *)args->bos,
2476 from: bo_buckets,
2477 n: (args->num_bos * sizeof(*bo_buckets)));
2478 if (ret)
2479 ret = -EFAULT;
2480
2481exit:
2482 while (ret && i--) {
2483 if (bo_buckets[i].alloc_flags
2484 & (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT))
2485 close_fd(fd: bo_buckets[i].dmabuf_fd);
2486 }
2487 kvfree(addr: bo_buckets);
2488 kvfree(addr: bo_privs);
2489 return ret;
2490}
2491
2492static int criu_restore_objects(struct file *filep,
2493 struct kfd_process *p,
2494 struct kfd_ioctl_criu_args *args,
2495 uint64_t *priv_offset,
2496 uint64_t max_priv_data_size)
2497{
2498 int ret = 0;
2499 uint32_t i;
2500
2501 BUILD_BUG_ON(offsetof(struct kfd_criu_queue_priv_data, object_type));
2502 BUILD_BUG_ON(offsetof(struct kfd_criu_event_priv_data, object_type));
2503 BUILD_BUG_ON(offsetof(struct kfd_criu_svm_range_priv_data, object_type));
2504
2505 for (i = 0; i < args->num_objects; i++) {
2506 uint32_t object_type;
2507
2508 if (*priv_offset + sizeof(object_type) > max_priv_data_size) {
2509 pr_err("Invalid private data size\n");
2510 return -EINVAL;
2511 }
2512
2513 ret = get_user(object_type, (uint32_t __user *)(args->priv_data + *priv_offset));
2514 if (ret) {
2515 pr_err("Failed to copy private information from user\n");
2516 goto exit;
2517 }
2518
2519 switch (object_type) {
2520 case KFD_CRIU_OBJECT_TYPE_QUEUE:
2521 ret = kfd_criu_restore_queue(p, user_priv_data: (uint8_t __user *)args->priv_data,
2522 priv_data_offset: priv_offset, max_priv_data_size);
2523 if (ret)
2524 goto exit;
2525 break;
2526 case KFD_CRIU_OBJECT_TYPE_EVENT:
2527 ret = kfd_criu_restore_event(devkfd: filep, p, user_priv_data: (uint8_t __user *)args->priv_data,
2528 priv_data_offset: priv_offset, max_priv_data_size);
2529 if (ret)
2530 goto exit;
2531 break;
2532 case KFD_CRIU_OBJECT_TYPE_SVM_RANGE:
2533 ret = kfd_criu_restore_svm(p, user_priv_ptr: (uint8_t __user *)args->priv_data,
2534 priv_data_offset: priv_offset, max_priv_data_size);
2535 if (ret)
2536 goto exit;
2537 break;
2538 default:
2539 pr_err("Invalid object type:%u at index:%d\n", object_type, i);
2540 ret = -EINVAL;
2541 goto exit;
2542 }
2543 }
2544exit:
2545 return ret;
2546}
2547
2548static int criu_restore(struct file *filep,
2549 struct kfd_process *p,
2550 struct kfd_ioctl_criu_args *args)
2551{
2552 uint64_t priv_offset = 0;
2553 int ret = 0;
2554
2555 pr_debug("CRIU restore (num_devices:%u num_bos:%u num_objects:%u priv_data_size:%llu)\n",
2556 args->num_devices, args->num_bos, args->num_objects, args->priv_data_size);
2557
2558 if (!args->bos || !args->devices || !args->priv_data || !args->priv_data_size ||
2559 !args->num_devices || !args->num_bos)
2560 return -EINVAL;
2561
2562 mutex_lock(&p->mutex);
2563
2564 /*
2565 * Set the process to evicted state to avoid running any new queues before all the memory
2566 * mappings are ready.
2567 */
2568 ret = kfd_process_evict_queues(p, trigger: KFD_QUEUE_EVICTION_CRIU_RESTORE);
2569 if (ret)
2570 goto exit_unlock;
2571
2572 /* Each function will adjust priv_offset based on how many bytes they consumed */
2573 ret = criu_restore_process(p, args, priv_offset: &priv_offset, max_priv_data_size: args->priv_data_size);
2574 if (ret)
2575 goto exit_unlock;
2576
2577 ret = criu_restore_devices(p, args, priv_offset: &priv_offset, max_priv_data_size: args->priv_data_size);
2578 if (ret)
2579 goto exit_unlock;
2580
2581 ret = criu_restore_bos(p, args, priv_offset: &priv_offset, max_priv_data_size: args->priv_data_size);
2582 if (ret)
2583 goto exit_unlock;
2584
2585 ret = criu_restore_objects(filep, p, args, priv_offset: &priv_offset, max_priv_data_size: args->priv_data_size);
2586 if (ret)
2587 goto exit_unlock;
2588
2589 if (priv_offset != args->priv_data_size) {
2590 pr_err("Invalid private data size\n");
2591 ret = -EINVAL;
2592 }
2593
2594exit_unlock:
2595 mutex_unlock(lock: &p->mutex);
2596 if (ret)
2597 pr_err("Failed to restore CRIU ret:%d\n", ret);
2598 else
2599 pr_debug("CRIU restore successful\n");
2600
2601 return ret;
2602}
2603
2604static int criu_unpause(struct file *filep,
2605 struct kfd_process *p,
2606 struct kfd_ioctl_criu_args *args)
2607{
2608 int ret;
2609
2610 mutex_lock(&p->mutex);
2611
2612 if (!p->queues_paused) {
2613 mutex_unlock(lock: &p->mutex);
2614 return -EINVAL;
2615 }
2616
2617 ret = kfd_process_restore_queues(p);
2618 if (ret)
2619 pr_err("Failed to unpause queues ret:%d\n", ret);
2620 else
2621 p->queues_paused = false;
2622
2623 mutex_unlock(lock: &p->mutex);
2624
2625 return ret;
2626}
2627
2628static int criu_resume(struct file *filep,
2629 struct kfd_process *p,
2630 struct kfd_ioctl_criu_args *args)
2631{
2632 struct kfd_process *target = NULL;
2633 struct pid *pid = NULL;
2634 int ret = 0;
2635
2636 pr_debug("Inside %s, target pid for criu restore: %d\n", __func__,
2637 args->pid);
2638
2639 pid = find_get_pid(nr: args->pid);
2640 if (!pid) {
2641 pr_err("Cannot find pid info for %i\n", args->pid);
2642 return -ESRCH;
2643 }
2644
2645 pr_debug("calling kfd_lookup_process_by_pid\n");
2646 target = kfd_lookup_process_by_pid(pid);
2647
2648 put_pid(pid);
2649
2650 if (!target) {
2651 pr_debug("Cannot find process info for %i\n", args->pid);
2652 return -ESRCH;
2653 }
2654
2655 mutex_lock(&target->mutex);
2656 ret = kfd_criu_resume_svm(p: target);
2657 if (ret) {
2658 pr_err("kfd_criu_resume_svm failed for %i\n", args->pid);
2659 goto exit;
2660 }
2661
2662 ret = amdgpu_amdkfd_criu_resume(p: target->kgd_process_info);
2663 if (ret)
2664 pr_err("amdgpu_amdkfd_criu_resume failed for %i\n", args->pid);
2665
2666exit:
2667 mutex_unlock(lock: &target->mutex);
2668
2669 kfd_unref_process(p: target);
2670 return ret;
2671}
2672
2673static int criu_process_info(struct file *filep,
2674 struct kfd_process *p,
2675 struct kfd_ioctl_criu_args *args)
2676{
2677 int ret = 0;
2678
2679 mutex_lock(&p->mutex);
2680
2681 if (!p->n_pdds) {
2682 pr_err("No pdd for given process\n");
2683 ret = -ENODEV;
2684 goto err_unlock;
2685 }
2686
2687 ret = kfd_process_evict_queues(p, trigger: KFD_QUEUE_EVICTION_CRIU_CHECKPOINT);
2688 if (ret)
2689 goto err_unlock;
2690
2691 p->queues_paused = true;
2692
2693 args->pid = task_pid_nr_ns(tsk: p->lead_thread,
2694 ns: task_active_pid_ns(tsk: p->lead_thread));
2695
2696 ret = criu_get_process_object_info(p, num_devices: &args->num_devices, num_bos: &args->num_bos,
2697 num_objects: &args->num_objects, objs_priv_size: &args->priv_data_size);
2698 if (ret)
2699 goto err_unlock;
2700
2701 dev_dbg(kfd_device, "Num of devices:%u bos:%u objects:%u priv_data_size:%lld\n",
2702 args->num_devices, args->num_bos, args->num_objects,
2703 args->priv_data_size);
2704
2705err_unlock:
2706 if (ret) {
2707 kfd_process_restore_queues(p);
2708 p->queues_paused = false;
2709 }
2710 mutex_unlock(lock: &p->mutex);
2711 return ret;
2712}
2713
2714static int kfd_ioctl_criu(struct file *filep, struct kfd_process *p, void *data)
2715{
2716 struct kfd_ioctl_criu_args *args = data;
2717 int ret;
2718
2719 dev_dbg(kfd_device, "CRIU operation: %d\n", args->op);
2720 switch (args->op) {
2721 case KFD_CRIU_OP_PROCESS_INFO:
2722 ret = criu_process_info(filep, p, args);
2723 break;
2724 case KFD_CRIU_OP_CHECKPOINT:
2725 ret = criu_checkpoint(filep, p, args);
2726 break;
2727 case KFD_CRIU_OP_UNPAUSE:
2728 ret = criu_unpause(filep, p, args);
2729 break;
2730 case KFD_CRIU_OP_RESTORE:
2731 ret = criu_restore(filep, p, args);
2732 break;
2733 case KFD_CRIU_OP_RESUME:
2734 ret = criu_resume(filep, p, args);
2735 break;
2736 default:
2737 dev_dbg(kfd_device, "Unsupported CRIU operation:%d\n", args->op);
2738 ret = -EINVAL;
2739 break;
2740 }
2741
2742 if (ret)
2743 dev_dbg(kfd_device, "CRIU operation:%d err:%d\n", args->op, ret);
2744
2745 return ret;
2746}
2747
2748static int runtime_enable(struct kfd_process *p, uint64_t r_debug,
2749 bool enable_ttmp_setup)
2750{
2751 int i = 0, ret = 0;
2752
2753 if (p->is_runtime_retry)
2754 goto retry;
2755
2756 if (p->runtime_info.runtime_state != DEBUG_RUNTIME_STATE_DISABLED)
2757 return -EBUSY;
2758
2759 for (i = 0; i < p->n_pdds; i++) {
2760 struct kfd_process_device *pdd = p->pdds[i];
2761
2762 if (pdd->qpd.queue_count)
2763 return -EEXIST;
2764
2765 /*
2766 * Setup TTMPs by default.
2767 * Note that this call must remain here for MES ADD QUEUE to
2768 * skip_process_ctx_clear unconditionally as the first call to
2769 * SET_SHADER_DEBUGGER clears any stale process context data
2770 * saved in MES.
2771 */
2772 if (pdd->dev->kfd->shared_resources.enable_mes)
2773 kfd_dbg_set_mes_debug_mode(pdd, sq_trap_en: !kfd_dbg_has_cwsr_workaround(dev: pdd->dev));
2774 }
2775
2776 p->runtime_info.runtime_state = DEBUG_RUNTIME_STATE_ENABLED;
2777 p->runtime_info.r_debug = r_debug;
2778 p->runtime_info.ttmp_setup = enable_ttmp_setup;
2779
2780 if (p->runtime_info.ttmp_setup) {
2781 for (i = 0; i < p->n_pdds; i++) {
2782 struct kfd_process_device *pdd = p->pdds[i];
2783
2784 if (!kfd_dbg_is_rlc_restore_supported(dev: pdd->dev)) {
2785 amdgpu_gfx_off_ctrl(adev: pdd->dev->adev, enable: false);
2786 pdd->dev->kfd2kgd->enable_debug_trap(
2787 pdd->dev->adev,
2788 true,
2789 pdd->dev->vm_info.last_vmid_kfd);
2790 } else if (kfd_dbg_is_per_vmid_supported(dev: pdd->dev)) {
2791 pdd->spi_dbg_override = pdd->dev->kfd2kgd->enable_debug_trap(
2792 pdd->dev->adev,
2793 false,
2794 0);
2795 }
2796 }
2797 }
2798
2799retry:
2800 if (p->debug_trap_enabled) {
2801 if (!p->is_runtime_retry) {
2802 kfd_dbg_trap_activate(target: p);
2803 kfd_dbg_ev_raise(KFD_EC_MASK(EC_PROCESS_RUNTIME),
2804 process: p, NULL, source_id: 0, use_worker: false, NULL, exception_data_size: 0);
2805 }
2806
2807 mutex_unlock(lock: &p->mutex);
2808 ret = down_interruptible(sem: &p->runtime_enable_sema);
2809 mutex_lock(&p->mutex);
2810
2811 p->is_runtime_retry = !!ret;
2812 }
2813
2814 return ret;
2815}
2816
2817static int runtime_disable(struct kfd_process *p)
2818{
2819 int i = 0, ret;
2820 bool was_enabled = p->runtime_info.runtime_state == DEBUG_RUNTIME_STATE_ENABLED;
2821
2822 p->runtime_info.runtime_state = DEBUG_RUNTIME_STATE_DISABLED;
2823 p->runtime_info.r_debug = 0;
2824
2825 if (p->debug_trap_enabled) {
2826 if (was_enabled)
2827 kfd_dbg_trap_deactivate(target: p, unwind: false, unwind_count: 0);
2828
2829 if (!p->is_runtime_retry)
2830 kfd_dbg_ev_raise(KFD_EC_MASK(EC_PROCESS_RUNTIME),
2831 process: p, NULL, source_id: 0, use_worker: false, NULL, exception_data_size: 0);
2832
2833 mutex_unlock(lock: &p->mutex);
2834 ret = down_interruptible(sem: &p->runtime_enable_sema);
2835 mutex_lock(&p->mutex);
2836
2837 p->is_runtime_retry = !!ret;
2838 if (ret)
2839 return ret;
2840 }
2841
2842 if (was_enabled && p->runtime_info.ttmp_setup) {
2843 for (i = 0; i < p->n_pdds; i++) {
2844 struct kfd_process_device *pdd = p->pdds[i];
2845
2846 if (!kfd_dbg_is_rlc_restore_supported(dev: pdd->dev))
2847 amdgpu_gfx_off_ctrl(adev: pdd->dev->adev, enable: true);
2848 }
2849 }
2850
2851 p->runtime_info.ttmp_setup = false;
2852
2853 /* disable ttmp setup */
2854 for (i = 0; i < p->n_pdds; i++) {
2855 struct kfd_process_device *pdd = p->pdds[i];
2856
2857 if (kfd_dbg_is_per_vmid_supported(dev: pdd->dev)) {
2858 pdd->spi_dbg_override =
2859 pdd->dev->kfd2kgd->disable_debug_trap(
2860 pdd->dev->adev,
2861 false,
2862 pdd->dev->vm_info.last_vmid_kfd);
2863
2864 if (!pdd->dev->kfd->shared_resources.enable_mes)
2865 debug_refresh_runlist(dqm: pdd->dev->dqm);
2866 else
2867 kfd_dbg_set_mes_debug_mode(pdd,
2868 sq_trap_en: !kfd_dbg_has_cwsr_workaround(dev: pdd->dev));
2869 }
2870 }
2871
2872 return 0;
2873}
2874
2875static int kfd_ioctl_runtime_enable(struct file *filep, struct kfd_process *p, void *data)
2876{
2877 struct kfd_ioctl_runtime_enable_args *args = data;
2878 int r;
2879
2880 mutex_lock(&p->mutex);
2881
2882 if (args->mode_mask & KFD_RUNTIME_ENABLE_MODE_ENABLE_MASK)
2883 r = runtime_enable(p, r_debug: args->r_debug,
2884 enable_ttmp_setup: !!(args->mode_mask & KFD_RUNTIME_ENABLE_MODE_TTMP_SAVE_MASK));
2885 else
2886 r = runtime_disable(p);
2887
2888 mutex_unlock(lock: &p->mutex);
2889
2890 return r;
2891}
2892
2893static int kfd_ioctl_set_debug_trap(struct file *filep, struct kfd_process *p, void *data)
2894{
2895 struct kfd_ioctl_dbg_trap_args *args = data;
2896 struct task_struct *thread = NULL;
2897 struct mm_struct *mm = NULL;
2898 struct pid *pid = NULL;
2899 struct kfd_process *target = NULL;
2900 struct kfd_process_device *pdd = NULL;
2901 int r = 0;
2902
2903 if (sched_policy == KFD_SCHED_POLICY_NO_HWS) {
2904 pr_err("Debugging does not support sched_policy %i", sched_policy);
2905 return -EINVAL;
2906 }
2907
2908 pid = find_get_pid(nr: args->pid);
2909 if (!pid) {
2910 pr_debug("Cannot find pid info for %i\n", args->pid);
2911 r = -ESRCH;
2912 goto out;
2913 }
2914
2915 thread = get_pid_task(pid, PIDTYPE_PID);
2916 if (!thread) {
2917 r = -ESRCH;
2918 goto out;
2919 }
2920
2921 mm = get_task_mm(task: thread);
2922 if (!mm) {
2923 r = -ESRCH;
2924 goto out;
2925 }
2926
2927 if (args->op == KFD_IOC_DBG_TRAP_ENABLE) {
2928 bool create_process;
2929
2930 rcu_read_lock();
2931 create_process = thread && thread != current && ptrace_parent(task: thread) == current;
2932 rcu_read_unlock();
2933
2934 target = create_process ? kfd_create_process(thread) :
2935 kfd_lookup_process_by_pid(pid);
2936 } else {
2937 target = kfd_lookup_process_by_pid(pid);
2938 }
2939
2940 if (IS_ERR_OR_NULL(ptr: target)) {
2941 pr_debug("Cannot find process PID %i to debug\n", args->pid);
2942 r = target ? PTR_ERR(ptr: target) : -ESRCH;
2943 goto out;
2944 }
2945
2946 /* Check if target is still PTRACED. */
2947 rcu_read_lock();
2948 if (target != p && args->op != KFD_IOC_DBG_TRAP_DISABLE
2949 && ptrace_parent(task: target->lead_thread) != current) {
2950 pr_err("PID %i is not PTRACED and cannot be debugged\n", args->pid);
2951 r = -EPERM;
2952 }
2953 rcu_read_unlock();
2954
2955 if (r)
2956 goto out;
2957
2958 mutex_lock(&target->mutex);
2959
2960 if (args->op != KFD_IOC_DBG_TRAP_ENABLE && !target->debug_trap_enabled) {
2961 pr_err("PID %i not debug enabled for op %i\n", args->pid, args->op);
2962 r = -EINVAL;
2963 goto unlock_out;
2964 }
2965
2966 if (target->runtime_info.runtime_state != DEBUG_RUNTIME_STATE_ENABLED &&
2967 (args->op == KFD_IOC_DBG_TRAP_SET_WAVE_LAUNCH_OVERRIDE ||
2968 args->op == KFD_IOC_DBG_TRAP_SET_WAVE_LAUNCH_MODE ||
2969 args->op == KFD_IOC_DBG_TRAP_SUSPEND_QUEUES ||
2970 args->op == KFD_IOC_DBG_TRAP_RESUME_QUEUES ||
2971 args->op == KFD_IOC_DBG_TRAP_SET_NODE_ADDRESS_WATCH ||
2972 args->op == KFD_IOC_DBG_TRAP_CLEAR_NODE_ADDRESS_WATCH ||
2973 args->op == KFD_IOC_DBG_TRAP_SET_FLAGS)) {
2974 r = -EPERM;
2975 goto unlock_out;
2976 }
2977
2978 if (args->op == KFD_IOC_DBG_TRAP_SET_NODE_ADDRESS_WATCH ||
2979 args->op == KFD_IOC_DBG_TRAP_CLEAR_NODE_ADDRESS_WATCH) {
2980 int user_gpu_id = kfd_process_get_user_gpu_id(p: target,
2981 actual_gpu_id: args->op == KFD_IOC_DBG_TRAP_SET_NODE_ADDRESS_WATCH ?
2982 args->set_node_address_watch.gpu_id :
2983 args->clear_node_address_watch.gpu_id);
2984
2985 pdd = kfd_process_device_data_by_id(process: target, gpu_id: user_gpu_id);
2986 if (user_gpu_id == -EINVAL || !pdd) {
2987 r = -ENODEV;
2988 goto unlock_out;
2989 }
2990 }
2991
2992 switch (args->op) {
2993 case KFD_IOC_DBG_TRAP_ENABLE:
2994 if (target != p)
2995 target->debugger_process = p;
2996
2997 r = kfd_dbg_trap_enable(target,
2998 fd: args->enable.dbg_fd,
2999 runtime_info: (void __user *)args->enable.rinfo_ptr,
3000 runtime_info_size: &args->enable.rinfo_size);
3001 if (!r)
3002 target->exception_enable_mask = args->enable.exception_mask;
3003
3004 break;
3005 case KFD_IOC_DBG_TRAP_DISABLE:
3006 r = kfd_dbg_trap_disable(target);
3007 break;
3008 case KFD_IOC_DBG_TRAP_SEND_RUNTIME_EVENT:
3009 r = kfd_dbg_send_exception_to_runtime(p: target,
3010 dev_id: args->send_runtime_event.gpu_id,
3011 queue_id: args->send_runtime_event.queue_id,
3012 error_reason: args->send_runtime_event.exception_mask);
3013 break;
3014 case KFD_IOC_DBG_TRAP_SET_EXCEPTIONS_ENABLED:
3015 kfd_dbg_set_enabled_debug_exception_mask(target,
3016 exception_set_mask: args->set_exceptions_enabled.exception_mask);
3017 break;
3018 case KFD_IOC_DBG_TRAP_SET_WAVE_LAUNCH_OVERRIDE:
3019 r = kfd_dbg_trap_set_wave_launch_override(target,
3020 trap_override: args->launch_override.override_mode,
3021 trap_mask_bits: args->launch_override.enable_mask,
3022 trap_mask_request: args->launch_override.support_request_mask,
3023 trap_mask_prev: &args->launch_override.enable_mask,
3024 trap_mask_supported: &args->launch_override.support_request_mask);
3025 break;
3026 case KFD_IOC_DBG_TRAP_SET_WAVE_LAUNCH_MODE:
3027 r = kfd_dbg_trap_set_wave_launch_mode(target,
3028 wave_launch_mode: args->launch_mode.launch_mode);
3029 break;
3030 case KFD_IOC_DBG_TRAP_SUSPEND_QUEUES:
3031 r = suspend_queues(p: target,
3032 num_queues: args->suspend_queues.num_queues,
3033 grace_period: args->suspend_queues.grace_period,
3034 exception_clear_mask: args->suspend_queues.exception_mask,
3035 usr_queue_id_array: (uint32_t *)args->suspend_queues.queue_array_ptr);
3036
3037 break;
3038 case KFD_IOC_DBG_TRAP_RESUME_QUEUES:
3039 r = resume_queues(p: target, num_queues: args->resume_queues.num_queues,
3040 usr_queue_id_array: (uint32_t *)args->resume_queues.queue_array_ptr);
3041 break;
3042 case KFD_IOC_DBG_TRAP_SET_NODE_ADDRESS_WATCH:
3043 r = kfd_dbg_trap_set_dev_address_watch(pdd,
3044 watch_address: args->set_node_address_watch.address,
3045 watch_address_mask: args->set_node_address_watch.mask,
3046 watch_id: &args->set_node_address_watch.id,
3047 watch_mode: args->set_node_address_watch.mode);
3048 break;
3049 case KFD_IOC_DBG_TRAP_CLEAR_NODE_ADDRESS_WATCH:
3050 r = kfd_dbg_trap_clear_dev_address_watch(pdd,
3051 watch_id: args->clear_node_address_watch.id);
3052 break;
3053 case KFD_IOC_DBG_TRAP_SET_FLAGS:
3054 r = kfd_dbg_trap_set_flags(target, flags: &args->set_flags.flags);
3055 break;
3056 case KFD_IOC_DBG_TRAP_QUERY_DEBUG_EVENT:
3057 r = kfd_dbg_ev_query_debug_event(process: target,
3058 queue_id: &args->query_debug_event.queue_id,
3059 gpu_id: &args->query_debug_event.gpu_id,
3060 exception_clear_mask: args->query_debug_event.exception_mask,
3061 event_status: &args->query_debug_event.exception_mask);
3062 break;
3063 case KFD_IOC_DBG_TRAP_QUERY_EXCEPTION_INFO:
3064 r = kfd_dbg_trap_query_exception_info(target,
3065 source_id: args->query_exception_info.source_id,
3066 exception_code: args->query_exception_info.exception_code,
3067 clear_exception: args->query_exception_info.clear_exception,
3068 info: (void __user *)args->query_exception_info.info_ptr,
3069 info_size: &args->query_exception_info.info_size);
3070 break;
3071 case KFD_IOC_DBG_TRAP_GET_QUEUE_SNAPSHOT:
3072 r = pqm_get_queue_snapshot(pqm: &target->pqm,
3073 exception_clear_mask: args->queue_snapshot.exception_mask,
3074 buf: (void __user *)args->queue_snapshot.snapshot_buf_ptr,
3075 num_qss_entries: &args->queue_snapshot.num_queues,
3076 entry_size: &args->queue_snapshot.entry_size);
3077 break;
3078 case KFD_IOC_DBG_TRAP_GET_DEVICE_SNAPSHOT:
3079 r = kfd_dbg_trap_device_snapshot(target,
3080 exception_clear_mask: args->device_snapshot.exception_mask,
3081 user_info: (void __user *)args->device_snapshot.snapshot_buf_ptr,
3082 number_of_device_infos: &args->device_snapshot.num_devices,
3083 entry_size: &args->device_snapshot.entry_size);
3084 break;
3085 default:
3086 pr_err("Invalid option: %i\n", args->op);
3087 r = -EINVAL;
3088 }
3089
3090unlock_out:
3091 mutex_unlock(lock: &target->mutex);
3092
3093out:
3094 if (thread)
3095 put_task_struct(t: thread);
3096
3097 if (mm)
3098 mmput(mm);
3099
3100 if (pid)
3101 put_pid(pid);
3102
3103 if (target)
3104 kfd_unref_process(p: target);
3105
3106 return r;
3107}
3108
3109#define AMDKFD_IOCTL_DEF(ioctl, _func, _flags) \
3110 [_IOC_NR(ioctl)] = {.cmd = ioctl, .func = _func, .flags = _flags, \
3111 .cmd_drv = 0, .name = #ioctl}
3112
3113/** Ioctl table */
3114static const struct amdkfd_ioctl_desc amdkfd_ioctls[] = {
3115 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_VERSION,
3116 kfd_ioctl_get_version, 0),
3117
3118 AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_QUEUE,
3119 kfd_ioctl_create_queue, 0),
3120
3121 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_QUEUE,
3122 kfd_ioctl_destroy_queue, 0),
3123
3124 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_MEMORY_POLICY,
3125 kfd_ioctl_set_memory_policy, 0),
3126
3127 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_CLOCK_COUNTERS,
3128 kfd_ioctl_get_clock_counters, 0),
3129
3130 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_PROCESS_APERTURES,
3131 kfd_ioctl_get_process_apertures, 0),
3132
3133 AMDKFD_IOCTL_DEF(AMDKFD_IOC_UPDATE_QUEUE,
3134 kfd_ioctl_update_queue, 0),
3135
3136 AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_EVENT,
3137 kfd_ioctl_create_event, 0),
3138
3139 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_EVENT,
3140 kfd_ioctl_destroy_event, 0),
3141
3142 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_EVENT,
3143 kfd_ioctl_set_event, 0),
3144
3145 AMDKFD_IOCTL_DEF(AMDKFD_IOC_RESET_EVENT,
3146 kfd_ioctl_reset_event, 0),
3147
3148 AMDKFD_IOCTL_DEF(AMDKFD_IOC_WAIT_EVENTS,
3149 kfd_ioctl_wait_events, 0),
3150
3151 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_REGISTER_DEPRECATED,
3152 kfd_ioctl_dbg_register, 0),
3153
3154 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_UNREGISTER_DEPRECATED,
3155 kfd_ioctl_dbg_unregister, 0),
3156
3157 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_ADDRESS_WATCH_DEPRECATED,
3158 kfd_ioctl_dbg_address_watch, 0),
3159
3160 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_WAVE_CONTROL_DEPRECATED,
3161 kfd_ioctl_dbg_wave_control, 0),
3162
3163 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_SCRATCH_BACKING_VA,
3164 kfd_ioctl_set_scratch_backing_va, 0),
3165
3166 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_TILE_CONFIG,
3167 kfd_ioctl_get_tile_config, 0),
3168
3169 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_TRAP_HANDLER,
3170 kfd_ioctl_set_trap_handler, 0),
3171
3172 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_PROCESS_APERTURES_NEW,
3173 kfd_ioctl_get_process_apertures_new, 0),
3174
3175 AMDKFD_IOCTL_DEF(AMDKFD_IOC_ACQUIRE_VM,
3176 kfd_ioctl_acquire_vm, 0),
3177
3178 AMDKFD_IOCTL_DEF(AMDKFD_IOC_ALLOC_MEMORY_OF_GPU,
3179 kfd_ioctl_alloc_memory_of_gpu, 0),
3180
3181 AMDKFD_IOCTL_DEF(AMDKFD_IOC_FREE_MEMORY_OF_GPU,
3182 kfd_ioctl_free_memory_of_gpu, 0),
3183
3184 AMDKFD_IOCTL_DEF(AMDKFD_IOC_MAP_MEMORY_TO_GPU,
3185 kfd_ioctl_map_memory_to_gpu, 0),
3186
3187 AMDKFD_IOCTL_DEF(AMDKFD_IOC_UNMAP_MEMORY_FROM_GPU,
3188 kfd_ioctl_unmap_memory_from_gpu, 0),
3189
3190 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_CU_MASK,
3191 kfd_ioctl_set_cu_mask, 0),
3192
3193 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_QUEUE_WAVE_STATE,
3194 kfd_ioctl_get_queue_wave_state, 0),
3195
3196 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_DMABUF_INFO,
3197 kfd_ioctl_get_dmabuf_info, 0),
3198
3199 AMDKFD_IOCTL_DEF(AMDKFD_IOC_IMPORT_DMABUF,
3200 kfd_ioctl_import_dmabuf, 0),
3201
3202 AMDKFD_IOCTL_DEF(AMDKFD_IOC_ALLOC_QUEUE_GWS,
3203 kfd_ioctl_alloc_queue_gws, 0),
3204
3205 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SMI_EVENTS,
3206 kfd_ioctl_smi_events, 0),
3207
3208 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SVM, kfd_ioctl_svm, 0),
3209
3210 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_XNACK_MODE,
3211 kfd_ioctl_set_xnack_mode, 0),
3212
3213 AMDKFD_IOCTL_DEF(AMDKFD_IOC_CRIU_OP,
3214 kfd_ioctl_criu, KFD_IOC_FLAG_CHECKPOINT_RESTORE),
3215
3216 AMDKFD_IOCTL_DEF(AMDKFD_IOC_AVAILABLE_MEMORY,
3217 kfd_ioctl_get_available_memory, 0),
3218
3219 AMDKFD_IOCTL_DEF(AMDKFD_IOC_EXPORT_DMABUF,
3220 kfd_ioctl_export_dmabuf, 0),
3221
3222 AMDKFD_IOCTL_DEF(AMDKFD_IOC_RUNTIME_ENABLE,
3223 kfd_ioctl_runtime_enable, 0),
3224
3225 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_TRAP,
3226 kfd_ioctl_set_debug_trap, 0),
3227};
3228
3229#define AMDKFD_CORE_IOCTL_COUNT ARRAY_SIZE(amdkfd_ioctls)
3230
3231static long kfd_ioctl(struct file *filep, unsigned int cmd, unsigned long arg)
3232{
3233 struct kfd_process *process;
3234 amdkfd_ioctl_t *func;
3235 const struct amdkfd_ioctl_desc *ioctl = NULL;
3236 unsigned int nr = _IOC_NR(cmd);
3237 char stack_kdata[128];
3238 char *kdata = NULL;
3239 unsigned int usize, asize;
3240 int retcode = -EINVAL;
3241 bool ptrace_attached = false;
3242
3243 if (nr >= AMDKFD_CORE_IOCTL_COUNT)
3244 goto err_i1;
3245
3246 if ((nr >= AMDKFD_COMMAND_START) && (nr < AMDKFD_COMMAND_END)) {
3247 u32 amdkfd_size;
3248
3249 ioctl = &amdkfd_ioctls[nr];
3250
3251 amdkfd_size = _IOC_SIZE(ioctl->cmd);
3252 usize = asize = _IOC_SIZE(cmd);
3253 if (amdkfd_size > asize)
3254 asize = amdkfd_size;
3255
3256 cmd = ioctl->cmd;
3257 } else
3258 goto err_i1;
3259
3260 dev_dbg(kfd_device, "ioctl cmd 0x%x (#0x%x), arg 0x%lx\n", cmd, nr, arg);
3261
3262 /* Get the process struct from the filep. Only the process
3263 * that opened /dev/kfd can use the file descriptor. Child
3264 * processes need to create their own KFD device context.
3265 */
3266 process = filep->private_data;
3267
3268 rcu_read_lock();
3269 if ((ioctl->flags & KFD_IOC_FLAG_CHECKPOINT_RESTORE) &&
3270 ptrace_parent(task: process->lead_thread) == current)
3271 ptrace_attached = true;
3272 rcu_read_unlock();
3273
3274 if (process->lead_thread != current->group_leader
3275 && !ptrace_attached) {
3276 dev_dbg(kfd_device, "Using KFD FD in wrong process\n");
3277 retcode = -EBADF;
3278 goto err_i1;
3279 }
3280
3281 /* Do not trust userspace, use our own definition */
3282 func = ioctl->func;
3283
3284 if (unlikely(!func)) {
3285 dev_dbg(kfd_device, "no function\n");
3286 retcode = -EINVAL;
3287 goto err_i1;
3288 }
3289
3290 /*
3291 * Versions of docker shipped in Ubuntu 18.xx and 20.xx do not support
3292 * CAP_CHECKPOINT_RESTORE, so we also allow access if CAP_SYS_ADMIN as CAP_SYS_ADMIN is a
3293 * more priviledged access.
3294 */
3295 if (unlikely(ioctl->flags & KFD_IOC_FLAG_CHECKPOINT_RESTORE)) {
3296 if (!capable(CAP_CHECKPOINT_RESTORE) &&
3297 !capable(CAP_SYS_ADMIN)) {
3298 retcode = -EACCES;
3299 goto err_i1;
3300 }
3301 }
3302
3303 if (cmd & (IOC_IN | IOC_OUT)) {
3304 if (asize <= sizeof(stack_kdata)) {
3305 kdata = stack_kdata;
3306 } else {
3307 kdata = kmalloc(size: asize, GFP_KERNEL);
3308 if (!kdata) {
3309 retcode = -ENOMEM;
3310 goto err_i1;
3311 }
3312 }
3313 if (asize > usize)
3314 memset(kdata + usize, 0, asize - usize);
3315 }
3316
3317 if (cmd & IOC_IN) {
3318 if (copy_from_user(to: kdata, from: (void __user *)arg, n: usize) != 0) {
3319 retcode = -EFAULT;
3320 goto err_i1;
3321 }
3322 } else if (cmd & IOC_OUT) {
3323 memset(kdata, 0, usize);
3324 }
3325
3326 retcode = func(filep, process, kdata);
3327
3328 if (cmd & IOC_OUT)
3329 if (copy_to_user(to: (void __user *)arg, from: kdata, n: usize) != 0)
3330 retcode = -EFAULT;
3331
3332err_i1:
3333 if (!ioctl)
3334 dev_dbg(kfd_device, "invalid ioctl: pid=%d, cmd=0x%02x, nr=0x%02x\n",
3335 task_pid_nr(current), cmd, nr);
3336
3337 if (kdata != stack_kdata)
3338 kfree(objp: kdata);
3339
3340 if (retcode)
3341 dev_dbg(kfd_device, "ioctl cmd (#0x%x), arg 0x%lx, ret = %d\n",
3342 nr, arg, retcode);
3343
3344 return retcode;
3345}
3346
3347static int kfd_mmio_mmap(struct kfd_node *dev, struct kfd_process *process,
3348 struct vm_area_struct *vma)
3349{
3350 phys_addr_t address;
3351
3352 if (vma->vm_end - vma->vm_start != PAGE_SIZE)
3353 return -EINVAL;
3354
3355 address = dev->adev->rmmio_remap.bus_addr;
3356
3357 vm_flags_set(vma, VM_IO | VM_DONTCOPY | VM_DONTEXPAND | VM_NORESERVE |
3358 VM_DONTDUMP | VM_PFNMAP);
3359
3360 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
3361
3362 pr_debug("pasid 0x%x mapping mmio page\n"
3363 " target user address == 0x%08llX\n"
3364 " physical address == 0x%08llX\n"
3365 " vm_flags == 0x%04lX\n"
3366 " size == 0x%04lX\n",
3367 process->pasid, (unsigned long long) vma->vm_start,
3368 address, vma->vm_flags, PAGE_SIZE);
3369
3370 return io_remap_pfn_range(vma,
3371 addr: vma->vm_start,
3372 pfn: address >> PAGE_SHIFT,
3373 PAGE_SIZE,
3374 prot: vma->vm_page_prot);
3375}
3376
3377
3378static int kfd_mmap(struct file *filp, struct vm_area_struct *vma)
3379{
3380 struct kfd_process *process;
3381 struct kfd_node *dev = NULL;
3382 unsigned long mmap_offset;
3383 unsigned int gpu_id;
3384
3385 process = kfd_get_process(current);
3386 if (IS_ERR(ptr: process))
3387 return PTR_ERR(ptr: process);
3388
3389 mmap_offset = vma->vm_pgoff << PAGE_SHIFT;
3390 gpu_id = KFD_MMAP_GET_GPU_ID(mmap_offset);
3391 if (gpu_id)
3392 dev = kfd_device_by_id(gpu_id);
3393
3394 switch (mmap_offset & KFD_MMAP_TYPE_MASK) {
3395 case KFD_MMAP_TYPE_DOORBELL:
3396 if (!dev)
3397 return -ENODEV;
3398 return kfd_doorbell_mmap(dev, process, vma);
3399
3400 case KFD_MMAP_TYPE_EVENTS:
3401 return kfd_event_mmap(process, vma);
3402
3403 case KFD_MMAP_TYPE_RESERVED_MEM:
3404 if (!dev)
3405 return -ENODEV;
3406 return kfd_reserved_mem_mmap(dev, process, vma);
3407 case KFD_MMAP_TYPE_MMIO:
3408 if (!dev)
3409 return -ENODEV;
3410 return kfd_mmio_mmap(dev, process, vma);
3411 }
3412
3413 return -EFAULT;
3414}
3415

source code of linux/drivers/gpu/drm/amd/amdkfd/kfd_chardev.c