1 | /* |
2 | * Copyright 2015 Advanced Micro Devices, Inc. |
3 | * |
4 | * Permission is hereby granted, free of charge, to any person obtaining a |
5 | * copy of this software and associated documentation files (the "Software"), |
6 | * to deal in the Software without restriction, including without limitation |
7 | * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
8 | * and/or sell copies of the Software, and to permit persons to whom the |
9 | * Software is furnished to do so, subject to the following conditions: |
10 | * |
11 | * The above copyright notice and this permission notice shall be included in |
12 | * all copies or substantial portions of the Software. |
13 | * |
14 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
15 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
16 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
17 | * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR |
18 | * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, |
19 | * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |
20 | * OTHER DEALINGS IN THE SOFTWARE. |
21 | * |
22 | */ |
23 | |
24 | #include "pp_debug.h" |
25 | #include "smumgr.h" |
26 | #include "smu7_dyn_defaults.h" |
27 | #include "smu73.h" |
28 | #include "smu_ucode_xfer_vi.h" |
29 | #include "fiji_smumgr.h" |
30 | #include "fiji_ppsmc.h" |
31 | #include "smu73_discrete.h" |
32 | #include "ppatomctrl.h" |
33 | #include "smu/smu_7_1_3_d.h" |
34 | #include "smu/smu_7_1_3_sh_mask.h" |
35 | #include "gmc/gmc_8_1_d.h" |
36 | #include "gmc/gmc_8_1_sh_mask.h" |
37 | #include "oss/oss_3_0_d.h" |
38 | #include "gca/gfx_8_0_d.h" |
39 | #include "bif/bif_5_0_d.h" |
40 | #include "bif/bif_5_0_sh_mask.h" |
41 | #include "dce/dce_10_0_d.h" |
42 | #include "dce/dce_10_0_sh_mask.h" |
43 | #include "hardwaremanager.h" |
44 | #include "cgs_common.h" |
45 | #include "atombios.h" |
46 | #include "pppcielanes.h" |
47 | #include "hwmgr.h" |
48 | #include "smu7_hwmgr.h" |
49 | |
50 | |
51 | #define AVFS_EN_MSB 1568 |
52 | #define AVFS_EN_LSB 1568 |
53 | |
54 | #define FIJI_SMC_SIZE 0x20000 |
55 | |
56 | #define POWERTUNE_DEFAULT_SET_MAX 1 |
57 | #define VDDC_VDDCI_DELTA 300 |
58 | #define MC_CG_ARB_FREQ_F1 0x0b |
59 | |
60 | /* [2.5%,~2.5%] Clock stretched is multiple of 2.5% vs |
61 | * not and [Fmin, Fmax, LDO_REFSEL, USE_FOR_LOW_FREQ] |
62 | */ |
63 | static const uint16_t fiji_clock_stretcher_lookup_table[2][4] = { |
64 | {600, 1050, 3, 0}, {600, 1050, 6, 1} }; |
65 | |
66 | /* [FF, SS] type, [] 4 voltage ranges, and |
67 | * [Floor Freq, Boundary Freq, VID min , VID max] |
68 | */ |
69 | static const uint32_t fiji_clock_stretcher_ddt_table[2][4][4] = { |
70 | { {265, 529, 120, 128}, {325, 650, 96, 119}, {430, 860, 32, 95}, {0, 0, 0, 31} }, |
71 | { {275, 550, 104, 112}, {319, 638, 96, 103}, {360, 720, 64, 95}, {384, 768, 32, 63} } }; |
72 | |
73 | /* [Use_For_Low_freq] value, [0%, 5%, 10%, 7.14%, 14.28%, 20%] |
74 | * (coming from PWR_CKS_CNTL.stretch_amount reg spec) |
75 | */ |
76 | static const uint8_t fiji_clock_stretch_amount_conversion[2][6] = { |
77 | {0, 1, 3, 2, 4, 5}, {0, 2, 4, 5, 6, 5} }; |
78 | |
79 | static const struct fiji_pt_defaults fiji_power_tune_data_set_array[POWERTUNE_DEFAULT_SET_MAX] = { |
80 | /*sviLoadLIneEn, SviLoadLineVddC, TDC_VDDC_ThrottleReleaseLimitPerc */ |
81 | {1, 0xF, 0xFD, |
82 | /* TDC_MAWt, TdcWaterfallCtl, DTEAmbientTempBase */ |
83 | 0x19, 5, 45} |
84 | }; |
85 | |
86 | static const struct SMU73_Discrete_GraphicsLevel avfs_graphics_level[8] = { |
87 | /* Min Sclk pcie DeepSleep Activity CgSpll CgSpll spllSpread SpllSpread CcPwr CcPwr Sclk Display Enabled Enabled Voltage Power */ |
88 | /* Voltage, Frequency, DpmLevel, DivId, Level, FuncCntl3, FuncCntl4, Spectrum, Spectrum2, DynRm, DynRm1 Did, Watermark, ForActivity, ForThrottle, UpHyst, DownHyst, DownHyst, Throttle */ |
89 | { 0x3c0fd047, 0x30750000, 0x00, 0x03, 0x1e00, 0x00200410, 0x87020000, 0x21680000, 0x0c000000, 0, 0, 0x16, 0x00, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00 }, |
90 | { 0xa00fd047, 0x409c0000, 0x01, 0x04, 0x1e00, 0x00800510, 0x87020000, 0x21680000, 0x11000000, 0, 0, 0x16, 0x00, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00 }, |
91 | { 0x0410d047, 0x50c30000, 0x01, 0x00, 0x1e00, 0x00600410, 0x87020000, 0x21680000, 0x0d000000, 0, 0, 0x0e, 0x00, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00 }, |
92 | { 0x6810d047, 0x60ea0000, 0x01, 0x00, 0x1e00, 0x00800410, 0x87020000, 0x21680000, 0x0e000000, 0, 0, 0x0c, 0x00, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00 }, |
93 | { 0xcc10d047, 0xe8fd0000, 0x01, 0x00, 0x1e00, 0x00e00410, 0x87020000, 0x21680000, 0x0f000000, 0, 0, 0x0c, 0x00, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00 }, |
94 | { 0x3011d047, 0x70110100, 0x01, 0x00, 0x1e00, 0x00400510, 0x87020000, 0x21680000, 0x10000000, 0, 0, 0x0c, 0x00, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00 }, |
95 | { 0x9411d047, 0xf8240100, 0x01, 0x00, 0x1e00, 0x00a00510, 0x87020000, 0x21680000, 0x11000000, 0, 0, 0x0c, 0x00, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00 }, |
96 | { 0xf811d047, 0x80380100, 0x01, 0x00, 0x1e00, 0x00000610, 0x87020000, 0x21680000, 0x12000000, 0, 0, 0x0c, 0x01, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00 } |
97 | }; |
98 | |
99 | static int fiji_start_smu_in_protection_mode(struct pp_hwmgr *hwmgr) |
100 | { |
101 | int result = 0; |
102 | |
103 | /* Wait for smc boot up */ |
104 | /* PHM_WAIT_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND, |
105 | RCU_UC_EVENTS, boot_seq_done, 0); */ |
106 | |
107 | PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, |
108 | SMC_SYSCON_RESET_CNTL, rst_reg, 1); |
109 | |
110 | result = smu7_upload_smu_firmware_image(hwmgr); |
111 | if (result) |
112 | return result; |
113 | |
114 | /* Clear status */ |
115 | cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
116 | ixSMU_STATUS, 0); |
117 | |
118 | PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, |
119 | SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0); |
120 | |
121 | /* De-assert reset */ |
122 | PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, |
123 | SMC_SYSCON_RESET_CNTL, rst_reg, 0); |
124 | |
125 | /* Wait for ROM firmware to initialize interrupt hendler */ |
126 | /*SMUM_WAIT_VFPF_INDIRECT_REGISTER(hwmgr, SMC_IND, |
127 | SMC_INTR_CNTL_MASK_0, 0x10040, 0xFFFFFFFF); */ |
128 | |
129 | /* Set SMU Auto Start */ |
130 | PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, |
131 | SMU_INPUT_DATA, AUTO_START, 1); |
132 | |
133 | /* Clear firmware interrupt enable flag */ |
134 | cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
135 | ixFIRMWARE_FLAGS, 0); |
136 | |
137 | PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND, RCU_UC_EVENTS, |
138 | INTERRUPTS_ENABLED, 1); |
139 | |
140 | cgs_write_register(hwmgr->device, mmSMC_MSG_ARG_0, 0x20000); |
141 | cgs_write_register(hwmgr->device, mmSMC_MESSAGE_0, PPSMC_MSG_Test); |
142 | PHM_WAIT_FIELD_UNEQUAL(hwmgr, SMC_RESP_0, SMC_RESP, 0); |
143 | |
144 | /* Wait for done bit to be set */ |
145 | PHM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND, |
146 | SMU_STATUS, SMU_DONE, 0); |
147 | |
148 | /* Check pass/failed indicator */ |
149 | if (PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, |
150 | SMU_STATUS, SMU_PASS) != 1) { |
151 | PP_ASSERT_WITH_CODE(false, |
152 | "SMU Firmware start failed!" , return -1); |
153 | } |
154 | |
155 | /* Wait for firmware to initialize */ |
156 | PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND, |
157 | FIRMWARE_FLAGS, INTERRUPTS_ENABLED, 1); |
158 | |
159 | return result; |
160 | } |
161 | |
162 | static int fiji_start_smu_in_non_protection_mode(struct pp_hwmgr *hwmgr) |
163 | { |
164 | int result = 0; |
165 | |
166 | /* wait for smc boot up */ |
167 | PHM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND, |
168 | RCU_UC_EVENTS, boot_seq_done, 0); |
169 | |
170 | /* Clear firmware interrupt enable flag */ |
171 | cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
172 | ixFIRMWARE_FLAGS, 0); |
173 | |
174 | /* Assert reset */ |
175 | PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, |
176 | SMC_SYSCON_RESET_CNTL, rst_reg, 1); |
177 | |
178 | result = smu7_upload_smu_firmware_image(hwmgr); |
179 | if (result) |
180 | return result; |
181 | |
182 | /* Set smc instruct start point at 0x0 */ |
183 | smu7_program_jump_on_start(hwmgr); |
184 | |
185 | /* Enable clock */ |
186 | PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, |
187 | SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0); |
188 | |
189 | /* De-assert reset */ |
190 | PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, |
191 | SMC_SYSCON_RESET_CNTL, rst_reg, 0); |
192 | |
193 | /* Wait for firmware to initialize */ |
194 | PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND, |
195 | FIRMWARE_FLAGS, INTERRUPTS_ENABLED, 1); |
196 | |
197 | return result; |
198 | } |
199 | |
200 | static int fiji_start_avfs_btc(struct pp_hwmgr *hwmgr) |
201 | { |
202 | int result = 0; |
203 | struct smu7_smumgr *smu_data = (struct smu7_smumgr *)(hwmgr->smu_backend); |
204 | |
205 | if (0 != smu_data->avfs_btc_param) { |
206 | if (0 != smu7_send_msg_to_smc_with_parameter(hwmgr, |
207 | PPSMC_MSG_PerformBtc, smu_data->avfs_btc_param)) { |
208 | pr_info("[AVFS][Fiji_PerformBtc] PerformBTC SMU msg failed" ); |
209 | result = -EINVAL; |
210 | } |
211 | } |
212 | /* Soft-Reset to reset the engine before loading uCode */ |
213 | /* halt */ |
214 | cgs_write_register(hwmgr->device, mmCP_MEC_CNTL, 0x50000000); |
215 | /* reset everything */ |
216 | cgs_write_register(hwmgr->device, mmGRBM_SOFT_RESET, 0xffffffff); |
217 | /* clear reset */ |
218 | cgs_write_register(hwmgr->device, mmGRBM_SOFT_RESET, 0); |
219 | |
220 | return result; |
221 | } |
222 | |
223 | static int fiji_setup_graphics_level_structure(struct pp_hwmgr *hwmgr) |
224 | { |
225 | int32_t vr_config; |
226 | uint32_t table_start; |
227 | uint32_t level_addr, vr_config_addr; |
228 | uint32_t level_size = sizeof(avfs_graphics_level); |
229 | |
230 | PP_ASSERT_WITH_CODE(0 == smu7_read_smc_sram_dword(hwmgr, |
231 | SMU7_FIRMWARE_HEADER_LOCATION + |
232 | offsetof(SMU73_Firmware_Header, DpmTable), |
233 | &table_start, 0x40000), |
234 | "[AVFS][Fiji_SetupGfxLvlStruct] SMU could not " |
235 | "communicate starting address of DPM table" , |
236 | return -1;); |
237 | |
238 | /* Default value for vr_config = |
239 | * VR_MERGED_WITH_VDDC + VR_STATIC_VOLTAGE(VDDCI) */ |
240 | vr_config = 0x01000500; /* Real value:0x50001 */ |
241 | |
242 | vr_config_addr = table_start + |
243 | offsetof(SMU73_Discrete_DpmTable, VRConfig); |
244 | |
245 | PP_ASSERT_WITH_CODE(0 == smu7_copy_bytes_to_smc(hwmgr, vr_config_addr, |
246 | (uint8_t *)&vr_config, sizeof(int32_t), 0x40000), |
247 | "[AVFS][Fiji_SetupGfxLvlStruct] Problems copying " |
248 | "vr_config value over to SMC" , |
249 | return -1;); |
250 | |
251 | level_addr = table_start + offsetof(SMU73_Discrete_DpmTable, GraphicsLevel); |
252 | |
253 | PP_ASSERT_WITH_CODE(0 == smu7_copy_bytes_to_smc(hwmgr, level_addr, |
254 | (uint8_t *)(&avfs_graphics_level), level_size, 0x40000), |
255 | "[AVFS][Fiji_SetupGfxLvlStruct] Copying of DPM table failed!" , |
256 | return -1;); |
257 | |
258 | return 0; |
259 | } |
260 | |
261 | static int fiji_avfs_event_mgr(struct pp_hwmgr *hwmgr) |
262 | { |
263 | if (!hwmgr->avfs_supported) |
264 | return 0; |
265 | |
266 | PP_ASSERT_WITH_CODE(0 == fiji_setup_graphics_level_structure(hwmgr), |
267 | "[AVFS][fiji_avfs_event_mgr] Could not Copy Graphics Level" |
268 | " table over to SMU" , |
269 | return -EINVAL); |
270 | PP_ASSERT_WITH_CODE(0 == smu7_setup_pwr_virus(hwmgr), |
271 | "[AVFS][fiji_avfs_event_mgr] Could not setup " |
272 | "Pwr Virus for AVFS " , |
273 | return -EINVAL); |
274 | PP_ASSERT_WITH_CODE(0 == fiji_start_avfs_btc(hwmgr), |
275 | "[AVFS][fiji_avfs_event_mgr] Failure at " |
276 | "fiji_start_avfs_btc. AVFS Disabled" , |
277 | return -EINVAL); |
278 | |
279 | return 0; |
280 | } |
281 | |
282 | static int fiji_start_smu(struct pp_hwmgr *hwmgr) |
283 | { |
284 | int result = 0; |
285 | struct fiji_smumgr *priv = (struct fiji_smumgr *)(hwmgr->smu_backend); |
286 | |
287 | /* Only start SMC if SMC RAM is not running */ |
288 | if (!smu7_is_smc_ram_running(hwmgr) && hwmgr->not_vf) { |
289 | /* Check if SMU is running in protected mode */ |
290 | if (0 == PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, |
291 | CGS_IND_REG__SMC, |
292 | SMU_FIRMWARE, SMU_MODE)) { |
293 | result = fiji_start_smu_in_non_protection_mode(hwmgr); |
294 | if (result) |
295 | return result; |
296 | } else { |
297 | result = fiji_start_smu_in_protection_mode(hwmgr); |
298 | if (result) |
299 | return result; |
300 | } |
301 | if (fiji_avfs_event_mgr(hwmgr)) |
302 | hwmgr->avfs_supported = false; |
303 | } |
304 | |
305 | /* Setup SoftRegsStart here for register lookup in case |
306 | * DummyBackEnd is used and ProcessFirmwareHeader is not executed |
307 | */ |
308 | smu7_read_smc_sram_dword(hwmgr, |
309 | SMU7_FIRMWARE_HEADER_LOCATION + |
310 | offsetof(SMU73_Firmware_Header, SoftRegisters), |
311 | &(priv->smu7_data.soft_regs_start), 0x40000); |
312 | |
313 | result = smu7_request_smu_load_fw(hwmgr); |
314 | |
315 | return result; |
316 | } |
317 | |
318 | static bool fiji_is_hw_avfs_present(struct pp_hwmgr *hwmgr) |
319 | { |
320 | |
321 | uint32_t efuse = 0; |
322 | uint32_t mask = (1 << ((AVFS_EN_MSB - AVFS_EN_LSB) + 1)) - 1; |
323 | |
324 | if (!hwmgr->not_vf) |
325 | return false; |
326 | |
327 | if (!atomctrl_read_efuse(hwmgr, AVFS_EN_LSB, AVFS_EN_MSB, |
328 | mask, &efuse)) { |
329 | if (efuse) |
330 | return true; |
331 | } |
332 | return false; |
333 | } |
334 | |
335 | static int fiji_smu_init(struct pp_hwmgr *hwmgr) |
336 | { |
337 | struct fiji_smumgr *fiji_priv = NULL; |
338 | |
339 | fiji_priv = kzalloc(sizeof(struct fiji_smumgr), GFP_KERNEL); |
340 | |
341 | if (fiji_priv == NULL) |
342 | return -ENOMEM; |
343 | |
344 | hwmgr->smu_backend = fiji_priv; |
345 | |
346 | if (smu7_init(hwmgr)) { |
347 | kfree(fiji_priv); |
348 | return -EINVAL; |
349 | } |
350 | |
351 | return 0; |
352 | } |
353 | |
354 | static int fiji_get_dependency_volt_by_clk(struct pp_hwmgr *hwmgr, |
355 | struct phm_ppt_v1_clock_voltage_dependency_table *dep_table, |
356 | uint32_t clock, uint32_t *voltage, uint32_t *mvdd) |
357 | { |
358 | uint32_t i; |
359 | uint16_t vddci; |
360 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
361 | *voltage = *mvdd = 0; |
362 | |
363 | |
364 | /* clock - voltage dependency table is empty table */ |
365 | if (dep_table->count == 0) |
366 | return -EINVAL; |
367 | |
368 | for (i = 0; i < dep_table->count; i++) { |
369 | /* find first sclk bigger than request */ |
370 | if (dep_table->entries[i].clk >= clock) { |
371 | *voltage |= (dep_table->entries[i].vddc * |
372 | VOLTAGE_SCALE) << VDDC_SHIFT; |
373 | if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control) |
374 | *voltage |= (data->vbios_boot_state.vddci_bootup_value * |
375 | VOLTAGE_SCALE) << VDDCI_SHIFT; |
376 | else if (dep_table->entries[i].vddci) |
377 | *voltage |= (dep_table->entries[i].vddci * |
378 | VOLTAGE_SCALE) << VDDCI_SHIFT; |
379 | else { |
380 | vddci = phm_find_closest_vddci(&(data->vddci_voltage_table), |
381 | (dep_table->entries[i].vddc - |
382 | VDDC_VDDCI_DELTA)); |
383 | *voltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT; |
384 | } |
385 | |
386 | if (SMU7_VOLTAGE_CONTROL_NONE == data->mvdd_control) |
387 | *mvdd = data->vbios_boot_state.mvdd_bootup_value * |
388 | VOLTAGE_SCALE; |
389 | else if (dep_table->entries[i].mvdd) |
390 | *mvdd = (uint32_t) dep_table->entries[i].mvdd * |
391 | VOLTAGE_SCALE; |
392 | |
393 | *voltage |= 1 << PHASES_SHIFT; |
394 | return 0; |
395 | } |
396 | } |
397 | |
398 | /* sclk is bigger than max sclk in the dependence table */ |
399 | *voltage |= (dep_table->entries[i - 1].vddc * VOLTAGE_SCALE) << VDDC_SHIFT; |
400 | |
401 | if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control) |
402 | *voltage |= (data->vbios_boot_state.vddci_bootup_value * |
403 | VOLTAGE_SCALE) << VDDCI_SHIFT; |
404 | else if (dep_table->entries[i-1].vddci) { |
405 | vddci = phm_find_closest_vddci(&(data->vddci_voltage_table), |
406 | (dep_table->entries[i].vddc - |
407 | VDDC_VDDCI_DELTA)); |
408 | *voltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT; |
409 | } |
410 | |
411 | if (SMU7_VOLTAGE_CONTROL_NONE == data->mvdd_control) |
412 | *mvdd = data->vbios_boot_state.mvdd_bootup_value * VOLTAGE_SCALE; |
413 | else if (dep_table->entries[i].mvdd) |
414 | *mvdd = (uint32_t) dep_table->entries[i - 1].mvdd * VOLTAGE_SCALE; |
415 | |
416 | return 0; |
417 | } |
418 | |
419 | |
420 | static uint16_t scale_fan_gain_settings(uint16_t raw_setting) |
421 | { |
422 | uint32_t tmp; |
423 | tmp = raw_setting * 4096 / 100; |
424 | return (uint16_t)tmp; |
425 | } |
426 | |
427 | static void get_scl_sda_value(uint8_t line, uint8_t *scl, uint8_t *sda) |
428 | { |
429 | switch (line) { |
430 | case SMU7_I2CLineID_DDC1: |
431 | *scl = SMU7_I2C_DDC1CLK; |
432 | *sda = SMU7_I2C_DDC1DATA; |
433 | break; |
434 | case SMU7_I2CLineID_DDC2: |
435 | *scl = SMU7_I2C_DDC2CLK; |
436 | *sda = SMU7_I2C_DDC2DATA; |
437 | break; |
438 | case SMU7_I2CLineID_DDC3: |
439 | *scl = SMU7_I2C_DDC3CLK; |
440 | *sda = SMU7_I2C_DDC3DATA; |
441 | break; |
442 | case SMU7_I2CLineID_DDC4: |
443 | *scl = SMU7_I2C_DDC4CLK; |
444 | *sda = SMU7_I2C_DDC4DATA; |
445 | break; |
446 | case SMU7_I2CLineID_DDC5: |
447 | *scl = SMU7_I2C_DDC5CLK; |
448 | *sda = SMU7_I2C_DDC5DATA; |
449 | break; |
450 | case SMU7_I2CLineID_DDC6: |
451 | *scl = SMU7_I2C_DDC6CLK; |
452 | *sda = SMU7_I2C_DDC6DATA; |
453 | break; |
454 | case SMU7_I2CLineID_SCLSDA: |
455 | *scl = SMU7_I2C_SCL; |
456 | *sda = SMU7_I2C_SDA; |
457 | break; |
458 | case SMU7_I2CLineID_DDCVGA: |
459 | *scl = SMU7_I2C_DDCVGACLK; |
460 | *sda = SMU7_I2C_DDCVGADATA; |
461 | break; |
462 | default: |
463 | *scl = 0; |
464 | *sda = 0; |
465 | break; |
466 | } |
467 | } |
468 | |
469 | static void fiji_initialize_power_tune_defaults(struct pp_hwmgr *hwmgr) |
470 | { |
471 | struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend); |
472 | struct phm_ppt_v1_information *table_info = |
473 | (struct phm_ppt_v1_information *)(hwmgr->pptable); |
474 | |
475 | if (table_info && |
476 | table_info->cac_dtp_table->usPowerTuneDataSetID <= POWERTUNE_DEFAULT_SET_MAX && |
477 | table_info->cac_dtp_table->usPowerTuneDataSetID) |
478 | smu_data->power_tune_defaults = |
479 | &fiji_power_tune_data_set_array |
480 | [table_info->cac_dtp_table->usPowerTuneDataSetID - 1]; |
481 | else |
482 | smu_data->power_tune_defaults = &fiji_power_tune_data_set_array[0]; |
483 | |
484 | } |
485 | |
486 | static int fiji_populate_bapm_parameters_in_dpm_table(struct pp_hwmgr *hwmgr) |
487 | { |
488 | |
489 | struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend); |
490 | const struct fiji_pt_defaults *defaults = smu_data->power_tune_defaults; |
491 | |
492 | SMU73_Discrete_DpmTable *dpm_table = &(smu_data->smc_state_table); |
493 | |
494 | struct phm_ppt_v1_information *table_info = |
495 | (struct phm_ppt_v1_information *)(hwmgr->pptable); |
496 | struct phm_cac_tdp_table *cac_dtp_table = table_info->cac_dtp_table; |
497 | struct pp_advance_fan_control_parameters *fan_table = |
498 | &hwmgr->thermal_controller.advanceFanControlParameters; |
499 | uint8_t uc_scl, uc_sda; |
500 | |
501 | /* TDP number of fraction bits are changed from 8 to 7 for Fiji |
502 | * as requested by SMC team |
503 | */ |
504 | dpm_table->DefaultTdp = PP_HOST_TO_SMC_US( |
505 | (uint16_t)(cac_dtp_table->usTDP * 128)); |
506 | dpm_table->TargetTdp = PP_HOST_TO_SMC_US( |
507 | (uint16_t)(cac_dtp_table->usTDP * 128)); |
508 | |
509 | PP_ASSERT_WITH_CODE(cac_dtp_table->usTargetOperatingTemp <= 255, |
510 | "Target Operating Temp is out of Range!" , |
511 | ); |
512 | |
513 | dpm_table->GpuTjMax = (uint8_t)(cac_dtp_table->usTargetOperatingTemp); |
514 | dpm_table->GpuTjHyst = 8; |
515 | |
516 | dpm_table->DTEAmbientTempBase = defaults->DTEAmbientTempBase; |
517 | |
518 | /* The following are for new Fiji Multi-input fan/thermal control */ |
519 | dpm_table->TemperatureLimitEdge = PP_HOST_TO_SMC_US( |
520 | cac_dtp_table->usTargetOperatingTemp * 256); |
521 | dpm_table->TemperatureLimitHotspot = PP_HOST_TO_SMC_US( |
522 | cac_dtp_table->usTemperatureLimitHotspot * 256); |
523 | dpm_table->TemperatureLimitLiquid1 = PP_HOST_TO_SMC_US( |
524 | cac_dtp_table->usTemperatureLimitLiquid1 * 256); |
525 | dpm_table->TemperatureLimitLiquid2 = PP_HOST_TO_SMC_US( |
526 | cac_dtp_table->usTemperatureLimitLiquid2 * 256); |
527 | dpm_table->TemperatureLimitVrVddc = PP_HOST_TO_SMC_US( |
528 | cac_dtp_table->usTemperatureLimitVrVddc * 256); |
529 | dpm_table->TemperatureLimitVrMvdd = PP_HOST_TO_SMC_US( |
530 | cac_dtp_table->usTemperatureLimitVrMvdd * 256); |
531 | dpm_table->TemperatureLimitPlx = PP_HOST_TO_SMC_US( |
532 | cac_dtp_table->usTemperatureLimitPlx * 256); |
533 | |
534 | dpm_table->FanGainEdge = PP_HOST_TO_SMC_US( |
535 | scale_fan_gain_settings(fan_table->usFanGainEdge)); |
536 | dpm_table->FanGainHotspot = PP_HOST_TO_SMC_US( |
537 | scale_fan_gain_settings(fan_table->usFanGainHotspot)); |
538 | dpm_table->FanGainLiquid = PP_HOST_TO_SMC_US( |
539 | scale_fan_gain_settings(fan_table->usFanGainLiquid)); |
540 | dpm_table->FanGainVrVddc = PP_HOST_TO_SMC_US( |
541 | scale_fan_gain_settings(fan_table->usFanGainVrVddc)); |
542 | dpm_table->FanGainVrMvdd = PP_HOST_TO_SMC_US( |
543 | scale_fan_gain_settings(fan_table->usFanGainVrMvdd)); |
544 | dpm_table->FanGainPlx = PP_HOST_TO_SMC_US( |
545 | scale_fan_gain_settings(fan_table->usFanGainPlx)); |
546 | dpm_table->FanGainHbm = PP_HOST_TO_SMC_US( |
547 | scale_fan_gain_settings(fan_table->usFanGainHbm)); |
548 | |
549 | dpm_table->Liquid1_I2C_address = cac_dtp_table->ucLiquid1_I2C_address; |
550 | dpm_table->Liquid2_I2C_address = cac_dtp_table->ucLiquid2_I2C_address; |
551 | dpm_table->Vr_I2C_address = cac_dtp_table->ucVr_I2C_address; |
552 | dpm_table->Plx_I2C_address = cac_dtp_table->ucPlx_I2C_address; |
553 | |
554 | get_scl_sda_value(cac_dtp_table->ucLiquid_I2C_Line, &uc_scl, &uc_sda); |
555 | dpm_table->Liquid_I2C_LineSCL = uc_scl; |
556 | dpm_table->Liquid_I2C_LineSDA = uc_sda; |
557 | |
558 | get_scl_sda_value(cac_dtp_table->ucVr_I2C_Line, &uc_scl, &uc_sda); |
559 | dpm_table->Vr_I2C_LineSCL = uc_scl; |
560 | dpm_table->Vr_I2C_LineSDA = uc_sda; |
561 | |
562 | get_scl_sda_value(cac_dtp_table->ucPlx_I2C_Line, &uc_scl, &uc_sda); |
563 | dpm_table->Plx_I2C_LineSCL = uc_scl; |
564 | dpm_table->Plx_I2C_LineSDA = uc_sda; |
565 | |
566 | return 0; |
567 | } |
568 | |
569 | |
570 | static int fiji_populate_svi_load_line(struct pp_hwmgr *hwmgr) |
571 | { |
572 | struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend); |
573 | const struct fiji_pt_defaults *defaults = smu_data->power_tune_defaults; |
574 | |
575 | smu_data->power_tune_table.SviLoadLineEn = defaults->SviLoadLineEn; |
576 | smu_data->power_tune_table.SviLoadLineVddC = defaults->SviLoadLineVddC; |
577 | smu_data->power_tune_table.SviLoadLineTrimVddC = 3; |
578 | smu_data->power_tune_table.SviLoadLineOffsetVddC = 0; |
579 | |
580 | return 0; |
581 | } |
582 | |
583 | |
584 | static int fiji_populate_tdc_limit(struct pp_hwmgr *hwmgr) |
585 | { |
586 | uint16_t tdc_limit; |
587 | struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend); |
588 | struct phm_ppt_v1_information *table_info = |
589 | (struct phm_ppt_v1_information *)(hwmgr->pptable); |
590 | const struct fiji_pt_defaults *defaults = smu_data->power_tune_defaults; |
591 | |
592 | /* TDC number of fraction bits are changed from 8 to 7 |
593 | * for Fiji as requested by SMC team |
594 | */ |
595 | tdc_limit = (uint16_t)(table_info->cac_dtp_table->usTDC * 128); |
596 | smu_data->power_tune_table.TDC_VDDC_PkgLimit = |
597 | CONVERT_FROM_HOST_TO_SMC_US(tdc_limit); |
598 | smu_data->power_tune_table.TDC_VDDC_ThrottleReleaseLimitPerc = |
599 | defaults->TDC_VDDC_ThrottleReleaseLimitPerc; |
600 | smu_data->power_tune_table.TDC_MAWt = defaults->TDC_MAWt; |
601 | |
602 | return 0; |
603 | } |
604 | |
605 | static int fiji_populate_dw8(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset) |
606 | { |
607 | struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend); |
608 | const struct fiji_pt_defaults *defaults = smu_data->power_tune_defaults; |
609 | uint32_t temp; |
610 | |
611 | if (smu7_read_smc_sram_dword(hwmgr, |
612 | fuse_table_offset + |
613 | offsetof(SMU73_Discrete_PmFuses, TdcWaterfallCtl), |
614 | (uint32_t *)&temp, SMC_RAM_END)) |
615 | PP_ASSERT_WITH_CODE(false, |
616 | "Attempt to read PmFuses.DW6 (SviLoadLineEn) from SMC Failed!" , |
617 | return -EINVAL); |
618 | else { |
619 | smu_data->power_tune_table.TdcWaterfallCtl = defaults->TdcWaterfallCtl; |
620 | smu_data->power_tune_table.LPMLTemperatureMin = |
621 | (uint8_t)((temp >> 16) & 0xff); |
622 | smu_data->power_tune_table.LPMLTemperatureMax = |
623 | (uint8_t)((temp >> 8) & 0xff); |
624 | smu_data->power_tune_table.Reserved = (uint8_t)(temp & 0xff); |
625 | } |
626 | return 0; |
627 | } |
628 | |
629 | static int fiji_populate_temperature_scaler(struct pp_hwmgr *hwmgr) |
630 | { |
631 | int i; |
632 | struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend); |
633 | |
634 | /* Currently not used. Set all to zero. */ |
635 | for (i = 0; i < 16; i++) |
636 | smu_data->power_tune_table.LPMLTemperatureScaler[i] = 0; |
637 | |
638 | return 0; |
639 | } |
640 | |
641 | static int fiji_populate_fuzzy_fan(struct pp_hwmgr *hwmgr) |
642 | { |
643 | struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend); |
644 | |
645 | if ((hwmgr->thermal_controller.advanceFanControlParameters. |
646 | usFanOutputSensitivity & (1 << 15)) || |
647 | 0 == hwmgr->thermal_controller.advanceFanControlParameters. |
648 | usFanOutputSensitivity) |
649 | hwmgr->thermal_controller.advanceFanControlParameters. |
650 | usFanOutputSensitivity = hwmgr->thermal_controller. |
651 | advanceFanControlParameters.usDefaultFanOutputSensitivity; |
652 | |
653 | smu_data->power_tune_table.FuzzyFan_PwmSetDelta = |
654 | PP_HOST_TO_SMC_US(hwmgr->thermal_controller. |
655 | advanceFanControlParameters.usFanOutputSensitivity); |
656 | return 0; |
657 | } |
658 | |
659 | static int fiji_populate_gnb_lpml(struct pp_hwmgr *hwmgr) |
660 | { |
661 | int i; |
662 | struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend); |
663 | |
664 | /* Currently not used. Set all to zero. */ |
665 | for (i = 0; i < 16; i++) |
666 | smu_data->power_tune_table.GnbLPML[i] = 0; |
667 | |
668 | return 0; |
669 | } |
670 | |
671 | static int fiji_populate_bapm_vddc_base_leakage_sidd(struct pp_hwmgr *hwmgr) |
672 | { |
673 | struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend); |
674 | struct phm_ppt_v1_information *table_info = |
675 | (struct phm_ppt_v1_information *)(hwmgr->pptable); |
676 | uint16_t HiSidd = smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd; |
677 | uint16_t LoSidd = smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd; |
678 | struct phm_cac_tdp_table *cac_table = table_info->cac_dtp_table; |
679 | |
680 | HiSidd = (uint16_t)(cac_table->usHighCACLeakage / 100 * 256); |
681 | LoSidd = (uint16_t)(cac_table->usLowCACLeakage / 100 * 256); |
682 | |
683 | smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd = |
684 | CONVERT_FROM_HOST_TO_SMC_US(HiSidd); |
685 | smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd = |
686 | CONVERT_FROM_HOST_TO_SMC_US(LoSidd); |
687 | |
688 | return 0; |
689 | } |
690 | |
691 | static int fiji_populate_pm_fuses(struct pp_hwmgr *hwmgr) |
692 | { |
693 | uint32_t pm_fuse_table_offset; |
694 | struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend); |
695 | |
696 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
697 | PHM_PlatformCaps_PowerContainment)) { |
698 | if (smu7_read_smc_sram_dword(hwmgr, |
699 | SMU7_FIRMWARE_HEADER_LOCATION + |
700 | offsetof(SMU73_Firmware_Header, PmFuseTable), |
701 | &pm_fuse_table_offset, SMC_RAM_END)) |
702 | PP_ASSERT_WITH_CODE(false, |
703 | "Attempt to get pm_fuse_table_offset Failed!" , |
704 | return -EINVAL); |
705 | |
706 | /* DW6 */ |
707 | if (fiji_populate_svi_load_line(hwmgr)) |
708 | PP_ASSERT_WITH_CODE(false, |
709 | "Attempt to populate SviLoadLine Failed!" , |
710 | return -EINVAL); |
711 | /* DW7 */ |
712 | if (fiji_populate_tdc_limit(hwmgr)) |
713 | PP_ASSERT_WITH_CODE(false, |
714 | "Attempt to populate TDCLimit Failed!" , return -EINVAL); |
715 | /* DW8 */ |
716 | if (fiji_populate_dw8(hwmgr, pm_fuse_table_offset)) |
717 | PP_ASSERT_WITH_CODE(false, |
718 | "Attempt to populate TdcWaterfallCtl, " |
719 | "LPMLTemperature Min and Max Failed!" , |
720 | return -EINVAL); |
721 | |
722 | /* DW9-DW12 */ |
723 | if (0 != fiji_populate_temperature_scaler(hwmgr)) |
724 | PP_ASSERT_WITH_CODE(false, |
725 | "Attempt to populate LPMLTemperatureScaler Failed!" , |
726 | return -EINVAL); |
727 | |
728 | /* DW13-DW14 */ |
729 | if (fiji_populate_fuzzy_fan(hwmgr)) |
730 | PP_ASSERT_WITH_CODE(false, |
731 | "Attempt to populate Fuzzy Fan Control parameters Failed!" , |
732 | return -EINVAL); |
733 | |
734 | /* DW15-DW18 */ |
735 | if (fiji_populate_gnb_lpml(hwmgr)) |
736 | PP_ASSERT_WITH_CODE(false, |
737 | "Attempt to populate GnbLPML Failed!" , |
738 | return -EINVAL); |
739 | |
740 | /* DW20 */ |
741 | if (fiji_populate_bapm_vddc_base_leakage_sidd(hwmgr)) |
742 | PP_ASSERT_WITH_CODE(false, |
743 | "Attempt to populate BapmVddCBaseLeakage Hi and Lo " |
744 | "Sidd Failed!" , return -EINVAL); |
745 | |
746 | if (smu7_copy_bytes_to_smc(hwmgr, pm_fuse_table_offset, |
747 | (uint8_t *)&smu_data->power_tune_table, |
748 | sizeof(struct SMU73_Discrete_PmFuses), SMC_RAM_END)) |
749 | PP_ASSERT_WITH_CODE(false, |
750 | "Attempt to download PmFuseTable Failed!" , |
751 | return -EINVAL); |
752 | } |
753 | return 0; |
754 | } |
755 | |
756 | static int fiji_populate_cac_table(struct pp_hwmgr *hwmgr, |
757 | struct SMU73_Discrete_DpmTable *table) |
758 | { |
759 | uint32_t count; |
760 | uint8_t index; |
761 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
762 | struct phm_ppt_v1_information *table_info = |
763 | (struct phm_ppt_v1_information *)(hwmgr->pptable); |
764 | struct phm_ppt_v1_voltage_lookup_table *lookup_table = |
765 | table_info->vddc_lookup_table; |
766 | /* tables is already swapped, so in order to use the value from it, |
767 | * we need to swap it back. |
768 | * We are populating vddc CAC data to BapmVddc table |
769 | * in split and merged mode |
770 | */ |
771 | |
772 | for (count = 0; count < lookup_table->count; count++) { |
773 | index = phm_get_voltage_index(lookup_table, |
774 | data->vddc_voltage_table.entries[count].value); |
775 | table->BapmVddcVidLoSidd[count] = |
776 | convert_to_vid(lookup_table->entries[index].us_cac_low); |
777 | table->BapmVddcVidHiSidd[count] = |
778 | convert_to_vid(lookup_table->entries[index].us_cac_high); |
779 | } |
780 | |
781 | return 0; |
782 | } |
783 | |
784 | static int fiji_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr, |
785 | struct SMU73_Discrete_DpmTable *table) |
786 | { |
787 | int result; |
788 | |
789 | result = fiji_populate_cac_table(hwmgr, table); |
790 | PP_ASSERT_WITH_CODE(0 == result, |
791 | "can not populate CAC voltage tables to SMC" , |
792 | return -EINVAL); |
793 | |
794 | return 0; |
795 | } |
796 | |
797 | static int fiji_populate_ulv_level(struct pp_hwmgr *hwmgr, |
798 | struct SMU73_Discrete_Ulv *state) |
799 | { |
800 | int result = 0; |
801 | |
802 | struct phm_ppt_v1_information *table_info = |
803 | (struct phm_ppt_v1_information *)(hwmgr->pptable); |
804 | |
805 | state->CcPwrDynRm = 0; |
806 | state->CcPwrDynRm1 = 0; |
807 | |
808 | state->VddcOffset = (uint16_t) table_info->us_ulv_voltage_offset; |
809 | state->VddcOffsetVid = (uint8_t)(table_info->us_ulv_voltage_offset * |
810 | VOLTAGE_VID_OFFSET_SCALE2 / VOLTAGE_VID_OFFSET_SCALE1); |
811 | |
812 | state->VddcPhase = 1; |
813 | |
814 | if (!result) { |
815 | CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm); |
816 | CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1); |
817 | CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset); |
818 | } |
819 | return result; |
820 | } |
821 | |
822 | static int fiji_populate_ulv_state(struct pp_hwmgr *hwmgr, |
823 | struct SMU73_Discrete_DpmTable *table) |
824 | { |
825 | return fiji_populate_ulv_level(hwmgr, &table->Ulv); |
826 | } |
827 | |
828 | static int fiji_populate_smc_link_level(struct pp_hwmgr *hwmgr, |
829 | struct SMU73_Discrete_DpmTable *table) |
830 | { |
831 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
832 | struct smu7_dpm_table *dpm_table = &data->dpm_table; |
833 | struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend); |
834 | int i; |
835 | |
836 | /* Index (dpm_table->pcie_speed_table.count) |
837 | * is reserved for PCIE boot level. */ |
838 | for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) { |
839 | table->LinkLevel[i].PcieGenSpeed = |
840 | (uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value; |
841 | table->LinkLevel[i].PcieLaneCount = (uint8_t)encode_pcie_lane_width( |
842 | dpm_table->pcie_speed_table.dpm_levels[i].param1); |
843 | table->LinkLevel[i].EnabledForActivity = 1; |
844 | table->LinkLevel[i].SPC = (uint8_t)(data->pcie_spc_cap & 0xff); |
845 | table->LinkLevel[i].DownThreshold = PP_HOST_TO_SMC_UL(5); |
846 | table->LinkLevel[i].UpThreshold = PP_HOST_TO_SMC_UL(30); |
847 | } |
848 | |
849 | smu_data->smc_state_table.LinkLevelCount = |
850 | (uint8_t)dpm_table->pcie_speed_table.count; |
851 | data->dpm_level_enable_mask.pcie_dpm_enable_mask = |
852 | phm_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table); |
853 | |
854 | return 0; |
855 | } |
856 | |
857 | static int fiji_calculate_sclk_params(struct pp_hwmgr *hwmgr, |
858 | uint32_t clock, struct SMU73_Discrete_GraphicsLevel *sclk) |
859 | { |
860 | const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
861 | struct pp_atomctrl_clock_dividers_vi dividers; |
862 | uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL; |
863 | uint32_t spll_func_cntl_3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3; |
864 | uint32_t spll_func_cntl_4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4; |
865 | uint32_t cg_spll_spread_spectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM; |
866 | uint32_t cg_spll_spread_spectrum_2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2; |
867 | uint32_t ref_clock; |
868 | uint32_t ref_divider; |
869 | uint32_t fbdiv; |
870 | int result; |
871 | |
872 | /* get the engine clock dividers for this clock value */ |
873 | result = atomctrl_get_engine_pll_dividers_vi(hwmgr, clock, ÷rs); |
874 | |
875 | PP_ASSERT_WITH_CODE(result == 0, |
876 | "Error retrieving Engine Clock dividers from VBIOS." , |
877 | return result); |
878 | |
879 | /* To get FBDIV we need to multiply this by 16384 and divide it by Fref. */ |
880 | ref_clock = atomctrl_get_reference_clock(hwmgr); |
881 | ref_divider = 1 + dividers.uc_pll_ref_div; |
882 | |
883 | /* low 14 bits is fraction and high 12 bits is divider */ |
884 | fbdiv = dividers.ul_fb_div.ul_fb_divider & 0x3FFFFFF; |
885 | |
886 | /* SPLL_FUNC_CNTL setup */ |
887 | spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL, |
888 | SPLL_REF_DIV, dividers.uc_pll_ref_div); |
889 | spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL, |
890 | SPLL_PDIV_A, dividers.uc_pll_post_div); |
891 | |
892 | /* SPLL_FUNC_CNTL_3 setup*/ |
893 | spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3, |
894 | SPLL_FB_DIV, fbdiv); |
895 | |
896 | /* set to use fractional accumulation*/ |
897 | spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3, |
898 | SPLL_DITHEN, 1); |
899 | |
900 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
901 | PHM_PlatformCaps_EngineSpreadSpectrumSupport)) { |
902 | struct pp_atomctrl_internal_ss_info ssInfo; |
903 | |
904 | uint32_t vco_freq = clock * dividers.uc_pll_post_div; |
905 | if (!atomctrl_get_engine_clock_spread_spectrum(hwmgr, |
906 | vco_freq, &ssInfo)) { |
907 | /* |
908 | * ss_info.speed_spectrum_percentage -- in unit of 0.01% |
909 | * ss_info.speed_spectrum_rate -- in unit of khz |
910 | * |
911 | * clks = reference_clock * 10 / (REFDIV + 1) / speed_spectrum_rate / 2 |
912 | */ |
913 | uint32_t clk_s = ref_clock * 5 / |
914 | (ref_divider * ssInfo.speed_spectrum_rate); |
915 | /* clkv = 2 * D * fbdiv / NS */ |
916 | uint32_t clk_v = 4 * ssInfo.speed_spectrum_percentage * |
917 | fbdiv / (clk_s * 10000); |
918 | |
919 | cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum, |
920 | CG_SPLL_SPREAD_SPECTRUM, CLKS, clk_s); |
921 | cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum, |
922 | CG_SPLL_SPREAD_SPECTRUM, SSEN, 1); |
923 | cg_spll_spread_spectrum_2 = PHM_SET_FIELD(cg_spll_spread_spectrum_2, |
924 | CG_SPLL_SPREAD_SPECTRUM_2, CLKV, clk_v); |
925 | } |
926 | } |
927 | |
928 | sclk->SclkFrequency = clock; |
929 | sclk->CgSpllFuncCntl3 = spll_func_cntl_3; |
930 | sclk->CgSpllFuncCntl4 = spll_func_cntl_4; |
931 | sclk->SpllSpreadSpectrum = cg_spll_spread_spectrum; |
932 | sclk->SpllSpreadSpectrum2 = cg_spll_spread_spectrum_2; |
933 | sclk->SclkDid = (uint8_t)dividers.pll_post_divider; |
934 | |
935 | return 0; |
936 | } |
937 | |
938 | static int fiji_populate_single_graphic_level(struct pp_hwmgr *hwmgr, |
939 | uint32_t clock, struct SMU73_Discrete_GraphicsLevel *level) |
940 | { |
941 | int result; |
942 | /* PP_Clocks minClocks; */ |
943 | uint32_t threshold, mvdd; |
944 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
945 | struct phm_ppt_v1_information *table_info = |
946 | (struct phm_ppt_v1_information *)(hwmgr->pptable); |
947 | phm_ppt_v1_clock_voltage_dependency_table *vdd_dep_table = NULL; |
948 | |
949 | result = fiji_calculate_sclk_params(hwmgr, clock, level); |
950 | |
951 | if (hwmgr->od_enabled) |
952 | vdd_dep_table = (phm_ppt_v1_clock_voltage_dependency_table *)&data->odn_dpm_table.vdd_dependency_on_sclk; |
953 | else |
954 | vdd_dep_table = table_info->vdd_dep_on_sclk; |
955 | |
956 | /* populate graphics levels */ |
957 | result = fiji_get_dependency_volt_by_clk(hwmgr, |
958 | vdd_dep_table, clock, |
959 | (uint32_t *)(&level->MinVoltage), &mvdd); |
960 | PP_ASSERT_WITH_CODE((0 == result), |
961 | "can not find VDDC voltage value for " |
962 | "VDDC engine clock dependency table" , |
963 | return result); |
964 | |
965 | level->SclkFrequency = clock; |
966 | level->ActivityLevel = data->current_profile_setting.sclk_activity; |
967 | level->CcPwrDynRm = 0; |
968 | level->CcPwrDynRm1 = 0; |
969 | level->EnabledForActivity = 0; |
970 | level->EnabledForThrottle = 1; |
971 | level->UpHyst = data->current_profile_setting.sclk_up_hyst; |
972 | level->DownHyst = data->current_profile_setting.sclk_down_hyst; |
973 | level->VoltageDownHyst = 0; |
974 | level->PowerThrottle = 0; |
975 | |
976 | threshold = clock * data->fast_watermark_threshold / 100; |
977 | |
978 | data->display_timing.min_clock_in_sr = hwmgr->display_config->min_core_set_clock_in_sr; |
979 | |
980 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep)) |
981 | level->DeepSleepDivId = smu7_get_sleep_divider_id_from_clock(clock, |
982 | hwmgr->display_config->min_core_set_clock_in_sr); |
983 | |
984 | |
985 | /* Default to slow, highest DPM level will be |
986 | * set to PPSMC_DISPLAY_WATERMARK_LOW later. |
987 | */ |
988 | level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW; |
989 | |
990 | CONVERT_FROM_HOST_TO_SMC_UL(level->MinVoltage); |
991 | CONVERT_FROM_HOST_TO_SMC_UL(level->SclkFrequency); |
992 | CONVERT_FROM_HOST_TO_SMC_US(level->ActivityLevel); |
993 | CONVERT_FROM_HOST_TO_SMC_UL(level->CgSpllFuncCntl3); |
994 | CONVERT_FROM_HOST_TO_SMC_UL(level->CgSpllFuncCntl4); |
995 | CONVERT_FROM_HOST_TO_SMC_UL(level->SpllSpreadSpectrum); |
996 | CONVERT_FROM_HOST_TO_SMC_UL(level->SpllSpreadSpectrum2); |
997 | CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm); |
998 | CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm1); |
999 | |
1000 | return 0; |
1001 | } |
1002 | |
1003 | static int fiji_populate_all_graphic_levels(struct pp_hwmgr *hwmgr) |
1004 | { |
1005 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
1006 | struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend); |
1007 | |
1008 | struct smu7_dpm_table *dpm_table = &data->dpm_table; |
1009 | struct phm_ppt_v1_information *table_info = |
1010 | (struct phm_ppt_v1_information *)(hwmgr->pptable); |
1011 | struct phm_ppt_v1_pcie_table *pcie_table = table_info->pcie_table; |
1012 | uint8_t pcie_entry_cnt = (uint8_t) data->dpm_table.pcie_speed_table.count; |
1013 | int result = 0; |
1014 | uint32_t array = smu_data->smu7_data.dpm_table_start + |
1015 | offsetof(SMU73_Discrete_DpmTable, GraphicsLevel); |
1016 | uint32_t array_size = sizeof(struct SMU73_Discrete_GraphicsLevel) * |
1017 | SMU73_MAX_LEVELS_GRAPHICS; |
1018 | struct SMU73_Discrete_GraphicsLevel *levels = |
1019 | smu_data->smc_state_table.GraphicsLevel; |
1020 | uint32_t i, max_entry; |
1021 | uint8_t hightest_pcie_level_enabled = 0, |
1022 | lowest_pcie_level_enabled = 0, |
1023 | mid_pcie_level_enabled = 0, |
1024 | count = 0; |
1025 | |
1026 | for (i = 0; i < dpm_table->sclk_table.count; i++) { |
1027 | result = fiji_populate_single_graphic_level(hwmgr, |
1028 | dpm_table->sclk_table.dpm_levels[i].value, |
1029 | &levels[i]); |
1030 | if (result) |
1031 | return result; |
1032 | |
1033 | /* Making sure only DPM level 0-1 have Deep Sleep Div ID populated. */ |
1034 | if (i > 1) |
1035 | levels[i].DeepSleepDivId = 0; |
1036 | } |
1037 | |
1038 | /* Only enable level 0 for now.*/ |
1039 | levels[0].EnabledForActivity = 1; |
1040 | |
1041 | /* set highest level watermark to high */ |
1042 | levels[dpm_table->sclk_table.count - 1].DisplayWatermark = |
1043 | PPSMC_DISPLAY_WATERMARK_HIGH; |
1044 | |
1045 | smu_data->smc_state_table.GraphicsDpmLevelCount = |
1046 | (uint8_t)dpm_table->sclk_table.count; |
1047 | data->dpm_level_enable_mask.sclk_dpm_enable_mask = |
1048 | phm_get_dpm_level_enable_mask_value(&dpm_table->sclk_table); |
1049 | |
1050 | if (pcie_table != NULL) { |
1051 | PP_ASSERT_WITH_CODE((1 <= pcie_entry_cnt), |
1052 | "There must be 1 or more PCIE levels defined in PPTable." , |
1053 | return -EINVAL); |
1054 | max_entry = pcie_entry_cnt - 1; |
1055 | for (i = 0; i < dpm_table->sclk_table.count; i++) |
1056 | levels[i].pcieDpmLevel = |
1057 | (uint8_t) ((i < max_entry) ? i : max_entry); |
1058 | } else { |
1059 | while (data->dpm_level_enable_mask.pcie_dpm_enable_mask && |
1060 | ((data->dpm_level_enable_mask.pcie_dpm_enable_mask & |
1061 | (1 << (hightest_pcie_level_enabled + 1))) != 0)) |
1062 | hightest_pcie_level_enabled++; |
1063 | |
1064 | while (data->dpm_level_enable_mask.pcie_dpm_enable_mask && |
1065 | ((data->dpm_level_enable_mask.pcie_dpm_enable_mask & |
1066 | (1 << lowest_pcie_level_enabled)) == 0)) |
1067 | lowest_pcie_level_enabled++; |
1068 | |
1069 | while ((count < hightest_pcie_level_enabled) && |
1070 | ((data->dpm_level_enable_mask.pcie_dpm_enable_mask & |
1071 | (1 << (lowest_pcie_level_enabled + 1 + count))) == 0)) |
1072 | count++; |
1073 | |
1074 | mid_pcie_level_enabled = (lowest_pcie_level_enabled + 1 + count) < |
1075 | hightest_pcie_level_enabled ? |
1076 | (lowest_pcie_level_enabled + 1 + count) : |
1077 | hightest_pcie_level_enabled; |
1078 | |
1079 | /* set pcieDpmLevel to hightest_pcie_level_enabled */ |
1080 | for (i = 2; i < dpm_table->sclk_table.count; i++) |
1081 | levels[i].pcieDpmLevel = hightest_pcie_level_enabled; |
1082 | |
1083 | /* set pcieDpmLevel to lowest_pcie_level_enabled */ |
1084 | levels[0].pcieDpmLevel = lowest_pcie_level_enabled; |
1085 | |
1086 | /* set pcieDpmLevel to mid_pcie_level_enabled */ |
1087 | levels[1].pcieDpmLevel = mid_pcie_level_enabled; |
1088 | } |
1089 | /* level count will send to smc once at init smc table and never change */ |
1090 | result = smu7_copy_bytes_to_smc(hwmgr, array, (uint8_t *)levels, |
1091 | (uint32_t)array_size, SMC_RAM_END); |
1092 | |
1093 | return result; |
1094 | } |
1095 | |
1096 | |
1097 | /** |
1098 | * MCLK Frequency Ratio |
1099 | * SEQ_CG_RESP Bit[31:24] - 0x0 |
1100 | * Bit[27:24] \96 DDR3 Frequency ratio |
1101 | * 0x0 <= 100MHz, 450 < 0x8 <= 500MHz |
1102 | * 100 < 0x1 <= 150MHz, 500 < 0x9 <= 550MHz |
1103 | * 150 < 0x2 <= 200MHz, 550 < 0xA <= 600MHz |
1104 | * 200 < 0x3 <= 250MHz, 600 < 0xB <= 650MHz |
1105 | * 250 < 0x4 <= 300MHz, 650 < 0xC <= 700MHz |
1106 | * 300 < 0x5 <= 350MHz, 700 < 0xD <= 750MHz |
1107 | * 350 < 0x6 <= 400MHz, 750 < 0xE <= 800MHz |
1108 | * 400 < 0x7 <= 450MHz, 800 < 0xF |
1109 | */ |
1110 | static uint8_t fiji_get_mclk_frequency_ratio(uint32_t mem_clock) |
1111 | { |
1112 | if (mem_clock <= 10000) |
1113 | return 0x0; |
1114 | if (mem_clock <= 15000) |
1115 | return 0x1; |
1116 | if (mem_clock <= 20000) |
1117 | return 0x2; |
1118 | if (mem_clock <= 25000) |
1119 | return 0x3; |
1120 | if (mem_clock <= 30000) |
1121 | return 0x4; |
1122 | if (mem_clock <= 35000) |
1123 | return 0x5; |
1124 | if (mem_clock <= 40000) |
1125 | return 0x6; |
1126 | if (mem_clock <= 45000) |
1127 | return 0x7; |
1128 | if (mem_clock <= 50000) |
1129 | return 0x8; |
1130 | if (mem_clock <= 55000) |
1131 | return 0x9; |
1132 | if (mem_clock <= 60000) |
1133 | return 0xa; |
1134 | if (mem_clock <= 65000) |
1135 | return 0xb; |
1136 | if (mem_clock <= 70000) |
1137 | return 0xc; |
1138 | if (mem_clock <= 75000) |
1139 | return 0xd; |
1140 | if (mem_clock <= 80000) |
1141 | return 0xe; |
1142 | /* mem_clock > 800MHz */ |
1143 | return 0xf; |
1144 | } |
1145 | |
1146 | static int fiji_calculate_mclk_params(struct pp_hwmgr *hwmgr, |
1147 | uint32_t clock, struct SMU73_Discrete_MemoryLevel *mclk) |
1148 | { |
1149 | struct pp_atomctrl_memory_clock_param mem_param; |
1150 | int result; |
1151 | |
1152 | result = atomctrl_get_memory_pll_dividers_vi(hwmgr, clock, &mem_param); |
1153 | PP_ASSERT_WITH_CODE((0 == result), |
1154 | "Failed to get Memory PLL Dividers." , |
1155 | ); |
1156 | |
1157 | /* Save the result data to outpupt memory level structure */ |
1158 | mclk->MclkFrequency = clock; |
1159 | mclk->MclkDivider = (uint8_t)mem_param.mpll_post_divider; |
1160 | mclk->FreqRange = fiji_get_mclk_frequency_ratio(clock); |
1161 | |
1162 | return result; |
1163 | } |
1164 | |
1165 | static int fiji_populate_single_memory_level(struct pp_hwmgr *hwmgr, |
1166 | uint32_t clock, struct SMU73_Discrete_MemoryLevel *mem_level) |
1167 | { |
1168 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
1169 | struct phm_ppt_v1_information *table_info = |
1170 | (struct phm_ppt_v1_information *)(hwmgr->pptable); |
1171 | int result = 0; |
1172 | uint32_t mclk_stutter_mode_threshold = 60000; |
1173 | phm_ppt_v1_clock_voltage_dependency_table *vdd_dep_table = NULL; |
1174 | |
1175 | if (hwmgr->od_enabled) |
1176 | vdd_dep_table = (phm_ppt_v1_clock_voltage_dependency_table *)&data->odn_dpm_table.vdd_dependency_on_mclk; |
1177 | else |
1178 | vdd_dep_table = table_info->vdd_dep_on_mclk; |
1179 | |
1180 | if (vdd_dep_table) { |
1181 | result = fiji_get_dependency_volt_by_clk(hwmgr, |
1182 | vdd_dep_table, clock, |
1183 | (uint32_t *)(&mem_level->MinVoltage), &mem_level->MinMvdd); |
1184 | PP_ASSERT_WITH_CODE((0 == result), |
1185 | "can not find MinVddc voltage value from memory " |
1186 | "VDDC voltage dependency table" , return result); |
1187 | } |
1188 | |
1189 | mem_level->EnabledForThrottle = 1; |
1190 | mem_level->EnabledForActivity = 0; |
1191 | mem_level->UpHyst = data->current_profile_setting.mclk_up_hyst; |
1192 | mem_level->DownHyst = data->current_profile_setting.mclk_down_hyst; |
1193 | mem_level->VoltageDownHyst = 0; |
1194 | mem_level->ActivityLevel = data->current_profile_setting.mclk_activity; |
1195 | mem_level->StutterEnable = false; |
1196 | |
1197 | mem_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW; |
1198 | |
1199 | /* enable stutter mode if all the follow condition applied |
1200 | * PECI_GetNumberOfActiveDisplays(hwmgr->pPECI, |
1201 | * &(data->DisplayTiming.numExistingDisplays)); |
1202 | */ |
1203 | data->display_timing.num_existing_displays = hwmgr->display_config->num_display; |
1204 | data->display_timing.vrefresh = hwmgr->display_config->vrefresh; |
1205 | |
1206 | if (mclk_stutter_mode_threshold && |
1207 | (clock <= mclk_stutter_mode_threshold) && |
1208 | (!data->is_uvd_enabled) && |
1209 | (PHM_READ_FIELD(hwmgr->device, DPG_PIPE_STUTTER_CONTROL, |
1210 | STUTTER_ENABLE) & 0x1)) |
1211 | mem_level->StutterEnable = true; |
1212 | |
1213 | result = fiji_calculate_mclk_params(hwmgr, clock, mem_level); |
1214 | if (!result) { |
1215 | CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinMvdd); |
1216 | CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MclkFrequency); |
1217 | CONVERT_FROM_HOST_TO_SMC_US(mem_level->ActivityLevel); |
1218 | CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinVoltage); |
1219 | } |
1220 | return result; |
1221 | } |
1222 | |
1223 | static int fiji_populate_all_memory_levels(struct pp_hwmgr *hwmgr) |
1224 | { |
1225 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
1226 | struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend); |
1227 | struct smu7_dpm_table *dpm_table = &data->dpm_table; |
1228 | int result; |
1229 | /* populate MCLK dpm table to SMU7 */ |
1230 | uint32_t array = smu_data->smu7_data.dpm_table_start + |
1231 | offsetof(SMU73_Discrete_DpmTable, MemoryLevel); |
1232 | uint32_t array_size = sizeof(SMU73_Discrete_MemoryLevel) * |
1233 | SMU73_MAX_LEVELS_MEMORY; |
1234 | struct SMU73_Discrete_MemoryLevel *levels = |
1235 | smu_data->smc_state_table.MemoryLevel; |
1236 | uint32_t i; |
1237 | |
1238 | for (i = 0; i < dpm_table->mclk_table.count; i++) { |
1239 | PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value), |
1240 | "can not populate memory level as memory clock is zero" , |
1241 | return -EINVAL); |
1242 | result = fiji_populate_single_memory_level(hwmgr, |
1243 | dpm_table->mclk_table.dpm_levels[i].value, |
1244 | &levels[i]); |
1245 | if (result) |
1246 | return result; |
1247 | } |
1248 | |
1249 | /* Only enable level 0 for now. */ |
1250 | levels[0].EnabledForActivity = 1; |
1251 | |
1252 | /* in order to prevent MC activity from stutter mode to push DPM up. |
1253 | * the UVD change complements this by putting the MCLK in |
1254 | * a higher state by default such that we are not effected by |
1255 | * up threshold or and MCLK DPM latency. |
1256 | */ |
1257 | levels[0].ActivityLevel = (uint16_t)data->mclk_dpm0_activity_target; |
1258 | CONVERT_FROM_HOST_TO_SMC_US(levels[0].ActivityLevel); |
1259 | |
1260 | smu_data->smc_state_table.MemoryDpmLevelCount = |
1261 | (uint8_t)dpm_table->mclk_table.count; |
1262 | data->dpm_level_enable_mask.mclk_dpm_enable_mask = |
1263 | phm_get_dpm_level_enable_mask_value(&dpm_table->mclk_table); |
1264 | /* set highest level watermark to high */ |
1265 | levels[dpm_table->mclk_table.count - 1].DisplayWatermark = |
1266 | PPSMC_DISPLAY_WATERMARK_HIGH; |
1267 | |
1268 | /* level count will send to smc once at init smc table and never change */ |
1269 | result = smu7_copy_bytes_to_smc(hwmgr, array, (uint8_t *)levels, |
1270 | (uint32_t)array_size, SMC_RAM_END); |
1271 | |
1272 | return result; |
1273 | } |
1274 | |
1275 | static int fiji_populate_mvdd_value(struct pp_hwmgr *hwmgr, |
1276 | uint32_t mclk, SMIO_Pattern *smio_pat) |
1277 | { |
1278 | const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
1279 | struct phm_ppt_v1_information *table_info = |
1280 | (struct phm_ppt_v1_information *)(hwmgr->pptable); |
1281 | uint32_t i = 0; |
1282 | |
1283 | if (SMU7_VOLTAGE_CONTROL_NONE != data->mvdd_control) { |
1284 | /* find mvdd value which clock is more than request */ |
1285 | for (i = 0; i < table_info->vdd_dep_on_mclk->count; i++) { |
1286 | if (mclk <= table_info->vdd_dep_on_mclk->entries[i].clk) { |
1287 | smio_pat->Voltage = data->mvdd_voltage_table.entries[i].value; |
1288 | break; |
1289 | } |
1290 | } |
1291 | PP_ASSERT_WITH_CODE(i < table_info->vdd_dep_on_mclk->count, |
1292 | "MVDD Voltage is outside the supported range." , |
1293 | return -EINVAL); |
1294 | } else |
1295 | return -EINVAL; |
1296 | |
1297 | return 0; |
1298 | } |
1299 | |
1300 | static int fiji_populate_smc_acpi_level(struct pp_hwmgr *hwmgr, |
1301 | SMU73_Discrete_DpmTable *table) |
1302 | { |
1303 | int result = 0; |
1304 | const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
1305 | struct phm_ppt_v1_information *table_info = |
1306 | (struct phm_ppt_v1_information *)(hwmgr->pptable); |
1307 | struct pp_atomctrl_clock_dividers_vi dividers; |
1308 | SMIO_Pattern vol_level; |
1309 | uint32_t mvdd; |
1310 | uint16_t us_mvdd; |
1311 | uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL; |
1312 | uint32_t spll_func_cntl_2 = data->clock_registers.vCG_SPLL_FUNC_CNTL_2; |
1313 | |
1314 | table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC; |
1315 | |
1316 | if (!data->sclk_dpm_key_disabled) { |
1317 | /* Get MinVoltage and Frequency from DPM0, |
1318 | * already converted to SMC_UL */ |
1319 | table->ACPILevel.SclkFrequency = |
1320 | data->dpm_table.sclk_table.dpm_levels[0].value; |
1321 | result = fiji_get_dependency_volt_by_clk(hwmgr, |
1322 | table_info->vdd_dep_on_sclk, |
1323 | table->ACPILevel.SclkFrequency, |
1324 | (uint32_t *)(&table->ACPILevel.MinVoltage), &mvdd); |
1325 | PP_ASSERT_WITH_CODE((0 == result), |
1326 | "Cannot find ACPI VDDC voltage value " \ |
1327 | "in Clock Dependency Table" , |
1328 | ); |
1329 | } else { |
1330 | table->ACPILevel.SclkFrequency = |
1331 | data->vbios_boot_state.sclk_bootup_value; |
1332 | table->ACPILevel.MinVoltage = |
1333 | data->vbios_boot_state.vddc_bootup_value * VOLTAGE_SCALE; |
1334 | } |
1335 | |
1336 | /* get the engine clock dividers for this clock value */ |
1337 | result = atomctrl_get_engine_pll_dividers_vi(hwmgr, |
1338 | table->ACPILevel.SclkFrequency, ÷rs); |
1339 | PP_ASSERT_WITH_CODE(result == 0, |
1340 | "Error retrieving Engine Clock dividers from VBIOS." , |
1341 | return result); |
1342 | |
1343 | table->ACPILevel.SclkDid = (uint8_t)dividers.pll_post_divider; |
1344 | table->ACPILevel.DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW; |
1345 | table->ACPILevel.DeepSleepDivId = 0; |
1346 | |
1347 | spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL, |
1348 | SPLL_PWRON, 0); |
1349 | spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL, |
1350 | SPLL_RESET, 1); |
1351 | spll_func_cntl_2 = PHM_SET_FIELD(spll_func_cntl_2, CG_SPLL_FUNC_CNTL_2, |
1352 | SCLK_MUX_SEL, 4); |
1353 | |
1354 | table->ACPILevel.CgSpllFuncCntl = spll_func_cntl; |
1355 | table->ACPILevel.CgSpllFuncCntl2 = spll_func_cntl_2; |
1356 | table->ACPILevel.CgSpllFuncCntl3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3; |
1357 | table->ACPILevel.CgSpllFuncCntl4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4; |
1358 | table->ACPILevel.SpllSpreadSpectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM; |
1359 | table->ACPILevel.SpllSpreadSpectrum2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2; |
1360 | table->ACPILevel.CcPwrDynRm = 0; |
1361 | table->ACPILevel.CcPwrDynRm1 = 0; |
1362 | |
1363 | CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags); |
1364 | CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkFrequency); |
1365 | CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.MinVoltage); |
1366 | CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl); |
1367 | CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl2); |
1368 | CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl3); |
1369 | CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl4); |
1370 | CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum); |
1371 | CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum2); |
1372 | CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm); |
1373 | CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1); |
1374 | |
1375 | if (!data->mclk_dpm_key_disabled) { |
1376 | /* Get MinVoltage and Frequency from DPM0, already converted to SMC_UL */ |
1377 | table->MemoryACPILevel.MclkFrequency = |
1378 | data->dpm_table.mclk_table.dpm_levels[0].value; |
1379 | result = fiji_get_dependency_volt_by_clk(hwmgr, |
1380 | table_info->vdd_dep_on_mclk, |
1381 | table->MemoryACPILevel.MclkFrequency, |
1382 | (uint32_t *)(&table->MemoryACPILevel.MinVoltage), &mvdd); |
1383 | PP_ASSERT_WITH_CODE((0 == result), |
1384 | "Cannot find ACPI VDDCI voltage value in Clock Dependency Table" , |
1385 | ); |
1386 | } else { |
1387 | table->MemoryACPILevel.MclkFrequency = |
1388 | data->vbios_boot_state.mclk_bootup_value; |
1389 | table->MemoryACPILevel.MinVoltage = |
1390 | data->vbios_boot_state.vddci_bootup_value * VOLTAGE_SCALE; |
1391 | } |
1392 | |
1393 | us_mvdd = 0; |
1394 | if ((SMU7_VOLTAGE_CONTROL_NONE == data->mvdd_control) || |
1395 | (data->mclk_dpm_key_disabled)) |
1396 | us_mvdd = data->vbios_boot_state.mvdd_bootup_value; |
1397 | else { |
1398 | if (!fiji_populate_mvdd_value(hwmgr, |
1399 | data->dpm_table.mclk_table.dpm_levels[0].value, |
1400 | &vol_level)) |
1401 | us_mvdd = vol_level.Voltage; |
1402 | } |
1403 | |
1404 | table->MemoryACPILevel.MinMvdd = |
1405 | PP_HOST_TO_SMC_UL(us_mvdd * VOLTAGE_SCALE); |
1406 | |
1407 | table->MemoryACPILevel.EnabledForThrottle = 0; |
1408 | table->MemoryACPILevel.EnabledForActivity = 0; |
1409 | table->MemoryACPILevel.UpHyst = 0; |
1410 | table->MemoryACPILevel.DownHyst = 100; |
1411 | table->MemoryACPILevel.VoltageDownHyst = 0; |
1412 | table->MemoryACPILevel.ActivityLevel = |
1413 | PP_HOST_TO_SMC_US(data->current_profile_setting.mclk_activity); |
1414 | |
1415 | table->MemoryACPILevel.StutterEnable = false; |
1416 | CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MclkFrequency); |
1417 | CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MinVoltage); |
1418 | |
1419 | return result; |
1420 | } |
1421 | |
1422 | static int fiji_populate_smc_vce_level(struct pp_hwmgr *hwmgr, |
1423 | SMU73_Discrete_DpmTable *table) |
1424 | { |
1425 | int result = -EINVAL; |
1426 | uint8_t count; |
1427 | struct pp_atomctrl_clock_dividers_vi dividers; |
1428 | struct phm_ppt_v1_information *table_info = |
1429 | (struct phm_ppt_v1_information *)(hwmgr->pptable); |
1430 | struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = |
1431 | table_info->mm_dep_table; |
1432 | |
1433 | table->VceLevelCount = (uint8_t)(mm_table->count); |
1434 | table->VceBootLevel = 0; |
1435 | |
1436 | for (count = 0; count < table->VceLevelCount; count++) { |
1437 | table->VceLevel[count].Frequency = mm_table->entries[count].eclk; |
1438 | table->VceLevel[count].MinVoltage = 0; |
1439 | table->VceLevel[count].MinVoltage |= |
1440 | (mm_table->entries[count].vddc * VOLTAGE_SCALE) << VDDC_SHIFT; |
1441 | table->VceLevel[count].MinVoltage |= |
1442 | ((mm_table->entries[count].vddc - VDDC_VDDCI_DELTA) * |
1443 | VOLTAGE_SCALE) << VDDCI_SHIFT; |
1444 | table->VceLevel[count].MinVoltage |= 1 << PHASES_SHIFT; |
1445 | |
1446 | /*retrieve divider value for VBIOS */ |
1447 | result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, |
1448 | table->VceLevel[count].Frequency, ÷rs); |
1449 | PP_ASSERT_WITH_CODE((0 == result), |
1450 | "can not find divide id for VCE engine clock" , |
1451 | return result); |
1452 | |
1453 | table->VceLevel[count].Divider = (uint8_t)dividers.pll_post_divider; |
1454 | |
1455 | CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].Frequency); |
1456 | CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].MinVoltage); |
1457 | } |
1458 | return result; |
1459 | } |
1460 | |
1461 | static int fiji_populate_smc_acp_level(struct pp_hwmgr *hwmgr, |
1462 | SMU73_Discrete_DpmTable *table) |
1463 | { |
1464 | int result = -EINVAL; |
1465 | uint8_t count; |
1466 | struct pp_atomctrl_clock_dividers_vi dividers; |
1467 | struct phm_ppt_v1_information *table_info = |
1468 | (struct phm_ppt_v1_information *)(hwmgr->pptable); |
1469 | struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = |
1470 | table_info->mm_dep_table; |
1471 | |
1472 | table->AcpLevelCount = (uint8_t)(mm_table->count); |
1473 | table->AcpBootLevel = 0; |
1474 | |
1475 | for (count = 0; count < table->AcpLevelCount; count++) { |
1476 | table->AcpLevel[count].Frequency = mm_table->entries[count].aclk; |
1477 | table->AcpLevel[count].MinVoltage |= (mm_table->entries[count].vddc * |
1478 | VOLTAGE_SCALE) << VDDC_SHIFT; |
1479 | table->AcpLevel[count].MinVoltage |= ((mm_table->entries[count].vddc - |
1480 | VDDC_VDDCI_DELTA) * VOLTAGE_SCALE) << VDDCI_SHIFT; |
1481 | table->AcpLevel[count].MinVoltage |= 1 << PHASES_SHIFT; |
1482 | |
1483 | /* retrieve divider value for VBIOS */ |
1484 | result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, |
1485 | table->AcpLevel[count].Frequency, ÷rs); |
1486 | PP_ASSERT_WITH_CODE((0 == result), |
1487 | "can not find divide id for engine clock" , return result); |
1488 | |
1489 | table->AcpLevel[count].Divider = (uint8_t)dividers.pll_post_divider; |
1490 | |
1491 | CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].Frequency); |
1492 | CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].MinVoltage); |
1493 | } |
1494 | return result; |
1495 | } |
1496 | |
1497 | static int fiji_populate_memory_timing_parameters(struct pp_hwmgr *hwmgr, |
1498 | int32_t eng_clock, int32_t mem_clock, |
1499 | struct SMU73_Discrete_MCArbDramTimingTableEntry *arb_regs) |
1500 | { |
1501 | uint32_t dram_timing; |
1502 | uint32_t dram_timing2; |
1503 | uint32_t burstTime; |
1504 | ULONG state, trrds, trrdl; |
1505 | int result; |
1506 | |
1507 | result = atomctrl_set_engine_dram_timings_rv770(hwmgr, |
1508 | eng_clock, mem_clock); |
1509 | PP_ASSERT_WITH_CODE(result == 0, |
1510 | "Error calling VBIOS to set DRAM_TIMING." , return result); |
1511 | |
1512 | dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING); |
1513 | dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2); |
1514 | burstTime = cgs_read_register(hwmgr->device, mmMC_ARB_BURST_TIME); |
1515 | |
1516 | state = PHM_GET_FIELD(burstTime, MC_ARB_BURST_TIME, STATE0); |
1517 | trrds = PHM_GET_FIELD(burstTime, MC_ARB_BURST_TIME, TRRDS0); |
1518 | trrdl = PHM_GET_FIELD(burstTime, MC_ARB_BURST_TIME, TRRDL0); |
1519 | |
1520 | arb_regs->McArbDramTiming = PP_HOST_TO_SMC_UL(dram_timing); |
1521 | arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dram_timing2); |
1522 | arb_regs->McArbBurstTime = (uint8_t)burstTime; |
1523 | arb_regs->TRRDS = (uint8_t)trrds; |
1524 | arb_regs->TRRDL = (uint8_t)trrdl; |
1525 | |
1526 | return 0; |
1527 | } |
1528 | |
1529 | static int fiji_program_memory_timing_parameters(struct pp_hwmgr *hwmgr) |
1530 | { |
1531 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
1532 | struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend); |
1533 | struct SMU73_Discrete_MCArbDramTimingTable arb_regs; |
1534 | uint32_t i, j; |
1535 | int result = 0; |
1536 | |
1537 | for (i = 0; i < data->dpm_table.sclk_table.count; i++) { |
1538 | for (j = 0; j < data->dpm_table.mclk_table.count; j++) { |
1539 | result = fiji_populate_memory_timing_parameters(hwmgr, |
1540 | data->dpm_table.sclk_table.dpm_levels[i].value, |
1541 | data->dpm_table.mclk_table.dpm_levels[j].value, |
1542 | &arb_regs.entries[i][j]); |
1543 | if (result) |
1544 | break; |
1545 | } |
1546 | } |
1547 | |
1548 | if (!result) |
1549 | result = smu7_copy_bytes_to_smc( |
1550 | hwmgr, |
1551 | smu_data->smu7_data.arb_table_start, |
1552 | (uint8_t *)&arb_regs, |
1553 | sizeof(SMU73_Discrete_MCArbDramTimingTable), |
1554 | SMC_RAM_END); |
1555 | return result; |
1556 | } |
1557 | |
1558 | static int fiji_populate_smc_uvd_level(struct pp_hwmgr *hwmgr, |
1559 | struct SMU73_Discrete_DpmTable *table) |
1560 | { |
1561 | int result = -EINVAL; |
1562 | uint8_t count; |
1563 | struct pp_atomctrl_clock_dividers_vi dividers; |
1564 | struct phm_ppt_v1_information *table_info = |
1565 | (struct phm_ppt_v1_information *)(hwmgr->pptable); |
1566 | struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = |
1567 | table_info->mm_dep_table; |
1568 | |
1569 | table->UvdLevelCount = (uint8_t)(mm_table->count); |
1570 | table->UvdBootLevel = 0; |
1571 | |
1572 | for (count = 0; count < table->UvdLevelCount; count++) { |
1573 | table->UvdLevel[count].MinVoltage = 0; |
1574 | table->UvdLevel[count].VclkFrequency = mm_table->entries[count].vclk; |
1575 | table->UvdLevel[count].DclkFrequency = mm_table->entries[count].dclk; |
1576 | table->UvdLevel[count].MinVoltage |= (mm_table->entries[count].vddc * |
1577 | VOLTAGE_SCALE) << VDDC_SHIFT; |
1578 | table->UvdLevel[count].MinVoltage |= ((mm_table->entries[count].vddc - |
1579 | VDDC_VDDCI_DELTA) * VOLTAGE_SCALE) << VDDCI_SHIFT; |
1580 | table->UvdLevel[count].MinVoltage |= 1 << PHASES_SHIFT; |
1581 | |
1582 | /* retrieve divider value for VBIOS */ |
1583 | result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, |
1584 | table->UvdLevel[count].VclkFrequency, ÷rs); |
1585 | PP_ASSERT_WITH_CODE((0 == result), |
1586 | "can not find divide id for Vclk clock" , return result); |
1587 | |
1588 | table->UvdLevel[count].VclkDivider = (uint8_t)dividers.pll_post_divider; |
1589 | |
1590 | result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, |
1591 | table->UvdLevel[count].DclkFrequency, ÷rs); |
1592 | PP_ASSERT_WITH_CODE((0 == result), |
1593 | "can not find divide id for Dclk clock" , return result); |
1594 | |
1595 | table->UvdLevel[count].DclkDivider = (uint8_t)dividers.pll_post_divider; |
1596 | |
1597 | CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].VclkFrequency); |
1598 | CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].DclkFrequency); |
1599 | CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].MinVoltage); |
1600 | |
1601 | } |
1602 | return result; |
1603 | } |
1604 | |
1605 | static int fiji_populate_smc_boot_level(struct pp_hwmgr *hwmgr, |
1606 | struct SMU73_Discrete_DpmTable *table) |
1607 | { |
1608 | int result = 0; |
1609 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
1610 | |
1611 | table->GraphicsBootLevel = 0; |
1612 | table->MemoryBootLevel = 0; |
1613 | |
1614 | /* find boot level from dpm table */ |
1615 | result = phm_find_boot_level(&(data->dpm_table.sclk_table), |
1616 | data->vbios_boot_state.sclk_bootup_value, |
1617 | (uint32_t *)&(table->GraphicsBootLevel)); |
1618 | |
1619 | result = phm_find_boot_level(&(data->dpm_table.mclk_table), |
1620 | data->vbios_boot_state.mclk_bootup_value, |
1621 | (uint32_t *)&(table->MemoryBootLevel)); |
1622 | |
1623 | table->BootVddc = data->vbios_boot_state.vddc_bootup_value * |
1624 | VOLTAGE_SCALE; |
1625 | table->BootVddci = data->vbios_boot_state.vddci_bootup_value * |
1626 | VOLTAGE_SCALE; |
1627 | table->BootMVdd = data->vbios_boot_state.mvdd_bootup_value * |
1628 | VOLTAGE_SCALE; |
1629 | |
1630 | CONVERT_FROM_HOST_TO_SMC_US(table->BootVddc); |
1631 | CONVERT_FROM_HOST_TO_SMC_US(table->BootVddci); |
1632 | CONVERT_FROM_HOST_TO_SMC_US(table->BootMVdd); |
1633 | |
1634 | return 0; |
1635 | } |
1636 | |
1637 | static int fiji_populate_smc_initailial_state(struct pp_hwmgr *hwmgr) |
1638 | { |
1639 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
1640 | struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend); |
1641 | struct phm_ppt_v1_information *table_info = |
1642 | (struct phm_ppt_v1_information *)(hwmgr->pptable); |
1643 | uint8_t count, level; |
1644 | |
1645 | count = (uint8_t)(table_info->vdd_dep_on_sclk->count); |
1646 | for (level = 0; level < count; level++) { |
1647 | if (table_info->vdd_dep_on_sclk->entries[level].clk >= |
1648 | data->vbios_boot_state.sclk_bootup_value) { |
1649 | smu_data->smc_state_table.GraphicsBootLevel = level; |
1650 | break; |
1651 | } |
1652 | } |
1653 | |
1654 | count = (uint8_t)(table_info->vdd_dep_on_mclk->count); |
1655 | for (level = 0; level < count; level++) { |
1656 | if (table_info->vdd_dep_on_mclk->entries[level].clk >= |
1657 | data->vbios_boot_state.mclk_bootup_value) { |
1658 | smu_data->smc_state_table.MemoryBootLevel = level; |
1659 | break; |
1660 | } |
1661 | } |
1662 | |
1663 | return 0; |
1664 | } |
1665 | |
1666 | static int fiji_populate_clock_stretcher_data_table(struct pp_hwmgr *hwmgr) |
1667 | { |
1668 | uint32_t ro, efuse, efuse2, clock_freq, volt_without_cks, |
1669 | volt_with_cks, value; |
1670 | uint16_t clock_freq_u16; |
1671 | struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend); |
1672 | uint8_t type, i, j, cks_setting, stretch_amount, stretch_amount2, |
1673 | volt_offset = 0; |
1674 | struct phm_ppt_v1_information *table_info = |
1675 | (struct phm_ppt_v1_information *)(hwmgr->pptable); |
1676 | struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table = |
1677 | table_info->vdd_dep_on_sclk; |
1678 | |
1679 | stretch_amount = (uint8_t)table_info->cac_dtp_table->usClockStretchAmount; |
1680 | |
1681 | /* Read SMU_Eefuse to read and calculate RO and determine |
1682 | * if the part is SS or FF. if RO >= 1660MHz, part is FF. |
1683 | */ |
1684 | efuse = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
1685 | ixSMU_EFUSE_0 + (146 * 4)); |
1686 | efuse2 = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
1687 | ixSMU_EFUSE_0 + (148 * 4)); |
1688 | efuse &= 0xFF000000; |
1689 | efuse = efuse >> 24; |
1690 | efuse2 &= 0xF; |
1691 | |
1692 | if (efuse2 == 1) |
1693 | ro = (2300 - 1350) * efuse / 255 + 1350; |
1694 | else |
1695 | ro = (2500 - 1000) * efuse / 255 + 1000; |
1696 | |
1697 | if (ro >= 1660) |
1698 | type = 0; |
1699 | else |
1700 | type = 1; |
1701 | |
1702 | /* Populate Stretch amount */ |
1703 | smu_data->smc_state_table.ClockStretcherAmount = stretch_amount; |
1704 | |
1705 | /* Populate Sclk_CKS_masterEn0_7 and Sclk_voltageOffset */ |
1706 | for (i = 0; i < sclk_table->count; i++) { |
1707 | smu_data->smc_state_table.Sclk_CKS_masterEn0_7 |= |
1708 | sclk_table->entries[i].cks_enable << i; |
1709 | volt_without_cks = (uint32_t)((14041 * |
1710 | (sclk_table->entries[i].clk/100) / 10000 + 3571 + 75 - ro) * 1000 / |
1711 | (4026 - (13924 * (sclk_table->entries[i].clk/100) / 10000))); |
1712 | volt_with_cks = (uint32_t)((13946 * |
1713 | (sclk_table->entries[i].clk/100) / 10000 + 3320 + 45 - ro) * 1000 / |
1714 | (3664 - (11454 * (sclk_table->entries[i].clk/100) / 10000))); |
1715 | if (volt_without_cks >= volt_with_cks) |
1716 | volt_offset = (uint8_t)(((volt_without_cks - volt_with_cks + |
1717 | sclk_table->entries[i].cks_voffset) * 100 / 625) + 1); |
1718 | smu_data->smc_state_table.Sclk_voltageOffset[i] = volt_offset; |
1719 | } |
1720 | |
1721 | PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE, |
1722 | STRETCH_ENABLE, 0x0); |
1723 | PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE, |
1724 | masterReset, 0x1); |
1725 | PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE, |
1726 | staticEnable, 0x1); |
1727 | PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE, |
1728 | masterReset, 0x0); |
1729 | |
1730 | /* Populate CKS Lookup Table */ |
1731 | if (stretch_amount == 1 || stretch_amount == 2 || stretch_amount == 5) |
1732 | stretch_amount2 = 0; |
1733 | else if (stretch_amount == 3 || stretch_amount == 4) |
1734 | stretch_amount2 = 1; |
1735 | else { |
1736 | phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
1737 | PHM_PlatformCaps_ClockStretcher); |
1738 | PP_ASSERT_WITH_CODE(false, |
1739 | "Stretch Amount in PPTable not supported" , |
1740 | return -EINVAL); |
1741 | } |
1742 | |
1743 | value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
1744 | ixPWR_CKS_CNTL); |
1745 | value &= 0xFFC2FF87; |
1746 | smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].minFreq = |
1747 | fiji_clock_stretcher_lookup_table[stretch_amount2][0]; |
1748 | smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].maxFreq = |
1749 | fiji_clock_stretcher_lookup_table[stretch_amount2][1]; |
1750 | clock_freq_u16 = (uint16_t)(PP_SMC_TO_HOST_UL(smu_data->smc_state_table. |
1751 | GraphicsLevel[smu_data->smc_state_table.GraphicsDpmLevelCount - 1]. |
1752 | SclkFrequency) / 100); |
1753 | if (fiji_clock_stretcher_lookup_table[stretch_amount2][0] < |
1754 | clock_freq_u16 && |
1755 | fiji_clock_stretcher_lookup_table[stretch_amount2][1] > |
1756 | clock_freq_u16) { |
1757 | /* Program PWR_CKS_CNTL. CKS_USE_FOR_LOW_FREQ */ |
1758 | value |= (fiji_clock_stretcher_lookup_table[stretch_amount2][3]) << 16; |
1759 | /* Program PWR_CKS_CNTL. CKS_LDO_REFSEL */ |
1760 | value |= (fiji_clock_stretcher_lookup_table[stretch_amount2][2]) << 18; |
1761 | /* Program PWR_CKS_CNTL. CKS_STRETCH_AMOUNT */ |
1762 | value |= (fiji_clock_stretch_amount_conversion |
1763 | [fiji_clock_stretcher_lookup_table[stretch_amount2][3]] |
1764 | [stretch_amount]) << 3; |
1765 | } |
1766 | CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.CKS_LOOKUPTable. |
1767 | CKS_LOOKUPTableEntry[0].minFreq); |
1768 | CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.CKS_LOOKUPTable. |
1769 | CKS_LOOKUPTableEntry[0].maxFreq); |
1770 | smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting = |
1771 | fiji_clock_stretcher_lookup_table[stretch_amount2][2] & 0x7F; |
1772 | smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting |= |
1773 | (fiji_clock_stretcher_lookup_table[stretch_amount2][3]) << 7; |
1774 | |
1775 | cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
1776 | ixPWR_CKS_CNTL, value); |
1777 | |
1778 | /* Populate DDT Lookup Table */ |
1779 | for (i = 0; i < 4; i++) { |
1780 | /* Assign the minimum and maximum VID stored |
1781 | * in the last row of Clock Stretcher Voltage Table. |
1782 | */ |
1783 | smu_data->smc_state_table.ClockStretcherDataTable. |
1784 | ClockStretcherDataTableEntry[i].minVID = |
1785 | (uint8_t) fiji_clock_stretcher_ddt_table[type][i][2]; |
1786 | smu_data->smc_state_table.ClockStretcherDataTable. |
1787 | ClockStretcherDataTableEntry[i].maxVID = |
1788 | (uint8_t) fiji_clock_stretcher_ddt_table[type][i][3]; |
1789 | /* Loop through each SCLK and check the frequency |
1790 | * to see if it lies within the frequency for clock stretcher. |
1791 | */ |
1792 | for (j = 0; j < smu_data->smc_state_table.GraphicsDpmLevelCount; j++) { |
1793 | cks_setting = 0; |
1794 | clock_freq = PP_SMC_TO_HOST_UL( |
1795 | smu_data->smc_state_table.GraphicsLevel[j].SclkFrequency); |
1796 | /* Check the allowed frequency against the sclk level[j]. |
1797 | * Sclk's endianness has already been converted, |
1798 | * and it's in 10Khz unit, |
1799 | * as opposed to Data table, which is in Mhz unit. |
1800 | */ |
1801 | if (clock_freq >= |
1802 | (fiji_clock_stretcher_ddt_table[type][i][0]) * 100) { |
1803 | cks_setting |= 0x2; |
1804 | if (clock_freq < |
1805 | (fiji_clock_stretcher_ddt_table[type][i][1]) * 100) |
1806 | cks_setting |= 0x1; |
1807 | } |
1808 | smu_data->smc_state_table.ClockStretcherDataTable. |
1809 | ClockStretcherDataTableEntry[i].setting |= cks_setting << (j * 2); |
1810 | } |
1811 | CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table. |
1812 | ClockStretcherDataTable. |
1813 | ClockStretcherDataTableEntry[i].setting); |
1814 | } |
1815 | |
1816 | value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL); |
1817 | value &= 0xFFFFFFFE; |
1818 | cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL, value); |
1819 | |
1820 | return 0; |
1821 | } |
1822 | |
1823 | static int fiji_populate_vr_config(struct pp_hwmgr *hwmgr, |
1824 | struct SMU73_Discrete_DpmTable *table) |
1825 | { |
1826 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
1827 | uint16_t config; |
1828 | |
1829 | config = VR_MERGED_WITH_VDDC; |
1830 | table->VRConfig |= (config << VRCONF_VDDGFX_SHIFT); |
1831 | |
1832 | /* Set Vddc Voltage Controller */ |
1833 | if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) { |
1834 | config = VR_SVI2_PLANE_1; |
1835 | table->VRConfig |= config; |
1836 | } else { |
1837 | PP_ASSERT_WITH_CODE(false, |
1838 | "VDDC should be on SVI2 control in merged mode!" , |
1839 | ); |
1840 | } |
1841 | /* Set Vddci Voltage Controller */ |
1842 | if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) { |
1843 | config = VR_SVI2_PLANE_2; /* only in merged mode */ |
1844 | table->VRConfig |= (config << VRCONF_VDDCI_SHIFT); |
1845 | } else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) { |
1846 | config = VR_SMIO_PATTERN_1; |
1847 | table->VRConfig |= (config << VRCONF_VDDCI_SHIFT); |
1848 | } else { |
1849 | config = VR_STATIC_VOLTAGE; |
1850 | table->VRConfig |= (config << VRCONF_VDDCI_SHIFT); |
1851 | } |
1852 | /* Set Mvdd Voltage Controller */ |
1853 | if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control) { |
1854 | config = VR_SVI2_PLANE_2; |
1855 | table->VRConfig |= (config << VRCONF_MVDD_SHIFT); |
1856 | } else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) { |
1857 | config = VR_SMIO_PATTERN_2; |
1858 | table->VRConfig |= (config << VRCONF_MVDD_SHIFT); |
1859 | } else { |
1860 | config = VR_STATIC_VOLTAGE; |
1861 | table->VRConfig |= (config << VRCONF_MVDD_SHIFT); |
1862 | } |
1863 | |
1864 | return 0; |
1865 | } |
1866 | |
1867 | static int fiji_init_arb_table_index(struct pp_hwmgr *hwmgr) |
1868 | { |
1869 | struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend); |
1870 | uint32_t tmp; |
1871 | int result; |
1872 | |
1873 | /* This is a read-modify-write on the first byte of the ARB table. |
1874 | * The first byte in the SMU73_Discrete_MCArbDramTimingTable structure |
1875 | * is the field 'current'. |
1876 | * This solution is ugly, but we never write the whole table only |
1877 | * individual fields in it. |
1878 | * In reality this field should not be in that structure |
1879 | * but in a soft register. |
1880 | */ |
1881 | result = smu7_read_smc_sram_dword(hwmgr, |
1882 | smu_data->smu7_data.arb_table_start, &tmp, SMC_RAM_END); |
1883 | |
1884 | if (result) |
1885 | return result; |
1886 | |
1887 | tmp &= 0x00FFFFFF; |
1888 | tmp |= ((uint32_t)MC_CG_ARB_FREQ_F1) << 24; |
1889 | |
1890 | return smu7_write_smc_sram_dword(hwmgr, |
1891 | smu_data->smu7_data.arb_table_start, tmp, SMC_RAM_END); |
1892 | } |
1893 | |
1894 | static int fiji_setup_dpm_led_config(struct pp_hwmgr *hwmgr) |
1895 | { |
1896 | pp_atomctrl_voltage_table param_led_dpm; |
1897 | int result = 0; |
1898 | u32 mask = 0; |
1899 | |
1900 | result = atomctrl_get_voltage_table_v3(hwmgr, |
1901 | VOLTAGE_TYPE_LEDDPM, VOLTAGE_OBJ_GPIO_LUT, |
1902 | ¶m_led_dpm); |
1903 | if (result == 0) { |
1904 | int i, j; |
1905 | u32 tmp = param_led_dpm.mask_low; |
1906 | |
1907 | for (i = 0, j = 0; i < 32; i++) { |
1908 | if (tmp & 1) { |
1909 | mask |= (i << (8 * j)); |
1910 | if (++j >= 3) |
1911 | break; |
1912 | } |
1913 | tmp >>= 1; |
1914 | } |
1915 | } |
1916 | if (mask) |
1917 | smum_send_msg_to_smc_with_parameter(hwmgr, |
1918 | PPSMC_MSG_LedConfig, |
1919 | mask); |
1920 | return 0; |
1921 | } |
1922 | |
1923 | static int fiji_init_smc_table(struct pp_hwmgr *hwmgr) |
1924 | { |
1925 | int result; |
1926 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
1927 | struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend); |
1928 | struct phm_ppt_v1_information *table_info = |
1929 | (struct phm_ppt_v1_information *)(hwmgr->pptable); |
1930 | struct SMU73_Discrete_DpmTable *table = &(smu_data->smc_state_table); |
1931 | uint8_t i; |
1932 | struct pp_atomctrl_gpio_pin_assignment gpio_pin; |
1933 | |
1934 | fiji_initialize_power_tune_defaults(hwmgr); |
1935 | |
1936 | if (SMU7_VOLTAGE_CONTROL_NONE != data->voltage_control) |
1937 | fiji_populate_smc_voltage_tables(hwmgr, table); |
1938 | |
1939 | table->SystemFlags = 0; |
1940 | |
1941 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
1942 | PHM_PlatformCaps_AutomaticDCTransition)) |
1943 | table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC; |
1944 | |
1945 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
1946 | PHM_PlatformCaps_StepVddc)) |
1947 | table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC; |
1948 | |
1949 | if (data->is_memory_gddr5) |
1950 | table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5; |
1951 | |
1952 | if (data->ulv_supported && table_info->us_ulv_voltage_offset) { |
1953 | result = fiji_populate_ulv_state(hwmgr, table); |
1954 | PP_ASSERT_WITH_CODE(0 == result, |
1955 | "Failed to initialize ULV state!" , return result); |
1956 | cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
1957 | ixCG_ULV_PARAMETER, 0x40035); |
1958 | } |
1959 | |
1960 | result = fiji_populate_smc_link_level(hwmgr, table); |
1961 | PP_ASSERT_WITH_CODE(0 == result, |
1962 | "Failed to initialize Link Level!" , return result); |
1963 | |
1964 | result = fiji_populate_all_graphic_levels(hwmgr); |
1965 | PP_ASSERT_WITH_CODE(0 == result, |
1966 | "Failed to initialize Graphics Level!" , return result); |
1967 | |
1968 | result = fiji_populate_all_memory_levels(hwmgr); |
1969 | PP_ASSERT_WITH_CODE(0 == result, |
1970 | "Failed to initialize Memory Level!" , return result); |
1971 | |
1972 | result = fiji_populate_smc_acpi_level(hwmgr, table); |
1973 | PP_ASSERT_WITH_CODE(0 == result, |
1974 | "Failed to initialize ACPI Level!" , return result); |
1975 | |
1976 | result = fiji_populate_smc_vce_level(hwmgr, table); |
1977 | PP_ASSERT_WITH_CODE(0 == result, |
1978 | "Failed to initialize VCE Level!" , return result); |
1979 | |
1980 | result = fiji_populate_smc_acp_level(hwmgr, table); |
1981 | PP_ASSERT_WITH_CODE(0 == result, |
1982 | "Failed to initialize ACP Level!" , return result); |
1983 | |
1984 | /* Since only the initial state is completely set up at this point |
1985 | * (the other states are just copies of the boot state) we only |
1986 | * need to populate the ARB settings for the initial state. |
1987 | */ |
1988 | result = fiji_program_memory_timing_parameters(hwmgr); |
1989 | PP_ASSERT_WITH_CODE(0 == result, |
1990 | "Failed to Write ARB settings for the initial state." , return result); |
1991 | |
1992 | result = fiji_populate_smc_uvd_level(hwmgr, table); |
1993 | PP_ASSERT_WITH_CODE(0 == result, |
1994 | "Failed to initialize UVD Level!" , return result); |
1995 | |
1996 | result = fiji_populate_smc_boot_level(hwmgr, table); |
1997 | PP_ASSERT_WITH_CODE(0 == result, |
1998 | "Failed to initialize Boot Level!" , return result); |
1999 | |
2000 | result = fiji_populate_smc_initailial_state(hwmgr); |
2001 | PP_ASSERT_WITH_CODE(0 == result, |
2002 | "Failed to initialize Boot State!" , return result); |
2003 | |
2004 | result = fiji_populate_bapm_parameters_in_dpm_table(hwmgr); |
2005 | PP_ASSERT_WITH_CODE(0 == result, |
2006 | "Failed to populate BAPM Parameters!" , return result); |
2007 | |
2008 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
2009 | PHM_PlatformCaps_ClockStretcher)) { |
2010 | result = fiji_populate_clock_stretcher_data_table(hwmgr); |
2011 | PP_ASSERT_WITH_CODE(0 == result, |
2012 | "Failed to populate Clock Stretcher Data Table!" , |
2013 | return result); |
2014 | } |
2015 | |
2016 | table->GraphicsVoltageChangeEnable = 1; |
2017 | table->GraphicsThermThrottleEnable = 1; |
2018 | table->GraphicsInterval = 1; |
2019 | table->VoltageInterval = 1; |
2020 | table->ThermalInterval = 1; |
2021 | table->TemperatureLimitHigh = |
2022 | table_info->cac_dtp_table->usTargetOperatingTemp * |
2023 | SMU7_Q88_FORMAT_CONVERSION_UNIT; |
2024 | table->TemperatureLimitLow = |
2025 | (table_info->cac_dtp_table->usTargetOperatingTemp - 1) * |
2026 | SMU7_Q88_FORMAT_CONVERSION_UNIT; |
2027 | table->MemoryVoltageChangeEnable = 1; |
2028 | table->MemoryInterval = 1; |
2029 | table->VoltageResponseTime = 0; |
2030 | table->PhaseResponseTime = 0; |
2031 | table->MemoryThermThrottleEnable = 1; |
2032 | table->PCIeBootLinkLevel = 0; /* 0:Gen1 1:Gen2 2:Gen3*/ |
2033 | table->PCIeGenInterval = 1; |
2034 | table->VRConfig = 0; |
2035 | |
2036 | result = fiji_populate_vr_config(hwmgr, table); |
2037 | PP_ASSERT_WITH_CODE(0 == result, |
2038 | "Failed to populate VRConfig setting!" , return result); |
2039 | data->vr_config = table->VRConfig; |
2040 | table->ThermGpio = 17; |
2041 | table->SclkStepSize = 0x4000; |
2042 | |
2043 | if (atomctrl_get_pp_assign_pin(hwmgr, VDDC_VRHOT_GPIO_PINID, &gpio_pin)) { |
2044 | table->VRHotGpio = gpio_pin.uc_gpio_pin_bit_shift; |
2045 | phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
2046 | PHM_PlatformCaps_RegulatorHot); |
2047 | } else { |
2048 | table->VRHotGpio = SMU7_UNUSED_GPIO_PIN; |
2049 | phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
2050 | PHM_PlatformCaps_RegulatorHot); |
2051 | } |
2052 | |
2053 | if (atomctrl_get_pp_assign_pin(hwmgr, PP_AC_DC_SWITCH_GPIO_PINID, |
2054 | &gpio_pin)) { |
2055 | table->AcDcGpio = gpio_pin.uc_gpio_pin_bit_shift; |
2056 | phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
2057 | PHM_PlatformCaps_AutomaticDCTransition); |
2058 | } else { |
2059 | table->AcDcGpio = SMU7_UNUSED_GPIO_PIN; |
2060 | phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
2061 | PHM_PlatformCaps_AutomaticDCTransition); |
2062 | } |
2063 | |
2064 | /* Thermal Output GPIO */ |
2065 | if (atomctrl_get_pp_assign_pin(hwmgr, THERMAL_INT_OUTPUT_GPIO_PINID, |
2066 | &gpio_pin)) { |
2067 | phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
2068 | PHM_PlatformCaps_ThermalOutGPIO); |
2069 | |
2070 | table->ThermOutGpio = gpio_pin.uc_gpio_pin_bit_shift; |
2071 | |
2072 | /* For porlarity read GPIOPAD_A with assigned Gpio pin |
2073 | * since VBIOS will program this register to set 'inactive state', |
2074 | * driver can then determine 'active state' from this and |
2075 | * program SMU with correct polarity |
2076 | */ |
2077 | table->ThermOutPolarity = (0 == (cgs_read_register(hwmgr->device, mmGPIOPAD_A) & |
2078 | (1 << gpio_pin.uc_gpio_pin_bit_shift))) ? 1:0; |
2079 | table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_ONLY; |
2080 | |
2081 | /* if required, combine VRHot/PCC with thermal out GPIO */ |
2082 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
2083 | PHM_PlatformCaps_RegulatorHot) && |
2084 | phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
2085 | PHM_PlatformCaps_CombinePCCWithThermalSignal)) |
2086 | table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_VRHOT; |
2087 | } else { |
2088 | phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
2089 | PHM_PlatformCaps_ThermalOutGPIO); |
2090 | table->ThermOutGpio = 17; |
2091 | table->ThermOutPolarity = 1; |
2092 | table->ThermOutMode = SMU7_THERM_OUT_MODE_DISABLE; |
2093 | } |
2094 | |
2095 | for (i = 0; i < SMU73_MAX_ENTRIES_SMIO; i++) |
2096 | table->Smio[i] = PP_HOST_TO_SMC_UL(table->Smio[i]); |
2097 | |
2098 | CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags); |
2099 | CONVERT_FROM_HOST_TO_SMC_UL(table->VRConfig); |
2100 | CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask1); |
2101 | CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask2); |
2102 | CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize); |
2103 | CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh); |
2104 | CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow); |
2105 | CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime); |
2106 | CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime); |
2107 | |
2108 | /* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */ |
2109 | result = smu7_copy_bytes_to_smc(hwmgr, |
2110 | smu_data->smu7_data.dpm_table_start + |
2111 | offsetof(SMU73_Discrete_DpmTable, SystemFlags), |
2112 | (uint8_t *)&(table->SystemFlags), |
2113 | sizeof(SMU73_Discrete_DpmTable) - 3 * sizeof(SMU73_PIDController), |
2114 | SMC_RAM_END); |
2115 | PP_ASSERT_WITH_CODE(0 == result, |
2116 | "Failed to upload dpm data to SMC memory!" , return result); |
2117 | |
2118 | result = fiji_init_arb_table_index(hwmgr); |
2119 | PP_ASSERT_WITH_CODE(0 == result, |
2120 | "Failed to upload arb data to SMC memory!" , return result); |
2121 | |
2122 | result = fiji_populate_pm_fuses(hwmgr); |
2123 | PP_ASSERT_WITH_CODE(0 == result, |
2124 | "Failed to populate PM fuses to SMC memory!" , return result); |
2125 | |
2126 | result = fiji_setup_dpm_led_config(hwmgr); |
2127 | PP_ASSERT_WITH_CODE(0 == result, |
2128 | "Failed to setup dpm led config" , return result); |
2129 | |
2130 | return 0; |
2131 | } |
2132 | |
2133 | static int fiji_thermal_setup_fan_table(struct pp_hwmgr *hwmgr) |
2134 | { |
2135 | struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend); |
2136 | |
2137 | SMU73_Discrete_FanTable fan_table = { FDO_MODE_HARDWARE }; |
2138 | uint32_t duty100; |
2139 | uint32_t t_diff1, t_diff2, pwm_diff1, pwm_diff2; |
2140 | uint16_t fdo_min, slope1, slope2; |
2141 | uint32_t reference_clock; |
2142 | int res; |
2143 | uint64_t tmp64; |
2144 | |
2145 | if (hwmgr->thermal_controller.fanInfo.bNoFan) { |
2146 | phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
2147 | PHM_PlatformCaps_MicrocodeFanControl); |
2148 | return 0; |
2149 | } |
2150 | |
2151 | if (smu_data->smu7_data.fan_table_start == 0) { |
2152 | phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
2153 | PHM_PlatformCaps_MicrocodeFanControl); |
2154 | return 0; |
2155 | } |
2156 | |
2157 | duty100 = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, |
2158 | CG_FDO_CTRL1, FMAX_DUTY100); |
2159 | |
2160 | if (duty100 == 0) { |
2161 | phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
2162 | PHM_PlatformCaps_MicrocodeFanControl); |
2163 | return 0; |
2164 | } |
2165 | |
2166 | tmp64 = hwmgr->thermal_controller.advanceFanControlParameters. |
2167 | usPWMMin * duty100; |
2168 | do_div(tmp64, 10000); |
2169 | fdo_min = (uint16_t)tmp64; |
2170 | |
2171 | t_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usTMed - |
2172 | hwmgr->thermal_controller.advanceFanControlParameters.usTMin; |
2173 | t_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usTHigh - |
2174 | hwmgr->thermal_controller.advanceFanControlParameters.usTMed; |
2175 | |
2176 | pwm_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed - |
2177 | hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin; |
2178 | pwm_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMHigh - |
2179 | hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed; |
2180 | |
2181 | slope1 = (uint16_t)((50 + ((16 * duty100 * pwm_diff1) / t_diff1)) / 100); |
2182 | slope2 = (uint16_t)((50 + ((16 * duty100 * pwm_diff2) / t_diff2)) / 100); |
2183 | |
2184 | fan_table.TempMin = cpu_to_be16((50 + hwmgr-> |
2185 | thermal_controller.advanceFanControlParameters.usTMin) / 100); |
2186 | fan_table.TempMed = cpu_to_be16((50 + hwmgr-> |
2187 | thermal_controller.advanceFanControlParameters.usTMed) / 100); |
2188 | fan_table.TempMax = cpu_to_be16((50 + hwmgr-> |
2189 | thermal_controller.advanceFanControlParameters.usTMax) / 100); |
2190 | |
2191 | fan_table.Slope1 = cpu_to_be16(slope1); |
2192 | fan_table.Slope2 = cpu_to_be16(slope2); |
2193 | |
2194 | fan_table.FdoMin = cpu_to_be16(fdo_min); |
2195 | |
2196 | fan_table.HystDown = cpu_to_be16(hwmgr-> |
2197 | thermal_controller.advanceFanControlParameters.ucTHyst); |
2198 | |
2199 | fan_table.HystUp = cpu_to_be16(1); |
2200 | |
2201 | fan_table.HystSlope = cpu_to_be16(1); |
2202 | |
2203 | fan_table.TempRespLim = cpu_to_be16(5); |
2204 | |
2205 | reference_clock = amdgpu_asic_get_xclk((struct amdgpu_device *)hwmgr->adev); |
2206 | |
2207 | fan_table.RefreshPeriod = cpu_to_be32((hwmgr-> |
2208 | thermal_controller.advanceFanControlParameters.ulCycleDelay * |
2209 | reference_clock) / 1600); |
2210 | |
2211 | fan_table.FdoMax = cpu_to_be16((uint16_t)duty100); |
2212 | |
2213 | fan_table.TempSrc = (uint8_t)PHM_READ_VFPF_INDIRECT_FIELD( |
2214 | hwmgr->device, CGS_IND_REG__SMC, |
2215 | CG_MULT_THERMAL_CTRL, TEMP_SEL); |
2216 | |
2217 | res = smu7_copy_bytes_to_smc(hwmgr, smu_data->smu7_data.fan_table_start, |
2218 | (uint8_t *)&fan_table, (uint32_t)sizeof(fan_table), |
2219 | SMC_RAM_END); |
2220 | |
2221 | if (!res && hwmgr->thermal_controller. |
2222 | advanceFanControlParameters.ucMinimumPWMLimit) |
2223 | res = smum_send_msg_to_smc_with_parameter(hwmgr, |
2224 | PPSMC_MSG_SetFanMinPwm, |
2225 | hwmgr->thermal_controller. |
2226 | advanceFanControlParameters.ucMinimumPWMLimit); |
2227 | |
2228 | if (!res && hwmgr->thermal_controller. |
2229 | advanceFanControlParameters.ulMinFanSCLKAcousticLimit) |
2230 | res = smum_send_msg_to_smc_with_parameter(hwmgr, |
2231 | PPSMC_MSG_SetFanSclkTarget, |
2232 | hwmgr->thermal_controller. |
2233 | advanceFanControlParameters.ulMinFanSCLKAcousticLimit); |
2234 | |
2235 | if (res) |
2236 | phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
2237 | PHM_PlatformCaps_MicrocodeFanControl); |
2238 | |
2239 | return 0; |
2240 | } |
2241 | |
2242 | |
2243 | static int fiji_thermal_avfs_enable(struct pp_hwmgr *hwmgr) |
2244 | { |
2245 | if (!hwmgr->avfs_supported) |
2246 | return 0; |
2247 | |
2248 | smum_send_msg_to_smc(hwmgr, PPSMC_MSG_EnableAvfs); |
2249 | |
2250 | return 0; |
2251 | } |
2252 | |
2253 | static int fiji_program_mem_timing_parameters(struct pp_hwmgr *hwmgr) |
2254 | { |
2255 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
2256 | |
2257 | if (data->need_update_smu7_dpm_table & |
2258 | (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_OD_UPDATE_MCLK)) |
2259 | return fiji_program_memory_timing_parameters(hwmgr); |
2260 | |
2261 | return 0; |
2262 | } |
2263 | |
2264 | static int fiji_update_sclk_threshold(struct pp_hwmgr *hwmgr) |
2265 | { |
2266 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
2267 | struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend); |
2268 | |
2269 | int result = 0; |
2270 | uint32_t low_sclk_interrupt_threshold = 0; |
2271 | |
2272 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
2273 | PHM_PlatformCaps_SclkThrottleLowNotification) |
2274 | && (data->low_sclk_interrupt_threshold != 0)) { |
2275 | low_sclk_interrupt_threshold = |
2276 | data->low_sclk_interrupt_threshold; |
2277 | |
2278 | CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold); |
2279 | |
2280 | result = smu7_copy_bytes_to_smc( |
2281 | hwmgr, |
2282 | smu_data->smu7_data.dpm_table_start + |
2283 | offsetof(SMU73_Discrete_DpmTable, |
2284 | LowSclkInterruptThreshold), |
2285 | (uint8_t *)&low_sclk_interrupt_threshold, |
2286 | sizeof(uint32_t), |
2287 | SMC_RAM_END); |
2288 | } |
2289 | result = fiji_program_mem_timing_parameters(hwmgr); |
2290 | PP_ASSERT_WITH_CODE((result == 0), |
2291 | "Failed to program memory timing parameters!" , |
2292 | ); |
2293 | return result; |
2294 | } |
2295 | |
2296 | static uint32_t fiji_get_offsetof(uint32_t type, uint32_t member) |
2297 | { |
2298 | switch (type) { |
2299 | case SMU_SoftRegisters: |
2300 | switch (member) { |
2301 | case HandshakeDisables: |
2302 | return offsetof(SMU73_SoftRegisters, HandshakeDisables); |
2303 | case VoltageChangeTimeout: |
2304 | return offsetof(SMU73_SoftRegisters, VoltageChangeTimeout); |
2305 | case AverageGraphicsActivity: |
2306 | return offsetof(SMU73_SoftRegisters, AverageGraphicsActivity); |
2307 | case PreVBlankGap: |
2308 | return offsetof(SMU73_SoftRegisters, PreVBlankGap); |
2309 | case VBlankTimeout: |
2310 | return offsetof(SMU73_SoftRegisters, VBlankTimeout); |
2311 | case UcodeLoadStatus: |
2312 | return offsetof(SMU73_SoftRegisters, UcodeLoadStatus); |
2313 | case DRAM_LOG_ADDR_H: |
2314 | return offsetof(SMU73_SoftRegisters, DRAM_LOG_ADDR_H); |
2315 | case DRAM_LOG_ADDR_L: |
2316 | return offsetof(SMU73_SoftRegisters, DRAM_LOG_ADDR_L); |
2317 | case DRAM_LOG_PHY_ADDR_H: |
2318 | return offsetof(SMU73_SoftRegisters, DRAM_LOG_PHY_ADDR_H); |
2319 | case DRAM_LOG_PHY_ADDR_L: |
2320 | return offsetof(SMU73_SoftRegisters, DRAM_LOG_PHY_ADDR_L); |
2321 | case DRAM_LOG_BUFF_SIZE: |
2322 | return offsetof(SMU73_SoftRegisters, DRAM_LOG_BUFF_SIZE); |
2323 | } |
2324 | break; |
2325 | case SMU_Discrete_DpmTable: |
2326 | switch (member) { |
2327 | case UvdBootLevel: |
2328 | return offsetof(SMU73_Discrete_DpmTable, UvdBootLevel); |
2329 | case VceBootLevel: |
2330 | return offsetof(SMU73_Discrete_DpmTable, VceBootLevel); |
2331 | case LowSclkInterruptThreshold: |
2332 | return offsetof(SMU73_Discrete_DpmTable, LowSclkInterruptThreshold); |
2333 | } |
2334 | break; |
2335 | } |
2336 | pr_warn("can't get the offset of type %x member %x\n" , type, member); |
2337 | return 0; |
2338 | } |
2339 | |
2340 | static uint32_t fiji_get_mac_definition(uint32_t value) |
2341 | { |
2342 | switch (value) { |
2343 | case SMU_MAX_LEVELS_GRAPHICS: |
2344 | return SMU73_MAX_LEVELS_GRAPHICS; |
2345 | case SMU_MAX_LEVELS_MEMORY: |
2346 | return SMU73_MAX_LEVELS_MEMORY; |
2347 | case SMU_MAX_LEVELS_LINK: |
2348 | return SMU73_MAX_LEVELS_LINK; |
2349 | case SMU_MAX_ENTRIES_SMIO: |
2350 | return SMU73_MAX_ENTRIES_SMIO; |
2351 | case SMU_MAX_LEVELS_VDDC: |
2352 | return SMU73_MAX_LEVELS_VDDC; |
2353 | case SMU_MAX_LEVELS_VDDGFX: |
2354 | return SMU73_MAX_LEVELS_VDDGFX; |
2355 | case SMU_MAX_LEVELS_VDDCI: |
2356 | return SMU73_MAX_LEVELS_VDDCI; |
2357 | case SMU_MAX_LEVELS_MVDD: |
2358 | return SMU73_MAX_LEVELS_MVDD; |
2359 | } |
2360 | |
2361 | pr_warn("can't get the mac of %x\n" , value); |
2362 | return 0; |
2363 | } |
2364 | |
2365 | |
2366 | static int fiji_update_uvd_smc_table(struct pp_hwmgr *hwmgr) |
2367 | { |
2368 | struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend); |
2369 | uint32_t mm_boot_level_offset, mm_boot_level_value; |
2370 | struct phm_ppt_v1_information *table_info = |
2371 | (struct phm_ppt_v1_information *)(hwmgr->pptable); |
2372 | |
2373 | smu_data->smc_state_table.UvdBootLevel = 0; |
2374 | if (table_info->mm_dep_table->count > 0) |
2375 | smu_data->smc_state_table.UvdBootLevel = |
2376 | (uint8_t) (table_info->mm_dep_table->count - 1); |
2377 | mm_boot_level_offset = smu_data->smu7_data.dpm_table_start + offsetof(SMU73_Discrete_DpmTable, |
2378 | UvdBootLevel); |
2379 | mm_boot_level_offset /= 4; |
2380 | mm_boot_level_offset *= 4; |
2381 | mm_boot_level_value = cgs_read_ind_register(hwmgr->device, |
2382 | CGS_IND_REG__SMC, mm_boot_level_offset); |
2383 | mm_boot_level_value &= 0x00FFFFFF; |
2384 | mm_boot_level_value |= smu_data->smc_state_table.UvdBootLevel << 24; |
2385 | cgs_write_ind_register(hwmgr->device, |
2386 | CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value); |
2387 | |
2388 | if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
2389 | PHM_PlatformCaps_UVDDPM) || |
2390 | phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
2391 | PHM_PlatformCaps_StablePState)) |
2392 | smum_send_msg_to_smc_with_parameter(hwmgr, |
2393 | PPSMC_MSG_UVDDPM_SetEnabledMask, |
2394 | (uint32_t)(1 << smu_data->smc_state_table.UvdBootLevel)); |
2395 | return 0; |
2396 | } |
2397 | |
2398 | static int fiji_update_vce_smc_table(struct pp_hwmgr *hwmgr) |
2399 | { |
2400 | struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend); |
2401 | uint32_t mm_boot_level_offset, mm_boot_level_value; |
2402 | struct phm_ppt_v1_information *table_info = |
2403 | (struct phm_ppt_v1_information *)(hwmgr->pptable); |
2404 | |
2405 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
2406 | PHM_PlatformCaps_StablePState)) |
2407 | smu_data->smc_state_table.VceBootLevel = |
2408 | (uint8_t) (table_info->mm_dep_table->count - 1); |
2409 | else |
2410 | smu_data->smc_state_table.VceBootLevel = 0; |
2411 | |
2412 | mm_boot_level_offset = smu_data->smu7_data.dpm_table_start + |
2413 | offsetof(SMU73_Discrete_DpmTable, VceBootLevel); |
2414 | mm_boot_level_offset /= 4; |
2415 | mm_boot_level_offset *= 4; |
2416 | mm_boot_level_value = cgs_read_ind_register(hwmgr->device, |
2417 | CGS_IND_REG__SMC, mm_boot_level_offset); |
2418 | mm_boot_level_value &= 0xFF00FFFF; |
2419 | mm_boot_level_value |= smu_data->smc_state_table.VceBootLevel << 16; |
2420 | cgs_write_ind_register(hwmgr->device, |
2421 | CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value); |
2422 | |
2423 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState)) |
2424 | smum_send_msg_to_smc_with_parameter(hwmgr, |
2425 | PPSMC_MSG_VCEDPM_SetEnabledMask, |
2426 | (uint32_t)1 << smu_data->smc_state_table.VceBootLevel); |
2427 | return 0; |
2428 | } |
2429 | |
2430 | static int fiji_update_smc_table(struct pp_hwmgr *hwmgr, uint32_t type) |
2431 | { |
2432 | switch (type) { |
2433 | case SMU_UVD_TABLE: |
2434 | fiji_update_uvd_smc_table(hwmgr); |
2435 | break; |
2436 | case SMU_VCE_TABLE: |
2437 | fiji_update_vce_smc_table(hwmgr); |
2438 | break; |
2439 | default: |
2440 | break; |
2441 | } |
2442 | return 0; |
2443 | } |
2444 | |
2445 | static int (struct pp_hwmgr *hwmgr) |
2446 | { |
2447 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
2448 | struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend); |
2449 | uint32_t tmp; |
2450 | int result; |
2451 | bool error = false; |
2452 | |
2453 | result = smu7_read_smc_sram_dword(hwmgr, |
2454 | SMU7_FIRMWARE_HEADER_LOCATION + |
2455 | offsetof(SMU73_Firmware_Header, DpmTable), |
2456 | &tmp, SMC_RAM_END); |
2457 | |
2458 | if (0 == result) |
2459 | smu_data->smu7_data.dpm_table_start = tmp; |
2460 | |
2461 | error |= (0 != result); |
2462 | |
2463 | result = smu7_read_smc_sram_dword(hwmgr, |
2464 | SMU7_FIRMWARE_HEADER_LOCATION + |
2465 | offsetof(SMU73_Firmware_Header, SoftRegisters), |
2466 | &tmp, SMC_RAM_END); |
2467 | |
2468 | if (!result) { |
2469 | data->soft_regs_start = tmp; |
2470 | smu_data->smu7_data.soft_regs_start = tmp; |
2471 | } |
2472 | |
2473 | error |= (0 != result); |
2474 | |
2475 | result = smu7_read_smc_sram_dword(hwmgr, |
2476 | SMU7_FIRMWARE_HEADER_LOCATION + |
2477 | offsetof(SMU73_Firmware_Header, mcRegisterTable), |
2478 | &tmp, SMC_RAM_END); |
2479 | |
2480 | if (!result) |
2481 | smu_data->smu7_data.mc_reg_table_start = tmp; |
2482 | |
2483 | result = smu7_read_smc_sram_dword(hwmgr, |
2484 | SMU7_FIRMWARE_HEADER_LOCATION + |
2485 | offsetof(SMU73_Firmware_Header, FanTable), |
2486 | &tmp, SMC_RAM_END); |
2487 | |
2488 | if (!result) |
2489 | smu_data->smu7_data.fan_table_start = tmp; |
2490 | |
2491 | error |= (0 != result); |
2492 | |
2493 | result = smu7_read_smc_sram_dword(hwmgr, |
2494 | SMU7_FIRMWARE_HEADER_LOCATION + |
2495 | offsetof(SMU73_Firmware_Header, mcArbDramTimingTable), |
2496 | &tmp, SMC_RAM_END); |
2497 | |
2498 | if (!result) |
2499 | smu_data->smu7_data.arb_table_start = tmp; |
2500 | |
2501 | error |= (0 != result); |
2502 | |
2503 | result = smu7_read_smc_sram_dword(hwmgr, |
2504 | SMU7_FIRMWARE_HEADER_LOCATION + |
2505 | offsetof(SMU73_Firmware_Header, Version), |
2506 | &tmp, SMC_RAM_END); |
2507 | |
2508 | if (!result) |
2509 | hwmgr->microcode_version_info.SMC = tmp; |
2510 | |
2511 | error |= (0 != result); |
2512 | |
2513 | return error ? -1 : 0; |
2514 | } |
2515 | |
2516 | static int fiji_initialize_mc_reg_table(struct pp_hwmgr *hwmgr) |
2517 | { |
2518 | |
2519 | /* Program additional LP registers |
2520 | * that are no longer programmed by VBIOS |
2521 | */ |
2522 | cgs_write_register(hwmgr->device, mmMC_SEQ_RAS_TIMING_LP, |
2523 | cgs_read_register(hwmgr->device, mmMC_SEQ_RAS_TIMING)); |
2524 | cgs_write_register(hwmgr->device, mmMC_SEQ_CAS_TIMING_LP, |
2525 | cgs_read_register(hwmgr->device, mmMC_SEQ_CAS_TIMING)); |
2526 | cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2_LP, |
2527 | cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2)); |
2528 | cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1_LP, |
2529 | cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1)); |
2530 | cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0_LP, |
2531 | cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0)); |
2532 | cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1_LP, |
2533 | cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1)); |
2534 | cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_TIMING_LP, |
2535 | cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_TIMING)); |
2536 | |
2537 | return 0; |
2538 | } |
2539 | |
2540 | static bool fiji_is_dpm_running(struct pp_hwmgr *hwmgr) |
2541 | { |
2542 | return (1 == PHM_READ_INDIRECT_FIELD(hwmgr->device, |
2543 | CGS_IND_REG__SMC, FEATURE_STATUS, VOLTAGE_CONTROLLER_ON)) |
2544 | ? true : false; |
2545 | } |
2546 | |
2547 | static int fiji_update_dpm_settings(struct pp_hwmgr *hwmgr, |
2548 | void *profile_setting) |
2549 | { |
2550 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
2551 | struct fiji_smumgr *smu_data = (struct fiji_smumgr *) |
2552 | (hwmgr->smu_backend); |
2553 | struct profile_mode_setting *setting; |
2554 | struct SMU73_Discrete_GraphicsLevel *levels = |
2555 | smu_data->smc_state_table.GraphicsLevel; |
2556 | uint32_t array = smu_data->smu7_data.dpm_table_start + |
2557 | offsetof(SMU73_Discrete_DpmTable, GraphicsLevel); |
2558 | |
2559 | uint32_t mclk_array = smu_data->smu7_data.dpm_table_start + |
2560 | offsetof(SMU73_Discrete_DpmTable, MemoryLevel); |
2561 | struct SMU73_Discrete_MemoryLevel *mclk_levels = |
2562 | smu_data->smc_state_table.MemoryLevel; |
2563 | uint32_t i; |
2564 | uint32_t offset, up_hyst_offset, down_hyst_offset, clk_activity_offset, tmp; |
2565 | |
2566 | if (profile_setting == NULL) |
2567 | return -EINVAL; |
2568 | |
2569 | setting = (struct profile_mode_setting *)profile_setting; |
2570 | |
2571 | if (setting->bupdate_sclk) { |
2572 | if (!data->sclk_dpm_key_disabled) |
2573 | smum_send_msg_to_smc(hwmgr, PPSMC_MSG_SCLKDPM_FreezeLevel); |
2574 | for (i = 0; i < smu_data->smc_state_table.GraphicsDpmLevelCount; i++) { |
2575 | if (levels[i].ActivityLevel != |
2576 | cpu_to_be16(setting->sclk_activity)) { |
2577 | levels[i].ActivityLevel = cpu_to_be16(setting->sclk_activity); |
2578 | |
2579 | clk_activity_offset = array + (sizeof(SMU73_Discrete_GraphicsLevel) * i) |
2580 | + offsetof(SMU73_Discrete_GraphicsLevel, ActivityLevel); |
2581 | offset = clk_activity_offset & ~0x3; |
2582 | tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset)); |
2583 | tmp = phm_set_field_to_u32(clk_activity_offset, tmp, levels[i].ActivityLevel, sizeof(uint16_t)); |
2584 | cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp)); |
2585 | |
2586 | } |
2587 | if (levels[i].UpHyst != setting->sclk_up_hyst || |
2588 | levels[i].DownHyst != setting->sclk_down_hyst) { |
2589 | levels[i].UpHyst = setting->sclk_up_hyst; |
2590 | levels[i].DownHyst = setting->sclk_down_hyst; |
2591 | up_hyst_offset = array + (sizeof(SMU73_Discrete_GraphicsLevel) * i) |
2592 | + offsetof(SMU73_Discrete_GraphicsLevel, UpHyst); |
2593 | down_hyst_offset = array + (sizeof(SMU73_Discrete_GraphicsLevel) * i) |
2594 | + offsetof(SMU73_Discrete_GraphicsLevel, DownHyst); |
2595 | offset = up_hyst_offset & ~0x3; |
2596 | tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset)); |
2597 | tmp = phm_set_field_to_u32(up_hyst_offset, tmp, levels[i].UpHyst, sizeof(uint8_t)); |
2598 | tmp = phm_set_field_to_u32(down_hyst_offset, tmp, levels[i].DownHyst, sizeof(uint8_t)); |
2599 | cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp)); |
2600 | } |
2601 | } |
2602 | if (!data->sclk_dpm_key_disabled) |
2603 | smum_send_msg_to_smc(hwmgr, PPSMC_MSG_SCLKDPM_UnfreezeLevel); |
2604 | } |
2605 | |
2606 | if (setting->bupdate_mclk) { |
2607 | if (!data->mclk_dpm_key_disabled) |
2608 | smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MCLKDPM_FreezeLevel); |
2609 | for (i = 0; i < smu_data->smc_state_table.MemoryDpmLevelCount; i++) { |
2610 | if (mclk_levels[i].ActivityLevel != |
2611 | cpu_to_be16(setting->mclk_activity)) { |
2612 | mclk_levels[i].ActivityLevel = cpu_to_be16(setting->mclk_activity); |
2613 | |
2614 | clk_activity_offset = mclk_array + (sizeof(SMU73_Discrete_MemoryLevel) * i) |
2615 | + offsetof(SMU73_Discrete_MemoryLevel, ActivityLevel); |
2616 | offset = clk_activity_offset & ~0x3; |
2617 | tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset)); |
2618 | tmp = phm_set_field_to_u32(clk_activity_offset, tmp, mclk_levels[i].ActivityLevel, sizeof(uint16_t)); |
2619 | cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp)); |
2620 | |
2621 | } |
2622 | if (mclk_levels[i].UpHyst != setting->mclk_up_hyst || |
2623 | mclk_levels[i].DownHyst != setting->mclk_down_hyst) { |
2624 | mclk_levels[i].UpHyst = setting->mclk_up_hyst; |
2625 | mclk_levels[i].DownHyst = setting->mclk_down_hyst; |
2626 | up_hyst_offset = mclk_array + (sizeof(SMU73_Discrete_MemoryLevel) * i) |
2627 | + offsetof(SMU73_Discrete_MemoryLevel, UpHyst); |
2628 | down_hyst_offset = mclk_array + (sizeof(SMU73_Discrete_MemoryLevel) * i) |
2629 | + offsetof(SMU73_Discrete_MemoryLevel, DownHyst); |
2630 | offset = up_hyst_offset & ~0x3; |
2631 | tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset)); |
2632 | tmp = phm_set_field_to_u32(up_hyst_offset, tmp, mclk_levels[i].UpHyst, sizeof(uint8_t)); |
2633 | tmp = phm_set_field_to_u32(down_hyst_offset, tmp, mclk_levels[i].DownHyst, sizeof(uint8_t)); |
2634 | cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp)); |
2635 | } |
2636 | } |
2637 | if (!data->mclk_dpm_key_disabled) |
2638 | smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MCLKDPM_UnfreezeLevel); |
2639 | } |
2640 | return 0; |
2641 | } |
2642 | |
2643 | const struct pp_smumgr_func fiji_smu_funcs = { |
2644 | .smu_init = &fiji_smu_init, |
2645 | .smu_fini = &smu7_smu_fini, |
2646 | .start_smu = &fiji_start_smu, |
2647 | .check_fw_load_finish = &smu7_check_fw_load_finish, |
2648 | .request_smu_load_fw = &smu7_reload_firmware, |
2649 | .request_smu_load_specific_fw = NULL, |
2650 | .send_msg_to_smc = &smu7_send_msg_to_smc, |
2651 | .send_msg_to_smc_with_parameter = &smu7_send_msg_to_smc_with_parameter, |
2652 | .download_pptable_settings = NULL, |
2653 | .upload_pptable_settings = NULL, |
2654 | .update_smc_table = fiji_update_smc_table, |
2655 | .get_offsetof = fiji_get_offsetof, |
2656 | .process_firmware_header = fiji_process_firmware_header, |
2657 | .init_smc_table = fiji_init_smc_table, |
2658 | .update_sclk_threshold = fiji_update_sclk_threshold, |
2659 | . |
---|