1 | /* |
2 | * Copyright 2016 Advanced Micro Devices, Inc. |
3 | * |
4 | * Permission is hereby granted, free of charge, to any person obtaining a |
5 | * copy of this software and associated documentation files (the "Software"), |
6 | * to deal in the Software without restriction, including without limitation |
7 | * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
8 | * and/or sell copies of the Software, and to permit persons to whom the |
9 | * Software is furnished to do so, subject to the following conditions: |
10 | * |
11 | * The above copyright notice and this permission notice shall be included in |
12 | * all copies or substantial portions of the Software. |
13 | * |
14 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
15 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
16 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
17 | * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR |
18 | * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, |
19 | * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |
20 | * OTHER DEALINGS IN THE SOFTWARE. |
21 | * |
22 | * Author: Huang Rui <ray.huang@amd.com> |
23 | * |
24 | */ |
25 | #include "pp_debug.h" |
26 | #include <linux/types.h> |
27 | #include <linux/kernel.h> |
28 | #include <linux/slab.h> |
29 | #include <linux/gfp.h> |
30 | |
31 | #include "smumgr.h" |
32 | #include "iceland_smumgr.h" |
33 | |
34 | #include "ppsmc.h" |
35 | |
36 | #include "cgs_common.h" |
37 | |
38 | #include "smu7_dyn_defaults.h" |
39 | #include "smu7_hwmgr.h" |
40 | #include "hardwaremanager.h" |
41 | #include "ppatomctrl.h" |
42 | #include "atombios.h" |
43 | #include "pppcielanes.h" |
44 | #include "pp_endian.h" |
45 | #include "processpptables.h" |
46 | |
47 | |
48 | #include "smu/smu_7_1_1_d.h" |
49 | #include "smu/smu_7_1_1_sh_mask.h" |
50 | #include "smu71_discrete.h" |
51 | |
52 | #include "smu_ucode_xfer_vi.h" |
53 | #include "gmc/gmc_8_1_d.h" |
54 | #include "gmc/gmc_8_1_sh_mask.h" |
55 | #include "bif/bif_5_0_d.h" |
56 | #include "bif/bif_5_0_sh_mask.h" |
57 | #include "dce/dce_10_0_d.h" |
58 | #include "dce/dce_10_0_sh_mask.h" |
59 | |
60 | |
61 | #define ICELAND_SMC_SIZE 0x20000 |
62 | |
63 | #define POWERTUNE_DEFAULT_SET_MAX 1 |
64 | #define MC_CG_ARB_FREQ_F1 0x0b |
65 | #define VDDC_VDDCI_DELTA 200 |
66 | |
67 | #define DEVICE_ID_VI_ICELAND_M_6900 0x6900 |
68 | #define DEVICE_ID_VI_ICELAND_M_6901 0x6901 |
69 | #define DEVICE_ID_VI_ICELAND_M_6902 0x6902 |
70 | #define DEVICE_ID_VI_ICELAND_M_6903 0x6903 |
71 | |
72 | static const struct iceland_pt_defaults defaults_iceland = { |
73 | /* |
74 | * sviLoadLIneEn, SviLoadLineVddC, TDC_VDDC_ThrottleReleaseLimitPerc, |
75 | * TDC_MAWt, TdcWaterfallCtl, DTEAmbientTempBase, DisplayCac, BAPM_TEMP_GRADIENT |
76 | */ |
77 | 1, 0xF, 0xFD, 0x19, 5, 45, 0, 0xB0000, |
78 | { 0x79, 0x253, 0x25D, 0xAE, 0x72, 0x80, 0x83, 0x86, 0x6F, 0xC8, 0xC9, 0xC9, 0x2F, 0x4D, 0x61 }, |
79 | { 0x17C, 0x172, 0x180, 0x1BC, 0x1B3, 0x1BD, 0x206, 0x200, 0x203, 0x25D, 0x25A, 0x255, 0x2C3, 0x2C5, 0x2B4 } |
80 | }; |
81 | |
82 | /* 35W - XT, XTL */ |
83 | static const struct iceland_pt_defaults defaults_icelandxt = { |
84 | /* |
85 | * sviLoadLIneEn, SviLoadLineVddC, |
86 | * TDC_VDDC_ThrottleReleaseLimitPerc, TDC_MAWt, |
87 | * TdcWaterfallCtl, DTEAmbientTempBase, DisplayCac, |
88 | * BAPM_TEMP_GRADIENT |
89 | */ |
90 | 1, 0xF, 0xFD, 0x19, 5, 45, 0, 0x0, |
91 | { 0xA7, 0x0, 0x0, 0xB5, 0x0, 0x0, 0x9F, 0x0, 0x0, 0xD6, 0x0, 0x0, 0xD7, 0x0, 0x0}, |
92 | { 0x1EA, 0x0, 0x0, 0x224, 0x0, 0x0, 0x25E, 0x0, 0x0, 0x28E, 0x0, 0x0, 0x2AB, 0x0, 0x0} |
93 | }; |
94 | |
95 | /* 25W - PRO, LE */ |
96 | static const struct iceland_pt_defaults defaults_icelandpro = { |
97 | /* |
98 | * sviLoadLIneEn, SviLoadLineVddC, |
99 | * TDC_VDDC_ThrottleReleaseLimitPerc, TDC_MAWt, |
100 | * TdcWaterfallCtl, DTEAmbientTempBase, DisplayCac, |
101 | * BAPM_TEMP_GRADIENT |
102 | */ |
103 | 1, 0xF, 0xFD, 0x19, 5, 45, 0, 0x0, |
104 | { 0xB7, 0x0, 0x0, 0xC3, 0x0, 0x0, 0xB5, 0x0, 0x0, 0xEA, 0x0, 0x0, 0xE6, 0x0, 0x0}, |
105 | { 0x1EA, 0x0, 0x0, 0x224, 0x0, 0x0, 0x25E, 0x0, 0x0, 0x28E, 0x0, 0x0, 0x2AB, 0x0, 0x0} |
106 | }; |
107 | |
108 | static int iceland_start_smc(struct pp_hwmgr *hwmgr) |
109 | { |
110 | PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, |
111 | SMC_SYSCON_RESET_CNTL, rst_reg, 0); |
112 | |
113 | return 0; |
114 | } |
115 | |
116 | static void iceland_reset_smc(struct pp_hwmgr *hwmgr) |
117 | { |
118 | PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, |
119 | SMC_SYSCON_RESET_CNTL, |
120 | rst_reg, 1); |
121 | } |
122 | |
123 | |
124 | static void iceland_stop_smc_clock(struct pp_hwmgr *hwmgr) |
125 | { |
126 | PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, |
127 | SMC_SYSCON_CLOCK_CNTL_0, |
128 | ck_disable, 1); |
129 | } |
130 | |
131 | static void iceland_start_smc_clock(struct pp_hwmgr *hwmgr) |
132 | { |
133 | PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, |
134 | SMC_SYSCON_CLOCK_CNTL_0, |
135 | ck_disable, 0); |
136 | } |
137 | |
138 | static int iceland_smu_start_smc(struct pp_hwmgr *hwmgr) |
139 | { |
140 | /* set smc instruct start point at 0x0 */ |
141 | smu7_program_jump_on_start(hwmgr); |
142 | |
143 | /* enable smc clock */ |
144 | iceland_start_smc_clock(hwmgr); |
145 | |
146 | /* de-assert reset */ |
147 | iceland_start_smc(hwmgr); |
148 | |
149 | PHM_WAIT_INDIRECT_FIELD(hwmgr, SMC_IND, FIRMWARE_FLAGS, |
150 | INTERRUPTS_ENABLED, 1); |
151 | |
152 | return 0; |
153 | } |
154 | |
155 | |
156 | static int iceland_upload_smc_firmware_data(struct pp_hwmgr *hwmgr, |
157 | uint32_t length, const uint8_t *src, |
158 | uint32_t limit, uint32_t start_addr) |
159 | { |
160 | uint32_t byte_count = length; |
161 | uint32_t data; |
162 | |
163 | PP_ASSERT_WITH_CODE((limit >= byte_count), "SMC address is beyond the SMC RAM area." , return -EINVAL); |
164 | |
165 | cgs_write_register(hwmgr->device, mmSMC_IND_INDEX_0, start_addr); |
166 | PHM_WRITE_FIELD(hwmgr->device, SMC_IND_ACCESS_CNTL, AUTO_INCREMENT_IND_0, 1); |
167 | |
168 | while (byte_count >= 4) { |
169 | data = src[0] * 0x1000000 + src[1] * 0x10000 + src[2] * 0x100 + src[3]; |
170 | cgs_write_register(hwmgr->device, mmSMC_IND_DATA_0, data); |
171 | src += 4; |
172 | byte_count -= 4; |
173 | } |
174 | |
175 | PHM_WRITE_FIELD(hwmgr->device, SMC_IND_ACCESS_CNTL, AUTO_INCREMENT_IND_0, 0); |
176 | |
177 | PP_ASSERT_WITH_CODE((0 == byte_count), "SMC size must be divisible by 4." , return -EINVAL); |
178 | |
179 | return 0; |
180 | } |
181 | |
182 | |
183 | static int iceland_smu_upload_firmware_image(struct pp_hwmgr *hwmgr) |
184 | { |
185 | uint32_t val; |
186 | struct cgs_firmware_info info = {0}; |
187 | |
188 | if (hwmgr == NULL || hwmgr->device == NULL) |
189 | return -EINVAL; |
190 | |
191 | /* load SMC firmware */ |
192 | cgs_get_firmware_info(hwmgr->device, |
193 | smu7_convert_fw_type_to_cgs(UCODE_ID_SMU), &info); |
194 | |
195 | if (info.image_size & 3) { |
196 | pr_err("[ powerplay ] SMC ucode is not 4 bytes aligned\n" ); |
197 | return -EINVAL; |
198 | } |
199 | |
200 | if (info.image_size > ICELAND_SMC_SIZE) { |
201 | pr_err("[ powerplay ] SMC address is beyond the SMC RAM area\n" ); |
202 | return -EINVAL; |
203 | } |
204 | hwmgr->smu_version = info.version; |
205 | /* wait for smc boot up */ |
206 | PHM_WAIT_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND, |
207 | RCU_UC_EVENTS, boot_seq_done, 0); |
208 | |
209 | /* clear firmware interrupt enable flag */ |
210 | val = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
211 | ixSMC_SYSCON_MISC_CNTL); |
212 | cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
213 | ixSMC_SYSCON_MISC_CNTL, val | 1); |
214 | |
215 | /* stop smc clock */ |
216 | iceland_stop_smc_clock(hwmgr); |
217 | |
218 | /* reset smc */ |
219 | iceland_reset_smc(hwmgr); |
220 | iceland_upload_smc_firmware_data(hwmgr, info.image_size, |
221 | (uint8_t *)info.kptr, ICELAND_SMC_SIZE, |
222 | info.ucode_start_address); |
223 | |
224 | return 0; |
225 | } |
226 | |
227 | static int iceland_request_smu_load_specific_fw(struct pp_hwmgr *hwmgr, |
228 | uint32_t firmwareType) |
229 | { |
230 | return 0; |
231 | } |
232 | |
233 | static int iceland_start_smu(struct pp_hwmgr *hwmgr) |
234 | { |
235 | struct iceland_smumgr *priv = hwmgr->smu_backend; |
236 | int result; |
237 | |
238 | if (!smu7_is_smc_ram_running(hwmgr)) { |
239 | result = iceland_smu_upload_firmware_image(hwmgr); |
240 | if (result) |
241 | return result; |
242 | |
243 | iceland_smu_start_smc(hwmgr); |
244 | } |
245 | |
246 | /* Setup SoftRegsStart here to visit the register UcodeLoadStatus |
247 | * to check fw loading state |
248 | */ |
249 | smu7_read_smc_sram_dword(hwmgr, |
250 | SMU71_FIRMWARE_HEADER_LOCATION + |
251 | offsetof(SMU71_Firmware_Header, SoftRegisters), |
252 | &(priv->smu7_data.soft_regs_start), 0x40000); |
253 | |
254 | result = smu7_request_smu_load_fw(hwmgr); |
255 | |
256 | return result; |
257 | } |
258 | |
259 | static int iceland_smu_init(struct pp_hwmgr *hwmgr) |
260 | { |
261 | struct iceland_smumgr *iceland_priv = NULL; |
262 | |
263 | iceland_priv = kzalloc(sizeof(struct iceland_smumgr), GFP_KERNEL); |
264 | |
265 | if (iceland_priv == NULL) |
266 | return -ENOMEM; |
267 | |
268 | hwmgr->smu_backend = iceland_priv; |
269 | |
270 | if (smu7_init(hwmgr)) { |
271 | kfree(iceland_priv); |
272 | return -EINVAL; |
273 | } |
274 | |
275 | return 0; |
276 | } |
277 | |
278 | |
279 | static void iceland_initialize_power_tune_defaults(struct pp_hwmgr *hwmgr) |
280 | { |
281 | struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend); |
282 | struct amdgpu_device *adev = hwmgr->adev; |
283 | uint32_t dev_id; |
284 | |
285 | dev_id = adev->pdev->device; |
286 | |
287 | switch (dev_id) { |
288 | case DEVICE_ID_VI_ICELAND_M_6900: |
289 | case DEVICE_ID_VI_ICELAND_M_6903: |
290 | smu_data->power_tune_defaults = &defaults_icelandxt; |
291 | break; |
292 | |
293 | case DEVICE_ID_VI_ICELAND_M_6901: |
294 | case DEVICE_ID_VI_ICELAND_M_6902: |
295 | smu_data->power_tune_defaults = &defaults_icelandpro; |
296 | break; |
297 | default: |
298 | smu_data->power_tune_defaults = &defaults_iceland; |
299 | pr_warn("Unknown V.I. Device ID.\n" ); |
300 | break; |
301 | } |
302 | return; |
303 | } |
304 | |
305 | static int iceland_populate_svi_load_line(struct pp_hwmgr *hwmgr) |
306 | { |
307 | struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend); |
308 | const struct iceland_pt_defaults *defaults = smu_data->power_tune_defaults; |
309 | |
310 | smu_data->power_tune_table.SviLoadLineEn = defaults->svi_load_line_en; |
311 | smu_data->power_tune_table.SviLoadLineVddC = defaults->svi_load_line_vddc; |
312 | smu_data->power_tune_table.SviLoadLineTrimVddC = 3; |
313 | smu_data->power_tune_table.SviLoadLineOffsetVddC = 0; |
314 | |
315 | return 0; |
316 | } |
317 | |
318 | static int iceland_populate_tdc_limit(struct pp_hwmgr *hwmgr) |
319 | { |
320 | uint16_t tdc_limit; |
321 | struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend); |
322 | const struct iceland_pt_defaults *defaults = smu_data->power_tune_defaults; |
323 | |
324 | tdc_limit = (uint16_t)(hwmgr->dyn_state.cac_dtp_table->usTDC * 256); |
325 | smu_data->power_tune_table.TDC_VDDC_PkgLimit = |
326 | CONVERT_FROM_HOST_TO_SMC_US(tdc_limit); |
327 | smu_data->power_tune_table.TDC_VDDC_ThrottleReleaseLimitPerc = |
328 | defaults->tdc_vddc_throttle_release_limit_perc; |
329 | smu_data->power_tune_table.TDC_MAWt = defaults->tdc_mawt; |
330 | |
331 | return 0; |
332 | } |
333 | |
334 | static int iceland_populate_dw8(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset) |
335 | { |
336 | struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend); |
337 | const struct iceland_pt_defaults *defaults = smu_data->power_tune_defaults; |
338 | uint32_t temp; |
339 | |
340 | if (smu7_read_smc_sram_dword(hwmgr, |
341 | fuse_table_offset + |
342 | offsetof(SMU71_Discrete_PmFuses, TdcWaterfallCtl), |
343 | (uint32_t *)&temp, SMC_RAM_END)) |
344 | PP_ASSERT_WITH_CODE(false, |
345 | "Attempt to read PmFuses.DW6 (SviLoadLineEn) from SMC Failed!" , |
346 | return -EINVAL); |
347 | else |
348 | smu_data->power_tune_table.TdcWaterfallCtl = defaults->tdc_waterfall_ctl; |
349 | |
350 | return 0; |
351 | } |
352 | |
353 | static int iceland_populate_temperature_scaler(struct pp_hwmgr *hwmgr) |
354 | { |
355 | return 0; |
356 | } |
357 | |
358 | static int iceland_populate_gnb_lpml(struct pp_hwmgr *hwmgr) |
359 | { |
360 | int i; |
361 | struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend); |
362 | |
363 | /* Currently not used. Set all to zero. */ |
364 | for (i = 0; i < 8; i++) |
365 | smu_data->power_tune_table.GnbLPML[i] = 0; |
366 | |
367 | return 0; |
368 | } |
369 | |
370 | static int iceland_populate_bapm_vddc_base_leakage_sidd(struct pp_hwmgr *hwmgr) |
371 | { |
372 | struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend); |
373 | uint16_t HiSidd = smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd; |
374 | uint16_t LoSidd = smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd; |
375 | struct phm_cac_tdp_table *cac_table = hwmgr->dyn_state.cac_dtp_table; |
376 | |
377 | HiSidd = (uint16_t)(cac_table->usHighCACLeakage / 100 * 256); |
378 | LoSidd = (uint16_t)(cac_table->usLowCACLeakage / 100 * 256); |
379 | |
380 | smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd = |
381 | CONVERT_FROM_HOST_TO_SMC_US(HiSidd); |
382 | smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd = |
383 | CONVERT_FROM_HOST_TO_SMC_US(LoSidd); |
384 | |
385 | return 0; |
386 | } |
387 | |
388 | static int iceland_populate_bapm_vddc_vid_sidd(struct pp_hwmgr *hwmgr) |
389 | { |
390 | int i; |
391 | struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend); |
392 | uint8_t *hi_vid = smu_data->power_tune_table.BapmVddCVidHiSidd; |
393 | uint8_t *lo_vid = smu_data->power_tune_table.BapmVddCVidLoSidd; |
394 | |
395 | PP_ASSERT_WITH_CODE(NULL != hwmgr->dyn_state.cac_leakage_table, |
396 | "The CAC Leakage table does not exist!" , return -EINVAL); |
397 | PP_ASSERT_WITH_CODE(hwmgr->dyn_state.cac_leakage_table->count <= 8, |
398 | "There should never be more than 8 entries for BapmVddcVid!!!" , return -EINVAL); |
399 | PP_ASSERT_WITH_CODE(hwmgr->dyn_state.cac_leakage_table->count == hwmgr->dyn_state.vddc_dependency_on_sclk->count, |
400 | "CACLeakageTable->count and VddcDependencyOnSCLk->count not equal" , return -EINVAL); |
401 | |
402 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_EVV)) { |
403 | for (i = 0; (uint32_t) i < hwmgr->dyn_state.cac_leakage_table->count; i++) { |
404 | lo_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc1); |
405 | hi_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc2); |
406 | } |
407 | } else { |
408 | PP_ASSERT_WITH_CODE(false, "Iceland should always support EVV" , return -EINVAL); |
409 | } |
410 | |
411 | return 0; |
412 | } |
413 | |
414 | static int iceland_populate_vddc_vid(struct pp_hwmgr *hwmgr) |
415 | { |
416 | int i; |
417 | struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend); |
418 | uint8_t *vid = smu_data->power_tune_table.VddCVid; |
419 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
420 | |
421 | PP_ASSERT_WITH_CODE(data->vddc_voltage_table.count <= 8, |
422 | "There should never be more than 8 entries for VddcVid!!!" , |
423 | return -EINVAL); |
424 | |
425 | for (i = 0; i < (int)data->vddc_voltage_table.count; i++) { |
426 | vid[i] = convert_to_vid(data->vddc_voltage_table.entries[i].value); |
427 | } |
428 | |
429 | return 0; |
430 | } |
431 | |
432 | |
433 | |
434 | static int iceland_populate_pm_fuses(struct pp_hwmgr *hwmgr) |
435 | { |
436 | struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend); |
437 | uint32_t pm_fuse_table_offset; |
438 | |
439 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
440 | PHM_PlatformCaps_PowerContainment)) { |
441 | if (smu7_read_smc_sram_dword(hwmgr, |
442 | SMU71_FIRMWARE_HEADER_LOCATION + |
443 | offsetof(SMU71_Firmware_Header, PmFuseTable), |
444 | &pm_fuse_table_offset, SMC_RAM_END)) |
445 | PP_ASSERT_WITH_CODE(false, |
446 | "Attempt to get pm_fuse_table_offset Failed!" , |
447 | return -EINVAL); |
448 | |
449 | /* DW0 - DW3 */ |
450 | if (iceland_populate_bapm_vddc_vid_sidd(hwmgr)) |
451 | PP_ASSERT_WITH_CODE(false, |
452 | "Attempt to populate bapm vddc vid Failed!" , |
453 | return -EINVAL); |
454 | |
455 | /* DW4 - DW5 */ |
456 | if (iceland_populate_vddc_vid(hwmgr)) |
457 | PP_ASSERT_WITH_CODE(false, |
458 | "Attempt to populate vddc vid Failed!" , |
459 | return -EINVAL); |
460 | |
461 | /* DW6 */ |
462 | if (iceland_populate_svi_load_line(hwmgr)) |
463 | PP_ASSERT_WITH_CODE(false, |
464 | "Attempt to populate SviLoadLine Failed!" , |
465 | return -EINVAL); |
466 | /* DW7 */ |
467 | if (iceland_populate_tdc_limit(hwmgr)) |
468 | PP_ASSERT_WITH_CODE(false, |
469 | "Attempt to populate TDCLimit Failed!" , return -EINVAL); |
470 | /* DW8 */ |
471 | if (iceland_populate_dw8(hwmgr, pm_fuse_table_offset)) |
472 | PP_ASSERT_WITH_CODE(false, |
473 | "Attempt to populate TdcWaterfallCtl, " |
474 | "LPMLTemperature Min and Max Failed!" , |
475 | return -EINVAL); |
476 | |
477 | /* DW9-DW12 */ |
478 | if (0 != iceland_populate_temperature_scaler(hwmgr)) |
479 | PP_ASSERT_WITH_CODE(false, |
480 | "Attempt to populate LPMLTemperatureScaler Failed!" , |
481 | return -EINVAL); |
482 | |
483 | /* DW13-DW16 */ |
484 | if (iceland_populate_gnb_lpml(hwmgr)) |
485 | PP_ASSERT_WITH_CODE(false, |
486 | "Attempt to populate GnbLPML Failed!" , |
487 | return -EINVAL); |
488 | |
489 | /* DW18 */ |
490 | if (iceland_populate_bapm_vddc_base_leakage_sidd(hwmgr)) |
491 | PP_ASSERT_WITH_CODE(false, |
492 | "Attempt to populate BapmVddCBaseLeakage Hi and Lo Sidd Failed!" , |
493 | return -EINVAL); |
494 | |
495 | if (smu7_copy_bytes_to_smc(hwmgr, pm_fuse_table_offset, |
496 | (uint8_t *)&smu_data->power_tune_table, |
497 | sizeof(struct SMU71_Discrete_PmFuses), SMC_RAM_END)) |
498 | PP_ASSERT_WITH_CODE(false, |
499 | "Attempt to download PmFuseTable Failed!" , |
500 | return -EINVAL); |
501 | } |
502 | return 0; |
503 | } |
504 | |
505 | static int iceland_get_dependency_volt_by_clk(struct pp_hwmgr *hwmgr, |
506 | struct phm_clock_voltage_dependency_table *allowed_clock_voltage_table, |
507 | uint32_t clock, uint32_t *vol) |
508 | { |
509 | uint32_t i = 0; |
510 | |
511 | /* clock - voltage dependency table is empty table */ |
512 | if (allowed_clock_voltage_table->count == 0) |
513 | return -EINVAL; |
514 | |
515 | for (i = 0; i < allowed_clock_voltage_table->count; i++) { |
516 | /* find first sclk bigger than request */ |
517 | if (allowed_clock_voltage_table->entries[i].clk >= clock) { |
518 | *vol = allowed_clock_voltage_table->entries[i].v; |
519 | return 0; |
520 | } |
521 | } |
522 | |
523 | /* sclk is bigger than max sclk in the dependence table */ |
524 | *vol = allowed_clock_voltage_table->entries[i - 1].v; |
525 | |
526 | return 0; |
527 | } |
528 | |
529 | static int iceland_get_std_voltage_value_sidd(struct pp_hwmgr *hwmgr, |
530 | pp_atomctrl_voltage_table_entry *tab, uint16_t *hi, |
531 | uint16_t *lo) |
532 | { |
533 | uint16_t v_index; |
534 | bool vol_found = false; |
535 | *hi = tab->value * VOLTAGE_SCALE; |
536 | *lo = tab->value * VOLTAGE_SCALE; |
537 | |
538 | /* SCLK/VDDC Dependency Table has to exist. */ |
539 | PP_ASSERT_WITH_CODE(NULL != hwmgr->dyn_state.vddc_dependency_on_sclk, |
540 | "The SCLK/VDDC Dependency Table does not exist." , |
541 | return -EINVAL); |
542 | |
543 | if (NULL == hwmgr->dyn_state.cac_leakage_table) { |
544 | pr_warn("CAC Leakage Table does not exist, using vddc.\n" ); |
545 | return 0; |
546 | } |
547 | |
548 | /* |
549 | * Since voltage in the sclk/vddc dependency table is not |
550 | * necessarily in ascending order because of ELB voltage |
551 | * patching, loop through entire list to find exact voltage. |
552 | */ |
553 | for (v_index = 0; (uint32_t)v_index < hwmgr->dyn_state.vddc_dependency_on_sclk->count; v_index++) { |
554 | if (tab->value == hwmgr->dyn_state.vddc_dependency_on_sclk->entries[v_index].v) { |
555 | vol_found = true; |
556 | if ((uint32_t)v_index < hwmgr->dyn_state.cac_leakage_table->count) { |
557 | *lo = hwmgr->dyn_state.cac_leakage_table->entries[v_index].Vddc * VOLTAGE_SCALE; |
558 | *hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[v_index].Leakage * VOLTAGE_SCALE); |
559 | } else { |
560 | pr_warn("Index from SCLK/VDDC Dependency Table exceeds the CAC Leakage Table index, using maximum index from CAC table.\n" ); |
561 | *lo = hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Vddc * VOLTAGE_SCALE; |
562 | *hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Leakage * VOLTAGE_SCALE); |
563 | } |
564 | break; |
565 | } |
566 | } |
567 | |
568 | /* |
569 | * If voltage is not found in the first pass, loop again to |
570 | * find the best match, equal or higher value. |
571 | */ |
572 | if (!vol_found) { |
573 | for (v_index = 0; (uint32_t)v_index < hwmgr->dyn_state.vddc_dependency_on_sclk->count; v_index++) { |
574 | if (tab->value <= hwmgr->dyn_state.vddc_dependency_on_sclk->entries[v_index].v) { |
575 | vol_found = true; |
576 | if ((uint32_t)v_index < hwmgr->dyn_state.cac_leakage_table->count) { |
577 | *lo = hwmgr->dyn_state.cac_leakage_table->entries[v_index].Vddc * VOLTAGE_SCALE; |
578 | *hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[v_index].Leakage) * VOLTAGE_SCALE; |
579 | } else { |
580 | pr_warn("Index from SCLK/VDDC Dependency Table exceeds the CAC Leakage Table index in second look up, using maximum index from CAC table." ); |
581 | *lo = hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Vddc * VOLTAGE_SCALE; |
582 | *hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Leakage * VOLTAGE_SCALE); |
583 | } |
584 | break; |
585 | } |
586 | } |
587 | |
588 | if (!vol_found) |
589 | pr_warn("Unable to get std_vddc from SCLK/VDDC Dependency Table, using vddc.\n" ); |
590 | } |
591 | |
592 | return 0; |
593 | } |
594 | |
595 | static int iceland_populate_smc_voltage_table(struct pp_hwmgr *hwmgr, |
596 | pp_atomctrl_voltage_table_entry *tab, |
597 | SMU71_Discrete_VoltageLevel *smc_voltage_tab) |
598 | { |
599 | int result; |
600 | |
601 | result = iceland_get_std_voltage_value_sidd(hwmgr, tab, |
602 | &smc_voltage_tab->StdVoltageHiSidd, |
603 | &smc_voltage_tab->StdVoltageLoSidd); |
604 | if (0 != result) { |
605 | smc_voltage_tab->StdVoltageHiSidd = tab->value * VOLTAGE_SCALE; |
606 | smc_voltage_tab->StdVoltageLoSidd = tab->value * VOLTAGE_SCALE; |
607 | } |
608 | |
609 | smc_voltage_tab->Voltage = PP_HOST_TO_SMC_US(tab->value * VOLTAGE_SCALE); |
610 | CONVERT_FROM_HOST_TO_SMC_US(smc_voltage_tab->StdVoltageHiSidd); |
611 | CONVERT_FROM_HOST_TO_SMC_US(smc_voltage_tab->StdVoltageHiSidd); |
612 | |
613 | return 0; |
614 | } |
615 | |
616 | static int iceland_populate_smc_vddc_table(struct pp_hwmgr *hwmgr, |
617 | SMU71_Discrete_DpmTable *table) |
618 | { |
619 | unsigned int count; |
620 | int result; |
621 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
622 | |
623 | table->VddcLevelCount = data->vddc_voltage_table.count; |
624 | for (count = 0; count < table->VddcLevelCount; count++) { |
625 | result = iceland_populate_smc_voltage_table(hwmgr, |
626 | &(data->vddc_voltage_table.entries[count]), |
627 | &(table->VddcLevel[count])); |
628 | PP_ASSERT_WITH_CODE(0 == result, "do not populate SMC VDDC voltage table" , return -EINVAL); |
629 | |
630 | /* GPIO voltage control */ |
631 | if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->voltage_control) |
632 | table->VddcLevel[count].Smio |= data->vddc_voltage_table.entries[count].smio_low; |
633 | else if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) |
634 | table->VddcLevel[count].Smio = 0; |
635 | } |
636 | |
637 | CONVERT_FROM_HOST_TO_SMC_UL(table->VddcLevelCount); |
638 | |
639 | return 0; |
640 | } |
641 | |
642 | static int iceland_populate_smc_vdd_ci_table(struct pp_hwmgr *hwmgr, |
643 | SMU71_Discrete_DpmTable *table) |
644 | { |
645 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
646 | uint32_t count; |
647 | int result; |
648 | |
649 | table->VddciLevelCount = data->vddci_voltage_table.count; |
650 | |
651 | for (count = 0; count < table->VddciLevelCount; count++) { |
652 | result = iceland_populate_smc_voltage_table(hwmgr, |
653 | &(data->vddci_voltage_table.entries[count]), |
654 | &(table->VddciLevel[count])); |
655 | PP_ASSERT_WITH_CODE(result == 0, "do not populate SMC VDDCI voltage table" , return -EINVAL); |
656 | if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) |
657 | table->VddciLevel[count].Smio |= data->vddci_voltage_table.entries[count].smio_low; |
658 | else |
659 | table->VddciLevel[count].Smio |= 0; |
660 | } |
661 | |
662 | CONVERT_FROM_HOST_TO_SMC_UL(table->VddciLevelCount); |
663 | |
664 | return 0; |
665 | } |
666 | |
667 | static int iceland_populate_smc_mvdd_table(struct pp_hwmgr *hwmgr, |
668 | SMU71_Discrete_DpmTable *table) |
669 | { |
670 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
671 | uint32_t count; |
672 | int result; |
673 | |
674 | table->MvddLevelCount = data->mvdd_voltage_table.count; |
675 | |
676 | for (count = 0; count < table->VddciLevelCount; count++) { |
677 | result = iceland_populate_smc_voltage_table(hwmgr, |
678 | &(data->mvdd_voltage_table.entries[count]), |
679 | &table->MvddLevel[count]); |
680 | PP_ASSERT_WITH_CODE(result == 0, "do not populate SMC mvdd voltage table" , return -EINVAL); |
681 | if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) |
682 | table->MvddLevel[count].Smio |= data->mvdd_voltage_table.entries[count].smio_low; |
683 | else |
684 | table->MvddLevel[count].Smio |= 0; |
685 | } |
686 | |
687 | CONVERT_FROM_HOST_TO_SMC_UL(table->MvddLevelCount); |
688 | |
689 | return 0; |
690 | } |
691 | |
692 | |
693 | static int iceland_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr, |
694 | SMU71_Discrete_DpmTable *table) |
695 | { |
696 | int result; |
697 | |
698 | result = iceland_populate_smc_vddc_table(hwmgr, table); |
699 | PP_ASSERT_WITH_CODE(0 == result, |
700 | "can not populate VDDC voltage table to SMC" , return -EINVAL); |
701 | |
702 | result = iceland_populate_smc_vdd_ci_table(hwmgr, table); |
703 | PP_ASSERT_WITH_CODE(0 == result, |
704 | "can not populate VDDCI voltage table to SMC" , return -EINVAL); |
705 | |
706 | result = iceland_populate_smc_mvdd_table(hwmgr, table); |
707 | PP_ASSERT_WITH_CODE(0 == result, |
708 | "can not populate MVDD voltage table to SMC" , return -EINVAL); |
709 | |
710 | return 0; |
711 | } |
712 | |
713 | static int iceland_populate_ulv_level(struct pp_hwmgr *hwmgr, |
714 | struct SMU71_Discrete_Ulv *state) |
715 | { |
716 | uint32_t voltage_response_time, ulv_voltage; |
717 | int result; |
718 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
719 | |
720 | state->CcPwrDynRm = 0; |
721 | state->CcPwrDynRm1 = 0; |
722 | |
723 | result = pp_tables_get_response_times(hwmgr, &voltage_response_time, &ulv_voltage); |
724 | PP_ASSERT_WITH_CODE((0 == result), "can not get ULV voltage value" , return result;); |
725 | |
726 | if (ulv_voltage == 0) { |
727 | data->ulv_supported = false; |
728 | return 0; |
729 | } |
730 | |
731 | if (data->voltage_control != SMU7_VOLTAGE_CONTROL_BY_SVID2) { |
732 | /* use minimum voltage if ulv voltage in pptable is bigger than minimum voltage */ |
733 | if (ulv_voltage > hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v) |
734 | state->VddcOffset = 0; |
735 | else |
736 | /* used in SMIO Mode. not implemented for now. this is backup only for CI. */ |
737 | state->VddcOffset = (uint16_t)(hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v - ulv_voltage); |
738 | } else { |
739 | /* use minimum voltage if ulv voltage in pptable is bigger than minimum voltage */ |
740 | if (ulv_voltage > hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v) |
741 | state->VddcOffsetVid = 0; |
742 | else /* used in SVI2 Mode */ |
743 | state->VddcOffsetVid = (uint8_t)( |
744 | (hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v - ulv_voltage) |
745 | * VOLTAGE_VID_OFFSET_SCALE2 |
746 | / VOLTAGE_VID_OFFSET_SCALE1); |
747 | } |
748 | state->VddcPhase = 1; |
749 | |
750 | CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm); |
751 | CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1); |
752 | CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset); |
753 | |
754 | return 0; |
755 | } |
756 | |
757 | static int iceland_populate_ulv_state(struct pp_hwmgr *hwmgr, |
758 | SMU71_Discrete_Ulv *ulv_level) |
759 | { |
760 | return iceland_populate_ulv_level(hwmgr, ulv_level); |
761 | } |
762 | |
763 | static int iceland_populate_smc_link_level(struct pp_hwmgr *hwmgr, SMU71_Discrete_DpmTable *table) |
764 | { |
765 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
766 | struct smu7_dpm_table *dpm_table = &data->dpm_table; |
767 | struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend); |
768 | uint32_t i; |
769 | |
770 | /* Index (dpm_table->pcie_speed_table.count) is reserved for PCIE boot level. */ |
771 | for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) { |
772 | table->LinkLevel[i].PcieGenSpeed = |
773 | (uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value; |
774 | table->LinkLevel[i].PcieLaneCount = |
775 | (uint8_t)encode_pcie_lane_width(dpm_table->pcie_speed_table.dpm_levels[i].param1); |
776 | table->LinkLevel[i].EnabledForActivity = |
777 | 1; |
778 | table->LinkLevel[i].SPC = |
779 | (uint8_t)(data->pcie_spc_cap & 0xff); |
780 | table->LinkLevel[i].DownThreshold = |
781 | PP_HOST_TO_SMC_UL(5); |
782 | table->LinkLevel[i].UpThreshold = |
783 | PP_HOST_TO_SMC_UL(30); |
784 | } |
785 | |
786 | smu_data->smc_state_table.LinkLevelCount = |
787 | (uint8_t)dpm_table->pcie_speed_table.count; |
788 | data->dpm_level_enable_mask.pcie_dpm_enable_mask = |
789 | phm_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table); |
790 | |
791 | return 0; |
792 | } |
793 | |
794 | static int iceland_calculate_sclk_params(struct pp_hwmgr *hwmgr, |
795 | uint32_t engine_clock, SMU71_Discrete_GraphicsLevel *sclk) |
796 | { |
797 | const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
798 | pp_atomctrl_clock_dividers_vi dividers; |
799 | uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL; |
800 | uint32_t spll_func_cntl_3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3; |
801 | uint32_t spll_func_cntl_4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4; |
802 | uint32_t cg_spll_spread_spectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM; |
803 | uint32_t cg_spll_spread_spectrum_2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2; |
804 | uint32_t reference_clock; |
805 | uint32_t reference_divider; |
806 | uint32_t fbdiv; |
807 | int result; |
808 | |
809 | /* get the engine clock dividers for this clock value*/ |
810 | result = atomctrl_get_engine_pll_dividers_vi(hwmgr, engine_clock, ÷rs); |
811 | |
812 | PP_ASSERT_WITH_CODE(result == 0, |
813 | "Error retrieving Engine Clock dividers from VBIOS." , return result); |
814 | |
815 | /* To get FBDIV we need to multiply this by 16384 and divide it by Fref.*/ |
816 | reference_clock = atomctrl_get_reference_clock(hwmgr); |
817 | |
818 | reference_divider = 1 + dividers.uc_pll_ref_div; |
819 | |
820 | /* low 14 bits is fraction and high 12 bits is divider*/ |
821 | fbdiv = dividers.ul_fb_div.ul_fb_divider & 0x3FFFFFF; |
822 | |
823 | /* SPLL_FUNC_CNTL setup*/ |
824 | spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, |
825 | CG_SPLL_FUNC_CNTL, SPLL_REF_DIV, dividers.uc_pll_ref_div); |
826 | spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, |
827 | CG_SPLL_FUNC_CNTL, SPLL_PDIV_A, dividers.uc_pll_post_div); |
828 | |
829 | /* SPLL_FUNC_CNTL_3 setup*/ |
830 | spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, |
831 | CG_SPLL_FUNC_CNTL_3, SPLL_FB_DIV, fbdiv); |
832 | |
833 | /* set to use fractional accumulation*/ |
834 | spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, |
835 | CG_SPLL_FUNC_CNTL_3, SPLL_DITHEN, 1); |
836 | |
837 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
838 | PHM_PlatformCaps_EngineSpreadSpectrumSupport)) { |
839 | pp_atomctrl_internal_ss_info ss_info; |
840 | |
841 | uint32_t vcoFreq = engine_clock * dividers.uc_pll_post_div; |
842 | if (0 == atomctrl_get_engine_clock_spread_spectrum(hwmgr, vcoFreq, &ss_info)) { |
843 | /* |
844 | * ss_info.speed_spectrum_percentage -- in unit of 0.01% |
845 | * ss_info.speed_spectrum_rate -- in unit of khz |
846 | */ |
847 | /* clks = reference_clock * 10 / (REFDIV + 1) / speed_spectrum_rate / 2 */ |
848 | uint32_t clkS = reference_clock * 5 / (reference_divider * ss_info.speed_spectrum_rate); |
849 | |
850 | /* clkv = 2 * D * fbdiv / NS */ |
851 | uint32_t clkV = 4 * ss_info.speed_spectrum_percentage * fbdiv / (clkS * 10000); |
852 | |
853 | cg_spll_spread_spectrum = |
854 | PHM_SET_FIELD(cg_spll_spread_spectrum, CG_SPLL_SPREAD_SPECTRUM, CLKS, clkS); |
855 | cg_spll_spread_spectrum = |
856 | PHM_SET_FIELD(cg_spll_spread_spectrum, CG_SPLL_SPREAD_SPECTRUM, SSEN, 1); |
857 | cg_spll_spread_spectrum_2 = |
858 | PHM_SET_FIELD(cg_spll_spread_spectrum_2, CG_SPLL_SPREAD_SPECTRUM_2, CLKV, clkV); |
859 | } |
860 | } |
861 | |
862 | sclk->SclkFrequency = engine_clock; |
863 | sclk->CgSpllFuncCntl3 = spll_func_cntl_3; |
864 | sclk->CgSpllFuncCntl4 = spll_func_cntl_4; |
865 | sclk->SpllSpreadSpectrum = cg_spll_spread_spectrum; |
866 | sclk->SpllSpreadSpectrum2 = cg_spll_spread_spectrum_2; |
867 | sclk->SclkDid = (uint8_t)dividers.pll_post_divider; |
868 | |
869 | return 0; |
870 | } |
871 | |
872 | static int iceland_populate_phase_value_based_on_sclk(struct pp_hwmgr *hwmgr, |
873 | const struct phm_phase_shedding_limits_table *pl, |
874 | uint32_t sclk, uint32_t *p_shed) |
875 | { |
876 | unsigned int i; |
877 | |
878 | /* use the minimum phase shedding */ |
879 | *p_shed = 1; |
880 | |
881 | for (i = 0; i < pl->count; i++) { |
882 | if (sclk < pl->entries[i].Sclk) { |
883 | *p_shed = i; |
884 | break; |
885 | } |
886 | } |
887 | return 0; |
888 | } |
889 | |
890 | static int iceland_populate_single_graphic_level(struct pp_hwmgr *hwmgr, |
891 | uint32_t engine_clock, |
892 | SMU71_Discrete_GraphicsLevel *graphic_level) |
893 | { |
894 | int result; |
895 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
896 | |
897 | result = iceland_calculate_sclk_params(hwmgr, engine_clock, graphic_level); |
898 | |
899 | /* populate graphics levels*/ |
900 | result = iceland_get_dependency_volt_by_clk(hwmgr, |
901 | hwmgr->dyn_state.vddc_dependency_on_sclk, engine_clock, |
902 | &graphic_level->MinVddc); |
903 | PP_ASSERT_WITH_CODE((0 == result), |
904 | "can not find VDDC voltage value for VDDC engine clock dependency table" , return result); |
905 | |
906 | /* SCLK frequency in units of 10KHz*/ |
907 | graphic_level->SclkFrequency = engine_clock; |
908 | graphic_level->MinVddcPhases = 1; |
909 | |
910 | if (data->vddc_phase_shed_control) |
911 | iceland_populate_phase_value_based_on_sclk(hwmgr, |
912 | hwmgr->dyn_state.vddc_phase_shed_limits_table, |
913 | engine_clock, |
914 | &graphic_level->MinVddcPhases); |
915 | |
916 | /* Indicates maximum activity level for this performance level. 50% for now*/ |
917 | graphic_level->ActivityLevel = data->current_profile_setting.sclk_activity; |
918 | |
919 | graphic_level->CcPwrDynRm = 0; |
920 | graphic_level->CcPwrDynRm1 = 0; |
921 | /* this level can be used if activity is high enough.*/ |
922 | graphic_level->EnabledForActivity = 0; |
923 | /* this level can be used for throttling.*/ |
924 | graphic_level->EnabledForThrottle = 1; |
925 | graphic_level->UpHyst = data->current_profile_setting.sclk_up_hyst; |
926 | graphic_level->DownHyst = data->current_profile_setting.sclk_down_hyst; |
927 | graphic_level->VoltageDownHyst = 0; |
928 | graphic_level->PowerThrottle = 0; |
929 | |
930 | data->display_timing.min_clock_in_sr = |
931 | hwmgr->display_config->min_core_set_clock_in_sr; |
932 | |
933 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
934 | PHM_PlatformCaps_SclkDeepSleep)) |
935 | graphic_level->DeepSleepDivId = |
936 | smu7_get_sleep_divider_id_from_clock(engine_clock, |
937 | data->display_timing.min_clock_in_sr); |
938 | |
939 | /* Default to slow, highest DPM level will be set to PPSMC_DISPLAY_WATERMARK_LOW later.*/ |
940 | graphic_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW; |
941 | |
942 | if (0 == result) { |
943 | graphic_level->MinVddc = PP_HOST_TO_SMC_UL(graphic_level->MinVddc * VOLTAGE_SCALE); |
944 | CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->MinVddcPhases); |
945 | CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SclkFrequency); |
946 | CONVERT_FROM_HOST_TO_SMC_US(graphic_level->ActivityLevel); |
947 | CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CgSpllFuncCntl3); |
948 | CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CgSpllFuncCntl4); |
949 | CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SpllSpreadSpectrum); |
950 | CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SpllSpreadSpectrum2); |
951 | CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CcPwrDynRm); |
952 | CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CcPwrDynRm1); |
953 | } |
954 | |
955 | return result; |
956 | } |
957 | |
958 | static int iceland_populate_all_graphic_levels(struct pp_hwmgr *hwmgr) |
959 | { |
960 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
961 | struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend); |
962 | struct smu7_dpm_table *dpm_table = &data->dpm_table; |
963 | uint32_t level_array_adress = smu_data->smu7_data.dpm_table_start + |
964 | offsetof(SMU71_Discrete_DpmTable, GraphicsLevel); |
965 | |
966 | uint32_t level_array_size = sizeof(SMU71_Discrete_GraphicsLevel) * |
967 | SMU71_MAX_LEVELS_GRAPHICS; |
968 | |
969 | SMU71_Discrete_GraphicsLevel *levels = smu_data->smc_state_table.GraphicsLevel; |
970 | |
971 | uint32_t i; |
972 | uint8_t highest_pcie_level_enabled = 0; |
973 | uint8_t lowest_pcie_level_enabled = 0, mid_pcie_level_enabled = 0; |
974 | uint8_t count = 0; |
975 | int result = 0; |
976 | |
977 | memset(levels, 0x00, level_array_size); |
978 | |
979 | for (i = 0; i < dpm_table->sclk_table.count; i++) { |
980 | result = iceland_populate_single_graphic_level(hwmgr, |
981 | dpm_table->sclk_table.dpm_levels[i].value, |
982 | &(smu_data->smc_state_table.GraphicsLevel[i])); |
983 | if (result != 0) |
984 | return result; |
985 | |
986 | /* Making sure only DPM level 0-1 have Deep Sleep Div ID populated. */ |
987 | if (i > 1) |
988 | smu_data->smc_state_table.GraphicsLevel[i].DeepSleepDivId = 0; |
989 | } |
990 | |
991 | /* Only enable level 0 for now. */ |
992 | smu_data->smc_state_table.GraphicsLevel[0].EnabledForActivity = 1; |
993 | |
994 | /* set highest level watermark to high */ |
995 | if (dpm_table->sclk_table.count > 1) |
996 | smu_data->smc_state_table.GraphicsLevel[dpm_table->sclk_table.count-1].DisplayWatermark = |
997 | PPSMC_DISPLAY_WATERMARK_HIGH; |
998 | |
999 | smu_data->smc_state_table.GraphicsDpmLevelCount = |
1000 | (uint8_t)dpm_table->sclk_table.count; |
1001 | data->dpm_level_enable_mask.sclk_dpm_enable_mask = |
1002 | phm_get_dpm_level_enable_mask_value(&dpm_table->sclk_table); |
1003 | |
1004 | while ((data->dpm_level_enable_mask.pcie_dpm_enable_mask & |
1005 | (1 << (highest_pcie_level_enabled + 1))) != 0) { |
1006 | highest_pcie_level_enabled++; |
1007 | } |
1008 | |
1009 | while ((data->dpm_level_enable_mask.pcie_dpm_enable_mask & |
1010 | (1 << lowest_pcie_level_enabled)) == 0) { |
1011 | lowest_pcie_level_enabled++; |
1012 | } |
1013 | |
1014 | while ((count < highest_pcie_level_enabled) && |
1015 | ((data->dpm_level_enable_mask.pcie_dpm_enable_mask & |
1016 | (1 << (lowest_pcie_level_enabled + 1 + count))) == 0)) { |
1017 | count++; |
1018 | } |
1019 | |
1020 | mid_pcie_level_enabled = (lowest_pcie_level_enabled+1+count) < highest_pcie_level_enabled ? |
1021 | (lowest_pcie_level_enabled+1+count) : highest_pcie_level_enabled; |
1022 | |
1023 | |
1024 | /* set pcieDpmLevel to highest_pcie_level_enabled*/ |
1025 | for (i = 2; i < dpm_table->sclk_table.count; i++) { |
1026 | smu_data->smc_state_table.GraphicsLevel[i].pcieDpmLevel = highest_pcie_level_enabled; |
1027 | } |
1028 | |
1029 | /* set pcieDpmLevel to lowest_pcie_level_enabled*/ |
1030 | smu_data->smc_state_table.GraphicsLevel[0].pcieDpmLevel = lowest_pcie_level_enabled; |
1031 | |
1032 | /* set pcieDpmLevel to mid_pcie_level_enabled*/ |
1033 | smu_data->smc_state_table.GraphicsLevel[1].pcieDpmLevel = mid_pcie_level_enabled; |
1034 | |
1035 | /* level count will send to smc once at init smc table and never change*/ |
1036 | result = smu7_copy_bytes_to_smc(hwmgr, level_array_adress, |
1037 | (uint8_t *)levels, (uint32_t)level_array_size, |
1038 | SMC_RAM_END); |
1039 | |
1040 | return result; |
1041 | } |
1042 | |
1043 | static int iceland_calculate_mclk_params( |
1044 | struct pp_hwmgr *hwmgr, |
1045 | uint32_t memory_clock, |
1046 | SMU71_Discrete_MemoryLevel *mclk, |
1047 | bool strobe_mode, |
1048 | bool dllStateOn |
1049 | ) |
1050 | { |
1051 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
1052 | |
1053 | uint32_t dll_cntl = data->clock_registers.vDLL_CNTL; |
1054 | uint32_t mclk_pwrmgt_cntl = data->clock_registers.vMCLK_PWRMGT_CNTL; |
1055 | uint32_t mpll_ad_func_cntl = data->clock_registers.vMPLL_AD_FUNC_CNTL; |
1056 | uint32_t mpll_dq_func_cntl = data->clock_registers.vMPLL_DQ_FUNC_CNTL; |
1057 | uint32_t mpll_func_cntl = data->clock_registers.vMPLL_FUNC_CNTL; |
1058 | uint32_t mpll_func_cntl_1 = data->clock_registers.vMPLL_FUNC_CNTL_1; |
1059 | uint32_t mpll_func_cntl_2 = data->clock_registers.vMPLL_FUNC_CNTL_2; |
1060 | uint32_t mpll_ss1 = data->clock_registers.vMPLL_SS1; |
1061 | uint32_t mpll_ss2 = data->clock_registers.vMPLL_SS2; |
1062 | |
1063 | pp_atomctrl_memory_clock_param mpll_param; |
1064 | int result; |
1065 | |
1066 | result = atomctrl_get_memory_pll_dividers_si(hwmgr, |
1067 | memory_clock, &mpll_param, strobe_mode); |
1068 | PP_ASSERT_WITH_CODE(0 == result, |
1069 | "Error retrieving Memory Clock Parameters from VBIOS." , return result); |
1070 | |
1071 | /* MPLL_FUNC_CNTL setup*/ |
1072 | mpll_func_cntl = PHM_SET_FIELD(mpll_func_cntl, MPLL_FUNC_CNTL, BWCTRL, mpll_param.bw_ctrl); |
1073 | |
1074 | /* MPLL_FUNC_CNTL_1 setup*/ |
1075 | mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1, |
1076 | MPLL_FUNC_CNTL_1, CLKF, mpll_param.mpll_fb_divider.cl_kf); |
1077 | mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1, |
1078 | MPLL_FUNC_CNTL_1, CLKFRAC, mpll_param.mpll_fb_divider.clk_frac); |
1079 | mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1, |
1080 | MPLL_FUNC_CNTL_1, VCO_MODE, mpll_param.vco_mode); |
1081 | |
1082 | /* MPLL_AD_FUNC_CNTL setup*/ |
1083 | mpll_ad_func_cntl = PHM_SET_FIELD(mpll_ad_func_cntl, |
1084 | MPLL_AD_FUNC_CNTL, YCLK_POST_DIV, mpll_param.mpll_post_divider); |
1085 | |
1086 | if (data->is_memory_gddr5) { |
1087 | /* MPLL_DQ_FUNC_CNTL setup*/ |
1088 | mpll_dq_func_cntl = PHM_SET_FIELD(mpll_dq_func_cntl, |
1089 | MPLL_DQ_FUNC_CNTL, YCLK_SEL, mpll_param.yclk_sel); |
1090 | mpll_dq_func_cntl = PHM_SET_FIELD(mpll_dq_func_cntl, |
1091 | MPLL_DQ_FUNC_CNTL, YCLK_POST_DIV, mpll_param.mpll_post_divider); |
1092 | } |
1093 | |
1094 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
1095 | PHM_PlatformCaps_MemorySpreadSpectrumSupport)) { |
1096 | /* |
1097 | ************************************ |
1098 | Fref = Reference Frequency |
1099 | NF = Feedback divider ratio |
1100 | NR = Reference divider ratio |
1101 | Fnom = Nominal VCO output frequency = Fref * NF / NR |
1102 | Fs = Spreading Rate |
1103 | D = Percentage down-spread / 2 |
1104 | Fint = Reference input frequency to PFD = Fref / NR |
1105 | NS = Spreading rate divider ratio = int(Fint / (2 * Fs)) |
1106 | CLKS = NS - 1 = ISS_STEP_NUM[11:0] |
1107 | NV = D * Fs / Fnom * 4 * ((Fnom/Fref * NR) ^ 2) |
1108 | CLKV = 65536 * NV = ISS_STEP_SIZE[25:0] |
1109 | ************************************* |
1110 | */ |
1111 | pp_atomctrl_internal_ss_info ss_info; |
1112 | uint32_t freq_nom; |
1113 | uint32_t tmp; |
1114 | uint32_t reference_clock = atomctrl_get_mpll_reference_clock(hwmgr); |
1115 | |
1116 | /* for GDDR5 for all modes and DDR3 */ |
1117 | if (1 == mpll_param.qdr) |
1118 | freq_nom = memory_clock * 4 * (1 << mpll_param.mpll_post_divider); |
1119 | else |
1120 | freq_nom = memory_clock * 2 * (1 << mpll_param.mpll_post_divider); |
1121 | |
1122 | /* tmp = (freq_nom / reference_clock * reference_divider) ^ 2 Note: S.I. reference_divider = 1*/ |
1123 | tmp = (freq_nom / reference_clock); |
1124 | tmp = tmp * tmp; |
1125 | |
1126 | if (0 == atomctrl_get_memory_clock_spread_spectrum(hwmgr, freq_nom, &ss_info)) { |
1127 | /* ss_info.speed_spectrum_percentage -- in unit of 0.01% */ |
1128 | /* ss.Info.speed_spectrum_rate -- in unit of khz */ |
1129 | /* CLKS = reference_clock / (2 * speed_spectrum_rate * reference_divider) * 10 */ |
1130 | /* = reference_clock * 5 / speed_spectrum_rate */ |
1131 | uint32_t clks = reference_clock * 5 / ss_info.speed_spectrum_rate; |
1132 | |
1133 | /* CLKV = 65536 * speed_spectrum_percentage / 2 * spreadSpecrumRate / freq_nom * 4 / 100000 * ((freq_nom / reference_clock) ^ 2) */ |
1134 | /* = 131 * speed_spectrum_percentage * speed_spectrum_rate / 100 * ((freq_nom / reference_clock) ^ 2) / freq_nom */ |
1135 | uint32_t clkv = |
1136 | (uint32_t)((((131 * ss_info.speed_spectrum_percentage * |
1137 | ss_info.speed_spectrum_rate) / 100) * tmp) / freq_nom); |
1138 | |
1139 | mpll_ss1 = PHM_SET_FIELD(mpll_ss1, MPLL_SS1, CLKV, clkv); |
1140 | mpll_ss2 = PHM_SET_FIELD(mpll_ss2, MPLL_SS2, CLKS, clks); |
1141 | } |
1142 | } |
1143 | |
1144 | /* MCLK_PWRMGT_CNTL setup */ |
1145 | mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, |
1146 | MCLK_PWRMGT_CNTL, DLL_SPEED, mpll_param.dll_speed); |
1147 | mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, |
1148 | MCLK_PWRMGT_CNTL, MRDCK0_PDNB, dllStateOn); |
1149 | mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, |
1150 | MCLK_PWRMGT_CNTL, MRDCK1_PDNB, dllStateOn); |
1151 | |
1152 | |
1153 | /* Save the result data to outpupt memory level structure */ |
1154 | mclk->MclkFrequency = memory_clock; |
1155 | mclk->MpllFuncCntl = mpll_func_cntl; |
1156 | mclk->MpllFuncCntl_1 = mpll_func_cntl_1; |
1157 | mclk->MpllFuncCntl_2 = mpll_func_cntl_2; |
1158 | mclk->MpllAdFuncCntl = mpll_ad_func_cntl; |
1159 | mclk->MpllDqFuncCntl = mpll_dq_func_cntl; |
1160 | mclk->MclkPwrmgtCntl = mclk_pwrmgt_cntl; |
1161 | mclk->DllCntl = dll_cntl; |
1162 | mclk->MpllSs1 = mpll_ss1; |
1163 | mclk->MpllSs2 = mpll_ss2; |
1164 | |
1165 | return 0; |
1166 | } |
1167 | |
1168 | static uint8_t iceland_get_mclk_frequency_ratio(uint32_t memory_clock, |
1169 | bool strobe_mode) |
1170 | { |
1171 | uint8_t mc_para_index; |
1172 | |
1173 | if (strobe_mode) { |
1174 | if (memory_clock < 12500) { |
1175 | mc_para_index = 0x00; |
1176 | } else if (memory_clock > 47500) { |
1177 | mc_para_index = 0x0f; |
1178 | } else { |
1179 | mc_para_index = (uint8_t)((memory_clock - 10000) / 2500); |
1180 | } |
1181 | } else { |
1182 | if (memory_clock < 65000) { |
1183 | mc_para_index = 0x00; |
1184 | } else if (memory_clock > 135000) { |
1185 | mc_para_index = 0x0f; |
1186 | } else { |
1187 | mc_para_index = (uint8_t)((memory_clock - 60000) / 5000); |
1188 | } |
1189 | } |
1190 | |
1191 | return mc_para_index; |
1192 | } |
1193 | |
1194 | static uint8_t iceland_get_ddr3_mclk_frequency_ratio(uint32_t memory_clock) |
1195 | { |
1196 | uint8_t mc_para_index; |
1197 | |
1198 | if (memory_clock < 10000) { |
1199 | mc_para_index = 0; |
1200 | } else if (memory_clock >= 80000) { |
1201 | mc_para_index = 0x0f; |
1202 | } else { |
1203 | mc_para_index = (uint8_t)((memory_clock - 10000) / 5000 + 1); |
1204 | } |
1205 | |
1206 | return mc_para_index; |
1207 | } |
1208 | |
1209 | static int iceland_populate_phase_value_based_on_mclk(struct pp_hwmgr *hwmgr, const struct phm_phase_shedding_limits_table *pl, |
1210 | uint32_t memory_clock, uint32_t *p_shed) |
1211 | { |
1212 | unsigned int i; |
1213 | |
1214 | *p_shed = 1; |
1215 | |
1216 | for (i = 0; i < pl->count; i++) { |
1217 | if (memory_clock < pl->entries[i].Mclk) { |
1218 | *p_shed = i; |
1219 | break; |
1220 | } |
1221 | } |
1222 | |
1223 | return 0; |
1224 | } |
1225 | |
1226 | static int iceland_populate_single_memory_level( |
1227 | struct pp_hwmgr *hwmgr, |
1228 | uint32_t memory_clock, |
1229 | SMU71_Discrete_MemoryLevel *memory_level |
1230 | ) |
1231 | { |
1232 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
1233 | int result = 0; |
1234 | bool dll_state_on; |
1235 | uint32_t mclk_edc_wr_enable_threshold = 40000; |
1236 | uint32_t mclk_edc_enable_threshold = 40000; |
1237 | uint32_t mclk_strobe_mode_threshold = 40000; |
1238 | |
1239 | if (hwmgr->dyn_state.vddc_dependency_on_mclk != NULL) { |
1240 | result = iceland_get_dependency_volt_by_clk(hwmgr, |
1241 | hwmgr->dyn_state.vddc_dependency_on_mclk, memory_clock, &memory_level->MinVddc); |
1242 | PP_ASSERT_WITH_CODE((0 == result), |
1243 | "can not find MinVddc voltage value from memory VDDC voltage dependency table" , return result); |
1244 | } |
1245 | |
1246 | if (data->vddci_control == SMU7_VOLTAGE_CONTROL_NONE) { |
1247 | memory_level->MinVddci = memory_level->MinVddc; |
1248 | } else if (NULL != hwmgr->dyn_state.vddci_dependency_on_mclk) { |
1249 | result = iceland_get_dependency_volt_by_clk(hwmgr, |
1250 | hwmgr->dyn_state.vddci_dependency_on_mclk, |
1251 | memory_clock, |
1252 | &memory_level->MinVddci); |
1253 | PP_ASSERT_WITH_CODE((0 == result), |
1254 | "can not find MinVddci voltage value from memory VDDCI voltage dependency table" , return result); |
1255 | } |
1256 | |
1257 | memory_level->MinVddcPhases = 1; |
1258 | |
1259 | if (data->vddc_phase_shed_control) { |
1260 | iceland_populate_phase_value_based_on_mclk(hwmgr, hwmgr->dyn_state.vddc_phase_shed_limits_table, |
1261 | memory_clock, &memory_level->MinVddcPhases); |
1262 | } |
1263 | |
1264 | memory_level->EnabledForThrottle = 1; |
1265 | memory_level->EnabledForActivity = 0; |
1266 | memory_level->UpHyst = data->current_profile_setting.mclk_up_hyst; |
1267 | memory_level->DownHyst = data->current_profile_setting.mclk_down_hyst; |
1268 | memory_level->VoltageDownHyst = 0; |
1269 | |
1270 | /* Indicates maximum activity level for this performance level.*/ |
1271 | memory_level->ActivityLevel = data->current_profile_setting.mclk_activity; |
1272 | memory_level->StutterEnable = 0; |
1273 | memory_level->StrobeEnable = 0; |
1274 | memory_level->EdcReadEnable = 0; |
1275 | memory_level->EdcWriteEnable = 0; |
1276 | memory_level->RttEnable = 0; |
1277 | |
1278 | /* default set to low watermark. Highest level will be set to high later.*/ |
1279 | memory_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW; |
1280 | |
1281 | data->display_timing.num_existing_displays = hwmgr->display_config->num_display; |
1282 | data->display_timing.vrefresh = hwmgr->display_config->vrefresh; |
1283 | |
1284 | /* stutter mode not support on iceland */ |
1285 | |
1286 | /* decide strobe mode*/ |
1287 | memory_level->StrobeEnable = (mclk_strobe_mode_threshold != 0) && |
1288 | (memory_clock <= mclk_strobe_mode_threshold); |
1289 | |
1290 | /* decide EDC mode and memory clock ratio*/ |
1291 | if (data->is_memory_gddr5) { |
1292 | memory_level->StrobeRatio = iceland_get_mclk_frequency_ratio(memory_clock, |
1293 | memory_level->StrobeEnable); |
1294 | |
1295 | if ((mclk_edc_enable_threshold != 0) && |
1296 | (memory_clock > mclk_edc_enable_threshold)) { |
1297 | memory_level->EdcReadEnable = 1; |
1298 | } |
1299 | |
1300 | if ((mclk_edc_wr_enable_threshold != 0) && |
1301 | (memory_clock > mclk_edc_wr_enable_threshold)) { |
1302 | memory_level->EdcWriteEnable = 1; |
1303 | } |
1304 | |
1305 | if (memory_level->StrobeEnable) { |
1306 | if (iceland_get_mclk_frequency_ratio(memory_clock, 1) >= |
1307 | ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC7) >> 16) & 0xf)) |
1308 | dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0; |
1309 | else |
1310 | dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC6) >> 1) & 0x1) ? 1 : 0; |
1311 | } else |
1312 | dll_state_on = data->dll_default_on; |
1313 | } else { |
1314 | memory_level->StrobeRatio = |
1315 | iceland_get_ddr3_mclk_frequency_ratio(memory_clock); |
1316 | dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0; |
1317 | } |
1318 | |
1319 | result = iceland_calculate_mclk_params(hwmgr, |
1320 | memory_clock, memory_level, memory_level->StrobeEnable, dll_state_on); |
1321 | |
1322 | if (0 == result) { |
1323 | memory_level->MinVddc = PP_HOST_TO_SMC_UL(memory_level->MinVddc * VOLTAGE_SCALE); |
1324 | CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MinVddcPhases); |
1325 | memory_level->MinVddci = PP_HOST_TO_SMC_UL(memory_level->MinVddci * VOLTAGE_SCALE); |
1326 | memory_level->MinMvdd = PP_HOST_TO_SMC_UL(memory_level->MinMvdd * VOLTAGE_SCALE); |
1327 | /* MCLK frequency in units of 10KHz*/ |
1328 | CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkFrequency); |
1329 | /* Indicates maximum activity level for this performance level.*/ |
1330 | CONVERT_FROM_HOST_TO_SMC_US(memory_level->ActivityLevel); |
1331 | CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl); |
1332 | CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_1); |
1333 | CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_2); |
1334 | CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllAdFuncCntl); |
1335 | CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllDqFuncCntl); |
1336 | CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkPwrmgtCntl); |
1337 | CONVERT_FROM_HOST_TO_SMC_UL(memory_level->DllCntl); |
1338 | CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs1); |
1339 | CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs2); |
1340 | } |
1341 | |
1342 | return result; |
1343 | } |
1344 | |
1345 | static int iceland_populate_all_memory_levels(struct pp_hwmgr *hwmgr) |
1346 | { |
1347 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
1348 | struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend); |
1349 | struct smu7_dpm_table *dpm_table = &data->dpm_table; |
1350 | int result; |
1351 | |
1352 | /* populate MCLK dpm table to SMU7 */ |
1353 | uint32_t level_array_adress = smu_data->smu7_data.dpm_table_start + offsetof(SMU71_Discrete_DpmTable, MemoryLevel); |
1354 | uint32_t level_array_size = sizeof(SMU71_Discrete_MemoryLevel) * SMU71_MAX_LEVELS_MEMORY; |
1355 | SMU71_Discrete_MemoryLevel *levels = smu_data->smc_state_table.MemoryLevel; |
1356 | uint32_t i; |
1357 | |
1358 | memset(levels, 0x00, level_array_size); |
1359 | |
1360 | for (i = 0; i < dpm_table->mclk_table.count; i++) { |
1361 | PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value), |
1362 | "can not populate memory level as memory clock is zero" , return -EINVAL); |
1363 | result = iceland_populate_single_memory_level(hwmgr, dpm_table->mclk_table.dpm_levels[i].value, |
1364 | &(smu_data->smc_state_table.MemoryLevel[i])); |
1365 | if (0 != result) { |
1366 | return result; |
1367 | } |
1368 | } |
1369 | |
1370 | /* Only enable level 0 for now.*/ |
1371 | smu_data->smc_state_table.MemoryLevel[0].EnabledForActivity = 1; |
1372 | |
1373 | /* |
1374 | * in order to prevent MC activity from stutter mode to push DPM up. |
1375 | * the UVD change complements this by putting the MCLK in a higher state |
1376 | * by default such that we are not effected by up threshold or and MCLK DPM latency. |
1377 | */ |
1378 | smu_data->smc_state_table.MemoryLevel[0].ActivityLevel = 0x1F; |
1379 | CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.MemoryLevel[0].ActivityLevel); |
1380 | |
1381 | smu_data->smc_state_table.MemoryDpmLevelCount = (uint8_t)dpm_table->mclk_table.count; |
1382 | data->dpm_level_enable_mask.mclk_dpm_enable_mask = phm_get_dpm_level_enable_mask_value(&dpm_table->mclk_table); |
1383 | /* set highest level watermark to high*/ |
1384 | smu_data->smc_state_table.MemoryLevel[dpm_table->mclk_table.count-1].DisplayWatermark = PPSMC_DISPLAY_WATERMARK_HIGH; |
1385 | |
1386 | /* level count will send to smc once at init smc table and never change*/ |
1387 | result = smu7_copy_bytes_to_smc(hwmgr, |
1388 | level_array_adress, (uint8_t *)levels, (uint32_t)level_array_size, |
1389 | SMC_RAM_END); |
1390 | |
1391 | return result; |
1392 | } |
1393 | |
1394 | static int iceland_populate_mvdd_value(struct pp_hwmgr *hwmgr, uint32_t mclk, |
1395 | SMU71_Discrete_VoltageLevel *voltage) |
1396 | { |
1397 | const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
1398 | |
1399 | uint32_t i = 0; |
1400 | |
1401 | if (SMU7_VOLTAGE_CONTROL_NONE != data->mvdd_control) { |
1402 | /* find mvdd value which clock is more than request */ |
1403 | for (i = 0; i < hwmgr->dyn_state.mvdd_dependency_on_mclk->count; i++) { |
1404 | if (mclk <= hwmgr->dyn_state.mvdd_dependency_on_mclk->entries[i].clk) { |
1405 | /* Always round to higher voltage. */ |
1406 | voltage->Voltage = data->mvdd_voltage_table.entries[i].value; |
1407 | break; |
1408 | } |
1409 | } |
1410 | |
1411 | PP_ASSERT_WITH_CODE(i < hwmgr->dyn_state.mvdd_dependency_on_mclk->count, |
1412 | "MVDD Voltage is outside the supported range." , return -EINVAL); |
1413 | |
1414 | } else { |
1415 | return -EINVAL; |
1416 | } |
1417 | |
1418 | return 0; |
1419 | } |
1420 | |
1421 | static int iceland_populate_smc_acpi_level(struct pp_hwmgr *hwmgr, |
1422 | SMU71_Discrete_DpmTable *table) |
1423 | { |
1424 | int result = 0; |
1425 | const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
1426 | struct pp_atomctrl_clock_dividers_vi dividers; |
1427 | uint32_t vddc_phase_shed_control = 0; |
1428 | |
1429 | SMU71_Discrete_VoltageLevel voltage_level; |
1430 | uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL; |
1431 | uint32_t spll_func_cntl_2 = data->clock_registers.vCG_SPLL_FUNC_CNTL_2; |
1432 | uint32_t dll_cntl = data->clock_registers.vDLL_CNTL; |
1433 | uint32_t mclk_pwrmgt_cntl = data->clock_registers.vMCLK_PWRMGT_CNTL; |
1434 | |
1435 | |
1436 | /* The ACPI state should not do DPM on DC (or ever).*/ |
1437 | table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC; |
1438 | |
1439 | if (data->acpi_vddc) |
1440 | table->ACPILevel.MinVddc = PP_HOST_TO_SMC_UL(data->acpi_vddc * VOLTAGE_SCALE); |
1441 | else |
1442 | table->ACPILevel.MinVddc = PP_HOST_TO_SMC_UL(data->min_vddc_in_pptable * VOLTAGE_SCALE); |
1443 | |
1444 | table->ACPILevel.MinVddcPhases = vddc_phase_shed_control ? 0 : 1; |
1445 | /* assign zero for now*/ |
1446 | table->ACPILevel.SclkFrequency = atomctrl_get_reference_clock(hwmgr); |
1447 | |
1448 | /* get the engine clock dividers for this clock value*/ |
1449 | result = atomctrl_get_engine_pll_dividers_vi(hwmgr, |
1450 | table->ACPILevel.SclkFrequency, ÷rs); |
1451 | |
1452 | PP_ASSERT_WITH_CODE(result == 0, |
1453 | "Error retrieving Engine Clock dividers from VBIOS." , return result); |
1454 | |
1455 | /* divider ID for required SCLK*/ |
1456 | table->ACPILevel.SclkDid = (uint8_t)dividers.pll_post_divider; |
1457 | table->ACPILevel.DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW; |
1458 | table->ACPILevel.DeepSleepDivId = 0; |
1459 | |
1460 | spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, |
1461 | CG_SPLL_FUNC_CNTL, SPLL_PWRON, 0); |
1462 | spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, |
1463 | CG_SPLL_FUNC_CNTL, SPLL_RESET, 1); |
1464 | spll_func_cntl_2 = PHM_SET_FIELD(spll_func_cntl_2, |
1465 | CG_SPLL_FUNC_CNTL_2, SCLK_MUX_SEL, 4); |
1466 | |
1467 | table->ACPILevel.CgSpllFuncCntl = spll_func_cntl; |
1468 | table->ACPILevel.CgSpllFuncCntl2 = spll_func_cntl_2; |
1469 | table->ACPILevel.CgSpllFuncCntl3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3; |
1470 | table->ACPILevel.CgSpllFuncCntl4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4; |
1471 | table->ACPILevel.SpllSpreadSpectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM; |
1472 | table->ACPILevel.SpllSpreadSpectrum2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2; |
1473 | table->ACPILevel.CcPwrDynRm = 0; |
1474 | table->ACPILevel.CcPwrDynRm1 = 0; |
1475 | |
1476 | |
1477 | /* For various features to be enabled/disabled while this level is active.*/ |
1478 | CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags); |
1479 | /* SCLK frequency in units of 10KHz*/ |
1480 | CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkFrequency); |
1481 | CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl); |
1482 | CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl2); |
1483 | CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl3); |
1484 | CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl4); |
1485 | CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum); |
1486 | CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum2); |
1487 | CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm); |
1488 | CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1); |
1489 | |
1490 | /* table->MemoryACPILevel.MinVddcPhases = table->ACPILevel.MinVddcPhases;*/ |
1491 | table->MemoryACPILevel.MinVddc = table->ACPILevel.MinVddc; |
1492 | table->MemoryACPILevel.MinVddcPhases = table->ACPILevel.MinVddcPhases; |
1493 | |
1494 | if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control) |
1495 | table->MemoryACPILevel.MinVddci = table->MemoryACPILevel.MinVddc; |
1496 | else { |
1497 | if (data->acpi_vddci != 0) |
1498 | table->MemoryACPILevel.MinVddci = PP_HOST_TO_SMC_UL(data->acpi_vddci * VOLTAGE_SCALE); |
1499 | else |
1500 | table->MemoryACPILevel.MinVddci = PP_HOST_TO_SMC_UL(data->min_vddci_in_pptable * VOLTAGE_SCALE); |
1501 | } |
1502 | |
1503 | if (0 == iceland_populate_mvdd_value(hwmgr, 0, &voltage_level)) |
1504 | table->MemoryACPILevel.MinMvdd = |
1505 | PP_HOST_TO_SMC_UL(voltage_level.Voltage * VOLTAGE_SCALE); |
1506 | else |
1507 | table->MemoryACPILevel.MinMvdd = 0; |
1508 | |
1509 | /* Force reset on DLL*/ |
1510 | mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, |
1511 | MCLK_PWRMGT_CNTL, MRDCK0_RESET, 0x1); |
1512 | mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, |
1513 | MCLK_PWRMGT_CNTL, MRDCK1_RESET, 0x1); |
1514 | |
1515 | /* Disable DLL in ACPIState*/ |
1516 | mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, |
1517 | MCLK_PWRMGT_CNTL, MRDCK0_PDNB, 0); |
1518 | mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, |
1519 | MCLK_PWRMGT_CNTL, MRDCK1_PDNB, 0); |
1520 | |
1521 | /* Enable DLL bypass signal*/ |
1522 | dll_cntl = PHM_SET_FIELD(dll_cntl, |
1523 | DLL_CNTL, MRDCK0_BYPASS, 0); |
1524 | dll_cntl = PHM_SET_FIELD(dll_cntl, |
1525 | DLL_CNTL, MRDCK1_BYPASS, 0); |
1526 | |
1527 | table->MemoryACPILevel.DllCntl = |
1528 | PP_HOST_TO_SMC_UL(dll_cntl); |
1529 | table->MemoryACPILevel.MclkPwrmgtCntl = |
1530 | PP_HOST_TO_SMC_UL(mclk_pwrmgt_cntl); |
1531 | table->MemoryACPILevel.MpllAdFuncCntl = |
1532 | PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_AD_FUNC_CNTL); |
1533 | table->MemoryACPILevel.MpllDqFuncCntl = |
1534 | PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_DQ_FUNC_CNTL); |
1535 | table->MemoryACPILevel.MpllFuncCntl = |
1536 | PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL); |
1537 | table->MemoryACPILevel.MpllFuncCntl_1 = |
1538 | PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_1); |
1539 | table->MemoryACPILevel.MpllFuncCntl_2 = |
1540 | PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_2); |
1541 | table->MemoryACPILevel.MpllSs1 = |
1542 | PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS1); |
1543 | table->MemoryACPILevel.MpllSs2 = |
1544 | PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS2); |
1545 | |
1546 | table->MemoryACPILevel.EnabledForThrottle = 0; |
1547 | table->MemoryACPILevel.EnabledForActivity = 0; |
1548 | table->MemoryACPILevel.UpHyst = 0; |
1549 | table->MemoryACPILevel.DownHyst = 100; |
1550 | table->MemoryACPILevel.VoltageDownHyst = 0; |
1551 | /* Indicates maximum activity level for this performance level.*/ |
1552 | table->MemoryACPILevel.ActivityLevel = PP_HOST_TO_SMC_US(data->current_profile_setting.mclk_activity); |
1553 | |
1554 | table->MemoryACPILevel.StutterEnable = 0; |
1555 | table->MemoryACPILevel.StrobeEnable = 0; |
1556 | table->MemoryACPILevel.EdcReadEnable = 0; |
1557 | table->MemoryACPILevel.EdcWriteEnable = 0; |
1558 | table->MemoryACPILevel.RttEnable = 0; |
1559 | |
1560 | return result; |
1561 | } |
1562 | |
1563 | static int iceland_populate_smc_uvd_level(struct pp_hwmgr *hwmgr, |
1564 | SMU71_Discrete_DpmTable *table) |
1565 | { |
1566 | return 0; |
1567 | } |
1568 | |
1569 | static int iceland_populate_smc_vce_level(struct pp_hwmgr *hwmgr, |
1570 | SMU71_Discrete_DpmTable *table) |
1571 | { |
1572 | return 0; |
1573 | } |
1574 | |
1575 | static int iceland_populate_smc_acp_level(struct pp_hwmgr *hwmgr, |
1576 | SMU71_Discrete_DpmTable *table) |
1577 | { |
1578 | return 0; |
1579 | } |
1580 | |
1581 | static int iceland_populate_memory_timing_parameters( |
1582 | struct pp_hwmgr *hwmgr, |
1583 | uint32_t engine_clock, |
1584 | uint32_t memory_clock, |
1585 | struct SMU71_Discrete_MCArbDramTimingTableEntry *arb_regs |
1586 | ) |
1587 | { |
1588 | uint32_t dramTiming; |
1589 | uint32_t dramTiming2; |
1590 | uint32_t burstTime; |
1591 | int result; |
1592 | |
1593 | result = atomctrl_set_engine_dram_timings_rv770(hwmgr, |
1594 | engine_clock, memory_clock); |
1595 | |
1596 | PP_ASSERT_WITH_CODE(result == 0, |
1597 | "Error calling VBIOS to set DRAM_TIMING." , return result); |
1598 | |
1599 | dramTiming = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING); |
1600 | dramTiming2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2); |
1601 | burstTime = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0); |
1602 | |
1603 | arb_regs->McArbDramTiming = PP_HOST_TO_SMC_UL(dramTiming); |
1604 | arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dramTiming2); |
1605 | arb_regs->McArbBurstTime = (uint8_t)burstTime; |
1606 | |
1607 | return 0; |
1608 | } |
1609 | |
1610 | static int iceland_program_memory_timing_parameters(struct pp_hwmgr *hwmgr) |
1611 | { |
1612 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
1613 | struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend); |
1614 | int result = 0; |
1615 | SMU71_Discrete_MCArbDramTimingTable arb_regs; |
1616 | uint32_t i, j; |
1617 | |
1618 | memset(&arb_regs, 0x00, sizeof(SMU71_Discrete_MCArbDramTimingTable)); |
1619 | |
1620 | for (i = 0; i < data->dpm_table.sclk_table.count; i++) { |
1621 | for (j = 0; j < data->dpm_table.mclk_table.count; j++) { |
1622 | result = iceland_populate_memory_timing_parameters |
1623 | (hwmgr, data->dpm_table.sclk_table.dpm_levels[i].value, |
1624 | data->dpm_table.mclk_table.dpm_levels[j].value, |
1625 | &arb_regs.entries[i][j]); |
1626 | |
1627 | if (0 != result) { |
1628 | break; |
1629 | } |
1630 | } |
1631 | } |
1632 | |
1633 | if (0 == result) { |
1634 | result = smu7_copy_bytes_to_smc( |
1635 | hwmgr, |
1636 | smu_data->smu7_data.arb_table_start, |
1637 | (uint8_t *)&arb_regs, |
1638 | sizeof(SMU71_Discrete_MCArbDramTimingTable), |
1639 | SMC_RAM_END |
1640 | ); |
1641 | } |
1642 | |
1643 | return result; |
1644 | } |
1645 | |
1646 | static int iceland_populate_smc_boot_level(struct pp_hwmgr *hwmgr, |
1647 | SMU71_Discrete_DpmTable *table) |
1648 | { |
1649 | int result = 0; |
1650 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
1651 | struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend); |
1652 | table->GraphicsBootLevel = 0; |
1653 | table->MemoryBootLevel = 0; |
1654 | |
1655 | /* find boot level from dpm table*/ |
1656 | result = phm_find_boot_level(&(data->dpm_table.sclk_table), |
1657 | data->vbios_boot_state.sclk_bootup_value, |
1658 | (uint32_t *)&(smu_data->smc_state_table.GraphicsBootLevel)); |
1659 | |
1660 | if (0 != result) { |
1661 | smu_data->smc_state_table.GraphicsBootLevel = 0; |
1662 | pr_err("VBIOS did not find boot engine clock value in dependency table. Using Graphics DPM level 0!\n" ); |
1663 | result = 0; |
1664 | } |
1665 | |
1666 | result = phm_find_boot_level(&(data->dpm_table.mclk_table), |
1667 | data->vbios_boot_state.mclk_bootup_value, |
1668 | (uint32_t *)&(smu_data->smc_state_table.MemoryBootLevel)); |
1669 | |
1670 | if (0 != result) { |
1671 | smu_data->smc_state_table.MemoryBootLevel = 0; |
1672 | pr_err("VBIOS did not find boot engine clock value in dependency table. Using Memory DPM level 0!\n" ); |
1673 | result = 0; |
1674 | } |
1675 | |
1676 | table->BootVddc = data->vbios_boot_state.vddc_bootup_value; |
1677 | if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control) |
1678 | table->BootVddci = table->BootVddc; |
1679 | else |
1680 | table->BootVddci = data->vbios_boot_state.vddci_bootup_value; |
1681 | |
1682 | table->BootMVdd = data->vbios_boot_state.mvdd_bootup_value; |
1683 | |
1684 | return result; |
1685 | } |
1686 | |
1687 | static int iceland_populate_mc_reg_address(struct pp_hwmgr *hwmgr, |
1688 | SMU71_Discrete_MCRegisters *mc_reg_table) |
1689 | { |
1690 | const struct iceland_smumgr *smu_data = (struct iceland_smumgr *)hwmgr->smu_backend; |
1691 | |
1692 | uint32_t i, j; |
1693 | |
1694 | for (i = 0, j = 0; j < smu_data->mc_reg_table.last; j++) { |
1695 | if (smu_data->mc_reg_table.validflag & 1<<j) { |
1696 | PP_ASSERT_WITH_CODE(i < SMU71_DISCRETE_MC_REGISTER_ARRAY_SIZE, |
1697 | "Index of mc_reg_table->address[] array out of boundary" , return -EINVAL); |
1698 | mc_reg_table->address[i].s0 = |
1699 | PP_HOST_TO_SMC_US(smu_data->mc_reg_table.mc_reg_address[j].s0); |
1700 | mc_reg_table->address[i].s1 = |
1701 | PP_HOST_TO_SMC_US(smu_data->mc_reg_table.mc_reg_address[j].s1); |
1702 | i++; |
1703 | } |
1704 | } |
1705 | |
1706 | mc_reg_table->last = (uint8_t)i; |
1707 | |
1708 | return 0; |
1709 | } |
1710 | |
1711 | /*convert register values from driver to SMC format */ |
1712 | static void iceland_convert_mc_registers( |
1713 | const struct iceland_mc_reg_entry *entry, |
1714 | SMU71_Discrete_MCRegisterSet *data, |
1715 | uint32_t num_entries, uint32_t valid_flag) |
1716 | { |
1717 | uint32_t i, j; |
1718 | |
1719 | for (i = 0, j = 0; j < num_entries; j++) { |
1720 | if (valid_flag & 1<<j) { |
1721 | data->value[i] = PP_HOST_TO_SMC_UL(entry->mc_data[j]); |
1722 | i++; |
1723 | } |
1724 | } |
1725 | } |
1726 | |
1727 | static int iceland_convert_mc_reg_table_entry_to_smc(struct pp_hwmgr *hwmgr, |
1728 | const uint32_t memory_clock, |
1729 | SMU71_Discrete_MCRegisterSet *mc_reg_table_data |
1730 | ) |
1731 | { |
1732 | struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend); |
1733 | uint32_t i = 0; |
1734 | |
1735 | for (i = 0; i < smu_data->mc_reg_table.num_entries; i++) { |
1736 | if (memory_clock <= |
1737 | smu_data->mc_reg_table.mc_reg_table_entry[i].mclk_max) { |
1738 | break; |
1739 | } |
1740 | } |
1741 | |
1742 | if ((i == smu_data->mc_reg_table.num_entries) && (i > 0)) |
1743 | --i; |
1744 | |
1745 | iceland_convert_mc_registers(&smu_data->mc_reg_table.mc_reg_table_entry[i], |
1746 | mc_reg_table_data, smu_data->mc_reg_table.last, |
1747 | smu_data->mc_reg_table.validflag); |
1748 | |
1749 | return 0; |
1750 | } |
1751 | |
1752 | static int iceland_convert_mc_reg_table_to_smc(struct pp_hwmgr *hwmgr, |
1753 | SMU71_Discrete_MCRegisters *mc_regs) |
1754 | { |
1755 | int result = 0; |
1756 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
1757 | int res; |
1758 | uint32_t i; |
1759 | |
1760 | for (i = 0; i < data->dpm_table.mclk_table.count; i++) { |
1761 | res = iceland_convert_mc_reg_table_entry_to_smc( |
1762 | hwmgr, |
1763 | data->dpm_table.mclk_table.dpm_levels[i].value, |
1764 | &mc_regs->data[i] |
1765 | ); |
1766 | |
1767 | if (0 != res) |
1768 | result = res; |
1769 | } |
1770 | |
1771 | return result; |
1772 | } |
1773 | |
1774 | static int iceland_update_and_upload_mc_reg_table(struct pp_hwmgr *hwmgr) |
1775 | { |
1776 | struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend); |
1777 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
1778 | uint32_t address; |
1779 | int32_t result; |
1780 | |
1781 | if (0 == (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK)) |
1782 | return 0; |
1783 | |
1784 | |
1785 | memset(&smu_data->mc_regs, 0, sizeof(SMU71_Discrete_MCRegisters)); |
1786 | |
1787 | result = iceland_convert_mc_reg_table_to_smc(hwmgr, &(smu_data->mc_regs)); |
1788 | |
1789 | if (result != 0) |
1790 | return result; |
1791 | |
1792 | |
1793 | address = smu_data->smu7_data.mc_reg_table_start + (uint32_t)offsetof(SMU71_Discrete_MCRegisters, data[0]); |
1794 | |
1795 | return smu7_copy_bytes_to_smc(hwmgr, address, |
1796 | (uint8_t *)&smu_data->mc_regs.data[0], |
1797 | sizeof(SMU71_Discrete_MCRegisterSet) * data->dpm_table.mclk_table.count, |
1798 | SMC_RAM_END); |
1799 | } |
1800 | |
1801 | static int iceland_populate_initial_mc_reg_table(struct pp_hwmgr *hwmgr) |
1802 | { |
1803 | int result; |
1804 | struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend); |
1805 | |
1806 | memset(&smu_data->mc_regs, 0x00, sizeof(SMU71_Discrete_MCRegisters)); |
1807 | result = iceland_populate_mc_reg_address(hwmgr, &(smu_data->mc_regs)); |
1808 | PP_ASSERT_WITH_CODE(0 == result, |
1809 | "Failed to initialize MCRegTable for the MC register addresses!" , return result;); |
1810 | |
1811 | result = iceland_convert_mc_reg_table_to_smc(hwmgr, &smu_data->mc_regs); |
1812 | PP_ASSERT_WITH_CODE(0 == result, |
1813 | "Failed to initialize MCRegTable for driver state!" , return result;); |
1814 | |
1815 | return smu7_copy_bytes_to_smc(hwmgr, smu_data->smu7_data.mc_reg_table_start, |
1816 | (uint8_t *)&smu_data->mc_regs, sizeof(SMU71_Discrete_MCRegisters), SMC_RAM_END); |
1817 | } |
1818 | |
1819 | static int iceland_populate_smc_initial_state(struct pp_hwmgr *hwmgr) |
1820 | { |
1821 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
1822 | struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend); |
1823 | uint8_t count, level; |
1824 | |
1825 | count = (uint8_t)(hwmgr->dyn_state.vddc_dependency_on_sclk->count); |
1826 | |
1827 | for (level = 0; level < count; level++) { |
1828 | if (hwmgr->dyn_state.vddc_dependency_on_sclk->entries[level].clk |
1829 | >= data->vbios_boot_state.sclk_bootup_value) { |
1830 | smu_data->smc_state_table.GraphicsBootLevel = level; |
1831 | break; |
1832 | } |
1833 | } |
1834 | |
1835 | count = (uint8_t)(hwmgr->dyn_state.vddc_dependency_on_mclk->count); |
1836 | |
1837 | for (level = 0; level < count; level++) { |
1838 | if (hwmgr->dyn_state.vddc_dependency_on_mclk->entries[level].clk |
1839 | >= data->vbios_boot_state.mclk_bootup_value) { |
1840 | smu_data->smc_state_table.MemoryBootLevel = level; |
1841 | break; |
1842 | } |
1843 | } |
1844 | |
1845 | return 0; |
1846 | } |
1847 | |
1848 | static int iceland_populate_bapm_parameters_in_dpm_table(struct pp_hwmgr *hwmgr) |
1849 | { |
1850 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
1851 | struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend); |
1852 | const struct iceland_pt_defaults *defaults = smu_data->power_tune_defaults; |
1853 | SMU71_Discrete_DpmTable *dpm_table = &(smu_data->smc_state_table); |
1854 | struct phm_cac_tdp_table *cac_dtp_table = hwmgr->dyn_state.cac_dtp_table; |
1855 | struct phm_ppm_table *ppm = hwmgr->dyn_state.ppm_parameter_table; |
1856 | const uint16_t *def1, *def2; |
1857 | int i, j, k; |
1858 | |
1859 | |
1860 | /* |
1861 | * TDP number of fraction bits are changed from 8 to 7 for Iceland |
1862 | * as requested by SMC team |
1863 | */ |
1864 | |
1865 | dpm_table->DefaultTdp = PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table->usTDP * 256)); |
1866 | dpm_table->TargetTdp = PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table->usConfigurableTDP * 256)); |
1867 | |
1868 | |
1869 | dpm_table->DTETjOffset = 0; |
1870 | |
1871 | dpm_table->GpuTjMax = (uint8_t)(data->thermal_temp_setting.temperature_high / PP_TEMPERATURE_UNITS_PER_CENTIGRADES); |
1872 | dpm_table->GpuTjHyst = 8; |
1873 | |
1874 | dpm_table->DTEAmbientTempBase = defaults->dte_ambient_temp_base; |
1875 | |
1876 | /* The following are for new Iceland Multi-input fan/thermal control */ |
1877 | if (NULL != ppm) { |
1878 | dpm_table->PPM_PkgPwrLimit = (uint16_t)ppm->dgpu_tdp * 256 / 1000; |
1879 | dpm_table->PPM_TemperatureLimit = (uint16_t)ppm->tj_max * 256; |
1880 | } else { |
1881 | dpm_table->PPM_PkgPwrLimit = 0; |
1882 | dpm_table->PPM_TemperatureLimit = 0; |
1883 | } |
1884 | |
1885 | CONVERT_FROM_HOST_TO_SMC_US(dpm_table->PPM_PkgPwrLimit); |
1886 | CONVERT_FROM_HOST_TO_SMC_US(dpm_table->PPM_TemperatureLimit); |
1887 | |
1888 | dpm_table->BAPM_TEMP_GRADIENT = PP_HOST_TO_SMC_UL(defaults->bapm_temp_gradient); |
1889 | def1 = defaults->bapmti_r; |
1890 | def2 = defaults->bapmti_rc; |
1891 | |
1892 | for (i = 0; i < SMU71_DTE_ITERATIONS; i++) { |
1893 | for (j = 0; j < SMU71_DTE_SOURCES; j++) { |
1894 | for (k = 0; k < SMU71_DTE_SINKS; k++) { |
1895 | dpm_table->BAPMTI_R[i][j][k] = PP_HOST_TO_SMC_US(*def1); |
1896 | dpm_table->BAPMTI_RC[i][j][k] = PP_HOST_TO_SMC_US(*def2); |
1897 | def1++; |
1898 | def2++; |
1899 | } |
1900 | } |
1901 | } |
1902 | |
1903 | return 0; |
1904 | } |
1905 | |
1906 | static int iceland_populate_smc_svi2_config(struct pp_hwmgr *hwmgr, |
1907 | SMU71_Discrete_DpmTable *tab) |
1908 | { |
1909 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
1910 | |
1911 | if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) |
1912 | tab->SVI2Enable |= VDDC_ON_SVI2; |
1913 | |
1914 | if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) |
1915 | tab->SVI2Enable |= VDDCI_ON_SVI2; |
1916 | else |
1917 | tab->MergedVddci = 1; |
1918 | |
1919 | if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control) |
1920 | tab->SVI2Enable |= MVDD_ON_SVI2; |
1921 | |
1922 | PP_ASSERT_WITH_CODE(tab->SVI2Enable != (VDDC_ON_SVI2 | VDDCI_ON_SVI2 | MVDD_ON_SVI2) && |
1923 | (tab->SVI2Enable & VDDC_ON_SVI2), "SVI2 domain configuration is incorrect!" , return -EINVAL); |
1924 | |
1925 | return 0; |
1926 | } |
1927 | |
1928 | static int iceland_init_smc_table(struct pp_hwmgr *hwmgr) |
1929 | { |
1930 | int result; |
1931 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
1932 | struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend); |
1933 | SMU71_Discrete_DpmTable *table = &(smu_data->smc_state_table); |
1934 | |
1935 | |
1936 | iceland_initialize_power_tune_defaults(hwmgr); |
1937 | memset(&(smu_data->smc_state_table), 0x00, sizeof(smu_data->smc_state_table)); |
1938 | |
1939 | if (SMU7_VOLTAGE_CONTROL_NONE != data->voltage_control) { |
1940 | iceland_populate_smc_voltage_tables(hwmgr, table); |
1941 | } |
1942 | |
1943 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
1944 | PHM_PlatformCaps_AutomaticDCTransition)) |
1945 | table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC; |
1946 | |
1947 | |
1948 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
1949 | PHM_PlatformCaps_StepVddc)) |
1950 | table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC; |
1951 | |
1952 | if (data->is_memory_gddr5) |
1953 | table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5; |
1954 | |
1955 | |
1956 | if (data->ulv_supported) { |
1957 | result = iceland_populate_ulv_state(hwmgr, &(smu_data->ulv_setting)); |
1958 | PP_ASSERT_WITH_CODE(0 == result, |
1959 | "Failed to initialize ULV state!" , return result;); |
1960 | |
1961 | cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
1962 | ixCG_ULV_PARAMETER, 0x40035); |
1963 | } |
1964 | |
1965 | result = iceland_populate_smc_link_level(hwmgr, table); |
1966 | PP_ASSERT_WITH_CODE(0 == result, |
1967 | "Failed to initialize Link Level!" , return result;); |
1968 | |
1969 | result = iceland_populate_all_graphic_levels(hwmgr); |
1970 | PP_ASSERT_WITH_CODE(0 == result, |
1971 | "Failed to initialize Graphics Level!" , return result;); |
1972 | |
1973 | result = iceland_populate_all_memory_levels(hwmgr); |
1974 | PP_ASSERT_WITH_CODE(0 == result, |
1975 | "Failed to initialize Memory Level!" , return result;); |
1976 | |
1977 | result = iceland_populate_smc_acpi_level(hwmgr, table); |
1978 | PP_ASSERT_WITH_CODE(0 == result, |
1979 | "Failed to initialize ACPI Level!" , return result;); |
1980 | |
1981 | result = iceland_populate_smc_vce_level(hwmgr, table); |
1982 | PP_ASSERT_WITH_CODE(0 == result, |
1983 | "Failed to initialize VCE Level!" , return result;); |
1984 | |
1985 | result = iceland_populate_smc_acp_level(hwmgr, table); |
1986 | PP_ASSERT_WITH_CODE(0 == result, |
1987 | "Failed to initialize ACP Level!" , return result;); |
1988 | |
1989 | /* Since only the initial state is completely set up at this point (the other states are just copies of the boot state) we only */ |
1990 | /* need to populate the ARB settings for the initial state. */ |
1991 | result = iceland_program_memory_timing_parameters(hwmgr); |
1992 | PP_ASSERT_WITH_CODE(0 == result, |
1993 | "Failed to Write ARB settings for the initial state." , return result;); |
1994 | |
1995 | result = iceland_populate_smc_uvd_level(hwmgr, table); |
1996 | PP_ASSERT_WITH_CODE(0 == result, |
1997 | "Failed to initialize UVD Level!" , return result;); |
1998 | |
1999 | table->GraphicsBootLevel = 0; |
2000 | table->MemoryBootLevel = 0; |
2001 | |
2002 | result = iceland_populate_smc_boot_level(hwmgr, table); |
2003 | PP_ASSERT_WITH_CODE(0 == result, |
2004 | "Failed to initialize Boot Level!" , return result;); |
2005 | |
2006 | result = iceland_populate_smc_initial_state(hwmgr); |
2007 | PP_ASSERT_WITH_CODE(0 == result, "Failed to initialize Boot State!" , return result); |
2008 | |
2009 | result = iceland_populate_bapm_parameters_in_dpm_table(hwmgr); |
2010 | PP_ASSERT_WITH_CODE(0 == result, "Failed to populate BAPM Parameters!" , return result); |
2011 | |
2012 | table->GraphicsVoltageChangeEnable = 1; |
2013 | table->GraphicsThermThrottleEnable = 1; |
2014 | table->GraphicsInterval = 1; |
2015 | table->VoltageInterval = 1; |
2016 | table->ThermalInterval = 1; |
2017 | |
2018 | table->TemperatureLimitHigh = |
2019 | (data->thermal_temp_setting.temperature_high * |
2020 | SMU7_Q88_FORMAT_CONVERSION_UNIT) / PP_TEMPERATURE_UNITS_PER_CENTIGRADES; |
2021 | table->TemperatureLimitLow = |
2022 | (data->thermal_temp_setting.temperature_low * |
2023 | SMU7_Q88_FORMAT_CONVERSION_UNIT) / PP_TEMPERATURE_UNITS_PER_CENTIGRADES; |
2024 | |
2025 | table->MemoryVoltageChangeEnable = 1; |
2026 | table->MemoryInterval = 1; |
2027 | table->VoltageResponseTime = 0; |
2028 | table->PhaseResponseTime = 0; |
2029 | table->MemoryThermThrottleEnable = 1; |
2030 | table->PCIeBootLinkLevel = 0; |
2031 | table->PCIeGenInterval = 1; |
2032 | |
2033 | result = iceland_populate_smc_svi2_config(hwmgr, table); |
2034 | PP_ASSERT_WITH_CODE(0 == result, |
2035 | "Failed to populate SVI2 setting!" , return result); |
2036 | |
2037 | table->ThermGpio = 17; |
2038 | table->SclkStepSize = 0x4000; |
2039 | |
2040 | CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags); |
2041 | CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskVddcVid); |
2042 | CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskVddcPhase); |
2043 | CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskVddciVid); |
2044 | CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskMvddVid); |
2045 | CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize); |
2046 | CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh); |
2047 | CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow); |
2048 | CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime); |
2049 | CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime); |
2050 | |
2051 | table->BootVddc = PP_HOST_TO_SMC_US(table->BootVddc * VOLTAGE_SCALE); |
2052 | table->BootVddci = PP_HOST_TO_SMC_US(table->BootVddci * VOLTAGE_SCALE); |
2053 | table->BootMVdd = PP_HOST_TO_SMC_US(table->BootMVdd * VOLTAGE_SCALE); |
2054 | |
2055 | /* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */ |
2056 | result = smu7_copy_bytes_to_smc(hwmgr, smu_data->smu7_data.dpm_table_start + |
2057 | offsetof(SMU71_Discrete_DpmTable, SystemFlags), |
2058 | (uint8_t *)&(table->SystemFlags), |
2059 | sizeof(SMU71_Discrete_DpmTable)-3 * sizeof(SMU71_PIDController), |
2060 | SMC_RAM_END); |
2061 | |
2062 | PP_ASSERT_WITH_CODE(0 == result, |
2063 | "Failed to upload dpm data to SMC memory!" , return result;); |
2064 | |
2065 | /* Upload all ulv setting to SMC memory.(dpm level, dpm level count etc) */ |
2066 | result = smu7_copy_bytes_to_smc(hwmgr, |
2067 | smu_data->smu7_data.ulv_setting_starts, |
2068 | (uint8_t *)&(smu_data->ulv_setting), |
2069 | sizeof(SMU71_Discrete_Ulv), |
2070 | SMC_RAM_END); |
2071 | |
2072 | |
2073 | result = iceland_populate_initial_mc_reg_table(hwmgr); |
2074 | PP_ASSERT_WITH_CODE((0 == result), |
2075 | "Failed to populate initialize MC Reg table!" , return result); |
2076 | |
2077 | result = iceland_populate_pm_fuses(hwmgr); |
2078 | PP_ASSERT_WITH_CODE(0 == result, |
2079 | "Failed to populate PM fuses to SMC memory!" , return result); |
2080 | |
2081 | return 0; |
2082 | } |
2083 | |
2084 | int iceland_thermal_setup_fan_table(struct pp_hwmgr *hwmgr) |
2085 | { |
2086 | struct smu7_smumgr *smu7_data = (struct smu7_smumgr *)(hwmgr->smu_backend); |
2087 | SMU71_Discrete_FanTable fan_table = { FDO_MODE_HARDWARE }; |
2088 | uint32_t duty100; |
2089 | uint32_t t_diff1, t_diff2, pwm_diff1, pwm_diff2; |
2090 | uint16_t fdo_min, slope1, slope2; |
2091 | uint32_t reference_clock; |
2092 | int res; |
2093 | uint64_t tmp64; |
2094 | |
2095 | if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl)) |
2096 | return 0; |
2097 | |
2098 | if (hwmgr->thermal_controller.fanInfo.bNoFan) { |
2099 | phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
2100 | PHM_PlatformCaps_MicrocodeFanControl); |
2101 | return 0; |
2102 | } |
2103 | |
2104 | if (0 == smu7_data->fan_table_start) { |
2105 | phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl); |
2106 | return 0; |
2107 | } |
2108 | |
2109 | duty100 = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_FDO_CTRL1, FMAX_DUTY100); |
2110 | |
2111 | if (0 == duty100) { |
2112 | phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl); |
2113 | return 0; |
2114 | } |
2115 | |
2116 | tmp64 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin * duty100; |
2117 | do_div(tmp64, 10000); |
2118 | fdo_min = (uint16_t)tmp64; |
2119 | |
2120 | t_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usTMed - hwmgr->thermal_controller.advanceFanControlParameters.usTMin; |
2121 | t_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usTHigh - hwmgr->thermal_controller.advanceFanControlParameters.usTMed; |
2122 | |
2123 | pwm_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed - hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin; |
2124 | pwm_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMHigh - hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed; |
2125 | |
2126 | slope1 = (uint16_t)((50 + ((16 * duty100 * pwm_diff1) / t_diff1)) / 100); |
2127 | slope2 = (uint16_t)((50 + ((16 * duty100 * pwm_diff2) / t_diff2)) / 100); |
2128 | |
2129 | fan_table.TempMin = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMin) / 100); |
2130 | fan_table.TempMed = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMed) / 100); |
2131 | fan_table.TempMax = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMax) / 100); |
2132 | |
2133 | fan_table.Slope1 = cpu_to_be16(slope1); |
2134 | fan_table.Slope2 = cpu_to_be16(slope2); |
2135 | |
2136 | fan_table.FdoMin = cpu_to_be16(fdo_min); |
2137 | |
2138 | fan_table.HystDown = cpu_to_be16(hwmgr->thermal_controller.advanceFanControlParameters.ucTHyst); |
2139 | |
2140 | fan_table.HystUp = cpu_to_be16(1); |
2141 | |
2142 | fan_table.HystSlope = cpu_to_be16(1); |
2143 | |
2144 | fan_table.TempRespLim = cpu_to_be16(5); |
2145 | |
2146 | reference_clock = amdgpu_asic_get_xclk((struct amdgpu_device *)hwmgr->adev); |
2147 | |
2148 | fan_table.RefreshPeriod = cpu_to_be32((hwmgr->thermal_controller.advanceFanControlParameters.ulCycleDelay * reference_clock) / 1600); |
2149 | |
2150 | fan_table.FdoMax = cpu_to_be16((uint16_t)duty100); |
2151 | |
2152 | fan_table.TempSrc = (uint8_t)PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_MULT_THERMAL_CTRL, TEMP_SEL); |
2153 | |
2154 | /* fan_table.FanControl_GL_Flag = 1; */ |
2155 | |
2156 | res = smu7_copy_bytes_to_smc(hwmgr, smu7_data->fan_table_start, (uint8_t *)&fan_table, (uint32_t)sizeof(fan_table), SMC_RAM_END); |
2157 | |
2158 | return 0; |
2159 | } |
2160 | |
2161 | |
2162 | static int iceland_program_mem_timing_parameters(struct pp_hwmgr *hwmgr) |
2163 | { |
2164 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
2165 | |
2166 | if (data->need_update_smu7_dpm_table & |
2167 | (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_OD_UPDATE_MCLK)) |
2168 | return iceland_program_memory_timing_parameters(hwmgr); |
2169 | |
2170 | return 0; |
2171 | } |
2172 | |
2173 | static int iceland_update_sclk_threshold(struct pp_hwmgr *hwmgr) |
2174 | { |
2175 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
2176 | struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend); |
2177 | |
2178 | int result = 0; |
2179 | uint32_t low_sclk_interrupt_threshold = 0; |
2180 | |
2181 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
2182 | PHM_PlatformCaps_SclkThrottleLowNotification) |
2183 | && (data->low_sclk_interrupt_threshold != 0)) { |
2184 | low_sclk_interrupt_threshold = |
2185 | data->low_sclk_interrupt_threshold; |
2186 | |
2187 | CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold); |
2188 | |
2189 | result = smu7_copy_bytes_to_smc( |
2190 | hwmgr, |
2191 | smu_data->smu7_data.dpm_table_start + |
2192 | offsetof(SMU71_Discrete_DpmTable, |
2193 | LowSclkInterruptThreshold), |
2194 | (uint8_t *)&low_sclk_interrupt_threshold, |
2195 | sizeof(uint32_t), |
2196 | SMC_RAM_END); |
2197 | } |
2198 | |
2199 | result = iceland_update_and_upload_mc_reg_table(hwmgr); |
2200 | |
2201 | PP_ASSERT_WITH_CODE((0 == result), "Failed to upload MC reg table!" , return result); |
2202 | |
2203 | result = iceland_program_mem_timing_parameters(hwmgr); |
2204 | PP_ASSERT_WITH_CODE((result == 0), |
2205 | "Failed to program memory timing parameters!" , |
2206 | ); |
2207 | |
2208 | return result; |
2209 | } |
2210 | |
2211 | static uint32_t iceland_get_offsetof(uint32_t type, uint32_t member) |
2212 | { |
2213 | switch (type) { |
2214 | case SMU_SoftRegisters: |
2215 | switch (member) { |
2216 | case HandshakeDisables: |
2217 | return offsetof(SMU71_SoftRegisters, HandshakeDisables); |
2218 | case VoltageChangeTimeout: |
2219 | return offsetof(SMU71_SoftRegisters, VoltageChangeTimeout); |
2220 | case AverageGraphicsActivity: |
2221 | return offsetof(SMU71_SoftRegisters, AverageGraphicsActivity); |
2222 | case PreVBlankGap: |
2223 | return offsetof(SMU71_SoftRegisters, PreVBlankGap); |
2224 | case VBlankTimeout: |
2225 | return offsetof(SMU71_SoftRegisters, VBlankTimeout); |
2226 | case UcodeLoadStatus: |
2227 | return offsetof(SMU71_SoftRegisters, UcodeLoadStatus); |
2228 | case DRAM_LOG_ADDR_H: |
2229 | return offsetof(SMU71_SoftRegisters, DRAM_LOG_ADDR_H); |
2230 | case DRAM_LOG_ADDR_L: |
2231 | return offsetof(SMU71_SoftRegisters, DRAM_LOG_ADDR_L); |
2232 | case DRAM_LOG_PHY_ADDR_H: |
2233 | return offsetof(SMU71_SoftRegisters, DRAM_LOG_PHY_ADDR_H); |
2234 | case DRAM_LOG_PHY_ADDR_L: |
2235 | return offsetof(SMU71_SoftRegisters, DRAM_LOG_PHY_ADDR_L); |
2236 | case DRAM_LOG_BUFF_SIZE: |
2237 | return offsetof(SMU71_SoftRegisters, DRAM_LOG_BUFF_SIZE); |
2238 | } |
2239 | break; |
2240 | case SMU_Discrete_DpmTable: |
2241 | switch (member) { |
2242 | case LowSclkInterruptThreshold: |
2243 | return offsetof(SMU71_Discrete_DpmTable, LowSclkInterruptThreshold); |
2244 | } |
2245 | break; |
2246 | } |
2247 | pr_warn("can't get the offset of type %x member %x\n" , type, member); |
2248 | return 0; |
2249 | } |
2250 | |
2251 | static uint32_t iceland_get_mac_definition(uint32_t value) |
2252 | { |
2253 | switch (value) { |
2254 | case SMU_MAX_LEVELS_GRAPHICS: |
2255 | return SMU71_MAX_LEVELS_GRAPHICS; |
2256 | case SMU_MAX_LEVELS_MEMORY: |
2257 | return SMU71_MAX_LEVELS_MEMORY; |
2258 | case SMU_MAX_LEVELS_LINK: |
2259 | return SMU71_MAX_LEVELS_LINK; |
2260 | case SMU_MAX_ENTRIES_SMIO: |
2261 | return SMU71_MAX_ENTRIES_SMIO; |
2262 | case SMU_MAX_LEVELS_VDDC: |
2263 | return SMU71_MAX_LEVELS_VDDC; |
2264 | case SMU_MAX_LEVELS_VDDCI: |
2265 | return SMU71_MAX_LEVELS_VDDCI; |
2266 | case SMU_MAX_LEVELS_MVDD: |
2267 | return SMU71_MAX_LEVELS_MVDD; |
2268 | } |
2269 | |
2270 | pr_warn("can't get the mac of %x\n" , value); |
2271 | return 0; |
2272 | } |
2273 | |
2274 | static int iceland_process_firmware_header(struct pp_hwmgr *hwmgr) |
2275 | { |
2276 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
2277 | struct smu7_smumgr *smu7_data = (struct smu7_smumgr *)(hwmgr->smu_backend); |
2278 | |
2279 | uint32_t tmp; |
2280 | int result; |
2281 | bool error = false; |
2282 | |
2283 | result = smu7_read_smc_sram_dword(hwmgr, |
2284 | SMU71_FIRMWARE_HEADER_LOCATION + |
2285 | offsetof(SMU71_Firmware_Header, DpmTable), |
2286 | &tmp, SMC_RAM_END); |
2287 | |
2288 | if (0 == result) { |
2289 | smu7_data->dpm_table_start = tmp; |
2290 | } |
2291 | |
2292 | error |= (0 != result); |
2293 | |
2294 | result = smu7_read_smc_sram_dword(hwmgr, |
2295 | SMU71_FIRMWARE_HEADER_LOCATION + |
2296 | offsetof(SMU71_Firmware_Header, SoftRegisters), |
2297 | &tmp, SMC_RAM_END); |
2298 | |
2299 | if (0 == result) { |
2300 | data->soft_regs_start = tmp; |
2301 | smu7_data->soft_regs_start = tmp; |
2302 | } |
2303 | |
2304 | error |= (0 != result); |
2305 | |
2306 | |
2307 | result = smu7_read_smc_sram_dword(hwmgr, |
2308 | SMU71_FIRMWARE_HEADER_LOCATION + |
2309 | offsetof(SMU71_Firmware_Header, mcRegisterTable), |
2310 | &tmp, SMC_RAM_END); |
2311 | |
2312 | if (0 == result) { |
2313 | smu7_data->mc_reg_table_start = tmp; |
2314 | } |
2315 | |
2316 | result = smu7_read_smc_sram_dword(hwmgr, |
2317 | SMU71_FIRMWARE_HEADER_LOCATION + |
2318 | offsetof(SMU71_Firmware_Header, FanTable), |
2319 | &tmp, SMC_RAM_END); |
2320 | |
2321 | if (0 == result) { |
2322 | smu7_data->fan_table_start = tmp; |
2323 | } |
2324 | |
2325 | error |= (0 != result); |
2326 | |
2327 | result = smu7_read_smc_sram_dword(hwmgr, |
2328 | SMU71_FIRMWARE_HEADER_LOCATION + |
2329 | offsetof(SMU71_Firmware_Header, mcArbDramTimingTable), |
2330 | &tmp, SMC_RAM_END); |
2331 | |
2332 | if (0 == result) { |
2333 | smu7_data->arb_table_start = tmp; |
2334 | } |
2335 | |
2336 | error |= (0 != result); |
2337 | |
2338 | |
2339 | result = smu7_read_smc_sram_dword(hwmgr, |
2340 | SMU71_FIRMWARE_HEADER_LOCATION + |
2341 | offsetof(SMU71_Firmware_Header, Version), |
2342 | &tmp, SMC_RAM_END); |
2343 | |
2344 | if (0 == result) { |
2345 | hwmgr->microcode_version_info.SMC = tmp; |
2346 | } |
2347 | |
2348 | error |= (0 != result); |
2349 | |
2350 | result = smu7_read_smc_sram_dword(hwmgr, |
2351 | SMU71_FIRMWARE_HEADER_LOCATION + |
2352 | offsetof(SMU71_Firmware_Header, UlvSettings), |
2353 | &tmp, SMC_RAM_END); |
2354 | |
2355 | if (0 == result) { |
2356 | smu7_data->ulv_setting_starts = tmp; |
2357 | } |
2358 | |
2359 | error |= (0 != result); |
2360 | |
2361 | return error ? 1 : 0; |
2362 | } |
2363 | |
2364 | /*---------------------------MC----------------------------*/ |
2365 | |
2366 | static uint8_t iceland_get_memory_modile_index(struct pp_hwmgr *hwmgr) |
2367 | { |
2368 | return (uint8_t) (0xFF & (cgs_read_register(hwmgr->device, mmBIOS_SCRATCH_4) >> 16)); |
2369 | } |
2370 | |
2371 | static bool iceland_check_s0_mc_reg_index(uint16_t in_reg, uint16_t *out_reg) |
2372 | { |
2373 | bool result = true; |
2374 | |
2375 | switch (in_reg) { |
2376 | case mmMC_SEQ_RAS_TIMING: |
2377 | *out_reg = mmMC_SEQ_RAS_TIMING_LP; |
2378 | break; |
2379 | |
2380 | case mmMC_SEQ_DLL_STBY: |
2381 | *out_reg = mmMC_SEQ_DLL_STBY_LP; |
2382 | break; |
2383 | |
2384 | case mmMC_SEQ_G5PDX_CMD0: |
2385 | *out_reg = mmMC_SEQ_G5PDX_CMD0_LP; |
2386 | break; |
2387 | |
2388 | case mmMC_SEQ_G5PDX_CMD1: |
2389 | *out_reg = mmMC_SEQ_G5PDX_CMD1_LP; |
2390 | break; |
2391 | |
2392 | case mmMC_SEQ_G5PDX_CTRL: |
2393 | *out_reg = mmMC_SEQ_G5PDX_CTRL_LP; |
2394 | break; |
2395 | |
2396 | case mmMC_SEQ_CAS_TIMING: |
2397 | *out_reg = mmMC_SEQ_CAS_TIMING_LP; |
2398 | break; |
2399 | |
2400 | case mmMC_SEQ_MISC_TIMING: |
2401 | *out_reg = mmMC_SEQ_MISC_TIMING_LP; |
2402 | break; |
2403 | |
2404 | case mmMC_SEQ_MISC_TIMING2: |
2405 | *out_reg = mmMC_SEQ_MISC_TIMING2_LP; |
2406 | break; |
2407 | |
2408 | case mmMC_SEQ_PMG_DVS_CMD: |
2409 | *out_reg = mmMC_SEQ_PMG_DVS_CMD_LP; |
2410 | break; |
2411 | |
2412 | case mmMC_SEQ_PMG_DVS_CTL: |
2413 | *out_reg = mmMC_SEQ_PMG_DVS_CTL_LP; |
2414 | break; |
2415 | |
2416 | case mmMC_SEQ_RD_CTL_D0: |
2417 | *out_reg = mmMC_SEQ_RD_CTL_D0_LP; |
2418 | break; |
2419 | |
2420 | case mmMC_SEQ_RD_CTL_D1: |
2421 | *out_reg = mmMC_SEQ_RD_CTL_D1_LP; |
2422 | break; |
2423 | |
2424 | case mmMC_SEQ_WR_CTL_D0: |
2425 | *out_reg = mmMC_SEQ_WR_CTL_D0_LP; |
2426 | break; |
2427 | |
2428 | case mmMC_SEQ_WR_CTL_D1: |
2429 | *out_reg = mmMC_SEQ_WR_CTL_D1_LP; |
2430 | break; |
2431 | |
2432 | case mmMC_PMG_CMD_EMRS: |
2433 | *out_reg = mmMC_SEQ_PMG_CMD_EMRS_LP; |
2434 | break; |
2435 | |
2436 | case mmMC_PMG_CMD_MRS: |
2437 | *out_reg = mmMC_SEQ_PMG_CMD_MRS_LP; |
2438 | break; |
2439 | |
2440 | case mmMC_PMG_CMD_MRS1: |
2441 | *out_reg = mmMC_SEQ_PMG_CMD_MRS1_LP; |
2442 | break; |
2443 | |
2444 | case mmMC_SEQ_PMG_TIMING: |
2445 | *out_reg = mmMC_SEQ_PMG_TIMING_LP; |
2446 | break; |
2447 | |
2448 | case mmMC_PMG_CMD_MRS2: |
2449 | *out_reg = mmMC_SEQ_PMG_CMD_MRS2_LP; |
2450 | break; |
2451 | |
2452 | case mmMC_SEQ_WR_CTL_2: |
2453 | *out_reg = mmMC_SEQ_WR_CTL_2_LP; |
2454 | break; |
2455 | |
2456 | default: |
2457 | result = false; |
2458 | break; |
2459 | } |
2460 | |
2461 | return result; |
2462 | } |
2463 | |
2464 | static int iceland_set_s0_mc_reg_index(struct iceland_mc_reg_table *table) |
2465 | { |
2466 | uint32_t i; |
2467 | uint16_t address; |
2468 | |
2469 | for (i = 0; i < table->last; i++) { |
2470 | table->mc_reg_address[i].s0 = |
2471 | iceland_check_s0_mc_reg_index(table->mc_reg_address[i].s1, &address) |
2472 | ? address : table->mc_reg_address[i].s1; |
2473 | } |
2474 | return 0; |
2475 | } |
2476 | |
2477 | static int iceland_copy_vbios_smc_reg_table(const pp_atomctrl_mc_reg_table *table, |
2478 | struct iceland_mc_reg_table *ni_table) |
2479 | { |
2480 | uint8_t i, j; |
2481 | |
2482 | PP_ASSERT_WITH_CODE((table->last <= SMU71_DISCRETE_MC_REGISTER_ARRAY_SIZE), |
2483 | "Invalid VramInfo table." , return -EINVAL); |
2484 | PP_ASSERT_WITH_CODE((table->num_entries <= MAX_AC_TIMING_ENTRIES), |
2485 | "Invalid VramInfo table." , return -EINVAL); |
2486 | |
2487 | for (i = 0; i < table->last; i++) { |
2488 | ni_table->mc_reg_address[i].s1 = table->mc_reg_address[i].s1; |
2489 | } |
2490 | ni_table->last = table->last; |
2491 | |
2492 | for (i = 0; i < table->num_entries; i++) { |
2493 | ni_table->mc_reg_table_entry[i].mclk_max = |
2494 | table->mc_reg_table_entry[i].mclk_max; |
2495 | for (j = 0; j < table->last; j++) { |
2496 | ni_table->mc_reg_table_entry[i].mc_data[j] = |
2497 | table->mc_reg_table_entry[i].mc_data[j]; |
2498 | } |
2499 | } |
2500 | |
2501 | ni_table->num_entries = table->num_entries; |
2502 | |
2503 | return 0; |
2504 | } |
2505 | |
2506 | static int iceland_set_mc_special_registers(struct pp_hwmgr *hwmgr, |
2507 | struct iceland_mc_reg_table *table) |
2508 | { |
2509 | uint8_t i, j, k; |
2510 | uint32_t temp_reg; |
2511 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
2512 | |
2513 | for (i = 0, j = table->last; i < table->last; i++) { |
2514 | PP_ASSERT_WITH_CODE((j < SMU71_DISCRETE_MC_REGISTER_ARRAY_SIZE), |
2515 | "Invalid VramInfo table." , return -EINVAL); |
2516 | |
2517 | switch (table->mc_reg_address[i].s1) { |
2518 | |
2519 | case mmMC_SEQ_MISC1: |
2520 | temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS); |
2521 | table->mc_reg_address[j].s1 = mmMC_PMG_CMD_EMRS; |
2522 | table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_EMRS_LP; |
2523 | for (k = 0; k < table->num_entries; k++) { |
2524 | table->mc_reg_table_entry[k].mc_data[j] = |
2525 | ((temp_reg & 0xffff0000)) | |
2526 | ((table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16); |
2527 | } |
2528 | j++; |
2529 | |
2530 | PP_ASSERT_WITH_CODE((j < SMU71_DISCRETE_MC_REGISTER_ARRAY_SIZE), |
2531 | "Invalid VramInfo table." , return -EINVAL); |
2532 | temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS); |
2533 | table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS; |
2534 | table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS_LP; |
2535 | for (k = 0; k < table->num_entries; k++) { |
2536 | table->mc_reg_table_entry[k].mc_data[j] = |
2537 | (temp_reg & 0xffff0000) | |
2538 | (table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff); |
2539 | |
2540 | if (!data->is_memory_gddr5) { |
2541 | table->mc_reg_table_entry[k].mc_data[j] |= 0x100; |
2542 | } |
2543 | } |
2544 | j++; |
2545 | |
2546 | if (!data->is_memory_gddr5) { |
2547 | PP_ASSERT_WITH_CODE((j < SMU71_DISCRETE_MC_REGISTER_ARRAY_SIZE), |
2548 | "Invalid VramInfo table." , return -EINVAL); |
2549 | table->mc_reg_address[j].s1 = mmMC_PMG_AUTO_CMD; |
2550 | table->mc_reg_address[j].s0 = mmMC_PMG_AUTO_CMD; |
2551 | for (k = 0; k < table->num_entries; k++) { |
2552 | table->mc_reg_table_entry[k].mc_data[j] = |
2553 | (table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16; |
2554 | } |
2555 | j++; |
2556 | } |
2557 | |
2558 | break; |
2559 | |
2560 | case mmMC_SEQ_RESERVE_M: |
2561 | temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1); |
2562 | table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS1; |
2563 | table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS1_LP; |
2564 | for (k = 0; k < table->num_entries; k++) { |
2565 | table->mc_reg_table_entry[k].mc_data[j] = |
2566 | (temp_reg & 0xffff0000) | |
2567 | (table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff); |
2568 | } |
2569 | j++; |
2570 | break; |
2571 | |
2572 | default: |
2573 | break; |
2574 | } |
2575 | |
2576 | } |
2577 | |
2578 | table->last = j; |
2579 | |
2580 | return 0; |
2581 | } |
2582 | |
2583 | static int iceland_set_valid_flag(struct iceland_mc_reg_table *table) |
2584 | { |
2585 | uint8_t i, j; |
2586 | for (i = 0; i < table->last; i++) { |
2587 | for (j = 1; j < table->num_entries; j++) { |
2588 | if (table->mc_reg_table_entry[j-1].mc_data[i] != |
2589 | table->mc_reg_table_entry[j].mc_data[i]) { |
2590 | table->validflag |= (1<<i); |
2591 | break; |
2592 | } |
2593 | } |
2594 | } |
2595 | |
2596 | return 0; |
2597 | } |
2598 | |
2599 | static int iceland_initialize_mc_reg_table(struct pp_hwmgr *hwmgr) |
2600 | { |
2601 | int result; |
2602 | struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend); |
2603 | pp_atomctrl_mc_reg_table *table; |
2604 | struct iceland_mc_reg_table *ni_table = &smu_data->mc_reg_table; |
2605 | uint8_t module_index = iceland_get_memory_modile_index(hwmgr); |
2606 | |
2607 | table = kzalloc(sizeof(pp_atomctrl_mc_reg_table), GFP_KERNEL); |
2608 | |
2609 | if (NULL == table) |
2610 | return -ENOMEM; |
2611 | |
2612 | /* Program additional LP registers that are no longer programmed by VBIOS */ |
2613 | cgs_write_register(hwmgr->device, mmMC_SEQ_RAS_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RAS_TIMING)); |
2614 | cgs_write_register(hwmgr->device, mmMC_SEQ_CAS_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_CAS_TIMING)); |
2615 | cgs_write_register(hwmgr->device, mmMC_SEQ_DLL_STBY_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_DLL_STBY)); |
2616 | cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0)); |
2617 | cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1)); |
2618 | cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL)); |
2619 | cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD)); |
2620 | cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL)); |
2621 | cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING)); |
2622 | cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2)); |
2623 | cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_EMRS_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS)); |
2624 | cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS)); |
2625 | cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS1_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1)); |
2626 | cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0)); |
2627 | cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1)); |
2628 | cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0)); |
2629 | cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1)); |
2630 | cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_TIMING)); |
2631 | cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS2_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS2)); |
2632 | cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_2_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_2)); |
2633 | |
2634 | memset(table, 0x00, sizeof(pp_atomctrl_mc_reg_table)); |
2635 | |
2636 | result = atomctrl_initialize_mc_reg_table(hwmgr, module_index, table); |
2637 | |
2638 | if (0 == result) |
2639 | result = iceland_copy_vbios_smc_reg_table(table, ni_table); |
2640 | |
2641 | if (0 == result) { |
2642 | iceland_set_s0_mc_reg_index(ni_table); |
2643 | result = iceland_set_mc_special_registers(hwmgr, ni_table); |
2644 | } |
2645 | |
2646 | if (0 == result) |
2647 | iceland_set_valid_flag(ni_table); |
2648 | |
2649 | kfree(table); |
2650 | |
2651 | return result; |
2652 | } |
2653 | |
2654 | static bool iceland_is_dpm_running(struct pp_hwmgr *hwmgr) |
2655 | { |
2656 | return (1 == PHM_READ_INDIRECT_FIELD(hwmgr->device, |
2657 | CGS_IND_REG__SMC, FEATURE_STATUS, VOLTAGE_CONTROLLER_ON)) |
2658 | ? true : false; |
2659 | } |
2660 | |
2661 | const struct pp_smumgr_func iceland_smu_funcs = { |
2662 | .smu_init = &iceland_smu_init, |
2663 | .smu_fini = &smu7_smu_fini, |
2664 | .start_smu = &iceland_start_smu, |
2665 | .check_fw_load_finish = &smu7_check_fw_load_finish, |
2666 | .request_smu_load_fw = &smu7_request_smu_load_fw, |
2667 | .request_smu_load_specific_fw = &iceland_request_smu_load_specific_fw, |
2668 | .send_msg_to_smc = &smu7_send_msg_to_smc, |
2669 | .send_msg_to_smc_with_parameter = &smu7_send_msg_to_smc_with_parameter, |
2670 | .download_pptable_settings = NULL, |
2671 | .upload_pptable_settings = NULL, |
2672 | .get_offsetof = iceland_get_offsetof, |
2673 | .process_firmware_header = iceland_process_firmware_header, |
2674 | .init_smc_table = iceland_init_smc_table, |
2675 | .update_sclk_threshold = iceland_update_sclk_threshold, |
2676 | .thermal_setup_fan_table = iceland_thermal_setup_fan_table, |
2677 | .populate_all_graphic_levels = iceland_populate_all_graphic_levels, |
2678 | .populate_all_memory_levels = iceland_populate_all_memory_levels, |
2679 | .get_mac_definition = iceland_get_mac_definition, |
2680 | .initialize_mc_reg_table = iceland_initialize_mc_reg_table, |
2681 | .is_dpm_running = iceland_is_dpm_running, |
2682 | }; |
2683 | |
2684 | |