1 | /* |
2 | * Copyright 2015 Advanced Micro Devices, Inc. |
3 | * |
4 | * Permission is hereby granted, free of charge, to any person obtaining a |
5 | * copy of this software and associated documentation files (the "Software"), |
6 | * to deal in the Software without restriction, including without limitation |
7 | * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
8 | * and/or sell copies of the Software, and to permit persons to whom the |
9 | * Software is furnished to do so, subject to the following conditions: |
10 | * |
11 | * The above copyright notice and this permission notice shall be included in |
12 | * all copies or substantial portions of the Software. |
13 | * |
14 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
15 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
16 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
17 | * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR |
18 | * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, |
19 | * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |
20 | * OTHER DEALINGS IN THE SOFTWARE. |
21 | * |
22 | */ |
23 | #include "pp_debug.h" |
24 | #include <linux/types.h> |
25 | #include <linux/kernel.h> |
26 | #include <linux/slab.h> |
27 | #include <linux/gfp.h> |
28 | |
29 | #include "smumgr.h" |
30 | #include "tonga_smumgr.h" |
31 | #include "smu_ucode_xfer_vi.h" |
32 | #include "tonga_ppsmc.h" |
33 | #include "smu/smu_7_1_2_d.h" |
34 | #include "smu/smu_7_1_2_sh_mask.h" |
35 | #include "cgs_common.h" |
36 | #include "smu7_smumgr.h" |
37 | |
38 | #include "smu7_dyn_defaults.h" |
39 | |
40 | #include "smu7_hwmgr.h" |
41 | #include "hardwaremanager.h" |
42 | #include "ppatomctrl.h" |
43 | |
44 | #include "atombios.h" |
45 | |
46 | #include "pppcielanes.h" |
47 | #include "pp_endian.h" |
48 | |
49 | #include "gmc/gmc_8_1_d.h" |
50 | #include "gmc/gmc_8_1_sh_mask.h" |
51 | |
52 | #include "bif/bif_5_0_d.h" |
53 | #include "bif/bif_5_0_sh_mask.h" |
54 | |
55 | #include "dce/dce_10_0_d.h" |
56 | #include "dce/dce_10_0_sh_mask.h" |
57 | |
58 | #define POWERTUNE_DEFAULT_SET_MAX 1 |
59 | #define MC_CG_ARB_FREQ_F1 0x0b |
60 | #define VDDC_VDDCI_DELTA 200 |
61 | |
62 | |
63 | static const struct tonga_pt_defaults tonga_power_tune_data_set_array[POWERTUNE_DEFAULT_SET_MAX] = { |
64 | /* sviLoadLIneEn, SviLoadLineVddC, TDC_VDDC_ThrottleReleaseLimitPerc, TDC_MAWt, |
65 | * TdcWaterfallCtl, DTEAmbientTempBase, DisplayCac, BAPM_TEMP_GRADIENT |
66 | */ |
67 | {1, 0xF, 0xFD, 0x19, |
68 | 5, 45, 0, 0xB0000, |
69 | {0x79, 0x253, 0x25D, 0xAE, 0x72, 0x80, 0x83, 0x86, 0x6F, 0xC8, |
70 | 0xC9, 0xC9, 0x2F, 0x4D, 0x61}, |
71 | {0x17C, 0x172, 0x180, 0x1BC, 0x1B3, 0x1BD, 0x206, 0x200, 0x203, |
72 | 0x25D, 0x25A, 0x255, 0x2C3, 0x2C5, 0x2B4} |
73 | }, |
74 | }; |
75 | |
76 | /* [Fmin, Fmax, LDO_REFSEL, USE_FOR_LOW_FREQ] */ |
77 | static const uint16_t tonga_clock_stretcher_lookup_table[2][4] = { |
78 | {600, 1050, 3, 0}, |
79 | {600, 1050, 6, 1} |
80 | }; |
81 | |
82 | /* [FF, SS] type, [] 4 voltage ranges, |
83 | * and [Floor Freq, Boundary Freq, VID min , VID max] |
84 | */ |
85 | static const uint32_t tonga_clock_stretcher_ddt_table[2][4][4] = { |
86 | { {265, 529, 120, 128}, {325, 650, 96, 119}, {430, 860, 32, 95}, {0, 0, 0, 31} }, |
87 | { {275, 550, 104, 112}, {319, 638, 96, 103}, {360, 720, 64, 95}, {384, 768, 32, 63} } |
88 | }; |
89 | |
90 | /* [Use_For_Low_freq] value, [0%, 5%, 10%, 7.14%, 14.28%, 20%] */ |
91 | static const uint8_t tonga_clock_stretch_amount_conversion[2][6] = { |
92 | {0, 1, 3, 2, 4, 5}, |
93 | {0, 2, 4, 5, 6, 5} |
94 | }; |
95 | |
96 | static int tonga_start_in_protection_mode(struct pp_hwmgr *hwmgr) |
97 | { |
98 | int result; |
99 | |
100 | /* Assert reset */ |
101 | PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, |
102 | SMC_SYSCON_RESET_CNTL, rst_reg, 1); |
103 | |
104 | result = smu7_upload_smu_firmware_image(hwmgr); |
105 | if (result) |
106 | return result; |
107 | |
108 | /* Clear status */ |
109 | cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
110 | ixSMU_STATUS, 0); |
111 | |
112 | /* Enable clock */ |
113 | PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, |
114 | SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0); |
115 | |
116 | /* De-assert reset */ |
117 | PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, |
118 | SMC_SYSCON_RESET_CNTL, rst_reg, 0); |
119 | |
120 | /* Set SMU Auto Start */ |
121 | PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, |
122 | SMU_INPUT_DATA, AUTO_START, 1); |
123 | |
124 | /* Clear firmware interrupt enable flag */ |
125 | cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
126 | ixFIRMWARE_FLAGS, 0); |
127 | |
128 | PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND, |
129 | RCU_UC_EVENTS, INTERRUPTS_ENABLED, 1); |
130 | |
131 | /** |
132 | * Call Test SMU message with 0x20000 offset to trigger SMU start |
133 | */ |
134 | smu7_send_msg_to_smc_offset(hwmgr); |
135 | |
136 | /* Wait for done bit to be set */ |
137 | PHM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND, |
138 | SMU_STATUS, SMU_DONE, 0); |
139 | |
140 | /* Check pass/failed indicator */ |
141 | if (1 != PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, |
142 | CGS_IND_REG__SMC, SMU_STATUS, SMU_PASS)) { |
143 | pr_err("SMU Firmware start failed\n" ); |
144 | return -EINVAL; |
145 | } |
146 | |
147 | /* Wait for firmware to initialize */ |
148 | PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND, |
149 | FIRMWARE_FLAGS, INTERRUPTS_ENABLED, 1); |
150 | |
151 | return 0; |
152 | } |
153 | |
154 | static int tonga_start_in_non_protection_mode(struct pp_hwmgr *hwmgr) |
155 | { |
156 | int result = 0; |
157 | |
158 | /* wait for smc boot up */ |
159 | PHM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND, |
160 | RCU_UC_EVENTS, boot_seq_done, 0); |
161 | |
162 | /*Clear firmware interrupt enable flag*/ |
163 | cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
164 | ixFIRMWARE_FLAGS, 0); |
165 | |
166 | |
167 | PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, |
168 | SMC_SYSCON_RESET_CNTL, rst_reg, 1); |
169 | |
170 | result = smu7_upload_smu_firmware_image(hwmgr); |
171 | |
172 | if (result != 0) |
173 | return result; |
174 | |
175 | /* Set smc instruct start point at 0x0 */ |
176 | smu7_program_jump_on_start(hwmgr); |
177 | |
178 | |
179 | PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, |
180 | SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0); |
181 | |
182 | /*De-assert reset*/ |
183 | PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, |
184 | SMC_SYSCON_RESET_CNTL, rst_reg, 0); |
185 | |
186 | /* Wait for firmware to initialize */ |
187 | PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND, |
188 | FIRMWARE_FLAGS, INTERRUPTS_ENABLED, 1); |
189 | |
190 | return result; |
191 | } |
192 | |
193 | static int tonga_start_smu(struct pp_hwmgr *hwmgr) |
194 | { |
195 | struct tonga_smumgr *priv = hwmgr->smu_backend; |
196 | int result; |
197 | |
198 | /* Only start SMC if SMC RAM is not running */ |
199 | if (!smu7_is_smc_ram_running(hwmgr) && hwmgr->not_vf) { |
200 | /*Check if SMU is running in protected mode*/ |
201 | if (0 == PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, |
202 | SMU_FIRMWARE, SMU_MODE)) { |
203 | result = tonga_start_in_non_protection_mode(hwmgr); |
204 | if (result) |
205 | return result; |
206 | } else { |
207 | result = tonga_start_in_protection_mode(hwmgr); |
208 | if (result) |
209 | return result; |
210 | } |
211 | } |
212 | |
213 | /* Setup SoftRegsStart here to visit the register UcodeLoadStatus |
214 | * to check fw loading state |
215 | */ |
216 | smu7_read_smc_sram_dword(hwmgr, |
217 | SMU72_FIRMWARE_HEADER_LOCATION + |
218 | offsetof(SMU72_Firmware_Header, SoftRegisters), |
219 | &(priv->smu7_data.soft_regs_start), 0x40000); |
220 | |
221 | result = smu7_request_smu_load_fw(hwmgr); |
222 | |
223 | return result; |
224 | } |
225 | |
226 | static int tonga_smu_init(struct pp_hwmgr *hwmgr) |
227 | { |
228 | struct tonga_smumgr *tonga_priv = NULL; |
229 | |
230 | tonga_priv = kzalloc(sizeof(struct tonga_smumgr), GFP_KERNEL); |
231 | if (tonga_priv == NULL) |
232 | return -ENOMEM; |
233 | |
234 | hwmgr->smu_backend = tonga_priv; |
235 | |
236 | if (smu7_init(hwmgr)) { |
237 | kfree(tonga_priv); |
238 | return -EINVAL; |
239 | } |
240 | |
241 | return 0; |
242 | } |
243 | |
244 | |
245 | static int tonga_get_dependency_volt_by_clk(struct pp_hwmgr *hwmgr, |
246 | phm_ppt_v1_clock_voltage_dependency_table *allowed_clock_voltage_table, |
247 | uint32_t clock, SMU_VoltageLevel *voltage, uint32_t *mvdd) |
248 | { |
249 | uint32_t i = 0; |
250 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
251 | struct phm_ppt_v1_information *pptable_info = |
252 | (struct phm_ppt_v1_information *)(hwmgr->pptable); |
253 | |
254 | /* clock - voltage dependency table is empty table */ |
255 | if (allowed_clock_voltage_table->count == 0) |
256 | return -EINVAL; |
257 | |
258 | for (i = 0; i < allowed_clock_voltage_table->count; i++) { |
259 | /* find first sclk bigger than request */ |
260 | if (allowed_clock_voltage_table->entries[i].clk >= clock) { |
261 | voltage->VddGfx = phm_get_voltage_index( |
262 | pptable_info->vddgfx_lookup_table, |
263 | allowed_clock_voltage_table->entries[i].vddgfx); |
264 | voltage->Vddc = phm_get_voltage_index( |
265 | pptable_info->vddc_lookup_table, |
266 | allowed_clock_voltage_table->entries[i].vddc); |
267 | |
268 | if (allowed_clock_voltage_table->entries[i].vddci) |
269 | voltage->Vddci = |
270 | phm_get_voltage_id(&data->vddci_voltage_table, allowed_clock_voltage_table->entries[i].vddci); |
271 | else |
272 | voltage->Vddci = |
273 | phm_get_voltage_id(&data->vddci_voltage_table, |
274 | allowed_clock_voltage_table->entries[i].vddc - VDDC_VDDCI_DELTA); |
275 | |
276 | |
277 | if (allowed_clock_voltage_table->entries[i].mvdd) |
278 | *mvdd = (uint32_t) allowed_clock_voltage_table->entries[i].mvdd; |
279 | |
280 | voltage->Phases = 1; |
281 | return 0; |
282 | } |
283 | } |
284 | |
285 | /* sclk is bigger than max sclk in the dependence table */ |
286 | voltage->VddGfx = phm_get_voltage_index(pptable_info->vddgfx_lookup_table, |
287 | allowed_clock_voltage_table->entries[i-1].vddgfx); |
288 | voltage->Vddc = phm_get_voltage_index(pptable_info->vddc_lookup_table, |
289 | allowed_clock_voltage_table->entries[i-1].vddc); |
290 | |
291 | if (allowed_clock_voltage_table->entries[i-1].vddci) |
292 | voltage->Vddci = phm_get_voltage_id(&data->vddci_voltage_table, |
293 | allowed_clock_voltage_table->entries[i-1].vddci); |
294 | |
295 | if (allowed_clock_voltage_table->entries[i-1].mvdd) |
296 | *mvdd = (uint32_t) allowed_clock_voltage_table->entries[i-1].mvdd; |
297 | |
298 | return 0; |
299 | } |
300 | |
301 | static int tonga_populate_smc_vddc_table(struct pp_hwmgr *hwmgr, |
302 | SMU72_Discrete_DpmTable *table) |
303 | { |
304 | unsigned int count; |
305 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
306 | |
307 | if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) { |
308 | table->VddcLevelCount = data->vddc_voltage_table.count; |
309 | for (count = 0; count < table->VddcLevelCount; count++) { |
310 | table->VddcTable[count] = |
311 | PP_HOST_TO_SMC_US(data->vddc_voltage_table.entries[count].value * VOLTAGE_SCALE); |
312 | } |
313 | CONVERT_FROM_HOST_TO_SMC_UL(table->VddcLevelCount); |
314 | } |
315 | return 0; |
316 | } |
317 | |
318 | static int tonga_populate_smc_vdd_gfx_table(struct pp_hwmgr *hwmgr, |
319 | SMU72_Discrete_DpmTable *table) |
320 | { |
321 | unsigned int count; |
322 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
323 | |
324 | if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_gfx_control) { |
325 | table->VddGfxLevelCount = data->vddgfx_voltage_table.count; |
326 | for (count = 0; count < data->vddgfx_voltage_table.count; count++) { |
327 | table->VddGfxTable[count] = |
328 | PP_HOST_TO_SMC_US(data->vddgfx_voltage_table.entries[count].value * VOLTAGE_SCALE); |
329 | } |
330 | CONVERT_FROM_HOST_TO_SMC_UL(table->VddGfxLevelCount); |
331 | } |
332 | return 0; |
333 | } |
334 | |
335 | static int tonga_populate_smc_vdd_ci_table(struct pp_hwmgr *hwmgr, |
336 | SMU72_Discrete_DpmTable *table) |
337 | { |
338 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
339 | uint32_t count; |
340 | |
341 | table->VddciLevelCount = data->vddci_voltage_table.count; |
342 | for (count = 0; count < table->VddciLevelCount; count++) { |
343 | if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) { |
344 | table->VddciTable[count] = |
345 | PP_HOST_TO_SMC_US(data->vddci_voltage_table.entries[count].value * VOLTAGE_SCALE); |
346 | } else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) { |
347 | table->SmioTable1.Pattern[count].Voltage = |
348 | PP_HOST_TO_SMC_US(data->vddci_voltage_table.entries[count].value * VOLTAGE_SCALE); |
349 | /* Index into DpmTable.Smio. Drive bits from Smio entry to get this voltage level. */ |
350 | table->SmioTable1.Pattern[count].Smio = |
351 | (uint8_t) count; |
352 | table->Smio[count] |= |
353 | data->vddci_voltage_table.entries[count].smio_low; |
354 | table->VddciTable[count] = |
355 | PP_HOST_TO_SMC_US(data->vddci_voltage_table.entries[count].value * VOLTAGE_SCALE); |
356 | } |
357 | } |
358 | |
359 | table->SmioMask1 = data->vddci_voltage_table.mask_low; |
360 | CONVERT_FROM_HOST_TO_SMC_UL(table->VddciLevelCount); |
361 | |
362 | return 0; |
363 | } |
364 | |
365 | static int tonga_populate_smc_mvdd_table(struct pp_hwmgr *hwmgr, |
366 | SMU72_Discrete_DpmTable *table) |
367 | { |
368 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
369 | uint32_t count; |
370 | |
371 | if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) { |
372 | table->MvddLevelCount = data->mvdd_voltage_table.count; |
373 | for (count = 0; count < table->MvddLevelCount; count++) { |
374 | table->SmioTable2.Pattern[count].Voltage = |
375 | PP_HOST_TO_SMC_US(data->mvdd_voltage_table.entries[count].value * VOLTAGE_SCALE); |
376 | /* Index into DpmTable.Smio. Drive bits from Smio entry to get this voltage level.*/ |
377 | table->SmioTable2.Pattern[count].Smio = |
378 | (uint8_t) count; |
379 | table->Smio[count] |= |
380 | data->mvdd_voltage_table.entries[count].smio_low; |
381 | } |
382 | table->SmioMask2 = data->mvdd_voltage_table.mask_low; |
383 | |
384 | CONVERT_FROM_HOST_TO_SMC_UL(table->MvddLevelCount); |
385 | } |
386 | |
387 | return 0; |
388 | } |
389 | |
390 | static int tonga_populate_cac_tables(struct pp_hwmgr *hwmgr, |
391 | SMU72_Discrete_DpmTable *table) |
392 | { |
393 | uint32_t count; |
394 | uint8_t index = 0; |
395 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
396 | struct phm_ppt_v1_information *pptable_info = |
397 | (struct phm_ppt_v1_information *)(hwmgr->pptable); |
398 | struct phm_ppt_v1_voltage_lookup_table *vddgfx_lookup_table = |
399 | pptable_info->vddgfx_lookup_table; |
400 | struct phm_ppt_v1_voltage_lookup_table *vddc_lookup_table = |
401 | pptable_info->vddc_lookup_table; |
402 | |
403 | /* table is already swapped, so in order to use the value from it |
404 | * we need to swap it back. |
405 | */ |
406 | uint32_t vddc_level_count = PP_SMC_TO_HOST_UL(table->VddcLevelCount); |
407 | uint32_t vddgfx_level_count = PP_SMC_TO_HOST_UL(table->VddGfxLevelCount); |
408 | |
409 | for (count = 0; count < vddc_level_count; count++) { |
410 | /* We are populating vddc CAC data to BapmVddc table in split and merged mode */ |
411 | index = phm_get_voltage_index(vddc_lookup_table, |
412 | data->vddc_voltage_table.entries[count].value); |
413 | table->BapmVddcVidLoSidd[count] = |
414 | convert_to_vid(vddc_lookup_table->entries[index].us_cac_low); |
415 | table->BapmVddcVidHiSidd[count] = |
416 | convert_to_vid(vddc_lookup_table->entries[index].us_cac_mid); |
417 | table->BapmVddcVidHiSidd2[count] = |
418 | convert_to_vid(vddc_lookup_table->entries[index].us_cac_high); |
419 | } |
420 | |
421 | if (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) { |
422 | /* We are populating vddgfx CAC data to BapmVddgfx table in split mode */ |
423 | for (count = 0; count < vddgfx_level_count; count++) { |
424 | index = phm_get_voltage_index(vddgfx_lookup_table, |
425 | convert_to_vid(vddgfx_lookup_table->entries[index].us_cac_mid)); |
426 | table->BapmVddGfxVidHiSidd2[count] = |
427 | convert_to_vid(vddgfx_lookup_table->entries[index].us_cac_high); |
428 | } |
429 | } else { |
430 | for (count = 0; count < vddc_level_count; count++) { |
431 | index = phm_get_voltage_index(vddc_lookup_table, |
432 | data->vddc_voltage_table.entries[count].value); |
433 | table->BapmVddGfxVidLoSidd[count] = |
434 | convert_to_vid(vddc_lookup_table->entries[index].us_cac_low); |
435 | table->BapmVddGfxVidHiSidd[count] = |
436 | convert_to_vid(vddc_lookup_table->entries[index].us_cac_mid); |
437 | table->BapmVddGfxVidHiSidd2[count] = |
438 | convert_to_vid(vddc_lookup_table->entries[index].us_cac_high); |
439 | } |
440 | } |
441 | |
442 | return 0; |
443 | } |
444 | |
445 | static int tonga_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr, |
446 | SMU72_Discrete_DpmTable *table) |
447 | { |
448 | int result; |
449 | |
450 | result = tonga_populate_smc_vddc_table(hwmgr, table); |
451 | PP_ASSERT_WITH_CODE(!result, |
452 | "can not populate VDDC voltage table to SMC" , |
453 | return -EINVAL); |
454 | |
455 | result = tonga_populate_smc_vdd_ci_table(hwmgr, table); |
456 | PP_ASSERT_WITH_CODE(!result, |
457 | "can not populate VDDCI voltage table to SMC" , |
458 | return -EINVAL); |
459 | |
460 | result = tonga_populate_smc_vdd_gfx_table(hwmgr, table); |
461 | PP_ASSERT_WITH_CODE(!result, |
462 | "can not populate VDDGFX voltage table to SMC" , |
463 | return -EINVAL); |
464 | |
465 | result = tonga_populate_smc_mvdd_table(hwmgr, table); |
466 | PP_ASSERT_WITH_CODE(!result, |
467 | "can not populate MVDD voltage table to SMC" , |
468 | return -EINVAL); |
469 | |
470 | result = tonga_populate_cac_tables(hwmgr, table); |
471 | PP_ASSERT_WITH_CODE(!result, |
472 | "can not populate CAC voltage tables to SMC" , |
473 | return -EINVAL); |
474 | |
475 | return 0; |
476 | } |
477 | |
478 | static int tonga_populate_ulv_level(struct pp_hwmgr *hwmgr, |
479 | struct SMU72_Discrete_Ulv *state) |
480 | { |
481 | struct phm_ppt_v1_information *table_info = |
482 | (struct phm_ppt_v1_information *)(hwmgr->pptable); |
483 | |
484 | state->CcPwrDynRm = 0; |
485 | state->CcPwrDynRm1 = 0; |
486 | |
487 | state->VddcOffset = (uint16_t) table_info->us_ulv_voltage_offset; |
488 | state->VddcOffsetVid = (uint8_t)(table_info->us_ulv_voltage_offset * |
489 | VOLTAGE_VID_OFFSET_SCALE2 / VOLTAGE_VID_OFFSET_SCALE1); |
490 | |
491 | state->VddcPhase = 1; |
492 | |
493 | CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm); |
494 | CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1); |
495 | CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset); |
496 | |
497 | return 0; |
498 | } |
499 | |
500 | static int tonga_populate_ulv_state(struct pp_hwmgr *hwmgr, |
501 | struct SMU72_Discrete_DpmTable *table) |
502 | { |
503 | return tonga_populate_ulv_level(hwmgr, &table->Ulv); |
504 | } |
505 | |
506 | static int tonga_populate_smc_link_level(struct pp_hwmgr *hwmgr, SMU72_Discrete_DpmTable *table) |
507 | { |
508 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
509 | struct smu7_dpm_table *dpm_table = &data->dpm_table; |
510 | struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smu_backend); |
511 | uint32_t i; |
512 | |
513 | /* Index (dpm_table->pcie_speed_table.count) is reserved for PCIE boot level. */ |
514 | for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) { |
515 | table->LinkLevel[i].PcieGenSpeed = |
516 | (uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value; |
517 | table->LinkLevel[i].PcieLaneCount = |
518 | (uint8_t)encode_pcie_lane_width(dpm_table->pcie_speed_table.dpm_levels[i].param1); |
519 | table->LinkLevel[i].EnabledForActivity = |
520 | 1; |
521 | table->LinkLevel[i].SPC = |
522 | (uint8_t)(data->pcie_spc_cap & 0xff); |
523 | table->LinkLevel[i].DownThreshold = |
524 | PP_HOST_TO_SMC_UL(5); |
525 | table->LinkLevel[i].UpThreshold = |
526 | PP_HOST_TO_SMC_UL(30); |
527 | } |
528 | |
529 | smu_data->smc_state_table.LinkLevelCount = |
530 | (uint8_t)dpm_table->pcie_speed_table.count; |
531 | data->dpm_level_enable_mask.pcie_dpm_enable_mask = |
532 | phm_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table); |
533 | |
534 | return 0; |
535 | } |
536 | |
537 | static int tonga_calculate_sclk_params(struct pp_hwmgr *hwmgr, |
538 | uint32_t engine_clock, SMU72_Discrete_GraphicsLevel *sclk) |
539 | { |
540 | const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
541 | pp_atomctrl_clock_dividers_vi dividers; |
542 | uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL; |
543 | uint32_t spll_func_cntl_3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3; |
544 | uint32_t spll_func_cntl_4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4; |
545 | uint32_t cg_spll_spread_spectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM; |
546 | uint32_t cg_spll_spread_spectrum_2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2; |
547 | uint32_t reference_clock; |
548 | uint32_t reference_divider; |
549 | uint32_t fbdiv; |
550 | int result; |
551 | |
552 | /* get the engine clock dividers for this clock value*/ |
553 | result = atomctrl_get_engine_pll_dividers_vi(hwmgr, engine_clock, ÷rs); |
554 | |
555 | PP_ASSERT_WITH_CODE(result == 0, |
556 | "Error retrieving Engine Clock dividers from VBIOS." , return result); |
557 | |
558 | /* To get FBDIV we need to multiply this by 16384 and divide it by Fref.*/ |
559 | reference_clock = atomctrl_get_reference_clock(hwmgr); |
560 | |
561 | reference_divider = 1 + dividers.uc_pll_ref_div; |
562 | |
563 | /* low 14 bits is fraction and high 12 bits is divider*/ |
564 | fbdiv = dividers.ul_fb_div.ul_fb_divider & 0x3FFFFFF; |
565 | |
566 | /* SPLL_FUNC_CNTL setup*/ |
567 | spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, |
568 | CG_SPLL_FUNC_CNTL, SPLL_REF_DIV, dividers.uc_pll_ref_div); |
569 | spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, |
570 | CG_SPLL_FUNC_CNTL, SPLL_PDIV_A, dividers.uc_pll_post_div); |
571 | |
572 | /* SPLL_FUNC_CNTL_3 setup*/ |
573 | spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, |
574 | CG_SPLL_FUNC_CNTL_3, SPLL_FB_DIV, fbdiv); |
575 | |
576 | /* set to use fractional accumulation*/ |
577 | spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, |
578 | CG_SPLL_FUNC_CNTL_3, SPLL_DITHEN, 1); |
579 | |
580 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
581 | PHM_PlatformCaps_EngineSpreadSpectrumSupport)) { |
582 | pp_atomctrl_internal_ss_info ss_info; |
583 | |
584 | uint32_t vcoFreq = engine_clock * dividers.uc_pll_post_div; |
585 | if (0 == atomctrl_get_engine_clock_spread_spectrum(hwmgr, vcoFreq, &ss_info)) { |
586 | /* |
587 | * ss_info.speed_spectrum_percentage -- in unit of 0.01% |
588 | * ss_info.speed_spectrum_rate -- in unit of khz |
589 | */ |
590 | /* clks = reference_clock * 10 / (REFDIV + 1) / speed_spectrum_rate / 2 */ |
591 | uint32_t clkS = reference_clock * 5 / (reference_divider * ss_info.speed_spectrum_rate); |
592 | |
593 | /* clkv = 2 * D * fbdiv / NS */ |
594 | uint32_t clkV = 4 * ss_info.speed_spectrum_percentage * fbdiv / (clkS * 10000); |
595 | |
596 | cg_spll_spread_spectrum = |
597 | PHM_SET_FIELD(cg_spll_spread_spectrum, CG_SPLL_SPREAD_SPECTRUM, CLKS, clkS); |
598 | cg_spll_spread_spectrum = |
599 | PHM_SET_FIELD(cg_spll_spread_spectrum, CG_SPLL_SPREAD_SPECTRUM, SSEN, 1); |
600 | cg_spll_spread_spectrum_2 = |
601 | PHM_SET_FIELD(cg_spll_spread_spectrum_2, CG_SPLL_SPREAD_SPECTRUM_2, CLKV, clkV); |
602 | } |
603 | } |
604 | |
605 | sclk->SclkFrequency = engine_clock; |
606 | sclk->CgSpllFuncCntl3 = spll_func_cntl_3; |
607 | sclk->CgSpllFuncCntl4 = spll_func_cntl_4; |
608 | sclk->SpllSpreadSpectrum = cg_spll_spread_spectrum; |
609 | sclk->SpllSpreadSpectrum2 = cg_spll_spread_spectrum_2; |
610 | sclk->SclkDid = (uint8_t)dividers.pll_post_divider; |
611 | |
612 | return 0; |
613 | } |
614 | |
615 | static int tonga_populate_single_graphic_level(struct pp_hwmgr *hwmgr, |
616 | uint32_t engine_clock, |
617 | SMU72_Discrete_GraphicsLevel *graphic_level) |
618 | { |
619 | int result; |
620 | uint32_t mvdd; |
621 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
622 | struct phm_ppt_v1_information *pptable_info = |
623 | (struct phm_ppt_v1_information *)(hwmgr->pptable); |
624 | phm_ppt_v1_clock_voltage_dependency_table *vdd_dep_table = NULL; |
625 | |
626 | result = tonga_calculate_sclk_params(hwmgr, engine_clock, graphic_level); |
627 | |
628 | if (hwmgr->od_enabled) |
629 | vdd_dep_table = (phm_ppt_v1_clock_voltage_dependency_table *)&data->odn_dpm_table.vdd_dependency_on_sclk; |
630 | else |
631 | vdd_dep_table = pptable_info->vdd_dep_on_sclk; |
632 | |
633 | /* populate graphics levels*/ |
634 | result = tonga_get_dependency_volt_by_clk(hwmgr, |
635 | vdd_dep_table, engine_clock, |
636 | &graphic_level->MinVoltage, &mvdd); |
637 | PP_ASSERT_WITH_CODE((!result), |
638 | "can not find VDDC voltage value for VDDC " |
639 | "engine clock dependency table" , return result); |
640 | |
641 | /* SCLK frequency in units of 10KHz*/ |
642 | graphic_level->SclkFrequency = engine_clock; |
643 | /* Indicates maximum activity level for this performance level. 50% for now*/ |
644 | graphic_level->ActivityLevel = data->current_profile_setting.sclk_activity; |
645 | |
646 | graphic_level->CcPwrDynRm = 0; |
647 | graphic_level->CcPwrDynRm1 = 0; |
648 | /* this level can be used if activity is high enough.*/ |
649 | graphic_level->EnabledForActivity = 0; |
650 | /* this level can be used for throttling.*/ |
651 | graphic_level->EnabledForThrottle = 1; |
652 | graphic_level->UpHyst = data->current_profile_setting.sclk_up_hyst; |
653 | graphic_level->DownHyst = data->current_profile_setting.sclk_down_hyst; |
654 | graphic_level->VoltageDownHyst = 0; |
655 | graphic_level->PowerThrottle = 0; |
656 | |
657 | data->display_timing.min_clock_in_sr = |
658 | hwmgr->display_config->min_core_set_clock_in_sr; |
659 | |
660 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
661 | PHM_PlatformCaps_SclkDeepSleep)) |
662 | graphic_level->DeepSleepDivId = |
663 | smu7_get_sleep_divider_id_from_clock(engine_clock, |
664 | data->display_timing.min_clock_in_sr); |
665 | |
666 | /* Default to slow, highest DPM level will be set to PPSMC_DISPLAY_WATERMARK_LOW later.*/ |
667 | graphic_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW; |
668 | |
669 | if (!result) { |
670 | /* CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->MinVoltage);*/ |
671 | /* CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->MinVddcPhases);*/ |
672 | CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SclkFrequency); |
673 | CONVERT_FROM_HOST_TO_SMC_US(graphic_level->ActivityLevel); |
674 | CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CgSpllFuncCntl3); |
675 | CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CgSpllFuncCntl4); |
676 | CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SpllSpreadSpectrum); |
677 | CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SpllSpreadSpectrum2); |
678 | CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CcPwrDynRm); |
679 | CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CcPwrDynRm1); |
680 | } |
681 | |
682 | return result; |
683 | } |
684 | |
685 | static int tonga_populate_all_graphic_levels(struct pp_hwmgr *hwmgr) |
686 | { |
687 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
688 | struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smu_backend); |
689 | struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); |
690 | struct smu7_dpm_table *dpm_table = &data->dpm_table; |
691 | struct phm_ppt_v1_pcie_table *pcie_table = pptable_info->pcie_table; |
692 | uint8_t pcie_entry_count = (uint8_t) data->dpm_table.pcie_speed_table.count; |
693 | uint32_t level_array_address = smu_data->smu7_data.dpm_table_start + |
694 | offsetof(SMU72_Discrete_DpmTable, GraphicsLevel); |
695 | |
696 | uint32_t level_array_size = sizeof(SMU72_Discrete_GraphicsLevel) * |
697 | SMU72_MAX_LEVELS_GRAPHICS; |
698 | |
699 | SMU72_Discrete_GraphicsLevel *levels = smu_data->smc_state_table.GraphicsLevel; |
700 | |
701 | uint32_t i, max_entry; |
702 | uint8_t highest_pcie_level_enabled = 0; |
703 | uint8_t lowest_pcie_level_enabled = 0, mid_pcie_level_enabled = 0; |
704 | uint8_t count = 0; |
705 | int result = 0; |
706 | |
707 | memset(levels, 0x00, level_array_size); |
708 | |
709 | for (i = 0; i < dpm_table->sclk_table.count; i++) { |
710 | result = tonga_populate_single_graphic_level(hwmgr, |
711 | dpm_table->sclk_table.dpm_levels[i].value, |
712 | &(smu_data->smc_state_table.GraphicsLevel[i])); |
713 | if (result != 0) |
714 | return result; |
715 | |
716 | /* Making sure only DPM level 0-1 have Deep Sleep Div ID populated. */ |
717 | if (i > 1) |
718 | smu_data->smc_state_table.GraphicsLevel[i].DeepSleepDivId = 0; |
719 | } |
720 | |
721 | /* Only enable level 0 for now. */ |
722 | smu_data->smc_state_table.GraphicsLevel[0].EnabledForActivity = 1; |
723 | |
724 | /* set highest level watermark to high */ |
725 | if (dpm_table->sclk_table.count > 1) |
726 | smu_data->smc_state_table.GraphicsLevel[dpm_table->sclk_table.count-1].DisplayWatermark = |
727 | PPSMC_DISPLAY_WATERMARK_HIGH; |
728 | |
729 | smu_data->smc_state_table.GraphicsDpmLevelCount = |
730 | (uint8_t)dpm_table->sclk_table.count; |
731 | data->dpm_level_enable_mask.sclk_dpm_enable_mask = |
732 | phm_get_dpm_level_enable_mask_value(&dpm_table->sclk_table); |
733 | |
734 | if (pcie_table != NULL) { |
735 | PP_ASSERT_WITH_CODE((pcie_entry_count >= 1), |
736 | "There must be 1 or more PCIE levels defined in PPTable." , |
737 | return -EINVAL); |
738 | max_entry = pcie_entry_count - 1; /* for indexing, we need to decrement by 1.*/ |
739 | for (i = 0; i < dpm_table->sclk_table.count; i++) { |
740 | smu_data->smc_state_table.GraphicsLevel[i].pcieDpmLevel = |
741 | (uint8_t) ((i < max_entry) ? i : max_entry); |
742 | } |
743 | } else { |
744 | if (0 == data->dpm_level_enable_mask.pcie_dpm_enable_mask) |
745 | pr_err("Pcie Dpm Enablemask is 0 !" ); |
746 | |
747 | while (data->dpm_level_enable_mask.pcie_dpm_enable_mask && |
748 | ((data->dpm_level_enable_mask.pcie_dpm_enable_mask & |
749 | (1<<(highest_pcie_level_enabled+1))) != 0)) { |
750 | highest_pcie_level_enabled++; |
751 | } |
752 | |
753 | while (data->dpm_level_enable_mask.pcie_dpm_enable_mask && |
754 | ((data->dpm_level_enable_mask.pcie_dpm_enable_mask & |
755 | (1<<lowest_pcie_level_enabled)) == 0)) { |
756 | lowest_pcie_level_enabled++; |
757 | } |
758 | |
759 | while ((count < highest_pcie_level_enabled) && |
760 | ((data->dpm_level_enable_mask.pcie_dpm_enable_mask & |
761 | (1<<(lowest_pcie_level_enabled+1+count))) == 0)) { |
762 | count++; |
763 | } |
764 | mid_pcie_level_enabled = (lowest_pcie_level_enabled+1+count) < highest_pcie_level_enabled ? |
765 | (lowest_pcie_level_enabled+1+count) : highest_pcie_level_enabled; |
766 | |
767 | |
768 | /* set pcieDpmLevel to highest_pcie_level_enabled*/ |
769 | for (i = 2; i < dpm_table->sclk_table.count; i++) |
770 | smu_data->smc_state_table.GraphicsLevel[i].pcieDpmLevel = highest_pcie_level_enabled; |
771 | |
772 | /* set pcieDpmLevel to lowest_pcie_level_enabled*/ |
773 | smu_data->smc_state_table.GraphicsLevel[0].pcieDpmLevel = lowest_pcie_level_enabled; |
774 | |
775 | /* set pcieDpmLevel to mid_pcie_level_enabled*/ |
776 | smu_data->smc_state_table.GraphicsLevel[1].pcieDpmLevel = mid_pcie_level_enabled; |
777 | } |
778 | /* level count will send to smc once at init smc table and never change*/ |
779 | result = smu7_copy_bytes_to_smc(hwmgr, level_array_address, |
780 | (uint8_t *)levels, (uint32_t)level_array_size, |
781 | SMC_RAM_END); |
782 | |
783 | return result; |
784 | } |
785 | |
786 | static int tonga_calculate_mclk_params( |
787 | struct pp_hwmgr *hwmgr, |
788 | uint32_t memory_clock, |
789 | SMU72_Discrete_MemoryLevel *mclk, |
790 | bool strobe_mode, |
791 | bool dllStateOn |
792 | ) |
793 | { |
794 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
795 | |
796 | uint32_t dll_cntl = data->clock_registers.vDLL_CNTL; |
797 | uint32_t mclk_pwrmgt_cntl = data->clock_registers.vMCLK_PWRMGT_CNTL; |
798 | uint32_t mpll_ad_func_cntl = data->clock_registers.vMPLL_AD_FUNC_CNTL; |
799 | uint32_t mpll_dq_func_cntl = data->clock_registers.vMPLL_DQ_FUNC_CNTL; |
800 | uint32_t mpll_func_cntl = data->clock_registers.vMPLL_FUNC_CNTL; |
801 | uint32_t mpll_func_cntl_1 = data->clock_registers.vMPLL_FUNC_CNTL_1; |
802 | uint32_t mpll_func_cntl_2 = data->clock_registers.vMPLL_FUNC_CNTL_2; |
803 | uint32_t mpll_ss1 = data->clock_registers.vMPLL_SS1; |
804 | uint32_t mpll_ss2 = data->clock_registers.vMPLL_SS2; |
805 | |
806 | pp_atomctrl_memory_clock_param mpll_param; |
807 | int result; |
808 | |
809 | result = atomctrl_get_memory_pll_dividers_si(hwmgr, |
810 | memory_clock, &mpll_param, strobe_mode); |
811 | PP_ASSERT_WITH_CODE( |
812 | !result, |
813 | "Error retrieving Memory Clock Parameters from VBIOS." , |
814 | return result); |
815 | |
816 | /* MPLL_FUNC_CNTL setup*/ |
817 | mpll_func_cntl = PHM_SET_FIELD(mpll_func_cntl, MPLL_FUNC_CNTL, BWCTRL, |
818 | mpll_param.bw_ctrl); |
819 | |
820 | /* MPLL_FUNC_CNTL_1 setup*/ |
821 | mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1, |
822 | MPLL_FUNC_CNTL_1, CLKF, |
823 | mpll_param.mpll_fb_divider.cl_kf); |
824 | mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1, |
825 | MPLL_FUNC_CNTL_1, CLKFRAC, |
826 | mpll_param.mpll_fb_divider.clk_frac); |
827 | mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1, |
828 | MPLL_FUNC_CNTL_1, VCO_MODE, |
829 | mpll_param.vco_mode); |
830 | |
831 | /* MPLL_AD_FUNC_CNTL setup*/ |
832 | mpll_ad_func_cntl = PHM_SET_FIELD(mpll_ad_func_cntl, |
833 | MPLL_AD_FUNC_CNTL, YCLK_POST_DIV, |
834 | mpll_param.mpll_post_divider); |
835 | |
836 | if (data->is_memory_gddr5) { |
837 | /* MPLL_DQ_FUNC_CNTL setup*/ |
838 | mpll_dq_func_cntl = PHM_SET_FIELD(mpll_dq_func_cntl, |
839 | MPLL_DQ_FUNC_CNTL, YCLK_SEL, |
840 | mpll_param.yclk_sel); |
841 | mpll_dq_func_cntl = PHM_SET_FIELD(mpll_dq_func_cntl, |
842 | MPLL_DQ_FUNC_CNTL, YCLK_POST_DIV, |
843 | mpll_param.mpll_post_divider); |
844 | } |
845 | |
846 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
847 | PHM_PlatformCaps_MemorySpreadSpectrumSupport)) { |
848 | /* |
849 | ************************************ |
850 | Fref = Reference Frequency |
851 | NF = Feedback divider ratio |
852 | NR = Reference divider ratio |
853 | Fnom = Nominal VCO output frequency = Fref * NF / NR |
854 | Fs = Spreading Rate |
855 | D = Percentage down-spread / 2 |
856 | Fint = Reference input frequency to PFD = Fref / NR |
857 | NS = Spreading rate divider ratio = int(Fint / (2 * Fs)) |
858 | CLKS = NS - 1 = ISS_STEP_NUM[11:0] |
859 | NV = D * Fs / Fnom * 4 * ((Fnom/Fref * NR) ^ 2) |
860 | CLKV = 65536 * NV = ISS_STEP_SIZE[25:0] |
861 | ************************************* |
862 | */ |
863 | pp_atomctrl_internal_ss_info ss_info; |
864 | uint32_t freq_nom; |
865 | uint32_t tmp; |
866 | uint32_t reference_clock = atomctrl_get_mpll_reference_clock(hwmgr); |
867 | |
868 | /* for GDDR5 for all modes and DDR3 */ |
869 | if (1 == mpll_param.qdr) |
870 | freq_nom = memory_clock * 4 * (1 << mpll_param.mpll_post_divider); |
871 | else |
872 | freq_nom = memory_clock * 2 * (1 << mpll_param.mpll_post_divider); |
873 | |
874 | /* tmp = (freq_nom / reference_clock * reference_divider) ^ 2 Note: S.I. reference_divider = 1*/ |
875 | tmp = (freq_nom / reference_clock); |
876 | tmp = tmp * tmp; |
877 | |
878 | if (0 == atomctrl_get_memory_clock_spread_spectrum(hwmgr, freq_nom, &ss_info)) { |
879 | /* ss_info.speed_spectrum_percentage -- in unit of 0.01% */ |
880 | /* ss.Info.speed_spectrum_rate -- in unit of khz */ |
881 | /* CLKS = reference_clock / (2 * speed_spectrum_rate * reference_divider) * 10 */ |
882 | /* = reference_clock * 5 / speed_spectrum_rate */ |
883 | uint32_t clks = reference_clock * 5 / ss_info.speed_spectrum_rate; |
884 | |
885 | /* CLKV = 65536 * speed_spectrum_percentage / 2 * spreadSpecrumRate / freq_nom * 4 / 100000 * ((freq_nom / reference_clock) ^ 2) */ |
886 | /* = 131 * speed_spectrum_percentage * speed_spectrum_rate / 100 * ((freq_nom / reference_clock) ^ 2) / freq_nom */ |
887 | uint32_t clkv = |
888 | (uint32_t)((((131 * ss_info.speed_spectrum_percentage * |
889 | ss_info.speed_spectrum_rate) / 100) * tmp) / freq_nom); |
890 | |
891 | mpll_ss1 = PHM_SET_FIELD(mpll_ss1, MPLL_SS1, CLKV, clkv); |
892 | mpll_ss2 = PHM_SET_FIELD(mpll_ss2, MPLL_SS2, CLKS, clks); |
893 | } |
894 | } |
895 | |
896 | /* MCLK_PWRMGT_CNTL setup */ |
897 | mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, |
898 | MCLK_PWRMGT_CNTL, DLL_SPEED, mpll_param.dll_speed); |
899 | mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, |
900 | MCLK_PWRMGT_CNTL, MRDCK0_PDNB, dllStateOn); |
901 | mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, |
902 | MCLK_PWRMGT_CNTL, MRDCK1_PDNB, dllStateOn); |
903 | |
904 | /* Save the result data to outpupt memory level structure */ |
905 | mclk->MclkFrequency = memory_clock; |
906 | mclk->MpllFuncCntl = mpll_func_cntl; |
907 | mclk->MpllFuncCntl_1 = mpll_func_cntl_1; |
908 | mclk->MpllFuncCntl_2 = mpll_func_cntl_2; |
909 | mclk->MpllAdFuncCntl = mpll_ad_func_cntl; |
910 | mclk->MpllDqFuncCntl = mpll_dq_func_cntl; |
911 | mclk->MclkPwrmgtCntl = mclk_pwrmgt_cntl; |
912 | mclk->DllCntl = dll_cntl; |
913 | mclk->MpllSs1 = mpll_ss1; |
914 | mclk->MpllSs2 = mpll_ss2; |
915 | |
916 | return 0; |
917 | } |
918 | |
919 | static uint8_t tonga_get_mclk_frequency_ratio(uint32_t memory_clock, |
920 | bool strobe_mode) |
921 | { |
922 | uint8_t mc_para_index; |
923 | |
924 | if (strobe_mode) { |
925 | if (memory_clock < 12500) |
926 | mc_para_index = 0x00; |
927 | else if (memory_clock > 47500) |
928 | mc_para_index = 0x0f; |
929 | else |
930 | mc_para_index = (uint8_t)((memory_clock - 10000) / 2500); |
931 | } else { |
932 | if (memory_clock < 65000) |
933 | mc_para_index = 0x00; |
934 | else if (memory_clock > 135000) |
935 | mc_para_index = 0x0f; |
936 | else |
937 | mc_para_index = (uint8_t)((memory_clock - 60000) / 5000); |
938 | } |
939 | |
940 | return mc_para_index; |
941 | } |
942 | |
943 | static uint8_t tonga_get_ddr3_mclk_frequency_ratio(uint32_t memory_clock) |
944 | { |
945 | uint8_t mc_para_index; |
946 | |
947 | if (memory_clock < 10000) |
948 | mc_para_index = 0; |
949 | else if (memory_clock >= 80000) |
950 | mc_para_index = 0x0f; |
951 | else |
952 | mc_para_index = (uint8_t)((memory_clock - 10000) / 5000 + 1); |
953 | |
954 | return mc_para_index; |
955 | } |
956 | |
957 | |
958 | static int tonga_populate_single_memory_level( |
959 | struct pp_hwmgr *hwmgr, |
960 | uint32_t memory_clock, |
961 | SMU72_Discrete_MemoryLevel *memory_level |
962 | ) |
963 | { |
964 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
965 | struct phm_ppt_v1_information *pptable_info = |
966 | (struct phm_ppt_v1_information *)(hwmgr->pptable); |
967 | uint32_t mclk_edc_wr_enable_threshold = 40000; |
968 | uint32_t mclk_stutter_mode_threshold = 30000; |
969 | uint32_t mclk_edc_enable_threshold = 40000; |
970 | uint32_t mclk_strobe_mode_threshold = 40000; |
971 | phm_ppt_v1_clock_voltage_dependency_table *vdd_dep_table = NULL; |
972 | int result = 0; |
973 | bool dll_state_on; |
974 | uint32_t mvdd = 0; |
975 | |
976 | if (hwmgr->od_enabled) |
977 | vdd_dep_table = (phm_ppt_v1_clock_voltage_dependency_table *)&data->odn_dpm_table.vdd_dependency_on_mclk; |
978 | else |
979 | vdd_dep_table = pptable_info->vdd_dep_on_mclk; |
980 | |
981 | if (NULL != vdd_dep_table) { |
982 | result = tonga_get_dependency_volt_by_clk(hwmgr, |
983 | vdd_dep_table, |
984 | memory_clock, |
985 | &memory_level->MinVoltage, &mvdd); |
986 | PP_ASSERT_WITH_CODE( |
987 | !result, |
988 | "can not find MinVddc voltage value from memory VDDC " |
989 | "voltage dependency table" , |
990 | return result); |
991 | } |
992 | |
993 | if (data->mvdd_control == SMU7_VOLTAGE_CONTROL_NONE) |
994 | memory_level->MinMvdd = data->vbios_boot_state.mvdd_bootup_value; |
995 | else |
996 | memory_level->MinMvdd = mvdd; |
997 | |
998 | memory_level->EnabledForThrottle = 1; |
999 | memory_level->EnabledForActivity = 0; |
1000 | memory_level->UpHyst = data->current_profile_setting.mclk_up_hyst; |
1001 | memory_level->DownHyst = data->current_profile_setting.mclk_down_hyst; |
1002 | memory_level->VoltageDownHyst = 0; |
1003 | |
1004 | /* Indicates maximum activity level for this performance level.*/ |
1005 | memory_level->ActivityLevel = data->current_profile_setting.mclk_activity; |
1006 | memory_level->StutterEnable = 0; |
1007 | memory_level->StrobeEnable = 0; |
1008 | memory_level->EdcReadEnable = 0; |
1009 | memory_level->EdcWriteEnable = 0; |
1010 | memory_level->RttEnable = 0; |
1011 | |
1012 | /* default set to low watermark. Highest level will be set to high later.*/ |
1013 | memory_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW; |
1014 | |
1015 | data->display_timing.num_existing_displays = hwmgr->display_config->num_display; |
1016 | data->display_timing.vrefresh = hwmgr->display_config->vrefresh; |
1017 | |
1018 | if ((mclk_stutter_mode_threshold != 0) && |
1019 | (memory_clock <= mclk_stutter_mode_threshold) && |
1020 | (!data->is_uvd_enabled) |
1021 | && (PHM_READ_FIELD(hwmgr->device, DPG_PIPE_STUTTER_CONTROL, STUTTER_ENABLE) & 0x1) |
1022 | && (data->display_timing.num_existing_displays <= 2) |
1023 | && (data->display_timing.num_existing_displays != 0)) |
1024 | memory_level->StutterEnable = 1; |
1025 | |
1026 | /* decide strobe mode*/ |
1027 | memory_level->StrobeEnable = (mclk_strobe_mode_threshold != 0) && |
1028 | (memory_clock <= mclk_strobe_mode_threshold); |
1029 | |
1030 | /* decide EDC mode and memory clock ratio*/ |
1031 | if (data->is_memory_gddr5) { |
1032 | memory_level->StrobeRatio = tonga_get_mclk_frequency_ratio(memory_clock, |
1033 | memory_level->StrobeEnable); |
1034 | |
1035 | if ((mclk_edc_enable_threshold != 0) && |
1036 | (memory_clock > mclk_edc_enable_threshold)) { |
1037 | memory_level->EdcReadEnable = 1; |
1038 | } |
1039 | |
1040 | if ((mclk_edc_wr_enable_threshold != 0) && |
1041 | (memory_clock > mclk_edc_wr_enable_threshold)) { |
1042 | memory_level->EdcWriteEnable = 1; |
1043 | } |
1044 | |
1045 | if (memory_level->StrobeEnable) { |
1046 | if (tonga_get_mclk_frequency_ratio(memory_clock, 1) >= |
1047 | ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC7) >> 16) & 0xf)) { |
1048 | dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0; |
1049 | } else { |
1050 | dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC6) >> 1) & 0x1) ? 1 : 0; |
1051 | } |
1052 | |
1053 | } else { |
1054 | dll_state_on = data->dll_default_on; |
1055 | } |
1056 | } else { |
1057 | memory_level->StrobeRatio = |
1058 | tonga_get_ddr3_mclk_frequency_ratio(memory_clock); |
1059 | dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0; |
1060 | } |
1061 | |
1062 | result = tonga_calculate_mclk_params(hwmgr, |
1063 | memory_clock, memory_level, memory_level->StrobeEnable, dll_state_on); |
1064 | |
1065 | if (!result) { |
1066 | CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MinMvdd); |
1067 | /* MCLK frequency in units of 10KHz*/ |
1068 | CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkFrequency); |
1069 | /* Indicates maximum activity level for this performance level.*/ |
1070 | CONVERT_FROM_HOST_TO_SMC_US(memory_level->ActivityLevel); |
1071 | CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl); |
1072 | CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_1); |
1073 | CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_2); |
1074 | CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllAdFuncCntl); |
1075 | CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllDqFuncCntl); |
1076 | CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkPwrmgtCntl); |
1077 | CONVERT_FROM_HOST_TO_SMC_UL(memory_level->DllCntl); |
1078 | CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs1); |
1079 | CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs2); |
1080 | } |
1081 | |
1082 | return result; |
1083 | } |
1084 | |
1085 | int tonga_populate_all_memory_levels(struct pp_hwmgr *hwmgr) |
1086 | { |
1087 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
1088 | struct tonga_smumgr *smu_data = |
1089 | (struct tonga_smumgr *)(hwmgr->smu_backend); |
1090 | struct smu7_dpm_table *dpm_table = &data->dpm_table; |
1091 | int result; |
1092 | |
1093 | /* populate MCLK dpm table to SMU7 */ |
1094 | uint32_t level_array_address = |
1095 | smu_data->smu7_data.dpm_table_start + |
1096 | offsetof(SMU72_Discrete_DpmTable, MemoryLevel); |
1097 | uint32_t level_array_size = |
1098 | sizeof(SMU72_Discrete_MemoryLevel) * |
1099 | SMU72_MAX_LEVELS_MEMORY; |
1100 | SMU72_Discrete_MemoryLevel *levels = |
1101 | smu_data->smc_state_table.MemoryLevel; |
1102 | uint32_t i; |
1103 | |
1104 | memset(levels, 0x00, level_array_size); |
1105 | |
1106 | for (i = 0; i < dpm_table->mclk_table.count; i++) { |
1107 | PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value), |
1108 | "can not populate memory level as memory clock is zero" , |
1109 | return -EINVAL); |
1110 | result = tonga_populate_single_memory_level( |
1111 | hwmgr, |
1112 | dpm_table->mclk_table.dpm_levels[i].value, |
1113 | &(smu_data->smc_state_table.MemoryLevel[i])); |
1114 | if (result) |
1115 | return result; |
1116 | } |
1117 | |
1118 | /* Only enable level 0 for now.*/ |
1119 | smu_data->smc_state_table.MemoryLevel[0].EnabledForActivity = 1; |
1120 | |
1121 | /* |
1122 | * in order to prevent MC activity from stutter mode to push DPM up. |
1123 | * the UVD change complements this by putting the MCLK in a higher state |
1124 | * by default such that we are not effected by up threshold or and MCLK DPM latency. |
1125 | */ |
1126 | smu_data->smc_state_table.MemoryLevel[0].ActivityLevel = 0x1F; |
1127 | CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.MemoryLevel[0].ActivityLevel); |
1128 | |
1129 | smu_data->smc_state_table.MemoryDpmLevelCount = (uint8_t)dpm_table->mclk_table.count; |
1130 | data->dpm_level_enable_mask.mclk_dpm_enable_mask = phm_get_dpm_level_enable_mask_value(&dpm_table->mclk_table); |
1131 | /* set highest level watermark to high*/ |
1132 | smu_data->smc_state_table.MemoryLevel[dpm_table->mclk_table.count-1].DisplayWatermark = PPSMC_DISPLAY_WATERMARK_HIGH; |
1133 | |
1134 | /* level count will send to smc once at init smc table and never change*/ |
1135 | result = smu7_copy_bytes_to_smc(hwmgr, |
1136 | level_array_address, (uint8_t *)levels, (uint32_t)level_array_size, |
1137 | SMC_RAM_END); |
1138 | |
1139 | return result; |
1140 | } |
1141 | |
1142 | static int tonga_populate_mvdd_value(struct pp_hwmgr *hwmgr, |
1143 | uint32_t mclk, SMIO_Pattern *smio_pattern) |
1144 | { |
1145 | const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
1146 | struct phm_ppt_v1_information *table_info = |
1147 | (struct phm_ppt_v1_information *)(hwmgr->pptable); |
1148 | uint32_t i = 0; |
1149 | |
1150 | if (SMU7_VOLTAGE_CONTROL_NONE != data->mvdd_control) { |
1151 | /* find mvdd value which clock is more than request */ |
1152 | for (i = 0; i < table_info->vdd_dep_on_mclk->count; i++) { |
1153 | if (mclk <= table_info->vdd_dep_on_mclk->entries[i].clk) { |
1154 | /* Always round to higher voltage. */ |
1155 | smio_pattern->Voltage = |
1156 | data->mvdd_voltage_table.entries[i].value; |
1157 | break; |
1158 | } |
1159 | } |
1160 | |
1161 | PP_ASSERT_WITH_CODE(i < table_info->vdd_dep_on_mclk->count, |
1162 | "MVDD Voltage is outside the supported range." , |
1163 | return -EINVAL); |
1164 | } else { |
1165 | return -EINVAL; |
1166 | } |
1167 | |
1168 | return 0; |
1169 | } |
1170 | |
1171 | |
1172 | static int tonga_populate_smc_acpi_level(struct pp_hwmgr *hwmgr, |
1173 | SMU72_Discrete_DpmTable *table) |
1174 | { |
1175 | int result = 0; |
1176 | struct tonga_smumgr *smu_data = |
1177 | (struct tonga_smumgr *)(hwmgr->smu_backend); |
1178 | const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
1179 | struct pp_atomctrl_clock_dividers_vi dividers; |
1180 | |
1181 | SMIO_Pattern voltage_level; |
1182 | uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL; |
1183 | uint32_t spll_func_cntl_2 = data->clock_registers.vCG_SPLL_FUNC_CNTL_2; |
1184 | uint32_t dll_cntl = data->clock_registers.vDLL_CNTL; |
1185 | uint32_t mclk_pwrmgt_cntl = data->clock_registers.vMCLK_PWRMGT_CNTL; |
1186 | |
1187 | /* The ACPI state should not do DPM on DC (or ever).*/ |
1188 | table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC; |
1189 | |
1190 | table->ACPILevel.MinVoltage = |
1191 | smu_data->smc_state_table.GraphicsLevel[0].MinVoltage; |
1192 | |
1193 | /* assign zero for now*/ |
1194 | table->ACPILevel.SclkFrequency = atomctrl_get_reference_clock(hwmgr); |
1195 | |
1196 | /* get the engine clock dividers for this clock value*/ |
1197 | result = atomctrl_get_engine_pll_dividers_vi(hwmgr, |
1198 | table->ACPILevel.SclkFrequency, ÷rs); |
1199 | |
1200 | PP_ASSERT_WITH_CODE(result == 0, |
1201 | "Error retrieving Engine Clock dividers from VBIOS." , |
1202 | return result); |
1203 | |
1204 | /* divider ID for required SCLK*/ |
1205 | table->ACPILevel.SclkDid = (uint8_t)dividers.pll_post_divider; |
1206 | table->ACPILevel.DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW; |
1207 | table->ACPILevel.DeepSleepDivId = 0; |
1208 | |
1209 | spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL, |
1210 | SPLL_PWRON, 0); |
1211 | spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL, |
1212 | SPLL_RESET, 1); |
1213 | spll_func_cntl_2 = PHM_SET_FIELD(spll_func_cntl_2, CG_SPLL_FUNC_CNTL_2, |
1214 | SCLK_MUX_SEL, 4); |
1215 | |
1216 | table->ACPILevel.CgSpllFuncCntl = spll_func_cntl; |
1217 | table->ACPILevel.CgSpllFuncCntl2 = spll_func_cntl_2; |
1218 | table->ACPILevel.CgSpllFuncCntl3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3; |
1219 | table->ACPILevel.CgSpllFuncCntl4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4; |
1220 | table->ACPILevel.SpllSpreadSpectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM; |
1221 | table->ACPILevel.SpllSpreadSpectrum2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2; |
1222 | table->ACPILevel.CcPwrDynRm = 0; |
1223 | table->ACPILevel.CcPwrDynRm1 = 0; |
1224 | |
1225 | |
1226 | /* For various features to be enabled/disabled while this level is active.*/ |
1227 | CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags); |
1228 | /* SCLK frequency in units of 10KHz*/ |
1229 | CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkFrequency); |
1230 | CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl); |
1231 | CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl2); |
1232 | CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl3); |
1233 | CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl4); |
1234 | CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum); |
1235 | CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum2); |
1236 | CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm); |
1237 | CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1); |
1238 | |
1239 | /* table->MemoryACPILevel.MinVddcPhases = table->ACPILevel.MinVddcPhases;*/ |
1240 | table->MemoryACPILevel.MinVoltage = |
1241 | smu_data->smc_state_table.MemoryLevel[0].MinVoltage; |
1242 | |
1243 | /* CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MinVoltage);*/ |
1244 | |
1245 | if (0 == tonga_populate_mvdd_value(hwmgr, 0, &voltage_level)) |
1246 | table->MemoryACPILevel.MinMvdd = |
1247 | PP_HOST_TO_SMC_UL(voltage_level.Voltage * VOLTAGE_SCALE); |
1248 | else |
1249 | table->MemoryACPILevel.MinMvdd = 0; |
1250 | |
1251 | /* Force reset on DLL*/ |
1252 | mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, |
1253 | MCLK_PWRMGT_CNTL, MRDCK0_RESET, 0x1); |
1254 | mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, |
1255 | MCLK_PWRMGT_CNTL, MRDCK1_RESET, 0x1); |
1256 | |
1257 | /* Disable DLL in ACPIState*/ |
1258 | mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, |
1259 | MCLK_PWRMGT_CNTL, MRDCK0_PDNB, 0); |
1260 | mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, |
1261 | MCLK_PWRMGT_CNTL, MRDCK1_PDNB, 0); |
1262 | |
1263 | /* Enable DLL bypass signal*/ |
1264 | dll_cntl = PHM_SET_FIELD(dll_cntl, |
1265 | DLL_CNTL, MRDCK0_BYPASS, 0); |
1266 | dll_cntl = PHM_SET_FIELD(dll_cntl, |
1267 | DLL_CNTL, MRDCK1_BYPASS, 0); |
1268 | |
1269 | table->MemoryACPILevel.DllCntl = |
1270 | PP_HOST_TO_SMC_UL(dll_cntl); |
1271 | table->MemoryACPILevel.MclkPwrmgtCntl = |
1272 | PP_HOST_TO_SMC_UL(mclk_pwrmgt_cntl); |
1273 | table->MemoryACPILevel.MpllAdFuncCntl = |
1274 | PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_AD_FUNC_CNTL); |
1275 | table->MemoryACPILevel.MpllDqFuncCntl = |
1276 | PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_DQ_FUNC_CNTL); |
1277 | table->MemoryACPILevel.MpllFuncCntl = |
1278 | PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL); |
1279 | table->MemoryACPILevel.MpllFuncCntl_1 = |
1280 | PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_1); |
1281 | table->MemoryACPILevel.MpllFuncCntl_2 = |
1282 | PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_2); |
1283 | table->MemoryACPILevel.MpllSs1 = |
1284 | PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS1); |
1285 | table->MemoryACPILevel.MpllSs2 = |
1286 | PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS2); |
1287 | |
1288 | table->MemoryACPILevel.EnabledForThrottle = 0; |
1289 | table->MemoryACPILevel.EnabledForActivity = 0; |
1290 | table->MemoryACPILevel.UpHyst = 0; |
1291 | table->MemoryACPILevel.DownHyst = 100; |
1292 | table->MemoryACPILevel.VoltageDownHyst = 0; |
1293 | /* Indicates maximum activity level for this performance level.*/ |
1294 | table->MemoryACPILevel.ActivityLevel = |
1295 | PP_HOST_TO_SMC_US(data->current_profile_setting.mclk_activity); |
1296 | |
1297 | table->MemoryACPILevel.StutterEnable = 0; |
1298 | table->MemoryACPILevel.StrobeEnable = 0; |
1299 | table->MemoryACPILevel.EdcReadEnable = 0; |
1300 | table->MemoryACPILevel.EdcWriteEnable = 0; |
1301 | table->MemoryACPILevel.RttEnable = 0; |
1302 | |
1303 | return result; |
1304 | } |
1305 | |
1306 | static int tonga_populate_smc_uvd_level(struct pp_hwmgr *hwmgr, |
1307 | SMU72_Discrete_DpmTable *table) |
1308 | { |
1309 | int result = 0; |
1310 | |
1311 | uint8_t count; |
1312 | pp_atomctrl_clock_dividers_vi dividers; |
1313 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
1314 | struct phm_ppt_v1_information *pptable_info = |
1315 | (struct phm_ppt_v1_information *)(hwmgr->pptable); |
1316 | phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = |
1317 | pptable_info->mm_dep_table; |
1318 | |
1319 | table->UvdLevelCount = (uint8_t) (mm_table->count); |
1320 | table->UvdBootLevel = 0; |
1321 | |
1322 | for (count = 0; count < table->UvdLevelCount; count++) { |
1323 | table->UvdLevel[count].VclkFrequency = mm_table->entries[count].vclk; |
1324 | table->UvdLevel[count].DclkFrequency = mm_table->entries[count].dclk; |
1325 | table->UvdLevel[count].MinVoltage.Vddc = |
1326 | phm_get_voltage_index(pptable_info->vddc_lookup_table, |
1327 | mm_table->entries[count].vddc); |
1328 | table->UvdLevel[count].MinVoltage.VddGfx = |
1329 | (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) ? |
1330 | phm_get_voltage_index(pptable_info->vddgfx_lookup_table, |
1331 | mm_table->entries[count].vddgfx) : 0; |
1332 | table->UvdLevel[count].MinVoltage.Vddci = |
1333 | phm_get_voltage_id(&data->vddci_voltage_table, |
1334 | mm_table->entries[count].vddc - VDDC_VDDCI_DELTA); |
1335 | table->UvdLevel[count].MinVoltage.Phases = 1; |
1336 | |
1337 | /* retrieve divider value for VBIOS */ |
1338 | result = atomctrl_get_dfs_pll_dividers_vi( |
1339 | hwmgr, |
1340 | table->UvdLevel[count].VclkFrequency, |
1341 | ÷rs); |
1342 | |
1343 | PP_ASSERT_WITH_CODE((!result), |
1344 | "can not find divide id for Vclk clock" , |
1345 | return result); |
1346 | |
1347 | table->UvdLevel[count].VclkDivider = (uint8_t)dividers.pll_post_divider; |
1348 | |
1349 | result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, |
1350 | table->UvdLevel[count].DclkFrequency, ÷rs); |
1351 | PP_ASSERT_WITH_CODE((!result), |
1352 | "can not find divide id for Dclk clock" , |
1353 | return result); |
1354 | |
1355 | table->UvdLevel[count].DclkDivider = |
1356 | (uint8_t)dividers.pll_post_divider; |
1357 | |
1358 | CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].VclkFrequency); |
1359 | CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].DclkFrequency); |
1360 | } |
1361 | |
1362 | return result; |
1363 | |
1364 | } |
1365 | |
1366 | static int tonga_populate_smc_vce_level(struct pp_hwmgr *hwmgr, |
1367 | SMU72_Discrete_DpmTable *table) |
1368 | { |
1369 | int result = 0; |
1370 | |
1371 | uint8_t count; |
1372 | pp_atomctrl_clock_dividers_vi dividers; |
1373 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
1374 | struct phm_ppt_v1_information *pptable_info = |
1375 | (struct phm_ppt_v1_information *)(hwmgr->pptable); |
1376 | phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = |
1377 | pptable_info->mm_dep_table; |
1378 | |
1379 | table->VceLevelCount = (uint8_t) (mm_table->count); |
1380 | table->VceBootLevel = 0; |
1381 | |
1382 | for (count = 0; count < table->VceLevelCount; count++) { |
1383 | table->VceLevel[count].Frequency = |
1384 | mm_table->entries[count].eclk; |
1385 | table->VceLevel[count].MinVoltage.Vddc = |
1386 | phm_get_voltage_index(pptable_info->vddc_lookup_table, |
1387 | mm_table->entries[count].vddc); |
1388 | table->VceLevel[count].MinVoltage.VddGfx = |
1389 | (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) ? |
1390 | phm_get_voltage_index(pptable_info->vddgfx_lookup_table, |
1391 | mm_table->entries[count].vddgfx) : 0; |
1392 | table->VceLevel[count].MinVoltage.Vddci = |
1393 | phm_get_voltage_id(&data->vddci_voltage_table, |
1394 | mm_table->entries[count].vddc - VDDC_VDDCI_DELTA); |
1395 | table->VceLevel[count].MinVoltage.Phases = 1; |
1396 | |
1397 | /* retrieve divider value for VBIOS */ |
1398 | result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, |
1399 | table->VceLevel[count].Frequency, ÷rs); |
1400 | PP_ASSERT_WITH_CODE((!result), |
1401 | "can not find divide id for VCE engine clock" , |
1402 | return result); |
1403 | |
1404 | table->VceLevel[count].Divider = (uint8_t)dividers.pll_post_divider; |
1405 | |
1406 | CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].Frequency); |
1407 | } |
1408 | |
1409 | return result; |
1410 | } |
1411 | |
1412 | static int tonga_populate_smc_acp_level(struct pp_hwmgr *hwmgr, |
1413 | SMU72_Discrete_DpmTable *table) |
1414 | { |
1415 | int result = 0; |
1416 | uint8_t count; |
1417 | pp_atomctrl_clock_dividers_vi dividers; |
1418 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
1419 | struct phm_ppt_v1_information *pptable_info = |
1420 | (struct phm_ppt_v1_information *)(hwmgr->pptable); |
1421 | phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = |
1422 | pptable_info->mm_dep_table; |
1423 | |
1424 | table->AcpLevelCount = (uint8_t) (mm_table->count); |
1425 | table->AcpBootLevel = 0; |
1426 | |
1427 | for (count = 0; count < table->AcpLevelCount; count++) { |
1428 | table->AcpLevel[count].Frequency = |
1429 | pptable_info->mm_dep_table->entries[count].aclk; |
1430 | table->AcpLevel[count].MinVoltage.Vddc = |
1431 | phm_get_voltage_index(pptable_info->vddc_lookup_table, |
1432 | mm_table->entries[count].vddc); |
1433 | table->AcpLevel[count].MinVoltage.VddGfx = |
1434 | (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) ? |
1435 | phm_get_voltage_index(pptable_info->vddgfx_lookup_table, |
1436 | mm_table->entries[count].vddgfx) : 0; |
1437 | table->AcpLevel[count].MinVoltage.Vddci = |
1438 | phm_get_voltage_id(&data->vddci_voltage_table, |
1439 | mm_table->entries[count].vddc - VDDC_VDDCI_DELTA); |
1440 | table->AcpLevel[count].MinVoltage.Phases = 1; |
1441 | |
1442 | /* retrieve divider value for VBIOS */ |
1443 | result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, |
1444 | table->AcpLevel[count].Frequency, ÷rs); |
1445 | PP_ASSERT_WITH_CODE((!result), |
1446 | "can not find divide id for engine clock" , return result); |
1447 | |
1448 | table->AcpLevel[count].Divider = (uint8_t)dividers.pll_post_divider; |
1449 | |
1450 | CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].Frequency); |
1451 | } |
1452 | |
1453 | return result; |
1454 | } |
1455 | |
1456 | static int tonga_populate_memory_timing_parameters( |
1457 | struct pp_hwmgr *hwmgr, |
1458 | uint32_t engine_clock, |
1459 | uint32_t memory_clock, |
1460 | struct SMU72_Discrete_MCArbDramTimingTableEntry *arb_regs |
1461 | ) |
1462 | { |
1463 | uint32_t dramTiming; |
1464 | uint32_t dramTiming2; |
1465 | uint32_t burstTime; |
1466 | int result; |
1467 | |
1468 | result = atomctrl_set_engine_dram_timings_rv770(hwmgr, |
1469 | engine_clock, memory_clock); |
1470 | |
1471 | PP_ASSERT_WITH_CODE(result == 0, |
1472 | "Error calling VBIOS to set DRAM_TIMING." , return result); |
1473 | |
1474 | dramTiming = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING); |
1475 | dramTiming2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2); |
1476 | burstTime = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0); |
1477 | |
1478 | arb_regs->McArbDramTiming = PP_HOST_TO_SMC_UL(dramTiming); |
1479 | arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dramTiming2); |
1480 | arb_regs->McArbBurstTime = (uint8_t)burstTime; |
1481 | |
1482 | return 0; |
1483 | } |
1484 | |
1485 | static int tonga_program_memory_timing_parameters(struct pp_hwmgr *hwmgr) |
1486 | { |
1487 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
1488 | struct tonga_smumgr *smu_data = |
1489 | (struct tonga_smumgr *)(hwmgr->smu_backend); |
1490 | int result = 0; |
1491 | SMU72_Discrete_MCArbDramTimingTable arb_regs; |
1492 | uint32_t i, j; |
1493 | |
1494 | memset(&arb_regs, 0x00, sizeof(SMU72_Discrete_MCArbDramTimingTable)); |
1495 | |
1496 | for (i = 0; i < data->dpm_table.sclk_table.count; i++) { |
1497 | for (j = 0; j < data->dpm_table.mclk_table.count; j++) { |
1498 | result = tonga_populate_memory_timing_parameters |
1499 | (hwmgr, data->dpm_table.sclk_table.dpm_levels[i].value, |
1500 | data->dpm_table.mclk_table.dpm_levels[j].value, |
1501 | &arb_regs.entries[i][j]); |
1502 | |
1503 | if (result) |
1504 | break; |
1505 | } |
1506 | } |
1507 | |
1508 | if (!result) { |
1509 | result = smu7_copy_bytes_to_smc( |
1510 | hwmgr, |
1511 | smu_data->smu7_data.arb_table_start, |
1512 | (uint8_t *)&arb_regs, |
1513 | sizeof(SMU72_Discrete_MCArbDramTimingTable), |
1514 | SMC_RAM_END |
1515 | ); |
1516 | } |
1517 | |
1518 | return result; |
1519 | } |
1520 | |
1521 | static int tonga_populate_smc_boot_level(struct pp_hwmgr *hwmgr, |
1522 | SMU72_Discrete_DpmTable *table) |
1523 | { |
1524 | int result = 0; |
1525 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
1526 | struct tonga_smumgr *smu_data = |
1527 | (struct tonga_smumgr *)(hwmgr->smu_backend); |
1528 | table->GraphicsBootLevel = 0; |
1529 | table->MemoryBootLevel = 0; |
1530 | |
1531 | /* find boot level from dpm table*/ |
1532 | result = phm_find_boot_level(&(data->dpm_table.sclk_table), |
1533 | data->vbios_boot_state.sclk_bootup_value, |
1534 | (uint32_t *)&(smu_data->smc_state_table.GraphicsBootLevel)); |
1535 | |
1536 | if (result != 0) { |
1537 | smu_data->smc_state_table.GraphicsBootLevel = 0; |
1538 | pr_err("[powerplay] VBIOS did not find boot engine " |
1539 | "clock value in dependency table. " |
1540 | "Using Graphics DPM level 0 !" ); |
1541 | result = 0; |
1542 | } |
1543 | |
1544 | result = phm_find_boot_level(&(data->dpm_table.mclk_table), |
1545 | data->vbios_boot_state.mclk_bootup_value, |
1546 | (uint32_t *)&(smu_data->smc_state_table.MemoryBootLevel)); |
1547 | |
1548 | if (result != 0) { |
1549 | smu_data->smc_state_table.MemoryBootLevel = 0; |
1550 | pr_err("[powerplay] VBIOS did not find boot " |
1551 | "engine clock value in dependency table." |
1552 | "Using Memory DPM level 0 !" ); |
1553 | result = 0; |
1554 | } |
1555 | |
1556 | table->BootVoltage.Vddc = |
1557 | phm_get_voltage_id(&(data->vddc_voltage_table), |
1558 | data->vbios_boot_state.vddc_bootup_value); |
1559 | table->BootVoltage.VddGfx = |
1560 | phm_get_voltage_id(&(data->vddgfx_voltage_table), |
1561 | data->vbios_boot_state.vddgfx_bootup_value); |
1562 | table->BootVoltage.Vddci = |
1563 | phm_get_voltage_id(&(data->vddci_voltage_table), |
1564 | data->vbios_boot_state.vddci_bootup_value); |
1565 | table->BootMVdd = data->vbios_boot_state.mvdd_bootup_value; |
1566 | |
1567 | CONVERT_FROM_HOST_TO_SMC_US(table->BootMVdd); |
1568 | |
1569 | return result; |
1570 | } |
1571 | |
1572 | static int tonga_populate_clock_stretcher_data_table(struct pp_hwmgr *hwmgr) |
1573 | { |
1574 | uint32_t ro, efuse, efuse2, clock_freq, volt_without_cks, |
1575 | volt_with_cks, value; |
1576 | uint16_t clock_freq_u16; |
1577 | struct tonga_smumgr *smu_data = |
1578 | (struct tonga_smumgr *)(hwmgr->smu_backend); |
1579 | uint8_t type, i, j, cks_setting, stretch_amount, stretch_amount2, |
1580 | volt_offset = 0; |
1581 | struct phm_ppt_v1_information *table_info = |
1582 | (struct phm_ppt_v1_information *)(hwmgr->pptable); |
1583 | struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table = |
1584 | table_info->vdd_dep_on_sclk; |
1585 | uint32_t hw_revision, dev_id; |
1586 | struct amdgpu_device *adev = hwmgr->adev; |
1587 | |
1588 | stretch_amount = (uint8_t)table_info->cac_dtp_table->usClockStretchAmount; |
1589 | |
1590 | hw_revision = adev->pdev->revision; |
1591 | dev_id = adev->pdev->device; |
1592 | |
1593 | /* Read SMU_Eefuse to read and calculate RO and determine |
1594 | * if the part is SS or FF. if RO >= 1660MHz, part is FF. |
1595 | */ |
1596 | efuse = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
1597 | ixSMU_EFUSE_0 + (146 * 4)); |
1598 | efuse2 = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
1599 | ixSMU_EFUSE_0 + (148 * 4)); |
1600 | efuse &= 0xFF000000; |
1601 | efuse = efuse >> 24; |
1602 | efuse2 &= 0xF; |
1603 | |
1604 | if (efuse2 == 1) |
1605 | ro = (2300 - 1350) * efuse / 255 + 1350; |
1606 | else |
1607 | ro = (2500 - 1000) * efuse / 255 + 1000; |
1608 | |
1609 | if (ro >= 1660) |
1610 | type = 0; |
1611 | else |
1612 | type = 1; |
1613 | |
1614 | /* Populate Stretch amount */ |
1615 | smu_data->smc_state_table.ClockStretcherAmount = stretch_amount; |
1616 | |
1617 | |
1618 | /* Populate Sclk_CKS_masterEn0_7 and Sclk_voltageOffset */ |
1619 | for (i = 0; i < sclk_table->count; i++) { |
1620 | smu_data->smc_state_table.Sclk_CKS_masterEn0_7 |= |
1621 | sclk_table->entries[i].cks_enable << i; |
1622 | if (ASICID_IS_TONGA_P(dev_id, hw_revision)) { |
1623 | volt_without_cks = (uint32_t)((7732 + 60 - ro - 20838 * |
1624 | (sclk_table->entries[i].clk/100) / 10000) * 1000 / |
1625 | (8730 - (5301 * (sclk_table->entries[i].clk/100) / 1000))); |
1626 | volt_with_cks = (uint32_t)((5250 + 51 - ro - 2404 * |
1627 | (sclk_table->entries[i].clk/100) / 100000) * 1000 / |
1628 | (6146 - (3193 * (sclk_table->entries[i].clk/100) / 1000))); |
1629 | } else { |
1630 | volt_without_cks = (uint32_t)((14041 * |
1631 | (sclk_table->entries[i].clk/100) / 10000 + 3571 + 75 - ro) * 1000 / |
1632 | (4026 - (13924 * (sclk_table->entries[i].clk/100) / 10000))); |
1633 | volt_with_cks = (uint32_t)((13946 * |
1634 | (sclk_table->entries[i].clk/100) / 10000 + 3320 + 45 - ro) * 1000 / |
1635 | (3664 - (11454 * (sclk_table->entries[i].clk/100) / 10000))); |
1636 | } |
1637 | if (volt_without_cks >= volt_with_cks) |
1638 | volt_offset = (uint8_t)(((volt_without_cks - volt_with_cks + |
1639 | sclk_table->entries[i].cks_voffset) * 100 / 625) + 1); |
1640 | smu_data->smc_state_table.Sclk_voltageOffset[i] = volt_offset; |
1641 | } |
1642 | |
1643 | PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE, |
1644 | STRETCH_ENABLE, 0x0); |
1645 | PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE, |
1646 | masterReset, 0x1); |
1647 | PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE, |
1648 | staticEnable, 0x1); |
1649 | PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE, |
1650 | masterReset, 0x0); |
1651 | |
1652 | /* Populate CKS Lookup Table */ |
1653 | if (stretch_amount == 1 || stretch_amount == 2 || stretch_amount == 5) |
1654 | stretch_amount2 = 0; |
1655 | else if (stretch_amount == 3 || stretch_amount == 4) |
1656 | stretch_amount2 = 1; |
1657 | else { |
1658 | phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
1659 | PHM_PlatformCaps_ClockStretcher); |
1660 | PP_ASSERT_WITH_CODE(false, |
1661 | "Stretch Amount in PPTable not supported" , |
1662 | return -EINVAL); |
1663 | } |
1664 | |
1665 | value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
1666 | ixPWR_CKS_CNTL); |
1667 | value &= 0xFFC2FF87; |
1668 | smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].minFreq = |
1669 | tonga_clock_stretcher_lookup_table[stretch_amount2][0]; |
1670 | smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].maxFreq = |
1671 | tonga_clock_stretcher_lookup_table[stretch_amount2][1]; |
1672 | clock_freq_u16 = (uint16_t)(PP_SMC_TO_HOST_UL(smu_data->smc_state_table. |
1673 | GraphicsLevel[smu_data->smc_state_table.GraphicsDpmLevelCount - 1]. |
1674 | SclkFrequency) / 100); |
1675 | if (tonga_clock_stretcher_lookup_table[stretch_amount2][0] < |
1676 | clock_freq_u16 && |
1677 | tonga_clock_stretcher_lookup_table[stretch_amount2][1] > |
1678 | clock_freq_u16) { |
1679 | /* Program PWR_CKS_CNTL. CKS_USE_FOR_LOW_FREQ */ |
1680 | value |= (tonga_clock_stretcher_lookup_table[stretch_amount2][3]) << 16; |
1681 | /* Program PWR_CKS_CNTL. CKS_LDO_REFSEL */ |
1682 | value |= (tonga_clock_stretcher_lookup_table[stretch_amount2][2]) << 18; |
1683 | /* Program PWR_CKS_CNTL. CKS_STRETCH_AMOUNT */ |
1684 | value |= (tonga_clock_stretch_amount_conversion |
1685 | [tonga_clock_stretcher_lookup_table[stretch_amount2][3]] |
1686 | [stretch_amount]) << 3; |
1687 | } |
1688 | CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.CKS_LOOKUPTable. |
1689 | CKS_LOOKUPTableEntry[0].minFreq); |
1690 | CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.CKS_LOOKUPTable. |
1691 | CKS_LOOKUPTableEntry[0].maxFreq); |
1692 | smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting = |
1693 | tonga_clock_stretcher_lookup_table[stretch_amount2][2] & 0x7F; |
1694 | smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting |= |
1695 | (tonga_clock_stretcher_lookup_table[stretch_amount2][3]) << 7; |
1696 | |
1697 | cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
1698 | ixPWR_CKS_CNTL, value); |
1699 | |
1700 | /* Populate DDT Lookup Table */ |
1701 | for (i = 0; i < 4; i++) { |
1702 | /* Assign the minimum and maximum VID stored |
1703 | * in the last row of Clock Stretcher Voltage Table. |
1704 | */ |
1705 | smu_data->smc_state_table.ClockStretcherDataTable. |
1706 | ClockStretcherDataTableEntry[i].minVID = |
1707 | (uint8_t) tonga_clock_stretcher_ddt_table[type][i][2]; |
1708 | smu_data->smc_state_table.ClockStretcherDataTable. |
1709 | ClockStretcherDataTableEntry[i].maxVID = |
1710 | (uint8_t) tonga_clock_stretcher_ddt_table[type][i][3]; |
1711 | /* Loop through each SCLK and check the frequency |
1712 | * to see if it lies within the frequency for clock stretcher. |
1713 | */ |
1714 | for (j = 0; j < smu_data->smc_state_table.GraphicsDpmLevelCount; j++) { |
1715 | cks_setting = 0; |
1716 | clock_freq = PP_SMC_TO_HOST_UL( |
1717 | smu_data->smc_state_table.GraphicsLevel[j].SclkFrequency); |
1718 | /* Check the allowed frequency against the sclk level[j]. |
1719 | * Sclk's endianness has already been converted, |
1720 | * and it's in 10Khz unit, |
1721 | * as opposed to Data table, which is in Mhz unit. |
1722 | */ |
1723 | if (clock_freq >= tonga_clock_stretcher_ddt_table[type][i][0] * 100) { |
1724 | cks_setting |= 0x2; |
1725 | if (clock_freq < tonga_clock_stretcher_ddt_table[type][i][1] * 100) |
1726 | cks_setting |= 0x1; |
1727 | } |
1728 | smu_data->smc_state_table.ClockStretcherDataTable. |
1729 | ClockStretcherDataTableEntry[i].setting |= cks_setting << (j * 2); |
1730 | } |
1731 | CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table. |
1732 | ClockStretcherDataTable. |
1733 | ClockStretcherDataTableEntry[i].setting); |
1734 | } |
1735 | |
1736 | value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
1737 | ixPWR_CKS_CNTL); |
1738 | value &= 0xFFFFFFFE; |
1739 | cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
1740 | ixPWR_CKS_CNTL, value); |
1741 | |
1742 | return 0; |
1743 | } |
1744 | |
1745 | static int tonga_populate_vr_config(struct pp_hwmgr *hwmgr, |
1746 | SMU72_Discrete_DpmTable *table) |
1747 | { |
1748 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
1749 | uint16_t config; |
1750 | |
1751 | if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_gfx_control) { |
1752 | /* Splitted mode */ |
1753 | config = VR_SVI2_PLANE_1; |
1754 | table->VRConfig |= (config<<VRCONF_VDDGFX_SHIFT); |
1755 | |
1756 | if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) { |
1757 | config = VR_SVI2_PLANE_2; |
1758 | table->VRConfig |= config; |
1759 | } else { |
1760 | pr_err("VDDC and VDDGFX should " |
1761 | "be both on SVI2 control in splitted mode !\n" ); |
1762 | } |
1763 | } else { |
1764 | /* Merged mode */ |
1765 | config = VR_MERGED_WITH_VDDC; |
1766 | table->VRConfig |= (config<<VRCONF_VDDGFX_SHIFT); |
1767 | |
1768 | /* Set Vddc Voltage Controller */ |
1769 | if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) { |
1770 | config = VR_SVI2_PLANE_1; |
1771 | table->VRConfig |= config; |
1772 | } else { |
1773 | pr_err("VDDC should be on " |
1774 | "SVI2 control in merged mode !\n" ); |
1775 | } |
1776 | } |
1777 | |
1778 | /* Set Vddci Voltage Controller */ |
1779 | if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) { |
1780 | config = VR_SVI2_PLANE_2; /* only in merged mode */ |
1781 | table->VRConfig |= (config<<VRCONF_VDDCI_SHIFT); |
1782 | } else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) { |
1783 | config = VR_SMIO_PATTERN_1; |
1784 | table->VRConfig |= (config<<VRCONF_VDDCI_SHIFT); |
1785 | } |
1786 | |
1787 | /* Set Mvdd Voltage Controller */ |
1788 | if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) { |
1789 | config = VR_SMIO_PATTERN_2; |
1790 | table->VRConfig |= (config<<VRCONF_MVDD_SHIFT); |
1791 | } |
1792 | |
1793 | return 0; |
1794 | } |
1795 | |
1796 | static int tonga_init_arb_table_index(struct pp_hwmgr *hwmgr) |
1797 | { |
1798 | struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smu_backend); |
1799 | uint32_t tmp; |
1800 | int result; |
1801 | |
1802 | /* |
1803 | * This is a read-modify-write on the first byte of the ARB table. |
1804 | * The first byte in the SMU72_Discrete_MCArbDramTimingTable structure |
1805 | * is the field 'current'. |
1806 | * This solution is ugly, but we never write the whole table only |
1807 | * individual fields in it. |
1808 | * In reality this field should not be in that structure |
1809 | * but in a soft register. |
1810 | */ |
1811 | result = smu7_read_smc_sram_dword(hwmgr, |
1812 | smu_data->smu7_data.arb_table_start, &tmp, SMC_RAM_END); |
1813 | |
1814 | if (result != 0) |
1815 | return result; |
1816 | |
1817 | tmp &= 0x00FFFFFF; |
1818 | tmp |= ((uint32_t)MC_CG_ARB_FREQ_F1) << 24; |
1819 | |
1820 | return smu7_write_smc_sram_dword(hwmgr, |
1821 | smu_data->smu7_data.arb_table_start, tmp, SMC_RAM_END); |
1822 | } |
1823 | |
1824 | |
1825 | static int tonga_populate_bapm_parameters_in_dpm_table(struct pp_hwmgr *hwmgr) |
1826 | { |
1827 | struct tonga_smumgr *smu_data = |
1828 | (struct tonga_smumgr *)(hwmgr->smu_backend); |
1829 | const struct tonga_pt_defaults *defaults = smu_data->power_tune_defaults; |
1830 | SMU72_Discrete_DpmTable *dpm_table = &(smu_data->smc_state_table); |
1831 | struct phm_ppt_v1_information *table_info = |
1832 | (struct phm_ppt_v1_information *)(hwmgr->pptable); |
1833 | struct phm_cac_tdp_table *cac_dtp_table = table_info->cac_dtp_table; |
1834 | int i, j, k; |
1835 | const uint16_t *pdef1, *pdef2; |
1836 | |
1837 | dpm_table->DefaultTdp = PP_HOST_TO_SMC_US( |
1838 | (uint16_t)(cac_dtp_table->usTDP * 256)); |
1839 | dpm_table->TargetTdp = PP_HOST_TO_SMC_US( |
1840 | (uint16_t)(cac_dtp_table->usConfigurableTDP * 256)); |
1841 | |
1842 | PP_ASSERT_WITH_CODE(cac_dtp_table->usTargetOperatingTemp <= 255, |
1843 | "Target Operating Temp is out of Range !" , |
1844 | ); |
1845 | |
1846 | dpm_table->GpuTjMax = (uint8_t)(cac_dtp_table->usTargetOperatingTemp); |
1847 | dpm_table->GpuTjHyst = 8; |
1848 | |
1849 | dpm_table->DTEAmbientTempBase = defaults->dte_ambient_temp_base; |
1850 | |
1851 | dpm_table->BAPM_TEMP_GRADIENT = |
1852 | PP_HOST_TO_SMC_UL(defaults->bapm_temp_gradient); |
1853 | pdef1 = defaults->bapmti_r; |
1854 | pdef2 = defaults->bapmti_rc; |
1855 | |
1856 | for (i = 0; i < SMU72_DTE_ITERATIONS; i++) { |
1857 | for (j = 0; j < SMU72_DTE_SOURCES; j++) { |
1858 | for (k = 0; k < SMU72_DTE_SINKS; k++) { |
1859 | dpm_table->BAPMTI_R[i][j][k] = |
1860 | PP_HOST_TO_SMC_US(*pdef1); |
1861 | dpm_table->BAPMTI_RC[i][j][k] = |
1862 | PP_HOST_TO_SMC_US(*pdef2); |
1863 | pdef1++; |
1864 | pdef2++; |
1865 | } |
1866 | } |
1867 | } |
1868 | |
1869 | return 0; |
1870 | } |
1871 | |
1872 | static int tonga_populate_svi_load_line(struct pp_hwmgr *hwmgr) |
1873 | { |
1874 | struct tonga_smumgr *smu_data = |
1875 | (struct tonga_smumgr *)(hwmgr->smu_backend); |
1876 | const struct tonga_pt_defaults *defaults = smu_data->power_tune_defaults; |
1877 | |
1878 | smu_data->power_tune_table.SviLoadLineEn = defaults->svi_load_line_en; |
1879 | smu_data->power_tune_table.SviLoadLineVddC = defaults->svi_load_line_vddC; |
1880 | smu_data->power_tune_table.SviLoadLineTrimVddC = 3; |
1881 | smu_data->power_tune_table.SviLoadLineOffsetVddC = 0; |
1882 | |
1883 | return 0; |
1884 | } |
1885 | |
1886 | static int tonga_populate_tdc_limit(struct pp_hwmgr *hwmgr) |
1887 | { |
1888 | uint16_t tdc_limit; |
1889 | struct tonga_smumgr *smu_data = |
1890 | (struct tonga_smumgr *)(hwmgr->smu_backend); |
1891 | const struct tonga_pt_defaults *defaults = smu_data->power_tune_defaults; |
1892 | struct phm_ppt_v1_information *table_info = |
1893 | (struct phm_ppt_v1_information *)(hwmgr->pptable); |
1894 | |
1895 | /* TDC number of fraction bits are changed from 8 to 7 |
1896 | * for Fiji as requested by SMC team |
1897 | */ |
1898 | tdc_limit = (uint16_t)(table_info->cac_dtp_table->usTDC * 256); |
1899 | smu_data->power_tune_table.TDC_VDDC_PkgLimit = |
1900 | CONVERT_FROM_HOST_TO_SMC_US(tdc_limit); |
1901 | smu_data->power_tune_table.TDC_VDDC_ThrottleReleaseLimitPerc = |
1902 | defaults->tdc_vddc_throttle_release_limit_perc; |
1903 | smu_data->power_tune_table.TDC_MAWt = defaults->tdc_mawt; |
1904 | |
1905 | return 0; |
1906 | } |
1907 | |
1908 | static int tonga_populate_dw8(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset) |
1909 | { |
1910 | struct tonga_smumgr *smu_data = |
1911 | (struct tonga_smumgr *)(hwmgr->smu_backend); |
1912 | const struct tonga_pt_defaults *defaults = smu_data->power_tune_defaults; |
1913 | uint32_t temp; |
1914 | |
1915 | if (smu7_read_smc_sram_dword(hwmgr, |
1916 | fuse_table_offset + |
1917 | offsetof(SMU72_Discrete_PmFuses, TdcWaterfallCtl), |
1918 | (uint32_t *)&temp, SMC_RAM_END)) |
1919 | PP_ASSERT_WITH_CODE(false, |
1920 | "Attempt to read PmFuses.DW6 " |
1921 | "(SviLoadLineEn) from SMC Failed !" , |
1922 | return -EINVAL); |
1923 | else |
1924 | smu_data->power_tune_table.TdcWaterfallCtl = defaults->tdc_waterfall_ctl; |
1925 | |
1926 | return 0; |
1927 | } |
1928 | |
1929 | static int tonga_populate_temperature_scaler(struct pp_hwmgr *hwmgr) |
1930 | { |
1931 | int i; |
1932 | struct tonga_smumgr *smu_data = |
1933 | (struct tonga_smumgr *)(hwmgr->smu_backend); |
1934 | |
1935 | /* Currently not used. Set all to zero. */ |
1936 | for (i = 0; i < 16; i++) |
1937 | smu_data->power_tune_table.LPMLTemperatureScaler[i] = 0; |
1938 | |
1939 | return 0; |
1940 | } |
1941 | |
1942 | static int tonga_populate_fuzzy_fan(struct pp_hwmgr *hwmgr) |
1943 | { |
1944 | struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smu_backend); |
1945 | |
1946 | if ((hwmgr->thermal_controller.advanceFanControlParameters. |
1947 | usFanOutputSensitivity & (1 << 15)) || |
1948 | (hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity == 0)) |
1949 | hwmgr->thermal_controller.advanceFanControlParameters. |
1950 | usFanOutputSensitivity = hwmgr->thermal_controller. |
1951 | advanceFanControlParameters.usDefaultFanOutputSensitivity; |
1952 | |
1953 | smu_data->power_tune_table.FuzzyFan_PwmSetDelta = |
1954 | PP_HOST_TO_SMC_US(hwmgr->thermal_controller. |
1955 | advanceFanControlParameters.usFanOutputSensitivity); |
1956 | return 0; |
1957 | } |
1958 | |
1959 | static int tonga_populate_gnb_lpml(struct pp_hwmgr *hwmgr) |
1960 | { |
1961 | int i; |
1962 | struct tonga_smumgr *smu_data = |
1963 | (struct tonga_smumgr *)(hwmgr->smu_backend); |
1964 | |
1965 | /* Currently not used. Set all to zero. */ |
1966 | for (i = 0; i < 16; i++) |
1967 | smu_data->power_tune_table.GnbLPML[i] = 0; |
1968 | |
1969 | return 0; |
1970 | } |
1971 | |
1972 | static int tonga_populate_bapm_vddc_base_leakage_sidd(struct pp_hwmgr *hwmgr) |
1973 | { |
1974 | struct tonga_smumgr *smu_data = |
1975 | (struct tonga_smumgr *)(hwmgr->smu_backend); |
1976 | struct phm_ppt_v1_information *table_info = |
1977 | (struct phm_ppt_v1_information *)(hwmgr->pptable); |
1978 | uint16_t hi_sidd = smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd; |
1979 | uint16_t lo_sidd = smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd; |
1980 | struct phm_cac_tdp_table *cac_table = table_info->cac_dtp_table; |
1981 | |
1982 | hi_sidd = (uint16_t)(cac_table->usHighCACLeakage / 100 * 256); |
1983 | lo_sidd = (uint16_t)(cac_table->usLowCACLeakage / 100 * 256); |
1984 | |
1985 | smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd = |
1986 | CONVERT_FROM_HOST_TO_SMC_US(hi_sidd); |
1987 | smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd = |
1988 | CONVERT_FROM_HOST_TO_SMC_US(lo_sidd); |
1989 | |
1990 | return 0; |
1991 | } |
1992 | |
1993 | static int tonga_populate_pm_fuses(struct pp_hwmgr *hwmgr) |
1994 | { |
1995 | struct tonga_smumgr *smu_data = |
1996 | (struct tonga_smumgr *)(hwmgr->smu_backend); |
1997 | uint32_t pm_fuse_table_offset; |
1998 | |
1999 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
2000 | PHM_PlatformCaps_PowerContainment)) { |
2001 | if (smu7_read_smc_sram_dword(hwmgr, |
2002 | SMU72_FIRMWARE_HEADER_LOCATION + |
2003 | offsetof(SMU72_Firmware_Header, PmFuseTable), |
2004 | &pm_fuse_table_offset, SMC_RAM_END)) |
2005 | PP_ASSERT_WITH_CODE(false, |
2006 | "Attempt to get pm_fuse_table_offset Failed !" , |
2007 | return -EINVAL); |
2008 | |
2009 | /* DW6 */ |
2010 | if (tonga_populate_svi_load_line(hwmgr)) |
2011 | PP_ASSERT_WITH_CODE(false, |
2012 | "Attempt to populate SviLoadLine Failed !" , |
2013 | return -EINVAL); |
2014 | /* DW7 */ |
2015 | if (tonga_populate_tdc_limit(hwmgr)) |
2016 | PP_ASSERT_WITH_CODE(false, |
2017 | "Attempt to populate TDCLimit Failed !" , |
2018 | return -EINVAL); |
2019 | /* DW8 */ |
2020 | if (tonga_populate_dw8(hwmgr, pm_fuse_table_offset)) |
2021 | PP_ASSERT_WITH_CODE(false, |
2022 | "Attempt to populate TdcWaterfallCtl Failed !" , |
2023 | return -EINVAL); |
2024 | |
2025 | /* DW9-DW12 */ |
2026 | if (tonga_populate_temperature_scaler(hwmgr) != 0) |
2027 | PP_ASSERT_WITH_CODE(false, |
2028 | "Attempt to populate LPMLTemperatureScaler Failed !" , |
2029 | return -EINVAL); |
2030 | |
2031 | /* DW13-DW14 */ |
2032 | if (tonga_populate_fuzzy_fan(hwmgr)) |
2033 | PP_ASSERT_WITH_CODE(false, |
2034 | "Attempt to populate Fuzzy Fan " |
2035 | "Control parameters Failed !" , |
2036 | return -EINVAL); |
2037 | |
2038 | /* DW15-DW18 */ |
2039 | if (tonga_populate_gnb_lpml(hwmgr)) |
2040 | PP_ASSERT_WITH_CODE(false, |
2041 | "Attempt to populate GnbLPML Failed !" , |
2042 | return -EINVAL); |
2043 | |
2044 | /* DW20 */ |
2045 | if (tonga_populate_bapm_vddc_base_leakage_sidd(hwmgr)) |
2046 | PP_ASSERT_WITH_CODE( |
2047 | false, |
2048 | "Attempt to populate BapmVddCBaseLeakage " |
2049 | "Hi and Lo Sidd Failed !" , |
2050 | return -EINVAL); |
2051 | |
2052 | if (smu7_copy_bytes_to_smc(hwmgr, pm_fuse_table_offset, |
2053 | (uint8_t *)&smu_data->power_tune_table, |
2054 | sizeof(struct SMU72_Discrete_PmFuses), SMC_RAM_END)) |
2055 | PP_ASSERT_WITH_CODE(false, |
2056 | "Attempt to download PmFuseTable Failed !" , |
2057 | return -EINVAL); |
2058 | } |
2059 | return 0; |
2060 | } |
2061 | |
2062 | static int tonga_populate_mc_reg_address(struct pp_hwmgr *hwmgr, |
2063 | SMU72_Discrete_MCRegisters *mc_reg_table) |
2064 | { |
2065 | const struct tonga_smumgr *smu_data = (struct tonga_smumgr *)hwmgr->smu_backend; |
2066 | |
2067 | uint32_t i, j; |
2068 | |
2069 | for (i = 0, j = 0; j < smu_data->mc_reg_table.last; j++) { |
2070 | if (smu_data->mc_reg_table.validflag & 1<<j) { |
2071 | PP_ASSERT_WITH_CODE( |
2072 | i < SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE, |
2073 | "Index of mc_reg_table->address[] array " |
2074 | "out of boundary" , |
2075 | return -EINVAL); |
2076 | mc_reg_table->address[i].s0 = |
2077 | PP_HOST_TO_SMC_US(smu_data->mc_reg_table.mc_reg_address[j].s0); |
2078 | mc_reg_table->address[i].s1 = |
2079 | PP_HOST_TO_SMC_US(smu_data->mc_reg_table.mc_reg_address[j].s1); |
2080 | i++; |
2081 | } |
2082 | } |
2083 | |
2084 | mc_reg_table->last = (uint8_t)i; |
2085 | |
2086 | return 0; |
2087 | } |
2088 | |
2089 | /*convert register values from driver to SMC format */ |
2090 | static void tonga_convert_mc_registers( |
2091 | const struct tonga_mc_reg_entry *entry, |
2092 | SMU72_Discrete_MCRegisterSet *data, |
2093 | uint32_t num_entries, uint32_t valid_flag) |
2094 | { |
2095 | uint32_t i, j; |
2096 | |
2097 | for (i = 0, j = 0; j < num_entries; j++) { |
2098 | if (valid_flag & 1<<j) { |
2099 | data->value[i] = PP_HOST_TO_SMC_UL(entry->mc_data[j]); |
2100 | i++; |
2101 | } |
2102 | } |
2103 | } |
2104 | |
2105 | static int tonga_convert_mc_reg_table_entry_to_smc( |
2106 | struct pp_hwmgr *hwmgr, |
2107 | const uint32_t memory_clock, |
2108 | SMU72_Discrete_MCRegisterSet *mc_reg_table_data |
2109 | ) |
2110 | { |
2111 | struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smu_backend); |
2112 | uint32_t i = 0; |
2113 | |
2114 | for (i = 0; i < smu_data->mc_reg_table.num_entries; i++) { |
2115 | if (memory_clock <= |
2116 | smu_data->mc_reg_table.mc_reg_table_entry[i].mclk_max) { |
2117 | break; |
2118 | } |
2119 | } |
2120 | |
2121 | if ((i == smu_data->mc_reg_table.num_entries) && (i > 0)) |
2122 | --i; |
2123 | |
2124 | tonga_convert_mc_registers(&smu_data->mc_reg_table.mc_reg_table_entry[i], |
2125 | mc_reg_table_data, smu_data->mc_reg_table.last, |
2126 | smu_data->mc_reg_table.validflag); |
2127 | |
2128 | return 0; |
2129 | } |
2130 | |
2131 | static int tonga_convert_mc_reg_table_to_smc(struct pp_hwmgr *hwmgr, |
2132 | SMU72_Discrete_MCRegisters *mc_regs) |
2133 | { |
2134 | int result = 0; |
2135 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
2136 | int res; |
2137 | uint32_t i; |
2138 | |
2139 | for (i = 0; i < data->dpm_table.mclk_table.count; i++) { |
2140 | res = tonga_convert_mc_reg_table_entry_to_smc( |
2141 | hwmgr, |
2142 | data->dpm_table.mclk_table.dpm_levels[i].value, |
2143 | &mc_regs->data[i] |
2144 | ); |
2145 | |
2146 | if (0 != res) |
2147 | result = res; |
2148 | } |
2149 | |
2150 | return result; |
2151 | } |
2152 | |
2153 | static int tonga_update_and_upload_mc_reg_table(struct pp_hwmgr *hwmgr) |
2154 | { |
2155 | struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smu_backend); |
2156 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
2157 | uint32_t address; |
2158 | int32_t result; |
2159 | |
2160 | if (0 == (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK)) |
2161 | return 0; |
2162 | |
2163 | |
2164 | memset(&smu_data->mc_regs, 0, sizeof(SMU72_Discrete_MCRegisters)); |
2165 | |
2166 | result = tonga_convert_mc_reg_table_to_smc(hwmgr, &(smu_data->mc_regs)); |
2167 | |
2168 | if (result != 0) |
2169 | return result; |
2170 | |
2171 | |
2172 | address = smu_data->smu7_data.mc_reg_table_start + |
2173 | (uint32_t)offsetof(SMU72_Discrete_MCRegisters, data[0]); |
2174 | |
2175 | return smu7_copy_bytes_to_smc( |
2176 | hwmgr, address, |
2177 | (uint8_t *)&smu_data->mc_regs.data[0], |
2178 | sizeof(SMU72_Discrete_MCRegisterSet) * |
2179 | data->dpm_table.mclk_table.count, |
2180 | SMC_RAM_END); |
2181 | } |
2182 | |
2183 | static int tonga_populate_initial_mc_reg_table(struct pp_hwmgr *hwmgr) |
2184 | { |
2185 | int result; |
2186 | struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smu_backend); |
2187 | |
2188 | memset(&smu_data->mc_regs, 0x00, sizeof(SMU72_Discrete_MCRegisters)); |
2189 | result = tonga_populate_mc_reg_address(hwmgr, &(smu_data->mc_regs)); |
2190 | PP_ASSERT_WITH_CODE(!result, |
2191 | "Failed to initialize MCRegTable for the MC register addresses !" , |
2192 | return result;); |
2193 | |
2194 | result = tonga_convert_mc_reg_table_to_smc(hwmgr, &smu_data->mc_regs); |
2195 | PP_ASSERT_WITH_CODE(!result, |
2196 | "Failed to initialize MCRegTable for driver state !" , |
2197 | return result;); |
2198 | |
2199 | return smu7_copy_bytes_to_smc(hwmgr, smu_data->smu7_data.mc_reg_table_start, |
2200 | (uint8_t *)&smu_data->mc_regs, sizeof(SMU72_Discrete_MCRegisters), SMC_RAM_END); |
2201 | } |
2202 | |
2203 | static void tonga_initialize_power_tune_defaults(struct pp_hwmgr *hwmgr) |
2204 | { |
2205 | struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smu_backend); |
2206 | struct phm_ppt_v1_information *table_info = |
2207 | (struct phm_ppt_v1_information *)(hwmgr->pptable); |
2208 | |
2209 | if (table_info && |
2210 | table_info->cac_dtp_table->usPowerTuneDataSetID <= POWERTUNE_DEFAULT_SET_MAX && |
2211 | table_info->cac_dtp_table->usPowerTuneDataSetID) |
2212 | smu_data->power_tune_defaults = |
2213 | &tonga_power_tune_data_set_array |
2214 | [table_info->cac_dtp_table->usPowerTuneDataSetID - 1]; |
2215 | else |
2216 | smu_data->power_tune_defaults = &tonga_power_tune_data_set_array[0]; |
2217 | } |
2218 | |
2219 | static int tonga_init_smc_table(struct pp_hwmgr *hwmgr) |
2220 | { |
2221 | int result; |
2222 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
2223 | struct tonga_smumgr *smu_data = |
2224 | (struct tonga_smumgr *)(hwmgr->smu_backend); |
2225 | SMU72_Discrete_DpmTable *table = &(smu_data->smc_state_table); |
2226 | struct phm_ppt_v1_information *table_info = |
2227 | (struct phm_ppt_v1_information *)(hwmgr->pptable); |
2228 | |
2229 | uint8_t i; |
2230 | pp_atomctrl_gpio_pin_assignment gpio_pin_assignment; |
2231 | |
2232 | |
2233 | memset(&(smu_data->smc_state_table), 0x00, sizeof(smu_data->smc_state_table)); |
2234 | |
2235 | tonga_initialize_power_tune_defaults(hwmgr); |
2236 | |
2237 | if (SMU7_VOLTAGE_CONTROL_NONE != data->voltage_control) |
2238 | tonga_populate_smc_voltage_tables(hwmgr, table); |
2239 | |
2240 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
2241 | PHM_PlatformCaps_AutomaticDCTransition)) |
2242 | table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC; |
2243 | |
2244 | |
2245 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
2246 | PHM_PlatformCaps_StepVddc)) |
2247 | table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC; |
2248 | |
2249 | if (data->is_memory_gddr5) |
2250 | table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5; |
2251 | |
2252 | i = PHM_READ_FIELD(hwmgr->device, CC_MC_MAX_CHANNEL, NOOFCHAN); |
2253 | |
2254 | if (i == 1 || i == 0) |
2255 | table->SystemFlags |= 0x40; |
2256 | |
2257 | if (data->ulv_supported && table_info->us_ulv_voltage_offset) { |
2258 | result = tonga_populate_ulv_state(hwmgr, table); |
2259 | PP_ASSERT_WITH_CODE(!result, |
2260 | "Failed to initialize ULV state !" , |
2261 | return result;); |
2262 | |
2263 | cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
2264 | ixCG_ULV_PARAMETER, 0x40035); |
2265 | } |
2266 | |
2267 | result = tonga_populate_smc_link_level(hwmgr, table); |
2268 | PP_ASSERT_WITH_CODE(!result, |
2269 | "Failed to initialize Link Level !" , return result); |
2270 | |
2271 | result = tonga_populate_all_graphic_levels(hwmgr); |
2272 | PP_ASSERT_WITH_CODE(!result, |
2273 | "Failed to initialize Graphics Level !" , return result); |
2274 | |
2275 | result = tonga_populate_all_memory_levels(hwmgr); |
2276 | PP_ASSERT_WITH_CODE(!result, |
2277 | "Failed to initialize Memory Level !" , return result); |
2278 | |
2279 | result = tonga_populate_smc_acpi_level(hwmgr, table); |
2280 | PP_ASSERT_WITH_CODE(!result, |
2281 | "Failed to initialize ACPI Level !" , return result); |
2282 | |
2283 | result = tonga_populate_smc_vce_level(hwmgr, table); |
2284 | PP_ASSERT_WITH_CODE(!result, |
2285 | "Failed to initialize VCE Level !" , return result); |
2286 | |
2287 | result = tonga_populate_smc_acp_level(hwmgr, table); |
2288 | PP_ASSERT_WITH_CODE(!result, |
2289 | "Failed to initialize ACP Level !" , return result); |
2290 | |
2291 | /* Since only the initial state is completely set up at this |
2292 | * point (the other states are just copies of the boot state) we only |
2293 | * need to populate the ARB settings for the initial state. |
2294 | */ |
2295 | result = tonga_program_memory_timing_parameters(hwmgr); |
2296 | PP_ASSERT_WITH_CODE(!result, |
2297 | "Failed to Write ARB settings for the initial state." , |
2298 | return result;); |
2299 | |
2300 | result = tonga_populate_smc_uvd_level(hwmgr, table); |
2301 | PP_ASSERT_WITH_CODE(!result, |
2302 | "Failed to initialize UVD Level !" , return result); |
2303 | |
2304 | result = tonga_populate_smc_boot_level(hwmgr, table); |
2305 | PP_ASSERT_WITH_CODE(!result, |
2306 | "Failed to initialize Boot Level !" , return result); |
2307 | |
2308 | tonga_populate_bapm_parameters_in_dpm_table(hwmgr); |
2309 | PP_ASSERT_WITH_CODE(!result, |
2310 | "Failed to populate BAPM Parameters !" , return result); |
2311 | |
2312 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
2313 | PHM_PlatformCaps_ClockStretcher)) { |
2314 | result = tonga_populate_clock_stretcher_data_table(hwmgr); |
2315 | PP_ASSERT_WITH_CODE(!result, |
2316 | "Failed to populate Clock Stretcher Data Table !" , |
2317 | return result;); |
2318 | } |
2319 | table->GraphicsVoltageChangeEnable = 1; |
2320 | table->GraphicsThermThrottleEnable = 1; |
2321 | table->GraphicsInterval = 1; |
2322 | table->VoltageInterval = 1; |
2323 | table->ThermalInterval = 1; |
2324 | table->TemperatureLimitHigh = |
2325 | table_info->cac_dtp_table->usTargetOperatingTemp * |
2326 | SMU7_Q88_FORMAT_CONVERSION_UNIT; |
2327 | table->TemperatureLimitLow = |
2328 | (table_info->cac_dtp_table->usTargetOperatingTemp - 1) * |
2329 | SMU7_Q88_FORMAT_CONVERSION_UNIT; |
2330 | table->MemoryVoltageChangeEnable = 1; |
2331 | table->MemoryInterval = 1; |
2332 | table->VoltageResponseTime = 0; |
2333 | table->PhaseResponseTime = 0; |
2334 | table->MemoryThermThrottleEnable = 1; |
2335 | |
2336 | /* |
2337 | * Cail reads current link status and reports it as cap (we cannot |
2338 | * change this due to some previous issues we had) |
2339 | * SMC drops the link status to lowest level after enabling |
2340 | * DPM by PowerPlay. After pnp or toggling CF, driver gets reloaded again |
2341 | * but this time Cail reads current link status which was set to low by |
2342 | * SMC and reports it as cap to powerplay |
2343 | * To avoid it, we set PCIeBootLinkLevel to highest dpm level |
2344 | */ |
2345 | PP_ASSERT_WITH_CODE((1 <= data->dpm_table.pcie_speed_table.count), |
2346 | "There must be 1 or more PCIE levels defined in PPTable." , |
2347 | return -EINVAL); |
2348 | |
2349 | table->PCIeBootLinkLevel = (uint8_t) (data->dpm_table.pcie_speed_table.count); |
2350 | |
2351 | table->PCIeGenInterval = 1; |
2352 | |
2353 | result = tonga_populate_vr_config(hwmgr, table); |
2354 | PP_ASSERT_WITH_CODE(!result, |
2355 | "Failed to populate VRConfig setting !" , return result); |
2356 | data->vr_config = table->VRConfig; |
2357 | table->ThermGpio = 17; |
2358 | table->SclkStepSize = 0x4000; |
2359 | |
2360 | if (atomctrl_get_pp_assign_pin(hwmgr, VDDC_VRHOT_GPIO_PINID, |
2361 | &gpio_pin_assignment)) { |
2362 | table->VRHotGpio = gpio_pin_assignment.uc_gpio_pin_bit_shift; |
2363 | phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
2364 | PHM_PlatformCaps_RegulatorHot); |
2365 | } else { |
2366 | table->VRHotGpio = SMU7_UNUSED_GPIO_PIN; |
2367 | phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
2368 | PHM_PlatformCaps_RegulatorHot); |
2369 | } |
2370 | |
2371 | if (atomctrl_get_pp_assign_pin(hwmgr, PP_AC_DC_SWITCH_GPIO_PINID, |
2372 | &gpio_pin_assignment)) { |
2373 | table->AcDcGpio = gpio_pin_assignment.uc_gpio_pin_bit_shift; |
2374 | phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
2375 | PHM_PlatformCaps_AutomaticDCTransition); |
2376 | } else { |
2377 | table->AcDcGpio = SMU7_UNUSED_GPIO_PIN; |
2378 | phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
2379 | PHM_PlatformCaps_AutomaticDCTransition); |
2380 | } |
2381 | |
2382 | phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
2383 | PHM_PlatformCaps_Falcon_QuickTransition); |
2384 | |
2385 | if (0) { |
2386 | phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
2387 | PHM_PlatformCaps_AutomaticDCTransition); |
2388 | phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
2389 | PHM_PlatformCaps_Falcon_QuickTransition); |
2390 | } |
2391 | |
2392 | if (atomctrl_get_pp_assign_pin(hwmgr, |
2393 | THERMAL_INT_OUTPUT_GPIO_PINID, &gpio_pin_assignment)) { |
2394 | phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
2395 | PHM_PlatformCaps_ThermalOutGPIO); |
2396 | |
2397 | table->ThermOutGpio = gpio_pin_assignment.uc_gpio_pin_bit_shift; |
2398 | |
2399 | table->ThermOutPolarity = |
2400 | (0 == (cgs_read_register(hwmgr->device, mmGPIOPAD_A) & |
2401 | (1 << gpio_pin_assignment.uc_gpio_pin_bit_shift))) ? 1 : 0; |
2402 | |
2403 | table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_ONLY; |
2404 | |
2405 | /* if required, combine VRHot/PCC with thermal out GPIO*/ |
2406 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
2407 | PHM_PlatformCaps_RegulatorHot) && |
2408 | phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
2409 | PHM_PlatformCaps_CombinePCCWithThermalSignal)){ |
2410 | table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_VRHOT; |
2411 | } |
2412 | } else { |
2413 | phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
2414 | PHM_PlatformCaps_ThermalOutGPIO); |
2415 | |
2416 | table->ThermOutGpio = 17; |
2417 | table->ThermOutPolarity = 1; |
2418 | table->ThermOutMode = SMU7_THERM_OUT_MODE_DISABLE; |
2419 | } |
2420 | |
2421 | for (i = 0; i < SMU72_MAX_ENTRIES_SMIO; i++) |
2422 | table->Smio[i] = PP_HOST_TO_SMC_UL(table->Smio[i]); |
2423 | CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags); |
2424 | CONVERT_FROM_HOST_TO_SMC_UL(table->VRConfig); |
2425 | CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask1); |
2426 | CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask2); |
2427 | CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize); |
2428 | CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh); |
2429 | CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow); |
2430 | CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime); |
2431 | CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime); |
2432 | |
2433 | /* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */ |
2434 | result = smu7_copy_bytes_to_smc( |
2435 | hwmgr, |
2436 | smu_data->smu7_data.dpm_table_start + offsetof(SMU72_Discrete_DpmTable, SystemFlags), |
2437 | (uint8_t *)&(table->SystemFlags), |
2438 | sizeof(SMU72_Discrete_DpmTable) - 3 * sizeof(SMU72_PIDController), |
2439 | SMC_RAM_END); |
2440 | |
2441 | PP_ASSERT_WITH_CODE(!result, |
2442 | "Failed to upload dpm data to SMC memory !" , return result;); |
2443 | |
2444 | result = tonga_init_arb_table_index(hwmgr); |
2445 | PP_ASSERT_WITH_CODE(!result, |
2446 | "Failed to upload arb data to SMC memory !" , return result); |
2447 | |
2448 | tonga_populate_pm_fuses(hwmgr); |
2449 | PP_ASSERT_WITH_CODE((!result), |
2450 | "Failed to populate initialize pm fuses !" , return result); |
2451 | |
2452 | result = tonga_populate_initial_mc_reg_table(hwmgr); |
2453 | PP_ASSERT_WITH_CODE((!result), |
2454 | "Failed to populate initialize MC Reg table !" , return result); |
2455 | |
2456 | return 0; |
2457 | } |
2458 | |
2459 | static int tonga_thermal_setup_fan_table(struct pp_hwmgr *hwmgr) |
2460 | { |
2461 | struct tonga_smumgr *smu_data = |
2462 | (struct tonga_smumgr *)(hwmgr->smu_backend); |
2463 | SMU72_Discrete_FanTable fan_table = { FDO_MODE_HARDWARE }; |
2464 | uint32_t duty100; |
2465 | uint32_t t_diff1, t_diff2, pwm_diff1, pwm_diff2; |
2466 | uint16_t fdo_min, slope1, slope2; |
2467 | uint32_t reference_clock; |
2468 | int res; |
2469 | uint64_t tmp64; |
2470 | |
2471 | if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
2472 | PHM_PlatformCaps_MicrocodeFanControl)) |
2473 | return 0; |
2474 | |
2475 | if (hwmgr->thermal_controller.fanInfo.bNoFan) { |
2476 | phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
2477 | PHM_PlatformCaps_MicrocodeFanControl); |
2478 | return 0; |
2479 | } |
2480 | |
2481 | if (0 == smu_data->smu7_data.fan_table_start) { |
2482 | phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
2483 | PHM_PlatformCaps_MicrocodeFanControl); |
2484 | return 0; |
2485 | } |
2486 | |
2487 | duty100 = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, |
2488 | CGS_IND_REG__SMC, |
2489 | CG_FDO_CTRL1, FMAX_DUTY100); |
2490 | |
2491 | if (0 == duty100) { |
2492 | phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
2493 | PHM_PlatformCaps_MicrocodeFanControl); |
2494 | return 0; |
2495 | } |
2496 | |
2497 | tmp64 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin * duty100; |
2498 | do_div(tmp64, 10000); |
2499 | fdo_min = (uint16_t)tmp64; |
2500 | |
2501 | t_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usTMed - |
2502 | hwmgr->thermal_controller.advanceFanControlParameters.usTMin; |
2503 | t_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usTHigh - |
2504 | hwmgr->thermal_controller.advanceFanControlParameters.usTMed; |
2505 | |
2506 | pwm_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed - |
2507 | hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin; |
2508 | pwm_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMHigh - |
2509 | hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed; |
2510 | |
2511 | slope1 = (uint16_t)((50 + ((16 * duty100 * pwm_diff1) / t_diff1)) / 100); |
2512 | slope2 = (uint16_t)((50 + ((16 * duty100 * pwm_diff2) / t_diff2)) / 100); |
2513 | |
2514 | fan_table.TempMin = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMin) / 100); |
2515 | fan_table.TempMed = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMed) / 100); |
2516 | fan_table.TempMax = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMax) / 100); |
2517 | |
2518 | fan_table.Slope1 = cpu_to_be16(slope1); |
2519 | fan_table.Slope2 = cpu_to_be16(slope2); |
2520 | |
2521 | fan_table.FdoMin = cpu_to_be16(fdo_min); |
2522 | |
2523 | fan_table.HystDown = cpu_to_be16(hwmgr->thermal_controller.advanceFanControlParameters.ucTHyst); |
2524 | |
2525 | fan_table.HystUp = cpu_to_be16(1); |
2526 | |
2527 | fan_table.HystSlope = cpu_to_be16(1); |
2528 | |
2529 | fan_table.TempRespLim = cpu_to_be16(5); |
2530 | |
2531 | reference_clock = amdgpu_asic_get_xclk((struct amdgpu_device *)hwmgr->adev); |
2532 | |
2533 | fan_table.RefreshPeriod = cpu_to_be32((hwmgr->thermal_controller.advanceFanControlParameters.ulCycleDelay * reference_clock) / 1600); |
2534 | |
2535 | fan_table.FdoMax = cpu_to_be16((uint16_t)duty100); |
2536 | |
2537 | fan_table.TempSrc = (uint8_t)PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_MULT_THERMAL_CTRL, TEMP_SEL); |
2538 | |
2539 | fan_table.FanControl_GL_Flag = 1; |
2540 | |
2541 | res = smu7_copy_bytes_to_smc(hwmgr, |
2542 | smu_data->smu7_data.fan_table_start, |
2543 | (uint8_t *)&fan_table, |
2544 | (uint32_t)sizeof(fan_table), |
2545 | SMC_RAM_END); |
2546 | |
2547 | return 0; |
2548 | } |
2549 | |
2550 | |
2551 | static int tonga_program_mem_timing_parameters(struct pp_hwmgr *hwmgr) |
2552 | { |
2553 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
2554 | |
2555 | if (data->need_update_smu7_dpm_table & |
2556 | (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_OD_UPDATE_MCLK)) |
2557 | return tonga_program_memory_timing_parameters(hwmgr); |
2558 | |
2559 | return 0; |
2560 | } |
2561 | |
2562 | static int tonga_update_sclk_threshold(struct pp_hwmgr *hwmgr) |
2563 | { |
2564 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
2565 | struct tonga_smumgr *smu_data = |
2566 | (struct tonga_smumgr *)(hwmgr->smu_backend); |
2567 | |
2568 | int result = 0; |
2569 | uint32_t low_sclk_interrupt_threshold = 0; |
2570 | |
2571 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
2572 | PHM_PlatformCaps_SclkThrottleLowNotification) |
2573 | && (data->low_sclk_interrupt_threshold != 0)) { |
2574 | low_sclk_interrupt_threshold = |
2575 | data->low_sclk_interrupt_threshold; |
2576 | |
2577 | CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold); |
2578 | |
2579 | result = smu7_copy_bytes_to_smc( |
2580 | hwmgr, |
2581 | smu_data->smu7_data.dpm_table_start + |
2582 | offsetof(SMU72_Discrete_DpmTable, |
2583 | LowSclkInterruptThreshold), |
2584 | (uint8_t *)&low_sclk_interrupt_threshold, |
2585 | sizeof(uint32_t), |
2586 | SMC_RAM_END); |
2587 | } |
2588 | |
2589 | result = tonga_update_and_upload_mc_reg_table(hwmgr); |
2590 | |
2591 | PP_ASSERT_WITH_CODE((!result), |
2592 | "Failed to upload MC reg table !" , |
2593 | return result); |
2594 | |
2595 | result = tonga_program_mem_timing_parameters(hwmgr); |
2596 | PP_ASSERT_WITH_CODE((result == 0), |
2597 | "Failed to program memory timing parameters !" , |
2598 | ); |
2599 | |
2600 | return result; |
2601 | } |
2602 | |
2603 | static uint32_t tonga_get_offsetof(uint32_t type, uint32_t member) |
2604 | { |
2605 | switch (type) { |
2606 | case SMU_SoftRegisters: |
2607 | switch (member) { |
2608 | case HandshakeDisables: |
2609 | return offsetof(SMU72_SoftRegisters, HandshakeDisables); |
2610 | case VoltageChangeTimeout: |
2611 | return offsetof(SMU72_SoftRegisters, VoltageChangeTimeout); |
2612 | case AverageGraphicsActivity: |
2613 | return offsetof(SMU72_SoftRegisters, AverageGraphicsActivity); |
2614 | case PreVBlankGap: |
2615 | return offsetof(SMU72_SoftRegisters, PreVBlankGap); |
2616 | case VBlankTimeout: |
2617 | return offsetof(SMU72_SoftRegisters, VBlankTimeout); |
2618 | case UcodeLoadStatus: |
2619 | return offsetof(SMU72_SoftRegisters, UcodeLoadStatus); |
2620 | case DRAM_LOG_ADDR_H: |
2621 | return offsetof(SMU72_SoftRegisters, DRAM_LOG_ADDR_H); |
2622 | case DRAM_LOG_ADDR_L: |
2623 | return offsetof(SMU72_SoftRegisters, DRAM_LOG_ADDR_L); |
2624 | case DRAM_LOG_PHY_ADDR_H: |
2625 | return offsetof(SMU72_SoftRegisters, DRAM_LOG_PHY_ADDR_H); |
2626 | case DRAM_LOG_PHY_ADDR_L: |
2627 | return offsetof(SMU72_SoftRegisters, DRAM_LOG_PHY_ADDR_L); |
2628 | case DRAM_LOG_BUFF_SIZE: |
2629 | return offsetof(SMU72_SoftRegisters, DRAM_LOG_BUFF_SIZE); |
2630 | } |
2631 | break; |
2632 | case SMU_Discrete_DpmTable: |
2633 | switch (member) { |
2634 | case UvdBootLevel: |
2635 | return offsetof(SMU72_Discrete_DpmTable, UvdBootLevel); |
2636 | case VceBootLevel: |
2637 | return offsetof(SMU72_Discrete_DpmTable, VceBootLevel); |
2638 | case LowSclkInterruptThreshold: |
2639 | return offsetof(SMU72_Discrete_DpmTable, LowSclkInterruptThreshold); |
2640 | } |
2641 | break; |
2642 | } |
2643 | pr_warn("can't get the offset of type %x member %x\n" , type, |
---|