1 | /* |
2 | * Copyright 2017 Advanced Micro Devices, Inc. |
3 | * |
4 | * Permission is hereby granted, free of charge, to any person obtaining a |
5 | * copy of this software and associated documentation files (the "Software"), |
6 | * to deal in the Software without restriction, including without limitation |
7 | * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
8 | * and/or sell copies of the Software, and to permit persons to whom the |
9 | * Software is furnished to do so, subject to the following conditions: |
10 | * |
11 | * The above copyright notice and this permission notice shall be included in |
12 | * all copies or substantial portions of the Software. |
13 | * |
14 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
15 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
16 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
17 | * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR |
18 | * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, |
19 | * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |
20 | * OTHER DEALINGS IN THE SOFTWARE. |
21 | * |
22 | */ |
23 | #include "pp_debug.h" |
24 | #include "smumgr.h" |
25 | #include "smu_ucode_xfer_vi.h" |
26 | #include "vegam_smumgr.h" |
27 | #include "smu/smu_7_1_3_d.h" |
28 | #include "smu/smu_7_1_3_sh_mask.h" |
29 | #include "gmc/gmc_8_1_d.h" |
30 | #include "gmc/gmc_8_1_sh_mask.h" |
31 | #include "oss/oss_3_0_d.h" |
32 | #include "gca/gfx_8_0_d.h" |
33 | #include "bif/bif_5_0_d.h" |
34 | #include "bif/bif_5_0_sh_mask.h" |
35 | #include "ppatomctrl.h" |
36 | #include "cgs_common.h" |
37 | #include "smu7_ppsmc.h" |
38 | |
39 | #include "smu7_dyn_defaults.h" |
40 | |
41 | #include "smu7_hwmgr.h" |
42 | #include "hardwaremanager.h" |
43 | #include "atombios.h" |
44 | #include "pppcielanes.h" |
45 | |
46 | #include "dce/dce_11_2_d.h" |
47 | #include "dce/dce_11_2_sh_mask.h" |
48 | |
49 | #define PPVEGAM_TARGETACTIVITY_DFLT 50 |
50 | |
51 | #define VOLTAGE_VID_OFFSET_SCALE1 625 |
52 | #define VOLTAGE_VID_OFFSET_SCALE2 100 |
53 | #define POWERTUNE_DEFAULT_SET_MAX 1 |
54 | #define VDDC_VDDCI_DELTA 200 |
55 | #define MC_CG_ARB_FREQ_F1 0x0b |
56 | |
57 | #define STRAP_ASIC_RO_LSB 2168 |
58 | #define STRAP_ASIC_RO_MSB 2175 |
59 | |
60 | #define PPSMC_MSG_ApplyAvfsCksOffVoltage ((uint16_t) 0x415) |
61 | #define PPSMC_MSG_EnableModeSwitchRLCNotification ((uint16_t) 0x305) |
62 | |
63 | static const struct vegam_pt_defaults |
64 | vegam_power_tune_data_set_array[POWERTUNE_DEFAULT_SET_MAX] = { |
65 | /* sviLoadLIneEn, SviLoadLineVddC, TDC_VDDC_ThrottleReleaseLimitPerc, TDC_MAWt, |
66 | * TdcWaterfallCtl, DTEAmbientTempBase, DisplayCac, BAPM_TEMP_GRADIENT */ |
67 | { 1, 0xF, 0xFD, 0x19, 5, 45, 0, 0xB0000, |
68 | { 0x79, 0x253, 0x25D, 0xAE, 0x72, 0x80, 0x83, 0x86, 0x6F, 0xC8, 0xC9, 0xC9, 0x2F, 0x4D, 0x61}, |
69 | { 0x17C, 0x172, 0x180, 0x1BC, 0x1B3, 0x1BD, 0x206, 0x200, 0x203, 0x25D, 0x25A, 0x255, 0x2C3, 0x2C5, 0x2B4 } }, |
70 | }; |
71 | |
72 | static const sclkFcwRange_t Range_Table[NUM_SCLK_RANGE] = { |
73 | {VCO_2_4, POSTDIV_DIV_BY_16, 75, 160, 112}, |
74 | {VCO_3_6, POSTDIV_DIV_BY_16, 112, 224, 160}, |
75 | {VCO_2_4, POSTDIV_DIV_BY_8, 75, 160, 112}, |
76 | {VCO_3_6, POSTDIV_DIV_BY_8, 112, 224, 160}, |
77 | {VCO_2_4, POSTDIV_DIV_BY_4, 75, 160, 112}, |
78 | {VCO_3_6, POSTDIV_DIV_BY_4, 112, 216, 160}, |
79 | {VCO_2_4, POSTDIV_DIV_BY_2, 75, 160, 108}, |
80 | {VCO_3_6, POSTDIV_DIV_BY_2, 112, 216, 160} }; |
81 | |
82 | static int vegam_smu_init(struct pp_hwmgr *hwmgr) |
83 | { |
84 | struct vegam_smumgr *smu_data; |
85 | |
86 | smu_data = kzalloc(sizeof(struct vegam_smumgr), GFP_KERNEL); |
87 | if (smu_data == NULL) |
88 | return -ENOMEM; |
89 | |
90 | hwmgr->smu_backend = smu_data; |
91 | |
92 | if (smu7_init(hwmgr)) { |
93 | kfree(smu_data); |
94 | return -EINVAL; |
95 | } |
96 | |
97 | return 0; |
98 | } |
99 | |
100 | static int vegam_start_smu_in_protection_mode(struct pp_hwmgr *hwmgr) |
101 | { |
102 | int result = 0; |
103 | |
104 | /* Wait for smc boot up */ |
105 | /* PHM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(smumgr, SMC_IND, RCU_UC_EVENTS, boot_seq_done, 0) */ |
106 | |
107 | /* Assert reset */ |
108 | PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, |
109 | SMC_SYSCON_RESET_CNTL, rst_reg, 1); |
110 | |
111 | result = smu7_upload_smu_firmware_image(hwmgr); |
112 | if (result != 0) |
113 | return result; |
114 | |
115 | /* Clear status */ |
116 | cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixSMU_STATUS, 0); |
117 | |
118 | PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, |
119 | SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0); |
120 | |
121 | /* De-assert reset */ |
122 | PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, |
123 | SMC_SYSCON_RESET_CNTL, rst_reg, 0); |
124 | |
125 | |
126 | PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND, RCU_UC_EVENTS, INTERRUPTS_ENABLED, 1); |
127 | |
128 | |
129 | /* Call Test SMU message with 0x20000 offset to trigger SMU start */ |
130 | smu7_send_msg_to_smc_offset(hwmgr); |
131 | |
132 | /* Wait done bit to be set */ |
133 | /* Check pass/failed indicator */ |
134 | |
135 | PHM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND, SMU_STATUS, SMU_DONE, 0); |
136 | |
137 | if (1 != PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, |
138 | SMU_STATUS, SMU_PASS)) |
139 | PP_ASSERT_WITH_CODE(false, "SMU Firmware start failed!" , return -1); |
140 | |
141 | cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixFIRMWARE_FLAGS, 0); |
142 | |
143 | PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, |
144 | SMC_SYSCON_RESET_CNTL, rst_reg, 1); |
145 | |
146 | PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, |
147 | SMC_SYSCON_RESET_CNTL, rst_reg, 0); |
148 | |
149 | /* Wait for firmware to initialize */ |
150 | PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND, FIRMWARE_FLAGS, INTERRUPTS_ENABLED, 1); |
151 | |
152 | return result; |
153 | } |
154 | |
155 | static int vegam_start_smu_in_non_protection_mode(struct pp_hwmgr *hwmgr) |
156 | { |
157 | int result = 0; |
158 | |
159 | /* wait for smc boot up */ |
160 | PHM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND, RCU_UC_EVENTS, boot_seq_done, 0); |
161 | |
162 | /* Clear firmware interrupt enable flag */ |
163 | /* PHM_WRITE_VFPF_INDIRECT_FIELD(pSmuMgr, SMC_IND, SMC_SYSCON_MISC_CNTL, pre_fetcher_en, 1); */ |
164 | cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
165 | ixFIRMWARE_FLAGS, 0); |
166 | |
167 | PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, |
168 | SMC_SYSCON_RESET_CNTL, |
169 | rst_reg, 1); |
170 | |
171 | result = smu7_upload_smu_firmware_image(hwmgr); |
172 | if (result != 0) |
173 | return result; |
174 | |
175 | /* Set smc instruct start point at 0x0 */ |
176 | smu7_program_jump_on_start(hwmgr); |
177 | |
178 | PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, |
179 | SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0); |
180 | |
181 | PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, |
182 | SMC_SYSCON_RESET_CNTL, rst_reg, 0); |
183 | |
184 | /* Wait for firmware to initialize */ |
185 | |
186 | PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND, |
187 | FIRMWARE_FLAGS, INTERRUPTS_ENABLED, 1); |
188 | |
189 | return result; |
190 | } |
191 | |
192 | static int vegam_start_smu(struct pp_hwmgr *hwmgr) |
193 | { |
194 | int result = 0; |
195 | struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend); |
196 | |
197 | /* Only start SMC if SMC RAM is not running */ |
198 | if (!smu7_is_smc_ram_running(hwmgr) && hwmgr->not_vf) { |
199 | smu_data->protected_mode = (uint8_t)(PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, |
200 | CGS_IND_REG__SMC, SMU_FIRMWARE, SMU_MODE)); |
201 | smu_data->smu7_data.security_hard_key = (uint8_t)(PHM_READ_VFPF_INDIRECT_FIELD( |
202 | hwmgr->device, CGS_IND_REG__SMC, SMU_FIRMWARE, SMU_SEL)); |
203 | |
204 | /* Check if SMU is running in protected mode */ |
205 | if (smu_data->protected_mode == 0) |
206 | result = vegam_start_smu_in_non_protection_mode(hwmgr); |
207 | else |
208 | result = vegam_start_smu_in_protection_mode(hwmgr); |
209 | |
210 | if (result != 0) |
211 | PP_ASSERT_WITH_CODE(0, "Failed to load SMU ucode." , return result); |
212 | } |
213 | |
214 | /* Setup SoftRegsStart here for register lookup in case DummyBackEnd is used and ProcessFirmwareHeader is not executed */ |
215 | smu7_read_smc_sram_dword(hwmgr, |
216 | SMU7_FIRMWARE_HEADER_LOCATION + offsetof(SMU75_Firmware_Header, SoftRegisters), |
217 | &(smu_data->smu7_data.soft_regs_start), |
218 | 0x40000); |
219 | |
220 | result = smu7_request_smu_load_fw(hwmgr); |
221 | |
222 | return result; |
223 | } |
224 | |
225 | static int (struct pp_hwmgr *hwmgr) |
226 | { |
227 | struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend); |
228 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
229 | uint32_t tmp; |
230 | int result; |
231 | bool error = false; |
232 | |
233 | result = smu7_read_smc_sram_dword(hwmgr, |
234 | SMU7_FIRMWARE_HEADER_LOCATION + |
235 | offsetof(SMU75_Firmware_Header, DpmTable), |
236 | &tmp, SMC_RAM_END); |
237 | |
238 | if (0 == result) |
239 | smu_data->smu7_data.dpm_table_start = tmp; |
240 | |
241 | error |= (0 != result); |
242 | |
243 | result = smu7_read_smc_sram_dword(hwmgr, |
244 | SMU7_FIRMWARE_HEADER_LOCATION + |
245 | offsetof(SMU75_Firmware_Header, SoftRegisters), |
246 | &tmp, SMC_RAM_END); |
247 | |
248 | if (!result) { |
249 | data->soft_regs_start = tmp; |
250 | smu_data->smu7_data.soft_regs_start = tmp; |
251 | } |
252 | |
253 | error |= (0 != result); |
254 | |
255 | result = smu7_read_smc_sram_dword(hwmgr, |
256 | SMU7_FIRMWARE_HEADER_LOCATION + |
257 | offsetof(SMU75_Firmware_Header, mcRegisterTable), |
258 | &tmp, SMC_RAM_END); |
259 | |
260 | if (!result) |
261 | smu_data->smu7_data.mc_reg_table_start = tmp; |
262 | |
263 | result = smu7_read_smc_sram_dword(hwmgr, |
264 | SMU7_FIRMWARE_HEADER_LOCATION + |
265 | offsetof(SMU75_Firmware_Header, FanTable), |
266 | &tmp, SMC_RAM_END); |
267 | |
268 | if (!result) |
269 | smu_data->smu7_data.fan_table_start = tmp; |
270 | |
271 | error |= (0 != result); |
272 | |
273 | result = smu7_read_smc_sram_dword(hwmgr, |
274 | SMU7_FIRMWARE_HEADER_LOCATION + |
275 | offsetof(SMU75_Firmware_Header, mcArbDramTimingTable), |
276 | &tmp, SMC_RAM_END); |
277 | |
278 | if (!result) |
279 | smu_data->smu7_data.arb_table_start = tmp; |
280 | |
281 | error |= (0 != result); |
282 | |
283 | result = smu7_read_smc_sram_dword(hwmgr, |
284 | SMU7_FIRMWARE_HEADER_LOCATION + |
285 | offsetof(SMU75_Firmware_Header, Version), |
286 | &tmp, SMC_RAM_END); |
287 | |
288 | if (!result) |
289 | hwmgr->microcode_version_info.SMC = tmp; |
290 | |
291 | error |= (0 != result); |
292 | |
293 | return error ? -1 : 0; |
294 | } |
295 | |
296 | static bool vegam_is_dpm_running(struct pp_hwmgr *hwmgr) |
297 | { |
298 | return (1 == PHM_READ_INDIRECT_FIELD(hwmgr->device, |
299 | CGS_IND_REG__SMC, FEATURE_STATUS, VOLTAGE_CONTROLLER_ON)) |
300 | ? true : false; |
301 | } |
302 | |
303 | static uint32_t vegam_get_mac_definition(uint32_t value) |
304 | { |
305 | switch (value) { |
306 | case SMU_MAX_LEVELS_GRAPHICS: |
307 | return SMU75_MAX_LEVELS_GRAPHICS; |
308 | case SMU_MAX_LEVELS_MEMORY: |
309 | return SMU75_MAX_LEVELS_MEMORY; |
310 | case SMU_MAX_LEVELS_LINK: |
311 | return SMU75_MAX_LEVELS_LINK; |
312 | case SMU_MAX_ENTRIES_SMIO: |
313 | return SMU75_MAX_ENTRIES_SMIO; |
314 | case SMU_MAX_LEVELS_VDDC: |
315 | return SMU75_MAX_LEVELS_VDDC; |
316 | case SMU_MAX_LEVELS_VDDGFX: |
317 | return SMU75_MAX_LEVELS_VDDGFX; |
318 | case SMU_MAX_LEVELS_VDDCI: |
319 | return SMU75_MAX_LEVELS_VDDCI; |
320 | case SMU_MAX_LEVELS_MVDD: |
321 | return SMU75_MAX_LEVELS_MVDD; |
322 | case SMU_UVD_MCLK_HANDSHAKE_DISABLE: |
323 | return SMU7_UVD_MCLK_HANDSHAKE_DISABLE | |
324 | SMU7_VCE_MCLK_HANDSHAKE_DISABLE; |
325 | } |
326 | |
327 | pr_warn("can't get the mac of %x\n" , value); |
328 | return 0; |
329 | } |
330 | |
331 | static int vegam_update_uvd_smc_table(struct pp_hwmgr *hwmgr) |
332 | { |
333 | struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend); |
334 | uint32_t mm_boot_level_offset, mm_boot_level_value; |
335 | struct phm_ppt_v1_information *table_info = |
336 | (struct phm_ppt_v1_information *)(hwmgr->pptable); |
337 | |
338 | smu_data->smc_state_table.UvdBootLevel = 0; |
339 | if (table_info->mm_dep_table->count > 0) |
340 | smu_data->smc_state_table.UvdBootLevel = |
341 | (uint8_t) (table_info->mm_dep_table->count - 1); |
342 | mm_boot_level_offset = smu_data->smu7_data.dpm_table_start + offsetof(SMU75_Discrete_DpmTable, |
343 | UvdBootLevel); |
344 | mm_boot_level_offset /= 4; |
345 | mm_boot_level_offset *= 4; |
346 | mm_boot_level_value = cgs_read_ind_register(hwmgr->device, |
347 | CGS_IND_REG__SMC, mm_boot_level_offset); |
348 | mm_boot_level_value &= 0x00FFFFFF; |
349 | mm_boot_level_value |= smu_data->smc_state_table.UvdBootLevel << 24; |
350 | cgs_write_ind_register(hwmgr->device, |
351 | CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value); |
352 | |
353 | if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
354 | PHM_PlatformCaps_UVDDPM) || |
355 | phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
356 | PHM_PlatformCaps_StablePState)) |
357 | smum_send_msg_to_smc_with_parameter(hwmgr, |
358 | PPSMC_MSG_UVDDPM_SetEnabledMask, |
359 | (uint32_t)(1 << smu_data->smc_state_table.UvdBootLevel)); |
360 | return 0; |
361 | } |
362 | |
363 | static int vegam_update_vce_smc_table(struct pp_hwmgr *hwmgr) |
364 | { |
365 | struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend); |
366 | uint32_t mm_boot_level_offset, mm_boot_level_value; |
367 | struct phm_ppt_v1_information *table_info = |
368 | (struct phm_ppt_v1_information *)(hwmgr->pptable); |
369 | |
370 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
371 | PHM_PlatformCaps_StablePState)) |
372 | smu_data->smc_state_table.VceBootLevel = |
373 | (uint8_t) (table_info->mm_dep_table->count - 1); |
374 | else |
375 | smu_data->smc_state_table.VceBootLevel = 0; |
376 | |
377 | mm_boot_level_offset = smu_data->smu7_data.dpm_table_start + |
378 | offsetof(SMU75_Discrete_DpmTable, VceBootLevel); |
379 | mm_boot_level_offset /= 4; |
380 | mm_boot_level_offset *= 4; |
381 | mm_boot_level_value = cgs_read_ind_register(hwmgr->device, |
382 | CGS_IND_REG__SMC, mm_boot_level_offset); |
383 | mm_boot_level_value &= 0xFF00FFFF; |
384 | mm_boot_level_value |= smu_data->smc_state_table.VceBootLevel << 16; |
385 | cgs_write_ind_register(hwmgr->device, |
386 | CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value); |
387 | |
388 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState)) |
389 | smum_send_msg_to_smc_with_parameter(hwmgr, |
390 | PPSMC_MSG_VCEDPM_SetEnabledMask, |
391 | (uint32_t)1 << smu_data->smc_state_table.VceBootLevel); |
392 | return 0; |
393 | } |
394 | |
395 | static int vegam_update_bif_smc_table(struct pp_hwmgr *hwmgr) |
396 | { |
397 | struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend); |
398 | struct phm_ppt_v1_information *table_info = |
399 | (struct phm_ppt_v1_information *)(hwmgr->pptable); |
400 | struct phm_ppt_v1_pcie_table *pcie_table = table_info->pcie_table; |
401 | int max_entry, i; |
402 | |
403 | max_entry = (SMU75_MAX_LEVELS_LINK < pcie_table->count) ? |
404 | SMU75_MAX_LEVELS_LINK : |
405 | pcie_table->count; |
406 | /* Setup BIF_SCLK levels */ |
407 | for (i = 0; i < max_entry; i++) |
408 | smu_data->bif_sclk_table[i] = pcie_table->entries[i].pcie_sclk; |
409 | return 0; |
410 | } |
411 | |
412 | static int vegam_update_smc_table(struct pp_hwmgr *hwmgr, uint32_t type) |
413 | { |
414 | switch (type) { |
415 | case SMU_UVD_TABLE: |
416 | vegam_update_uvd_smc_table(hwmgr); |
417 | break; |
418 | case SMU_VCE_TABLE: |
419 | vegam_update_vce_smc_table(hwmgr); |
420 | break; |
421 | case SMU_BIF_TABLE: |
422 | vegam_update_bif_smc_table(hwmgr); |
423 | break; |
424 | default: |
425 | break; |
426 | } |
427 | return 0; |
428 | } |
429 | |
430 | static void vegam_initialize_power_tune_defaults(struct pp_hwmgr *hwmgr) |
431 | { |
432 | struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend); |
433 | struct phm_ppt_v1_information *table_info = |
434 | (struct phm_ppt_v1_information *)(hwmgr->pptable); |
435 | |
436 | if (table_info && |
437 | table_info->cac_dtp_table->usPowerTuneDataSetID <= POWERTUNE_DEFAULT_SET_MAX && |
438 | table_info->cac_dtp_table->usPowerTuneDataSetID) |
439 | smu_data->power_tune_defaults = |
440 | &vegam_power_tune_data_set_array |
441 | [table_info->cac_dtp_table->usPowerTuneDataSetID - 1]; |
442 | else |
443 | smu_data->power_tune_defaults = &vegam_power_tune_data_set_array[0]; |
444 | |
445 | } |
446 | |
447 | static int vegam_populate_smc_mvdd_table(struct pp_hwmgr *hwmgr, |
448 | SMU75_Discrete_DpmTable *table) |
449 | { |
450 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
451 | uint32_t count, level; |
452 | |
453 | if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) { |
454 | count = data->mvdd_voltage_table.count; |
455 | if (count > SMU_MAX_SMIO_LEVELS) |
456 | count = SMU_MAX_SMIO_LEVELS; |
457 | for (level = 0; level < count; level++) { |
458 | table->SmioTable2.Pattern[level].Voltage = PP_HOST_TO_SMC_US( |
459 | data->mvdd_voltage_table.entries[count].value * VOLTAGE_SCALE); |
460 | /* Index into DpmTable.Smio. Drive bits from Smio entry to get this voltage level.*/ |
461 | table->SmioTable2.Pattern[level].Smio = |
462 | (uint8_t) level; |
463 | table->Smio[level] |= |
464 | data->mvdd_voltage_table.entries[level].smio_low; |
465 | } |
466 | table->SmioMask2 = data->mvdd_voltage_table.mask_low; |
467 | |
468 | table->MvddLevelCount = (uint32_t) PP_HOST_TO_SMC_UL(count); |
469 | } |
470 | |
471 | return 0; |
472 | } |
473 | |
474 | static int vegam_populate_smc_vddci_table(struct pp_hwmgr *hwmgr, |
475 | struct SMU75_Discrete_DpmTable *table) |
476 | { |
477 | uint32_t count, level; |
478 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
479 | |
480 | count = data->vddci_voltage_table.count; |
481 | |
482 | if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) { |
483 | if (count > SMU_MAX_SMIO_LEVELS) |
484 | count = SMU_MAX_SMIO_LEVELS; |
485 | for (level = 0; level < count; ++level) { |
486 | table->SmioTable1.Pattern[level].Voltage = PP_HOST_TO_SMC_US( |
487 | data->vddci_voltage_table.entries[level].value * VOLTAGE_SCALE); |
488 | table->SmioTable1.Pattern[level].Smio = (uint8_t) level; |
489 | |
490 | table->Smio[level] |= data->vddci_voltage_table.entries[level].smio_low; |
491 | } |
492 | } |
493 | |
494 | table->SmioMask1 = data->vddci_voltage_table.mask_low; |
495 | |
496 | return 0; |
497 | } |
498 | |
499 | static int vegam_populate_cac_table(struct pp_hwmgr *hwmgr, |
500 | struct SMU75_Discrete_DpmTable *table) |
501 | { |
502 | uint32_t count; |
503 | uint8_t index; |
504 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
505 | struct phm_ppt_v1_information *table_info = |
506 | (struct phm_ppt_v1_information *)(hwmgr->pptable); |
507 | struct phm_ppt_v1_voltage_lookup_table *lookup_table = |
508 | table_info->vddc_lookup_table; |
509 | /* tables is already swapped, so in order to use the value from it, |
510 | * we need to swap it back. |
511 | * We are populating vddc CAC data to BapmVddc table |
512 | * in split and merged mode |
513 | */ |
514 | for (count = 0; count < lookup_table->count; count++) { |
515 | index = phm_get_voltage_index(lookup_table, |
516 | data->vddc_voltage_table.entries[count].value); |
517 | table->BapmVddcVidLoSidd[count] = |
518 | convert_to_vid(lookup_table->entries[index].us_cac_low); |
519 | table->BapmVddcVidHiSidd[count] = |
520 | convert_to_vid(lookup_table->entries[index].us_cac_mid); |
521 | table->BapmVddcVidHiSidd2[count] = |
522 | convert_to_vid(lookup_table->entries[index].us_cac_high); |
523 | } |
524 | |
525 | return 0; |
526 | } |
527 | |
528 | static int vegam_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr, |
529 | struct SMU75_Discrete_DpmTable *table) |
530 | { |
531 | vegam_populate_smc_vddci_table(hwmgr, table); |
532 | vegam_populate_smc_mvdd_table(hwmgr, table); |
533 | vegam_populate_cac_table(hwmgr, table); |
534 | |
535 | return 0; |
536 | } |
537 | |
538 | static int vegam_populate_ulv_level(struct pp_hwmgr *hwmgr, |
539 | struct SMU75_Discrete_Ulv *state) |
540 | { |
541 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
542 | struct phm_ppt_v1_information *table_info = |
543 | (struct phm_ppt_v1_information *)(hwmgr->pptable); |
544 | |
545 | state->CcPwrDynRm = 0; |
546 | state->CcPwrDynRm1 = 0; |
547 | |
548 | state->VddcOffset = (uint16_t) table_info->us_ulv_voltage_offset; |
549 | state->VddcOffsetVid = (uint8_t)(table_info->us_ulv_voltage_offset * |
550 | VOLTAGE_VID_OFFSET_SCALE2 / VOLTAGE_VID_OFFSET_SCALE1); |
551 | |
552 | state->VddcPhase = data->vddc_phase_shed_control ^ 0x3; |
553 | |
554 | CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm); |
555 | CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1); |
556 | CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset); |
557 | |
558 | return 0; |
559 | } |
560 | |
561 | static int vegam_populate_ulv_state(struct pp_hwmgr *hwmgr, |
562 | struct SMU75_Discrete_DpmTable *table) |
563 | { |
564 | return vegam_populate_ulv_level(hwmgr, &table->Ulv); |
565 | } |
566 | |
567 | static int vegam_populate_smc_link_level(struct pp_hwmgr *hwmgr, |
568 | struct SMU75_Discrete_DpmTable *table) |
569 | { |
570 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
571 | struct vegam_smumgr *smu_data = |
572 | (struct vegam_smumgr *)(hwmgr->smu_backend); |
573 | struct smu7_dpm_table *dpm_table = &data->dpm_table; |
574 | int i; |
575 | |
576 | /* Index (dpm_table->pcie_speed_table.count) |
577 | * is reserved for PCIE boot level. */ |
578 | for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) { |
579 | table->LinkLevel[i].PcieGenSpeed = |
580 | (uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value; |
581 | table->LinkLevel[i].PcieLaneCount = (uint8_t)encode_pcie_lane_width( |
582 | dpm_table->pcie_speed_table.dpm_levels[i].param1); |
583 | table->LinkLevel[i].EnabledForActivity = 1; |
584 | table->LinkLevel[i].SPC = (uint8_t)(data->pcie_spc_cap & 0xff); |
585 | table->LinkLevel[i].DownThreshold = PP_HOST_TO_SMC_UL(5); |
586 | table->LinkLevel[i].UpThreshold = PP_HOST_TO_SMC_UL(30); |
587 | } |
588 | |
589 | smu_data->smc_state_table.LinkLevelCount = |
590 | (uint8_t)dpm_table->pcie_speed_table.count; |
591 | |
592 | /* To Do move to hwmgr */ |
593 | data->dpm_level_enable_mask.pcie_dpm_enable_mask = |
594 | phm_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table); |
595 | |
596 | return 0; |
597 | } |
598 | |
599 | static int vegam_get_dependency_volt_by_clk(struct pp_hwmgr *hwmgr, |
600 | struct phm_ppt_v1_clock_voltage_dependency_table *dep_table, |
601 | uint32_t clock, SMU_VoltageLevel *voltage, uint32_t *mvdd) |
602 | { |
603 | uint32_t i; |
604 | uint16_t vddci; |
605 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
606 | |
607 | *voltage = *mvdd = 0; |
608 | |
609 | /* clock - voltage dependency table is empty table */ |
610 | if (dep_table->count == 0) |
611 | return -EINVAL; |
612 | |
613 | for (i = 0; i < dep_table->count; i++) { |
614 | /* find first sclk bigger than request */ |
615 | if (dep_table->entries[i].clk >= clock) { |
616 | *voltage |= (dep_table->entries[i].vddc * |
617 | VOLTAGE_SCALE) << VDDC_SHIFT; |
618 | if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control) |
619 | *voltage |= (data->vbios_boot_state.vddci_bootup_value * |
620 | VOLTAGE_SCALE) << VDDCI_SHIFT; |
621 | else if (dep_table->entries[i].vddci) |
622 | *voltage |= (dep_table->entries[i].vddci * |
623 | VOLTAGE_SCALE) << VDDCI_SHIFT; |
624 | else { |
625 | vddci = phm_find_closest_vddci(&(data->vddci_voltage_table), |
626 | (dep_table->entries[i].vddc - |
627 | (uint16_t)VDDC_VDDCI_DELTA)); |
628 | *voltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT; |
629 | } |
630 | |
631 | if (SMU7_VOLTAGE_CONTROL_NONE == data->mvdd_control) |
632 | *mvdd = data->vbios_boot_state.mvdd_bootup_value * |
633 | VOLTAGE_SCALE; |
634 | else if (dep_table->entries[i].mvdd) |
635 | *mvdd = (uint32_t) dep_table->entries[i].mvdd * |
636 | VOLTAGE_SCALE; |
637 | |
638 | *voltage |= 1 << PHASES_SHIFT; |
639 | return 0; |
640 | } |
641 | } |
642 | |
643 | /* sclk is bigger than max sclk in the dependence table */ |
644 | *voltage |= (dep_table->entries[i - 1].vddc * VOLTAGE_SCALE) << VDDC_SHIFT; |
645 | vddci = phm_find_closest_vddci(&(data->vddci_voltage_table), |
646 | (dep_table->entries[i - 1].vddc - |
647 | (uint16_t)VDDC_VDDCI_DELTA)); |
648 | |
649 | if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control) |
650 | *voltage |= (data->vbios_boot_state.vddci_bootup_value * |
651 | VOLTAGE_SCALE) << VDDCI_SHIFT; |
652 | else if (dep_table->entries[i - 1].vddci) |
653 | *voltage |= (dep_table->entries[i - 1].vddci * |
654 | VOLTAGE_SCALE) << VDDC_SHIFT; |
655 | else |
656 | *voltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT; |
657 | |
658 | if (SMU7_VOLTAGE_CONTROL_NONE == data->mvdd_control) |
659 | *mvdd = data->vbios_boot_state.mvdd_bootup_value * VOLTAGE_SCALE; |
660 | else if (dep_table->entries[i].mvdd) |
661 | *mvdd = (uint32_t) dep_table->entries[i - 1].mvdd * VOLTAGE_SCALE; |
662 | |
663 | return 0; |
664 | } |
665 | |
666 | static void vegam_get_sclk_range_table(struct pp_hwmgr *hwmgr, |
667 | SMU75_Discrete_DpmTable *table) |
668 | { |
669 | struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend); |
670 | uint32_t i, ref_clk; |
671 | |
672 | struct pp_atom_ctrl_sclk_range_table range_table_from_vbios = { { {0} } }; |
673 | |
674 | ref_clk = amdgpu_asic_get_xclk((struct amdgpu_device *)hwmgr->adev); |
675 | |
676 | if (0 == atomctrl_get_smc_sclk_range_table(hwmgr, &range_table_from_vbios)) { |
677 | for (i = 0; i < NUM_SCLK_RANGE; i++) { |
678 | table->SclkFcwRangeTable[i].vco_setting = |
679 | range_table_from_vbios.entry[i].ucVco_setting; |
680 | table->SclkFcwRangeTable[i].postdiv = |
681 | range_table_from_vbios.entry[i].ucPostdiv; |
682 | table->SclkFcwRangeTable[i].fcw_pcc = |
683 | range_table_from_vbios.entry[i].usFcw_pcc; |
684 | |
685 | table->SclkFcwRangeTable[i].fcw_trans_upper = |
686 | range_table_from_vbios.entry[i].usFcw_trans_upper; |
687 | table->SclkFcwRangeTable[i].fcw_trans_lower = |
688 | range_table_from_vbios.entry[i].usRcw_trans_lower; |
689 | |
690 | CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_pcc); |
691 | CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_trans_upper); |
692 | CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_trans_lower); |
693 | } |
694 | return; |
695 | } |
696 | |
697 | for (i = 0; i < NUM_SCLK_RANGE; i++) { |
698 | smu_data->range_table[i].trans_lower_frequency = |
699 | (ref_clk * Range_Table[i].fcw_trans_lower) >> Range_Table[i].postdiv; |
700 | smu_data->range_table[i].trans_upper_frequency = |
701 | (ref_clk * Range_Table[i].fcw_trans_upper) >> Range_Table[i].postdiv; |
702 | |
703 | table->SclkFcwRangeTable[i].vco_setting = Range_Table[i].vco_setting; |
704 | table->SclkFcwRangeTable[i].postdiv = Range_Table[i].postdiv; |
705 | table->SclkFcwRangeTable[i].fcw_pcc = Range_Table[i].fcw_pcc; |
706 | |
707 | table->SclkFcwRangeTable[i].fcw_trans_upper = Range_Table[i].fcw_trans_upper; |
708 | table->SclkFcwRangeTable[i].fcw_trans_lower = Range_Table[i].fcw_trans_lower; |
709 | |
710 | CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_pcc); |
711 | CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_trans_upper); |
712 | CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_trans_lower); |
713 | } |
714 | } |
715 | |
716 | static int vegam_calculate_sclk_params(struct pp_hwmgr *hwmgr, |
717 | uint32_t clock, SMU_SclkSetting *sclk_setting) |
718 | { |
719 | struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend); |
720 | const SMU75_Discrete_DpmTable *table = &(smu_data->smc_state_table); |
721 | struct pp_atomctrl_clock_dividers_ai dividers; |
722 | uint32_t ref_clock; |
723 | uint32_t pcc_target_percent, pcc_target_freq, ss_target_percent, ss_target_freq; |
724 | uint8_t i; |
725 | int result; |
726 | uint64_t temp; |
727 | |
728 | sclk_setting->SclkFrequency = clock; |
729 | /* get the engine clock dividers for this clock value */ |
730 | result = atomctrl_get_engine_pll_dividers_ai(hwmgr, clock, ÷rs); |
731 | if (result == 0) { |
732 | sclk_setting->Fcw_int = dividers.usSclk_fcw_int; |
733 | sclk_setting->Fcw_frac = dividers.usSclk_fcw_frac; |
734 | sclk_setting->Pcc_fcw_int = dividers.usPcc_fcw_int; |
735 | sclk_setting->PllRange = dividers.ucSclkPllRange; |
736 | sclk_setting->Sclk_slew_rate = 0x400; |
737 | sclk_setting->Pcc_up_slew_rate = dividers.usPcc_fcw_slew_frac; |
738 | sclk_setting->Pcc_down_slew_rate = 0xffff; |
739 | sclk_setting->SSc_En = dividers.ucSscEnable; |
740 | sclk_setting->Fcw1_int = dividers.usSsc_fcw1_int; |
741 | sclk_setting->Fcw1_frac = dividers.usSsc_fcw1_frac; |
742 | sclk_setting->Sclk_ss_slew_rate = dividers.usSsc_fcw_slew_frac; |
743 | return result; |
744 | } |
745 | |
746 | ref_clock = amdgpu_asic_get_xclk((struct amdgpu_device *)hwmgr->adev); |
747 | |
748 | for (i = 0; i < NUM_SCLK_RANGE; i++) { |
749 | if (clock > smu_data->range_table[i].trans_lower_frequency |
750 | && clock <= smu_data->range_table[i].trans_upper_frequency) { |
751 | sclk_setting->PllRange = i; |
752 | break; |
753 | } |
754 | } |
755 | |
756 | sclk_setting->Fcw_int = (uint16_t) |
757 | ((clock << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv) / |
758 | ref_clock); |
759 | temp = clock << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv; |
760 | temp <<= 0x10; |
761 | do_div(temp, ref_clock); |
762 | sclk_setting->Fcw_frac = temp & 0xffff; |
763 | |
764 | pcc_target_percent = 10; /* Hardcode 10% for now. */ |
765 | pcc_target_freq = clock - (clock * pcc_target_percent / 100); |
766 | sclk_setting->Pcc_fcw_int = (uint16_t) |
767 | ((pcc_target_freq << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv) / |
768 | ref_clock); |
769 | |
770 | ss_target_percent = 2; /* Hardcode 2% for now. */ |
771 | sclk_setting->SSc_En = 0; |
772 | if (ss_target_percent) { |
773 | sclk_setting->SSc_En = 1; |
774 | ss_target_freq = clock - (clock * ss_target_percent / 100); |
775 | sclk_setting->Fcw1_int = (uint16_t) |
776 | ((ss_target_freq << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv) / |
777 | ref_clock); |
778 | temp = ss_target_freq << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv; |
779 | temp <<= 0x10; |
780 | do_div(temp, ref_clock); |
781 | sclk_setting->Fcw1_frac = temp & 0xffff; |
782 | } |
783 | |
784 | return 0; |
785 | } |
786 | |
787 | static uint8_t vegam_get_sleep_divider_id_from_clock(uint32_t clock, |
788 | uint32_t clock_insr) |
789 | { |
790 | uint8_t i; |
791 | uint32_t temp; |
792 | uint32_t min = max(clock_insr, (uint32_t)SMU7_MINIMUM_ENGINE_CLOCK); |
793 | |
794 | PP_ASSERT_WITH_CODE((clock >= min), |
795 | "Engine clock can't satisfy stutter requirement!" , |
796 | return 0); |
797 | for (i = 31; ; i--) { |
798 | temp = clock / (i + 1); |
799 | |
800 | if (temp >= min || i == 0) |
801 | break; |
802 | } |
803 | return i; |
804 | } |
805 | |
806 | static int vegam_populate_single_graphic_level(struct pp_hwmgr *hwmgr, |
807 | uint32_t clock, struct SMU75_Discrete_GraphicsLevel *level) |
808 | { |
809 | int result; |
810 | /* PP_Clocks minClocks; */ |
811 | uint32_t mvdd; |
812 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
813 | struct phm_ppt_v1_information *table_info = |
814 | (struct phm_ppt_v1_information *)(hwmgr->pptable); |
815 | SMU_SclkSetting curr_sclk_setting = { 0 }; |
816 | |
817 | result = vegam_calculate_sclk_params(hwmgr, clock, &curr_sclk_setting); |
818 | |
819 | /* populate graphics levels */ |
820 | result = vegam_get_dependency_volt_by_clk(hwmgr, |
821 | table_info->vdd_dep_on_sclk, clock, |
822 | &level->MinVoltage, &mvdd); |
823 | |
824 | PP_ASSERT_WITH_CODE((0 == result), |
825 | "can not find VDDC voltage value for " |
826 | "VDDC engine clock dependency table" , |
827 | return result); |
828 | level->ActivityLevel = (uint16_t)(SclkDPMTuning_VEGAM >> DPMTuning_Activity_Shift); |
829 | |
830 | level->CcPwrDynRm = 0; |
831 | level->CcPwrDynRm1 = 0; |
832 | level->EnabledForActivity = 0; |
833 | level->EnabledForThrottle = 1; |
834 | level->VoltageDownHyst = 0; |
835 | level->PowerThrottle = 0; |
836 | data->display_timing.min_clock_in_sr = hwmgr->display_config->min_core_set_clock_in_sr; |
837 | |
838 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep)) |
839 | level->DeepSleepDivId = vegam_get_sleep_divider_id_from_clock(clock, |
840 | hwmgr->display_config->min_core_set_clock_in_sr); |
841 | |
842 | level->SclkSetting = curr_sclk_setting; |
843 | |
844 | CONVERT_FROM_HOST_TO_SMC_UL(level->MinVoltage); |
845 | CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm); |
846 | CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm1); |
847 | CONVERT_FROM_HOST_TO_SMC_US(level->ActivityLevel); |
848 | CONVERT_FROM_HOST_TO_SMC_UL(level->SclkSetting.SclkFrequency); |
849 | CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Fcw_int); |
850 | CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Fcw_frac); |
851 | CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Pcc_fcw_int); |
852 | CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Sclk_slew_rate); |
853 | CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Pcc_up_slew_rate); |
854 | CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Pcc_down_slew_rate); |
855 | CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Fcw1_int); |
856 | CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Fcw1_frac); |
857 | CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Sclk_ss_slew_rate); |
858 | return 0; |
859 | } |
860 | |
861 | static int vegam_populate_all_graphic_levels(struct pp_hwmgr *hwmgr) |
862 | { |
863 | struct smu7_hwmgr *hw_data = (struct smu7_hwmgr *)(hwmgr->backend); |
864 | struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend); |
865 | struct smu7_dpm_table *dpm_table = &hw_data->dpm_table; |
866 | struct phm_ppt_v1_information *table_info = |
867 | (struct phm_ppt_v1_information *)(hwmgr->pptable); |
868 | struct phm_ppt_v1_pcie_table *pcie_table = table_info->pcie_table; |
869 | uint8_t pcie_entry_cnt = (uint8_t) hw_data->dpm_table.pcie_speed_table.count; |
870 | int result = 0; |
871 | uint32_t array = smu_data->smu7_data.dpm_table_start + |
872 | offsetof(SMU75_Discrete_DpmTable, GraphicsLevel); |
873 | uint32_t array_size = sizeof(struct SMU75_Discrete_GraphicsLevel) * |
874 | SMU75_MAX_LEVELS_GRAPHICS; |
875 | struct SMU75_Discrete_GraphicsLevel *levels = |
876 | smu_data->smc_state_table.GraphicsLevel; |
877 | uint32_t i, max_entry; |
878 | uint8_t hightest_pcie_level_enabled = 0, |
879 | lowest_pcie_level_enabled = 0, |
880 | mid_pcie_level_enabled = 0, |
881 | count = 0; |
882 | |
883 | vegam_get_sclk_range_table(hwmgr, &(smu_data->smc_state_table)); |
884 | |
885 | for (i = 0; i < dpm_table->sclk_table.count; i++) { |
886 | |
887 | result = vegam_populate_single_graphic_level(hwmgr, |
888 | dpm_table->sclk_table.dpm_levels[i].value, |
889 | &(smu_data->smc_state_table.GraphicsLevel[i])); |
890 | if (result) |
891 | return result; |
892 | |
893 | levels[i].UpHyst = (uint8_t) |
894 | (SclkDPMTuning_VEGAM >> DPMTuning_Uphyst_Shift); |
895 | levels[i].DownHyst = (uint8_t) |
896 | (SclkDPMTuning_VEGAM >> DPMTuning_Downhyst_Shift); |
897 | /* Making sure only DPM level 0-1 have Deep Sleep Div ID populated. */ |
898 | if (i > 1) |
899 | levels[i].DeepSleepDivId = 0; |
900 | } |
901 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
902 | PHM_PlatformCaps_SPLLShutdownSupport)) |
903 | smu_data->smc_state_table.GraphicsLevel[0].SclkSetting.SSc_En = 0; |
904 | |
905 | smu_data->smc_state_table.GraphicsDpmLevelCount = |
906 | (uint8_t)dpm_table->sclk_table.count; |
907 | hw_data->dpm_level_enable_mask.sclk_dpm_enable_mask = |
908 | phm_get_dpm_level_enable_mask_value(&dpm_table->sclk_table); |
909 | |
910 | for (i = 0; i < dpm_table->sclk_table.count; i++) |
911 | levels[i].EnabledForActivity = |
912 | (hw_data->dpm_level_enable_mask.sclk_dpm_enable_mask >> i) & 0x1; |
913 | |
914 | if (pcie_table != NULL) { |
915 | PP_ASSERT_WITH_CODE((1 <= pcie_entry_cnt), |
916 | "There must be 1 or more PCIE levels defined in PPTable." , |
917 | return -EINVAL); |
918 | max_entry = pcie_entry_cnt - 1; |
919 | for (i = 0; i < dpm_table->sclk_table.count; i++) |
920 | levels[i].pcieDpmLevel = |
921 | (uint8_t) ((i < max_entry) ? i : max_entry); |
922 | } else { |
923 | while (hw_data->dpm_level_enable_mask.pcie_dpm_enable_mask && |
924 | ((hw_data->dpm_level_enable_mask.pcie_dpm_enable_mask & |
925 | (1 << (hightest_pcie_level_enabled + 1))) != 0)) |
926 | hightest_pcie_level_enabled++; |
927 | |
928 | while (hw_data->dpm_level_enable_mask.pcie_dpm_enable_mask && |
929 | ((hw_data->dpm_level_enable_mask.pcie_dpm_enable_mask & |
930 | (1 << lowest_pcie_level_enabled)) == 0)) |
931 | lowest_pcie_level_enabled++; |
932 | |
933 | while ((count < hightest_pcie_level_enabled) && |
934 | ((hw_data->dpm_level_enable_mask.pcie_dpm_enable_mask & |
935 | (1 << (lowest_pcie_level_enabled + 1 + count))) == 0)) |
936 | count++; |
937 | |
938 | mid_pcie_level_enabled = (lowest_pcie_level_enabled + 1 + count) < |
939 | hightest_pcie_level_enabled ? |
940 | (lowest_pcie_level_enabled + 1 + count) : |
941 | hightest_pcie_level_enabled; |
942 | |
943 | /* set pcieDpmLevel to hightest_pcie_level_enabled */ |
944 | for (i = 2; i < dpm_table->sclk_table.count; i++) |
945 | levels[i].pcieDpmLevel = hightest_pcie_level_enabled; |
946 | |
947 | /* set pcieDpmLevel to lowest_pcie_level_enabled */ |
948 | levels[0].pcieDpmLevel = lowest_pcie_level_enabled; |
949 | |
950 | /* set pcieDpmLevel to mid_pcie_level_enabled */ |
951 | levels[1].pcieDpmLevel = mid_pcie_level_enabled; |
952 | } |
953 | /* level count will send to smc once at init smc table and never change */ |
954 | result = smu7_copy_bytes_to_smc(hwmgr, array, (uint8_t *)levels, |
955 | (uint32_t)array_size, SMC_RAM_END); |
956 | |
957 | return result; |
958 | } |
959 | |
960 | static int vegam_calculate_mclk_params(struct pp_hwmgr *hwmgr, |
961 | uint32_t clock, struct SMU75_Discrete_MemoryLevel *mem_level) |
962 | { |
963 | struct pp_atomctrl_memory_clock_param_ai mpll_param; |
964 | |
965 | PP_ASSERT_WITH_CODE(!atomctrl_get_memory_pll_dividers_ai(hwmgr, |
966 | clock, &mpll_param), |
967 | "Failed to retrieve memory pll parameter." , |
968 | return -EINVAL); |
969 | |
970 | mem_level->MclkFrequency = (uint32_t)mpll_param.ulClock; |
971 | mem_level->Fcw_int = (uint16_t)mpll_param.ulMclk_fcw_int; |
972 | mem_level->Fcw_frac = (uint16_t)mpll_param.ulMclk_fcw_frac; |
973 | mem_level->Postdiv = (uint8_t)mpll_param.ulPostDiv; |
974 | |
975 | return 0; |
976 | } |
977 | |
978 | static int vegam_populate_single_memory_level(struct pp_hwmgr *hwmgr, |
979 | uint32_t clock, struct SMU75_Discrete_MemoryLevel *mem_level) |
980 | { |
981 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
982 | struct phm_ppt_v1_information *table_info = |
983 | (struct phm_ppt_v1_information *)(hwmgr->pptable); |
984 | int result = 0; |
985 | uint32_t mclk_stutter_mode_threshold = 60000; |
986 | |
987 | |
988 | if (table_info->vdd_dep_on_mclk) { |
989 | result = vegam_get_dependency_volt_by_clk(hwmgr, |
990 | table_info->vdd_dep_on_mclk, clock, |
991 | &mem_level->MinVoltage, &mem_level->MinMvdd); |
992 | PP_ASSERT_WITH_CODE(!result, |
993 | "can not find MinVddc voltage value from memory " |
994 | "VDDC voltage dependency table" , return result); |
995 | } |
996 | |
997 | result = vegam_calculate_mclk_params(hwmgr, clock, mem_level); |
998 | PP_ASSERT_WITH_CODE(!result, |
999 | "Failed to calculate mclk params." , |
1000 | return -EINVAL); |
1001 | |
1002 | mem_level->EnabledForThrottle = 1; |
1003 | mem_level->EnabledForActivity = 0; |
1004 | mem_level->VoltageDownHyst = 0; |
1005 | mem_level->ActivityLevel = (uint16_t) |
1006 | (MemoryDPMTuning_VEGAM >> DPMTuning_Activity_Shift); |
1007 | mem_level->StutterEnable = false; |
1008 | mem_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW; |
1009 | |
1010 | data->display_timing.num_existing_displays = hwmgr->display_config->num_display; |
1011 | data->display_timing.vrefresh = hwmgr->display_config->vrefresh; |
1012 | |
1013 | if (mclk_stutter_mode_threshold && |
1014 | (clock <= mclk_stutter_mode_threshold) && |
1015 | (PHM_READ_FIELD(hwmgr->device, DPG_PIPE_STUTTER_CONTROL, |
1016 | STUTTER_ENABLE) & 0x1)) |
1017 | mem_level->StutterEnable = true; |
1018 | |
1019 | if (!result) { |
1020 | CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinMvdd); |
1021 | CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MclkFrequency); |
1022 | CONVERT_FROM_HOST_TO_SMC_US(mem_level->Fcw_int); |
1023 | CONVERT_FROM_HOST_TO_SMC_US(mem_level->Fcw_frac); |
1024 | CONVERT_FROM_HOST_TO_SMC_US(mem_level->ActivityLevel); |
1025 | CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinVoltage); |
1026 | } |
1027 | |
1028 | return result; |
1029 | } |
1030 | |
1031 | static int vegam_populate_all_memory_levels(struct pp_hwmgr *hwmgr) |
1032 | { |
1033 | struct smu7_hwmgr *hw_data = (struct smu7_hwmgr *)(hwmgr->backend); |
1034 | struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend); |
1035 | struct smu7_dpm_table *dpm_table = &hw_data->dpm_table; |
1036 | int result; |
1037 | /* populate MCLK dpm table to SMU7 */ |
1038 | uint32_t array = smu_data->smu7_data.dpm_table_start + |
1039 | offsetof(SMU75_Discrete_DpmTable, MemoryLevel); |
1040 | uint32_t array_size = sizeof(SMU75_Discrete_MemoryLevel) * |
1041 | SMU75_MAX_LEVELS_MEMORY; |
1042 | struct SMU75_Discrete_MemoryLevel *levels = |
1043 | smu_data->smc_state_table.MemoryLevel; |
1044 | uint32_t i; |
1045 | |
1046 | for (i = 0; i < dpm_table->mclk_table.count; i++) { |
1047 | PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value), |
1048 | "can not populate memory level as memory clock is zero" , |
1049 | return -EINVAL); |
1050 | result = vegam_populate_single_memory_level(hwmgr, |
1051 | dpm_table->mclk_table.dpm_levels[i].value, |
1052 | &levels[i]); |
1053 | |
1054 | if (result) |
1055 | return result; |
1056 | |
1057 | levels[i].UpHyst = (uint8_t) |
1058 | (MemoryDPMTuning_VEGAM >> DPMTuning_Uphyst_Shift); |
1059 | levels[i].DownHyst = (uint8_t) |
1060 | (MemoryDPMTuning_VEGAM >> DPMTuning_Downhyst_Shift); |
1061 | } |
1062 | |
1063 | smu_data->smc_state_table.MemoryDpmLevelCount = |
1064 | (uint8_t)dpm_table->mclk_table.count; |
1065 | hw_data->dpm_level_enable_mask.mclk_dpm_enable_mask = |
1066 | phm_get_dpm_level_enable_mask_value(&dpm_table->mclk_table); |
1067 | |
1068 | for (i = 0; i < dpm_table->mclk_table.count; i++) |
1069 | levels[i].EnabledForActivity = |
1070 | (hw_data->dpm_level_enable_mask.mclk_dpm_enable_mask >> i) & 0x1; |
1071 | |
1072 | levels[dpm_table->mclk_table.count - 1].DisplayWatermark = |
1073 | PPSMC_DISPLAY_WATERMARK_HIGH; |
1074 | |
1075 | /* level count will send to smc once at init smc table and never change */ |
1076 | result = smu7_copy_bytes_to_smc(hwmgr, array, (uint8_t *)levels, |
1077 | (uint32_t)array_size, SMC_RAM_END); |
1078 | |
1079 | return result; |
1080 | } |
1081 | |
1082 | static int vegam_populate_mvdd_value(struct pp_hwmgr *hwmgr, |
1083 | uint32_t mclk, SMIO_Pattern *smio_pat) |
1084 | { |
1085 | const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
1086 | struct phm_ppt_v1_information *table_info = |
1087 | (struct phm_ppt_v1_information *)(hwmgr->pptable); |
1088 | uint32_t i = 0; |
1089 | |
1090 | if (SMU7_VOLTAGE_CONTROL_NONE != data->mvdd_control) { |
1091 | /* find mvdd value which clock is more than request */ |
1092 | for (i = 0; i < table_info->vdd_dep_on_mclk->count; i++) { |
1093 | if (mclk <= table_info->vdd_dep_on_mclk->entries[i].clk) { |
1094 | smio_pat->Voltage = data->mvdd_voltage_table.entries[i].value; |
1095 | break; |
1096 | } |
1097 | } |
1098 | PP_ASSERT_WITH_CODE(i < table_info->vdd_dep_on_mclk->count, |
1099 | "MVDD Voltage is outside the supported range." , |
1100 | return -EINVAL); |
1101 | } else |
1102 | return -EINVAL; |
1103 | |
1104 | return 0; |
1105 | } |
1106 | |
1107 | static int vegam_populate_smc_acpi_level(struct pp_hwmgr *hwmgr, |
1108 | SMU75_Discrete_DpmTable *table) |
1109 | { |
1110 | int result = 0; |
1111 | uint32_t sclk_frequency; |
1112 | const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
1113 | struct phm_ppt_v1_information *table_info = |
1114 | (struct phm_ppt_v1_information *)(hwmgr->pptable); |
1115 | SMIO_Pattern vol_level; |
1116 | uint32_t mvdd; |
1117 | uint16_t us_mvdd; |
1118 | |
1119 | table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC; |
1120 | |
1121 | /* Get MinVoltage and Frequency from DPM0, |
1122 | * already converted to SMC_UL */ |
1123 | sclk_frequency = data->vbios_boot_state.sclk_bootup_value; |
1124 | result = vegam_get_dependency_volt_by_clk(hwmgr, |
1125 | table_info->vdd_dep_on_sclk, |
1126 | sclk_frequency, |
1127 | &table->ACPILevel.MinVoltage, &mvdd); |
1128 | PP_ASSERT_WITH_CODE(!result, |
1129 | "Cannot find ACPI VDDC voltage value " |
1130 | "in Clock Dependency Table" , |
1131 | ); |
1132 | |
1133 | result = vegam_calculate_sclk_params(hwmgr, sclk_frequency, |
1134 | &(table->ACPILevel.SclkSetting)); |
1135 | PP_ASSERT_WITH_CODE(!result, |
1136 | "Error retrieving Engine Clock dividers from VBIOS." , |
1137 | return result); |
1138 | |
1139 | table->ACPILevel.DeepSleepDivId = 0; |
1140 | table->ACPILevel.CcPwrDynRm = 0; |
1141 | table->ACPILevel.CcPwrDynRm1 = 0; |
1142 | |
1143 | CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags); |
1144 | CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.MinVoltage); |
1145 | CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm); |
1146 | CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1); |
1147 | |
1148 | CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkSetting.SclkFrequency); |
1149 | CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Fcw_int); |
1150 | CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Fcw_frac); |
1151 | CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Pcc_fcw_int); |
1152 | CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Sclk_slew_rate); |
1153 | CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Pcc_up_slew_rate); |
1154 | CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Pcc_down_slew_rate); |
1155 | CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Fcw1_int); |
1156 | CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Fcw1_frac); |
1157 | CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Sclk_ss_slew_rate); |
1158 | |
1159 | |
1160 | /* Get MinVoltage and Frequency from DPM0, already converted to SMC_UL */ |
1161 | table->MemoryACPILevel.MclkFrequency = data->vbios_boot_state.mclk_bootup_value; |
1162 | result = vegam_get_dependency_volt_by_clk(hwmgr, |
1163 | table_info->vdd_dep_on_mclk, |
1164 | table->MemoryACPILevel.MclkFrequency, |
1165 | &table->MemoryACPILevel.MinVoltage, &mvdd); |
1166 | PP_ASSERT_WITH_CODE((0 == result), |
1167 | "Cannot find ACPI VDDCI voltage value " |
1168 | "in Clock Dependency Table" , |
1169 | ); |
1170 | |
1171 | us_mvdd = 0; |
1172 | if ((SMU7_VOLTAGE_CONTROL_NONE == data->mvdd_control) || |
1173 | (data->mclk_dpm_key_disabled)) |
1174 | us_mvdd = data->vbios_boot_state.mvdd_bootup_value; |
1175 | else { |
1176 | if (!vegam_populate_mvdd_value(hwmgr, |
1177 | data->dpm_table.mclk_table.dpm_levels[0].value, |
1178 | &vol_level)) |
1179 | us_mvdd = vol_level.Voltage; |
1180 | } |
1181 | |
1182 | if (!vegam_populate_mvdd_value(hwmgr, 0, &vol_level)) |
1183 | table->MemoryACPILevel.MinMvdd = PP_HOST_TO_SMC_UL(vol_level.Voltage); |
1184 | else |
1185 | table->MemoryACPILevel.MinMvdd = 0; |
1186 | |
1187 | table->MemoryACPILevel.StutterEnable = false; |
1188 | |
1189 | table->MemoryACPILevel.EnabledForThrottle = 0; |
1190 | table->MemoryACPILevel.EnabledForActivity = 0; |
1191 | table->MemoryACPILevel.UpHyst = 0; |
1192 | table->MemoryACPILevel.DownHyst = 100; |
1193 | table->MemoryACPILevel.VoltageDownHyst = 0; |
1194 | table->MemoryACPILevel.ActivityLevel = |
1195 | PP_HOST_TO_SMC_US(data->current_profile_setting.mclk_activity); |
1196 | |
1197 | CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MclkFrequency); |
1198 | CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MinVoltage); |
1199 | |
1200 | return result; |
1201 | } |
1202 | |
1203 | static int vegam_populate_smc_vce_level(struct pp_hwmgr *hwmgr, |
1204 | SMU75_Discrete_DpmTable *table) |
1205 | { |
1206 | int result = -EINVAL; |
1207 | uint8_t count; |
1208 | struct pp_atomctrl_clock_dividers_vi dividers; |
1209 | struct phm_ppt_v1_information *table_info = |
1210 | (struct phm_ppt_v1_information *)(hwmgr->pptable); |
1211 | struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = |
1212 | table_info->mm_dep_table; |
1213 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
1214 | uint32_t vddci; |
1215 | |
1216 | table->VceLevelCount = (uint8_t)(mm_table->count); |
1217 | table->VceBootLevel = 0; |
1218 | |
1219 | for (count = 0; count < table->VceLevelCount; count++) { |
1220 | table->VceLevel[count].Frequency = mm_table->entries[count].eclk; |
1221 | table->VceLevel[count].MinVoltage = 0; |
1222 | table->VceLevel[count].MinVoltage |= |
1223 | (mm_table->entries[count].vddc * VOLTAGE_SCALE) << VDDC_SHIFT; |
1224 | |
1225 | if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) |
1226 | vddci = (uint32_t)phm_find_closest_vddci(&(data->vddci_voltage_table), |
1227 | mm_table->entries[count].vddc - VDDC_VDDCI_DELTA); |
1228 | else if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) |
1229 | vddci = mm_table->entries[count].vddc - VDDC_VDDCI_DELTA; |
1230 | else |
1231 | vddci = (data->vbios_boot_state.vddci_bootup_value * VOLTAGE_SCALE) << VDDCI_SHIFT; |
1232 | |
1233 | |
1234 | table->VceLevel[count].MinVoltage |= |
1235 | (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT; |
1236 | table->VceLevel[count].MinVoltage |= 1 << PHASES_SHIFT; |
1237 | |
1238 | /*retrieve divider value for VBIOS */ |
1239 | result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, |
1240 | table->VceLevel[count].Frequency, ÷rs); |
1241 | PP_ASSERT_WITH_CODE((0 == result), |
1242 | "can not find divide id for VCE engine clock" , |
1243 | return result); |
1244 | |
1245 | table->VceLevel[count].Divider = (uint8_t)dividers.pll_post_divider; |
1246 | |
1247 | CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].Frequency); |
1248 | CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].MinVoltage); |
1249 | } |
1250 | return result; |
1251 | } |
1252 | |
1253 | static int vegam_populate_memory_timing_parameters(struct pp_hwmgr *hwmgr, |
1254 | int32_t eng_clock, int32_t mem_clock, |
1255 | SMU75_Discrete_MCArbDramTimingTableEntry *arb_regs) |
1256 | { |
1257 | uint32_t dram_timing; |
1258 | uint32_t dram_timing2; |
1259 | uint32_t burst_time; |
1260 | uint32_t rfsh_rate; |
1261 | uint32_t misc3; |
1262 | |
1263 | int result; |
1264 | |
1265 | result = atomctrl_set_engine_dram_timings_rv770(hwmgr, |
1266 | eng_clock, mem_clock); |
1267 | PP_ASSERT_WITH_CODE(result == 0, |
1268 | "Error calling VBIOS to set DRAM_TIMING." , |
1269 | return result); |
1270 | |
1271 | dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING); |
1272 | dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2); |
1273 | burst_time = cgs_read_register(hwmgr->device, mmMC_ARB_BURST_TIME); |
1274 | rfsh_rate = cgs_read_register(hwmgr->device, mmMC_ARB_RFSH_RATE); |
1275 | misc3 = cgs_read_register(hwmgr->device, mmMC_ARB_MISC3); |
1276 | |
1277 | arb_regs->McArbDramTiming = PP_HOST_TO_SMC_UL(dram_timing); |
1278 | arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dram_timing2); |
1279 | arb_regs->McArbBurstTime = PP_HOST_TO_SMC_UL(burst_time); |
1280 | arb_regs->McArbRfshRate = PP_HOST_TO_SMC_UL(rfsh_rate); |
1281 | arb_regs->McArbMisc3 = PP_HOST_TO_SMC_UL(misc3); |
1282 | |
1283 | return 0; |
1284 | } |
1285 | |
1286 | static int vegam_program_memory_timing_parameters(struct pp_hwmgr *hwmgr) |
1287 | { |
1288 | struct smu7_hwmgr *hw_data = (struct smu7_hwmgr *)(hwmgr->backend); |
1289 | struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend); |
1290 | struct SMU75_Discrete_MCArbDramTimingTable arb_regs; |
1291 | uint32_t i, j; |
1292 | int result = 0; |
1293 | |
1294 | memset(&arb_regs, 0, sizeof(SMU75_Discrete_MCArbDramTimingTable)); |
1295 | |
1296 | for (i = 0; i < hw_data->dpm_table.sclk_table.count; i++) { |
1297 | for (j = 0; j < hw_data->dpm_table.mclk_table.count; j++) { |
1298 | result = vegam_populate_memory_timing_parameters(hwmgr, |
1299 | hw_data->dpm_table.sclk_table.dpm_levels[i].value, |
1300 | hw_data->dpm_table.mclk_table.dpm_levels[j].value, |
1301 | &arb_regs.entries[i][j]); |
1302 | if (result) |
1303 | return result; |
1304 | } |
1305 | } |
1306 | |
1307 | result = smu7_copy_bytes_to_smc( |
1308 | hwmgr, |
1309 | smu_data->smu7_data.arb_table_start, |
1310 | (uint8_t *)&arb_regs, |
1311 | sizeof(SMU75_Discrete_MCArbDramTimingTable), |
1312 | SMC_RAM_END); |
1313 | return result; |
1314 | } |
1315 | |
1316 | static int vegam_populate_smc_uvd_level(struct pp_hwmgr *hwmgr, |
1317 | struct SMU75_Discrete_DpmTable *table) |
1318 | { |
1319 | int result = -EINVAL; |
1320 | uint8_t count; |
1321 | struct pp_atomctrl_clock_dividers_vi dividers; |
1322 | struct phm_ppt_v1_information *table_info = |
1323 | (struct phm_ppt_v1_information *)(hwmgr->pptable); |
1324 | struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = |
1325 | table_info->mm_dep_table; |
1326 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
1327 | uint32_t vddci; |
1328 | |
1329 | table->UvdLevelCount = (uint8_t)(mm_table->count); |
1330 | table->UvdBootLevel = 0; |
1331 | |
1332 | for (count = 0; count < table->UvdLevelCount; count++) { |
1333 | table->UvdLevel[count].MinVoltage = 0; |
1334 | table->UvdLevel[count].VclkFrequency = mm_table->entries[count].vclk; |
1335 | table->UvdLevel[count].DclkFrequency = mm_table->entries[count].dclk; |
1336 | table->UvdLevel[count].MinVoltage |= |
1337 | (mm_table->entries[count].vddc * VOLTAGE_SCALE) << VDDC_SHIFT; |
1338 | |
1339 | if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) |
1340 | vddci = (uint32_t)phm_find_closest_vddci(&(data->vddci_voltage_table), |
1341 | mm_table->entries[count].vddc - VDDC_VDDCI_DELTA); |
1342 | else if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) |
1343 | vddci = mm_table->entries[count].vddc - VDDC_VDDCI_DELTA; |
1344 | else |
1345 | vddci = (data->vbios_boot_state.vddci_bootup_value * VOLTAGE_SCALE) << VDDCI_SHIFT; |
1346 | |
1347 | table->UvdLevel[count].MinVoltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT; |
1348 | table->UvdLevel[count].MinVoltage |= 1 << PHASES_SHIFT; |
1349 | |
1350 | /* retrieve divider value for VBIOS */ |
1351 | result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, |
1352 | table->UvdLevel[count].VclkFrequency, ÷rs); |
1353 | PP_ASSERT_WITH_CODE((0 == result), |
1354 | "can not find divide id for Vclk clock" , return result); |
1355 | |
1356 | table->UvdLevel[count].VclkDivider = (uint8_t)dividers.pll_post_divider; |
1357 | |
1358 | result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, |
1359 | table->UvdLevel[count].DclkFrequency, ÷rs); |
1360 | PP_ASSERT_WITH_CODE((0 == result), |
1361 | "can not find divide id for Dclk clock" , return result); |
1362 | |
1363 | table->UvdLevel[count].DclkDivider = (uint8_t)dividers.pll_post_divider; |
1364 | |
1365 | CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].VclkFrequency); |
1366 | CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].DclkFrequency); |
1367 | CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].MinVoltage); |
1368 | } |
1369 | |
1370 | return result; |
1371 | } |
1372 | |
1373 | static int vegam_populate_smc_boot_level(struct pp_hwmgr *hwmgr, |
1374 | struct SMU75_Discrete_DpmTable *table) |
1375 | { |
1376 | int result = 0; |
1377 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
1378 | |
1379 | table->GraphicsBootLevel = 0; |
1380 | table->MemoryBootLevel = 0; |
1381 | |
1382 | /* find boot level from dpm table */ |
1383 | result = phm_find_boot_level(&(data->dpm_table.sclk_table), |
1384 | data->vbios_boot_state.sclk_bootup_value, |
1385 | (uint32_t *)&(table->GraphicsBootLevel)); |
1386 | |
1387 | result = phm_find_boot_level(&(data->dpm_table.mclk_table), |
1388 | data->vbios_boot_state.mclk_bootup_value, |
1389 | (uint32_t *)&(table->MemoryBootLevel)); |
1390 | |
1391 | table->BootVddc = data->vbios_boot_state.vddc_bootup_value * |
1392 | VOLTAGE_SCALE; |
1393 | table->BootVddci = data->vbios_boot_state.vddci_bootup_value * |
1394 | VOLTAGE_SCALE; |
1395 | table->BootMVdd = data->vbios_boot_state.mvdd_bootup_value * |
1396 | VOLTAGE_SCALE; |
1397 | |
1398 | CONVERT_FROM_HOST_TO_SMC_US(table->BootVddc); |
1399 | CONVERT_FROM_HOST_TO_SMC_US(table->BootVddci); |
1400 | CONVERT_FROM_HOST_TO_SMC_US(table->BootMVdd); |
1401 | |
1402 | return 0; |
1403 | } |
1404 | |
1405 | static int vegam_populate_smc_initial_state(struct pp_hwmgr *hwmgr) |
1406 | { |
1407 | struct smu7_hwmgr *hw_data = (struct smu7_hwmgr *)(hwmgr->backend); |
1408 | struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend); |
1409 | struct phm_ppt_v1_information *table_info = |
1410 | (struct phm_ppt_v1_information *)(hwmgr->pptable); |
1411 | uint8_t count, level; |
1412 | |
1413 | count = (uint8_t)(table_info->vdd_dep_on_sclk->count); |
1414 | |
1415 | for (level = 0; level < count; level++) { |
1416 | if (table_info->vdd_dep_on_sclk->entries[level].clk >= |
1417 | hw_data->vbios_boot_state.sclk_bootup_value) { |
1418 | smu_data->smc_state_table.GraphicsBootLevel = level; |
1419 | break; |
1420 | } |
1421 | } |
1422 | |
1423 | count = (uint8_t)(table_info->vdd_dep_on_mclk->count); |
1424 | for (level = 0; level < count; level++) { |
1425 | if (table_info->vdd_dep_on_mclk->entries[level].clk >= |
1426 | hw_data->vbios_boot_state.mclk_bootup_value) { |
1427 | smu_data->smc_state_table.MemoryBootLevel = level; |
1428 | break; |
1429 | } |
1430 | } |
1431 | |
1432 | return 0; |
1433 | } |
1434 | |
1435 | static uint16_t scale_fan_gain_settings(uint16_t raw_setting) |
1436 | { |
1437 | uint32_t tmp; |
1438 | tmp = raw_setting * 4096 / 100; |
1439 | return (uint16_t)tmp; |
1440 | } |
1441 | |
1442 | static int vegam_populate_bapm_parameters_in_dpm_table(struct pp_hwmgr *hwmgr) |
1443 | { |
1444 | struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend); |
1445 | |
1446 | const struct vegam_pt_defaults *defaults = smu_data->power_tune_defaults; |
1447 | SMU75_Discrete_DpmTable *table = &(smu_data->smc_state_table); |
1448 | struct phm_ppt_v1_information *table_info = |
1449 | (struct phm_ppt_v1_information *)(hwmgr->pptable); |
1450 | struct phm_cac_tdp_table *cac_dtp_table = table_info->cac_dtp_table; |
1451 | struct pp_advance_fan_control_parameters *fan_table = |
1452 | &hwmgr->thermal_controller.advanceFanControlParameters; |
1453 | int i, j, k; |
1454 | const uint16_t *pdef1; |
1455 | const uint16_t *pdef2; |
1456 | |
1457 | table->DefaultTdp = PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table->usTDP * 128)); |
1458 | table->TargetTdp = PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table->usTDP * 128)); |
1459 | |
1460 | PP_ASSERT_WITH_CODE(cac_dtp_table->usTargetOperatingTemp <= 255, |
1461 | "Target Operating Temp is out of Range!" , |
1462 | ); |
1463 | |
1464 | table->TemperatureLimitEdge = PP_HOST_TO_SMC_US( |
1465 | cac_dtp_table->usTargetOperatingTemp * 256); |
1466 | table->TemperatureLimitHotspot = PP_HOST_TO_SMC_US( |
1467 | cac_dtp_table->usTemperatureLimitHotspot * 256); |
1468 | table->FanGainEdge = PP_HOST_TO_SMC_US( |
1469 | scale_fan_gain_settings(fan_table->usFanGainEdge)); |
1470 | table->FanGainHotspot = PP_HOST_TO_SMC_US( |
1471 | scale_fan_gain_settings(fan_table->usFanGainHotspot)); |
1472 | |
1473 | pdef1 = defaults->BAPMTI_R; |
1474 | pdef2 = defaults->BAPMTI_RC; |
1475 | |
1476 | for (i = 0; i < SMU75_DTE_ITERATIONS; i++) { |
1477 | for (j = 0; j < SMU75_DTE_SOURCES; j++) { |
1478 | for (k = 0; k < SMU75_DTE_SINKS; k++) { |
1479 | table->BAPMTI_R[i][j][k] = PP_HOST_TO_SMC_US(*pdef1); |
1480 | table->BAPMTI_RC[i][j][k] = PP_HOST_TO_SMC_US(*pdef2); |
1481 | pdef1++; |
1482 | pdef2++; |
1483 | } |
1484 | } |
1485 | } |
1486 | |
1487 | return 0; |
1488 | } |
1489 | |
1490 | static int vegam_populate_clock_stretcher_data_table(struct pp_hwmgr *hwmgr) |
1491 | { |
1492 | uint32_t ro, efuse, volt_without_cks, volt_with_cks, value, max, min; |
1493 | struct vegam_smumgr *smu_data = |
1494 | (struct vegam_smumgr *)(hwmgr->smu_backend); |
1495 | |
1496 | uint8_t i, stretch_amount, stretch_amount2, volt_offset = 0; |
1497 | struct phm_ppt_v1_information *table_info = |
1498 | (struct phm_ppt_v1_information *)(hwmgr->pptable); |
1499 | struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table = |
1500 | table_info->vdd_dep_on_sclk; |
1501 | uint32_t mask = (1 << ((STRAP_ASIC_RO_MSB - STRAP_ASIC_RO_LSB) + 1)) - 1; |
1502 | |
1503 | stretch_amount = (uint8_t)table_info->cac_dtp_table->usClockStretchAmount; |
1504 | |
1505 | atomctrl_read_efuse(hwmgr, STRAP_ASIC_RO_LSB, STRAP_ASIC_RO_MSB, |
1506 | mask, &efuse); |
1507 | |
1508 | min = 1200; |
1509 | max = 2500; |
1510 | |
1511 | ro = efuse * (max - min) / 255 + min; |
1512 | |
1513 | /* Populate Sclk_CKS_masterEn0_7 and Sclk_voltageOffset */ |
1514 | for (i = 0; i < sclk_table->count; i++) { |
1515 | smu_data->smc_state_table.Sclk_CKS_masterEn0_7 |= |
1516 | sclk_table->entries[i].cks_enable << i; |
1517 | volt_without_cks = (uint32_t)((2753594000U + (sclk_table->entries[i].clk/100) * |
1518 | 136418 - (ro - 70) * 1000000) / |
1519 | (2424180 - (sclk_table->entries[i].clk/100) * 1132925/1000)); |
1520 | volt_with_cks = (uint32_t)((2797202000U + sclk_table->entries[i].clk/100 * |
1521 | 3232 - (ro - 65) * 1000000) / |
1522 | (2522480 - sclk_table->entries[i].clk/100 * 115764/100)); |
1523 | |
1524 | if (volt_without_cks >= volt_with_cks) |
1525 | volt_offset = (uint8_t)(((volt_without_cks - volt_with_cks + |
1526 | sclk_table->entries[i].cks_voffset) * 100 + 624) / 625); |
1527 | |
1528 | smu_data->smc_state_table.Sclk_voltageOffset[i] = volt_offset; |
1529 | } |
1530 | |
1531 | smu_data->smc_state_table.LdoRefSel = |
1532 | (table_info->cac_dtp_table->ucCKS_LDO_REFSEL != 0) ? |
1533 | table_info->cac_dtp_table->ucCKS_LDO_REFSEL : 5; |
1534 | /* Populate CKS Lookup Table */ |
1535 | if (stretch_amount == 1 || stretch_amount == 2 || stretch_amount == 5) |
1536 | stretch_amount2 = 0; |
1537 | else if (stretch_amount == 3 || stretch_amount == 4) |
1538 | stretch_amount2 = 1; |
1539 | else { |
1540 | phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
1541 | PHM_PlatformCaps_ClockStretcher); |
1542 | PP_ASSERT_WITH_CODE(false, |
1543 | "Stretch Amount in PPTable not supported\n" , |
1544 | return -EINVAL); |
1545 | } |
1546 | |
1547 | value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL); |
1548 | value &= 0xFFFFFFFE; |
1549 | cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL, value); |
1550 | |
1551 | return 0; |
1552 | } |
1553 | |
1554 | static bool vegam_is_hw_avfs_present(struct pp_hwmgr *hwmgr) |
1555 | { |
1556 | uint32_t efuse; |
1557 | |
1558 | efuse = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
1559 | ixSMU_EFUSE_0 + (49 * 4)); |
1560 | efuse &= 0x00000001; |
1561 | |
1562 | if (efuse) |
1563 | return true; |
1564 | |
1565 | return false; |
1566 | } |
1567 | |
1568 | static int vegam_populate_avfs_parameters(struct pp_hwmgr *hwmgr) |
1569 | { |
1570 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
1571 | struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend); |
1572 | |
1573 | SMU75_Discrete_DpmTable *table = &(smu_data->smc_state_table); |
1574 | int result = 0; |
1575 | struct pp_atom_ctrl__avfs_parameters avfs_params = {0}; |
1576 | AVFS_meanNsigma_t AVFS_meanNsigma = { {0} }; |
1577 | AVFS_Sclk_Offset_t AVFS_SclkOffset = { {0} }; |
1578 | uint32_t tmp, i; |
1579 | |
1580 | struct phm_ppt_v1_information *table_info = |
1581 | (struct phm_ppt_v1_information *)hwmgr->pptable; |
1582 | struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table = |
1583 | table_info->vdd_dep_on_sclk; |
1584 | |
1585 | if (!hwmgr->avfs_supported) |
1586 | return 0; |
1587 | |
1588 | result = atomctrl_get_avfs_information(hwmgr, &avfs_params); |
1589 | |
1590 | if (0 == result) { |
1591 | table->BTCGB_VDROOP_TABLE[0].a0 = |
1592 | PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSON_a0); |
1593 | table->BTCGB_VDROOP_TABLE[0].a1 = |
1594 | PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSON_a1); |
1595 | table->BTCGB_VDROOP_TABLE[0].a2 = |
1596 | PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSON_a2); |
1597 | table->BTCGB_VDROOP_TABLE[1].a0 = |
1598 | PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a0); |
1599 | table->BTCGB_VDROOP_TABLE[1].a1 = |
1600 | PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a1); |
1601 | table->BTCGB_VDROOP_TABLE[1].a2 = |
1602 | PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a2); |
1603 | table->AVFSGB_FUSE_TABLE[0].m1 = |
1604 | PP_HOST_TO_SMC_UL(avfs_params.ulAVFSGB_FUSE_TABLE_CKSON_m1); |
1605 | table->AVFSGB_FUSE_TABLE[0].m2 = |
1606 | PP_HOST_TO_SMC_US(avfs_params.usAVFSGB_FUSE_TABLE_CKSON_m2); |
1607 | table->AVFSGB_FUSE_TABLE[0].b = |
1608 | PP_HOST_TO_SMC_UL(avfs_params.ulAVFSGB_FUSE_TABLE_CKSON_b); |
1609 | table->AVFSGB_FUSE_TABLE[0].m1_shift = 24; |
1610 | table->AVFSGB_FUSE_TABLE[0].m2_shift = 12; |
1611 | table->AVFSGB_FUSE_TABLE[1].m1 = |
1612 | PP_HOST_TO_SMC_UL(avfs_params.ulAVFSGB_FUSE_TABLE_CKSOFF_m1); |
1613 | table->AVFSGB_FUSE_TABLE[1].m2 = |
1614 | PP_HOST_TO_SMC_US(avfs_params.usAVFSGB_FUSE_TABLE_CKSOFF_m2); |
1615 | table->AVFSGB_FUSE_TABLE[1].b = |
1616 | PP_HOST_TO_SMC_UL(avfs_params.ulAVFSGB_FUSE_TABLE_CKSOFF_b); |
1617 | table->AVFSGB_FUSE_TABLE[1].m1_shift = 24; |
1618 | table->AVFSGB_FUSE_TABLE[1].m2_shift = 12; |
1619 | table->MaxVoltage = PP_HOST_TO_SMC_US(avfs_params.usMaxVoltage_0_25mv); |
1620 | AVFS_meanNsigma.Aconstant[0] = |
1621 | PP_HOST_TO_SMC_UL(avfs_params.ulAVFS_meanNsigma_Acontant0); |
1622 | AVFS_meanNsigma.Aconstant[1] = |
1623 | PP_HOST_TO_SMC_UL(avfs_params.ulAVFS_meanNsigma_Acontant1); |
1624 | AVFS_meanNsigma.Aconstant[2] = |
1625 | PP_HOST_TO_SMC_UL(avfs_params.ulAVFS_meanNsigma_Acontant2); |
1626 | AVFS_meanNsigma.DC_tol_sigma = |
1627 | PP_HOST_TO_SMC_US(avfs_params.usAVFS_meanNsigma_DC_tol_sigma); |
1628 | AVFS_meanNsigma.Platform_mean = |
1629 | PP_HOST_TO_SMC_US(avfs_params.usAVFS_meanNsigma_Platform_mean); |
1630 | AVFS_meanNsigma.PSM_Age_CompFactor = |
1631 | PP_HOST_TO_SMC_US(avfs_params.usPSM_Age_ComFactor); |
1632 | AVFS_meanNsigma.Platform_sigma = |
1633 | PP_HOST_TO_SMC_US(avfs_params.usAVFS_meanNsigma_Platform_sigma); |
1634 | |
1635 | for (i = 0; i < sclk_table->count; i++) { |
1636 | AVFS_meanNsigma.Static_Voltage_Offset[i] = |
1637 | (uint8_t)(sclk_table->entries[i].cks_voffset * 100 / 625); |
1638 | AVFS_SclkOffset.Sclk_Offset[i] = |
1639 | PP_HOST_TO_SMC_US((uint16_t) |
1640 | (sclk_table->entries[i].sclk_offset) / 100); |
1641 | } |
1642 | |
1643 | result = smu7_read_smc_sram_dword(hwmgr, |
1644 | SMU7_FIRMWARE_HEADER_LOCATION + |
1645 | offsetof(SMU75_Firmware_Header, AvfsMeanNSigma), |
1646 | &tmp, SMC_RAM_END); |
1647 | smu7_copy_bytes_to_smc(hwmgr, |
1648 | tmp, |
1649 | (uint8_t *)&AVFS_meanNsigma, |
1650 | sizeof(AVFS_meanNsigma_t), |
1651 | SMC_RAM_END); |
1652 | |
1653 | result = smu7_read_smc_sram_dword(hwmgr, |
1654 | SMU7_FIRMWARE_HEADER_LOCATION + |
1655 | offsetof(SMU75_Firmware_Header, AvfsSclkOffsetTable), |
1656 | &tmp, SMC_RAM_END); |
1657 | smu7_copy_bytes_to_smc(hwmgr, |
1658 | tmp, |
1659 | (uint8_t *)&AVFS_SclkOffset, |
1660 | sizeof(AVFS_Sclk_Offset_t), |
1661 | SMC_RAM_END); |
1662 | |
1663 | data->avfs_vdroop_override_setting = |
1664 | (avfs_params.ucEnableGB_VDROOP_TABLE_CKSON << BTCGB0_Vdroop_Enable_SHIFT) | |
1665 | (avfs_params.ucEnableGB_VDROOP_TABLE_CKSOFF << BTCGB1_Vdroop_Enable_SHIFT) | |
1666 | (avfs_params.ucEnableGB_FUSE_TABLE_CKSON << AVFSGB0_Vdroop_Enable_SHIFT) | |
1667 | (avfs_params.ucEnableGB_FUSE_TABLE_CKSOFF << AVFSGB1_Vdroop_Enable_SHIFT); |
1668 | data->apply_avfs_cks_off_voltage = |
1669 | (avfs_params.ucEnableApplyAVFS_CKS_OFF_Voltage == 1) ? true : false; |
1670 | } |
1671 | return result; |
1672 | } |
1673 | |
1674 | static int vegam_populate_vr_config(struct pp_hwmgr *hwmgr, |
1675 | struct SMU75_Discrete_DpmTable *table) |
1676 | { |
1677 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
1678 | struct vegam_smumgr *smu_data = |
1679 | (struct vegam_smumgr *)(hwmgr->smu_backend); |
1680 | uint16_t config; |
1681 | |
1682 | config = VR_MERGED_WITH_VDDC; |
1683 | table->VRConfig |= (config << VRCONF_VDDGFX_SHIFT); |
1684 | |
1685 | /* Set Vddc Voltage Controller */ |
1686 | if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) { |
1687 | config = VR_SVI2_PLANE_1; |
1688 | table->VRConfig |= config; |
1689 | } else { |
1690 | PP_ASSERT_WITH_CODE(false, |
1691 | "VDDC should be on SVI2 control in merged mode!" , |
1692 | ); |
1693 | } |
1694 | /* Set Vddci Voltage Controller */ |
1695 | if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) { |
1696 | config = VR_SVI2_PLANE_2; /* only in merged mode */ |
1697 | table->VRConfig |= (config << VRCONF_VDDCI_SHIFT); |
1698 | } else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) { |
1699 | config = VR_SMIO_PATTERN_1; |
1700 | table->VRConfig |= (config << VRCONF_VDDCI_SHIFT); |
1701 | } else { |
1702 | config = VR_STATIC_VOLTAGE; |
1703 | table->VRConfig |= (config << VRCONF_VDDCI_SHIFT); |
1704 | } |
1705 | /* Set Mvdd Voltage Controller */ |
1706 | if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control) { |
1707 | if (config != VR_SVI2_PLANE_2) { |
1708 | config = VR_SVI2_PLANE_2; |
1709 | table->VRConfig |= (config << VRCONF_MVDD_SHIFT); |
1710 | cgs_write_ind_register(hwmgr->device, |
1711 | CGS_IND_REG__SMC, |
1712 | smu_data->smu7_data.soft_regs_start + |
1713 | offsetof(SMU75_SoftRegisters, AllowMvddSwitch), |
1714 | 0x1); |
1715 | } else { |
1716 | PP_ASSERT_WITH_CODE(false, |
1717 | "SVI2 Plane 2 is already taken, set MVDD as Static" ,); |
1718 | config = VR_STATIC_VOLTAGE; |
1719 | table->VRConfig = (config << VRCONF_MVDD_SHIFT); |
1720 | } |
1721 | } else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) { |
1722 | config = VR_SMIO_PATTERN_2; |
1723 | table->VRConfig = (config << VRCONF_MVDD_SHIFT); |
1724 | cgs_write_ind_register(hwmgr->device, |
1725 | CGS_IND_REG__SMC, |
1726 | smu_data->smu7_data.soft_regs_start + |
1727 | offsetof(SMU75_SoftRegisters, AllowMvddSwitch), |
1728 | 0x1); |
1729 | } else { |
1730 | config = VR_STATIC_VOLTAGE; |
1731 | table->VRConfig |= (config << VRCONF_MVDD_SHIFT); |
1732 | } |
1733 | |
1734 | return 0; |
1735 | } |
1736 | |
1737 | static int vegam_populate_svi_load_line(struct pp_hwmgr *hwmgr) |
1738 | { |
1739 | struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend); |
1740 | const struct vegam_pt_defaults *defaults = smu_data->power_tune_defaults; |
1741 | |
1742 | smu_data->power_tune_table.SviLoadLineEn = defaults->SviLoadLineEn; |
1743 | smu_data->power_tune_table.SviLoadLineVddC = defaults->SviLoadLineVddC; |
1744 | smu_data->power_tune_table.SviLoadLineTrimVddC = 3; |
1745 | smu_data->power_tune_table.SviLoadLineOffsetVddC = 0; |
1746 | |
1747 | return 0; |
1748 | } |
1749 | |
1750 | static int vegam_populate_tdc_limit(struct pp_hwmgr *hwmgr) |
1751 | { |
1752 | uint16_t tdc_limit; |
1753 | struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend); |
1754 | struct phm_ppt_v1_information *table_info = |
1755 | (struct phm_ppt_v1_information *)(hwmgr->pptable); |
1756 | const struct vegam_pt_defaults *defaults = smu_data->power_tune_defaults; |
1757 | |
1758 | tdc_limit = (uint16_t)(table_info->cac_dtp_table->usTDC * 128); |
1759 | smu_data->power_tune_table.TDC_VDDC_PkgLimit = |
1760 | CONVERT_FROM_HOST_TO_SMC_US(tdc_limit); |
1761 | smu_data->power_tune_table.TDC_VDDC_ThrottleReleaseLimitPerc = |
1762 | defaults->TDC_VDDC_ThrottleReleaseLimitPerc; |
1763 | smu_data->power_tune_table.TDC_MAWt = defaults->TDC_MAWt; |
1764 | |
1765 | return 0; |
1766 | } |
1767 | |
1768 | static int vegam_populate_dw8(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset) |
1769 | { |
1770 | struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend); |
1771 | const struct vegam_pt_defaults *defaults = smu_data->power_tune_defaults; |
1772 | uint32_t temp; |
1773 | |
1774 | if (smu7_read_smc_sram_dword(hwmgr, |
1775 | fuse_table_offset + |
1776 | offsetof(SMU75_Discrete_PmFuses, TdcWaterfallCtl), |
1777 | (uint32_t *)&temp, SMC_RAM_END)) |
1778 | PP_ASSERT_WITH_CODE(false, |
1779 | "Attempt to read PmFuses.DW6 (SviLoadLineEn) from SMC Failed!" , |
1780 | return -EINVAL); |
1781 | else { |
1782 | smu_data->power_tune_table.TdcWaterfallCtl = defaults->TdcWaterfallCtl; |
1783 | smu_data->power_tune_table.LPMLTemperatureMin = |
1784 | (uint8_t)((temp >> 16) & 0xff); |
1785 | smu_data->power_tune_table.LPMLTemperatureMax = |
1786 | (uint8_t)((temp >> 8) & 0xff); |
1787 | smu_data->power_tune_table.Reserved = (uint8_t)(temp & 0xff); |
1788 | } |
1789 | return 0; |
1790 | } |
1791 | |
1792 | static int vegam_populate_temperature_scaler(struct pp_hwmgr *hwmgr) |
1793 | { |
1794 | int i; |
1795 | struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend); |
1796 | |
1797 | /* Currently not used. Set all to zero. */ |
1798 | for (i = 0; i < 16; i++) |
1799 | smu_data->power_tune_table.LPMLTemperatureScaler[i] = 0; |
1800 | |
1801 | return 0; |
1802 | } |
1803 | |
1804 | static int vegam_populate_fuzzy_fan(struct pp_hwmgr *hwmgr) |
1805 | { |
1806 | struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend); |
1807 | |
1808 | /* TO DO move to hwmgr */ |
1809 | if ((hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity & (1 << 15)) |
1810 | || 0 == hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity) |
1811 | hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity = |
1812 | hwmgr->thermal_controller.advanceFanControlParameters.usDefaultFanOutputSensitivity; |
1813 | |
1814 | smu_data->power_tune_table.FuzzyFan_PwmSetDelta = PP_HOST_TO_SMC_US( |
1815 | hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity); |
1816 | return 0; |
1817 | } |
1818 | |
1819 | static int vegam_populate_gnb_lpml(struct pp_hwmgr *hwmgr) |
1820 | { |
1821 | int i; |
1822 | struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend); |
1823 | |
1824 | /* Currently not used. Set all to zero. */ |
1825 | for (i = 0; i < 16; i++) |
1826 | smu_data->power_tune_table.GnbLPML[i] = 0; |
1827 | |
1828 | return 0; |
1829 | } |
1830 | |
1831 | static int vegam_populate_bapm_vddc_base_leakage_sidd(struct pp_hwmgr *hwmgr) |
1832 | { |
1833 | struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend); |
1834 | struct phm_ppt_v1_information *table_info = |
1835 | (struct phm_ppt_v1_information *)(hwmgr->pptable); |
1836 | uint16_t hi_sidd = smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd; |
1837 | uint16_t lo_sidd = smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd; |
1838 | struct phm_cac_tdp_table *cac_table = table_info->cac_dtp_table; |
1839 | |
1840 | hi_sidd = (uint16_t)(cac_table->usHighCACLeakage / 100 * 256); |
1841 | lo_sidd = (uint16_t)(cac_table->usLowCACLeakage / 100 * 256); |
1842 | |
1843 | smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd = |
1844 | CONVERT_FROM_HOST_TO_SMC_US(hi_sidd); |
1845 | smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd = |
1846 | CONVERT_FROM_HOST_TO_SMC_US(lo_sidd); |
1847 | |
1848 | return 0; |
1849 | } |
1850 | |
1851 | static int vegam_populate_pm_fuses(struct pp_hwmgr *hwmgr) |
1852 | { |
1853 | struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend); |
1854 | uint32_t pm_fuse_table_offset; |
1855 | |
1856 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
1857 | PHM_PlatformCaps_PowerContainment)) { |
1858 | if (smu7_read_smc_sram_dword(hwmgr, |
1859 | SMU7_FIRMWARE_HEADER_LOCATION + |
1860 | offsetof(SMU75_Firmware_Header, PmFuseTable), |
1861 | &pm_fuse_table_offset, SMC_RAM_END)) |
1862 | PP_ASSERT_WITH_CODE(false, |
1863 | "Attempt to get pm_fuse_table_offset Failed!" , |
1864 | return -EINVAL); |
1865 | |
1866 | if (vegam_populate_svi_load_line(hwmgr)) |
1867 | PP_ASSERT_WITH_CODE(false, |
1868 | "Attempt to populate SviLoadLine Failed!" , |
1869 | return -EINVAL); |
1870 | |
1871 | if (vegam_populate_tdc_limit(hwmgr)) |
1872 | PP_ASSERT_WITH_CODE(false, |
1873 | "Attempt to populate TDCLimit Failed!" , return -EINVAL); |
1874 | |
1875 | if (vegam_populate_dw8(hwmgr, pm_fuse_table_offset)) |
1876 | PP_ASSERT_WITH_CODE(false, |
1877 | "Attempt to populate TdcWaterfallCtl, " |
1878 | "LPMLTemperature Min and Max Failed!" , |
1879 | return -EINVAL); |
1880 | |
1881 | if (0 != vegam_populate_temperature_scaler(hwmgr)) |
1882 | PP_ASSERT_WITH_CODE(false, |
1883 | "Attempt to populate LPMLTemperatureScaler Failed!" , |
1884 | return -EINVAL); |
1885 | |
1886 | if (vegam_populate_fuzzy_fan(hwmgr)) |
1887 | PP_ASSERT_WITH_CODE(false, |
1888 | "Attempt to populate Fuzzy Fan Control parameters Failed!" , |
1889 | return -EINVAL); |
1890 | |
1891 | if (vegam_populate_gnb_lpml(hwmgr)) |
1892 | PP_ASSERT_WITH_CODE(false, |
1893 | "Attempt to populate GnbLPML Failed!" , |
1894 | return -EINVAL); |
1895 | |
1896 | if (vegam_populate_bapm_vddc_base_leakage_sidd(hwmgr)) |
1897 | PP_ASSERT_WITH_CODE(false, |
1898 | "Attempt to populate BapmVddCBaseLeakage Hi and Lo " |
1899 | "Sidd Failed!" , return -EINVAL); |
1900 | |
1901 | if (smu7_copy_bytes_to_smc(hwmgr, pm_fuse_table_offset, |
1902 | (uint8_t *)&smu_data->power_tune_table, |
1903 | (sizeof(struct SMU75_Discrete_PmFuses) - PMFUSES_AVFSSIZE), |
1904 | SMC_RAM_END)) |
1905 | PP_ASSERT_WITH_CODE(false, |
1906 | "Attempt to download PmFuseTable Failed!" , |
1907 | return -EINVAL); |
1908 | } |
1909 | return 0; |
1910 | } |
1911 | |
1912 | static int vegam_enable_reconfig_cus(struct pp_hwmgr *hwmgr) |
1913 | { |
1914 | struct amdgpu_device *adev = hwmgr->adev; |
1915 | |
1916 | smum_send_msg_to_smc_with_parameter(hwmgr, |
1917 | PPSMC_MSG_EnableModeSwitchRLCNotification, |
1918 | adev->gfx.cu_info.number); |
1919 | |
1920 | return 0; |
1921 | } |
1922 | |
1923 | static int vegam_init_smc_table(struct pp_hwmgr *hwmgr) |
1924 | { |
1925 | int result; |
1926 | struct smu7_hwmgr *hw_data = (struct smu7_hwmgr *)(hwmgr->backend); |
1927 | struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend); |
1928 | |
1929 | struct phm_ppt_v1_information *table_info = |
1930 | (struct phm_ppt_v1_information *)(hwmgr->pptable); |
1931 | struct SMU75_Discrete_DpmTable *table = &(smu_data->smc_state_table); |
1932 | uint8_t i; |
1933 | struct pp_atomctrl_gpio_pin_assignment gpio_pin; |
1934 | struct phm_ppt_v1_gpio_table *gpio_table = |
1935 | (struct phm_ppt_v1_gpio_table *)table_info->gpio_table; |
1936 | pp_atomctrl_clock_dividers_vi dividers; |
1937 | |
1938 | phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
1939 | PHM_PlatformCaps_AutomaticDCTransition); |
1940 | |
1941 | vegam_initialize_power_tune_defaults(hwmgr); |
1942 | |
1943 | if (SMU7_VOLTAGE_CONTROL_NONE != hw_data->voltage_control) |
1944 | vegam_populate_smc_voltage_tables(hwmgr, table); |
1945 | |
1946 | table->SystemFlags = 0; |
1947 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
1948 | PHM_PlatformCaps_AutomaticDCTransition)) |
1949 | table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC; |
1950 | |
1951 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
1952 | PHM_PlatformCaps_StepVddc)) |
1953 | table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC; |
1954 | |
1955 | if (hw_data->is_memory_gddr5) |
1956 | table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5; |
1957 | |
1958 | if (hw_data->ulv_supported && table_info->us_ulv_voltage_offset) { |
1959 | result = vegam_populate_ulv_state(hwmgr, table); |
1960 | PP_ASSERT_WITH_CODE(!result, |
1961 | "Failed to initialize ULV state!" , return result); |
1962 | cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
1963 | ixCG_ULV_PARAMETER, SMU7_CGULVPARAMETER_DFLT); |
1964 | } |
1965 | |
1966 | result = vegam_populate_smc_link_level(hwmgr, table); |
1967 | PP_ASSERT_WITH_CODE(!result, |
1968 | "Failed to initialize Link Level!" , return result); |
1969 | |
1970 | result = vegam_populate_all_graphic_levels(hwmgr); |
1971 | PP_ASSERT_WITH_CODE(!result, |
1972 | "Failed to initialize Graphics Level!" , return result); |
1973 | |
1974 | result = vegam_populate_all_memory_levels(hwmgr); |
1975 | PP_ASSERT_WITH_CODE(!result, |
1976 | "Failed to initialize Memory Level!" , return result); |
1977 | |
1978 | result = vegam_populate_smc_acpi_level(hwmgr, table); |
1979 | PP_ASSERT_WITH_CODE(!result, |
1980 | "Failed to initialize ACPI Level!" , return result); |
1981 | |
1982 | result = vegam_populate_smc_vce_level(hwmgr, table); |
1983 | PP_ASSERT_WITH_CODE(!result, |
1984 | "Failed to initialize VCE Level!" , return result); |
1985 | |
1986 | /* Since only the initial state is completely set up at this point |
1987 | * (the other states are just copies of the boot state) we only |
1988 | * need to populate the ARB settings for the initial state. |
1989 | */ |
1990 | result = vegam_program_memory_timing_parameters(hwmgr); |
1991 | PP_ASSERT_WITH_CODE(!result, |
1992 | "Failed to Write ARB settings for the initial state." , return result); |
1993 | |
1994 | result = vegam_populate_smc_uvd_level(hwmgr, table); |
1995 | PP_ASSERT_WITH_CODE(!result, |
1996 | "Failed to initialize UVD Level!" , return result); |
1997 | |
1998 | result = vegam_populate_smc_boot_level(hwmgr, table); |
1999 | PP_ASSERT_WITH_CODE(!result, |
2000 | "Failed to initialize Boot Level!" , return result); |
2001 | |
2002 | result = vegam_populate_smc_initial_state(hwmgr); |
2003 | PP_ASSERT_WITH_CODE(!result, |
2004 | "Failed to initialize Boot State!" , return result); |
2005 | |
2006 | result = vegam_populate_bapm_parameters_in_dpm_table(hwmgr); |
2007 | PP_ASSERT_WITH_CODE(!result, |
2008 | "Failed to populate BAPM Parameters!" , return result); |
2009 | |
2010 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
2011 | PHM_PlatformCaps_ClockStretcher)) { |
2012 | result = vegam_populate_clock_stretcher_data_table(hwmgr); |
2013 | PP_ASSERT_WITH_CODE(!result, |
2014 | "Failed to populate Clock Stretcher Data Table!" , |
2015 | return result); |
2016 | } |
2017 | |
2018 | result = vegam_populate_avfs_parameters(hwmgr); |
2019 | PP_ASSERT_WITH_CODE(!result, |
2020 | "Failed to populate AVFS Parameters!" , return result;); |
2021 | |
2022 | table->CurrSclkPllRange = 0xff; |
2023 | table->GraphicsVoltageChangeEnable = 1; |
2024 | table->GraphicsThermThrottleEnable = 1; |
2025 | table->GraphicsInterval = 1; |
2026 | table->VoltageInterval = 1; |
2027 | table->ThermalInterval = 1; |
2028 | table->TemperatureLimitHigh = |
2029 | table_info->cac_dtp_table->usTargetOperatingTemp * |
2030 | SMU7_Q88_FORMAT_CONVERSION_UNIT; |
2031 | table->TemperatureLimitLow = |
2032 | (table_info->cac_dtp_table->usTargetOperatingTemp - 1) * |
2033 | SMU7_Q88_FORMAT_CONVERSION_UNIT; |
2034 | table->MemoryVoltageChangeEnable = 1; |
2035 | table->MemoryInterval = 1; |
2036 | table->VoltageResponseTime = 0; |
2037 | table->PhaseResponseTime = 0; |
2038 | table->MemoryThermThrottleEnable = 1; |
2039 | |
2040 | PP_ASSERT_WITH_CODE(hw_data->dpm_table.pcie_speed_table.count >= 1, |
2041 | "There must be 1 or more PCIE levels defined in PPTable." , |
2042 | return -EINVAL); |
2043 | table->PCIeBootLinkLevel = |
2044 | hw_data->dpm_table.pcie_speed_table.count; |
2045 | table->PCIeGenInterval = 1; |
2046 | table->VRConfig = 0; |
2047 | |
2048 | result = vegam_populate_vr_config(hwmgr, table); |
2049 | PP_ASSERT_WITH_CODE(!result, |
2050 | "Failed to populate VRConfig setting!" , return result); |
2051 | |
2052 | table->ThermGpio = 17; |
2053 | table->SclkStepSize = 0x4000; |
2054 | |
2055 | if (atomctrl_get_pp_assign_pin(hwmgr, |
2056 | VDDC_VRHOT_GPIO_PINID, &gpio_pin)) { |
2057 | table->VRHotGpio = gpio_pin.uc_gpio_pin_bit_shift; |
2058 | if (gpio_table) |
2059 | table->VRHotLevel = |
2060 | table_info->gpio_table->vrhot_triggered_sclk_dpm_index; |
2061 | } else { |
2062 | table->VRHotGpio = SMU7_UNUSED_GPIO_PIN; |
2063 | phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
2064 | PHM_PlatformCaps_RegulatorHot); |
2065 | } |
2066 | |
2067 | if (atomctrl_get_pp_assign_pin(hwmgr, |
2068 | PP_AC_DC_SWITCH_GPIO_PINID, &gpio_pin)) { |
2069 | table->AcDcGpio = gpio_pin.uc_gpio_pin_bit_shift; |
2070 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
2071 | PHM_PlatformCaps_AutomaticDCTransition) && |
2072 | !smum_send_msg_to_smc(hwmgr, PPSMC_MSG_UseNewGPIOScheme)) |
2073 | phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
2074 | PHM_PlatformCaps_SMCtoPPLIBAcdcGpioScheme); |
2075 | } else { |
2076 | table->AcDcGpio = SMU7_UNUSED_GPIO_PIN; |
2077 | phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
2078 | PHM_PlatformCaps_AutomaticDCTransition); |
2079 | } |
2080 | |
2081 | /* Thermal Output GPIO */ |
2082 | if (atomctrl_get_pp_assign_pin(hwmgr, |
2083 | THERMAL_INT_OUTPUT_GPIO_PINID, &gpio_pin)) { |
2084 | table->ThermOutGpio = gpio_pin.uc_gpio_pin_bit_shift; |
2085 | |
2086 | /* For porlarity read GPIOPAD_A with assigned Gpio pin |
2087 | * since VBIOS will program this register to set 'inactive state', |
2088 | * driver can then determine 'active state' from this and |
2089 | * program SMU with correct polarity |
2090 | */ |
2091 | table->ThermOutPolarity = |
2092 | (0 == (cgs_read_register(hwmgr->device, mmGPIOPAD_A) & |
2093 | (1 << gpio_pin.uc_gpio_pin_bit_shift))) ? 1:0; |
2094 | table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_ONLY; |
2095 | |
2096 | /* if required, combine VRHot/PCC with thermal out GPIO */ |
2097 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
2098 | PHM_PlatformCaps_RegulatorHot) && |
2099 | phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
2100 | PHM_PlatformCaps_CombinePCCWithThermalSignal)) |
2101 | table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_VRHOT; |
2102 | } else { |
2103 | table->ThermOutGpio = 17; |
2104 | table->ThermOutPolarity = 1; |
2105 | table->ThermOutMode = SMU7_THERM_OUT_MODE_DISABLE; |
2106 | } |
2107 | |
2108 | /* Populate BIF_SCLK levels into SMC DPM table */ |
2109 | for (i = 0; i <= hw_data->dpm_table.pcie_speed_table.count; i++) { |
2110 | result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, |
2111 | smu_data->bif_sclk_table[i], ÷rs); |
2112 | PP_ASSERT_WITH_CODE(!result, |
2113 | "Can not find DFS divide id for Sclk" , |
2114 | return result); |
2115 | |
2116 | if (i == 0) |
2117 | table->Ulv.BifSclkDfs = |
2118 | PP_HOST_TO_SMC_US((uint16_t)(dividers.pll_post_divider)); |
2119 | else |
2120 | table->LinkLevel[i - 1].BifSclkDfs = |
2121 | PP_HOST_TO_SMC_US((uint16_t)(dividers.pll_post_divider)); |
2122 | } |
2123 | |
2124 | for (i = 0; i < SMU75_MAX_ENTRIES_SMIO; i++) |
2125 | table->Smio[i] = PP_HOST_TO_SMC_UL(table->Smio[i]); |
2126 | |
2127 | CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags); |
2128 | CONVERT_FROM_HOST_TO_SMC_UL(table->VRConfig); |
2129 | CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask1); |
2130 | CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask2); |
2131 | CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize); |
2132 | CONVERT_FROM_HOST_TO_SMC_UL(table->CurrSclkPllRange); |
2133 | CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh); |
2134 | CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow); |
2135 | CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime); |
2136 | CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime); |
2137 | |
2138 | /* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */ |
2139 | result = smu7_copy_bytes_to_smc(hwmgr, |
2140 | smu_data->smu7_data.dpm_table_start + |
2141 | offsetof(SMU75_Discrete_DpmTable, SystemFlags), |
2142 | (uint8_t *)&(table->SystemFlags), |
2143 | sizeof(SMU75_Discrete_DpmTable) - 3 * sizeof(SMU75_PIDController), |
2144 | SMC_RAM_END); |
2145 | PP_ASSERT_WITH_CODE(!result, |
2146 | "Failed to upload dpm data to SMC memory!" , return result); |
2147 | |
2148 | result = vegam_populate_pm_fuses(hwmgr); |
2149 | PP_ASSERT_WITH_CODE(!result, |
2150 | "Failed to populate PM fuses to SMC memory!" , return result); |
2151 | |
2152 | result = vegam_enable_reconfig_cus(hwmgr); |
2153 | PP_ASSERT_WITH_CODE(!result, |
2154 | "Failed to enable reconfigurable CUs!" , return result); |
2155 | |
2156 | return 0; |
2157 | } |
2158 | |
2159 | static uint32_t vegam_get_offsetof(uint32_t type, uint32_t member) |
2160 | { |
2161 | switch (type) { |
2162 | case SMU_SoftRegisters: |
2163 | switch (member) { |
2164 | case HandshakeDisables: |
2165 | return offsetof(SMU75_SoftRegisters, HandshakeDisables); |
2166 | case VoltageChangeTimeout: |
2167 | return offsetof(SMU75_SoftRegisters, VoltageChangeTimeout); |
2168 | case AverageGraphicsActivity: |
2169 | return offsetof(SMU75_SoftRegisters, AverageGraphicsActivity); |
2170 | case PreVBlankGap: |
2171 | return offsetof(SMU75_SoftRegisters, PreVBlankGap); |
2172 | case VBlankTimeout: |
2173 | return offsetof(SMU75_SoftRegisters, VBlankTimeout); |
2174 | case UcodeLoadStatus: |
2175 | return offsetof(SMU75_SoftRegisters, UcodeLoadStatus); |
2176 | case DRAM_LOG_ADDR_H: |
2177 | return offsetof(SMU75_SoftRegisters, DRAM_LOG_ADDR_H); |
2178 | case DRAM_LOG_ADDR_L: |
2179 | return offsetof(SMU75_SoftRegisters, DRAM_LOG_ADDR_L); |
2180 | case DRAM_LOG_PHY_ADDR_H: |
2181 | return offsetof(SMU75_SoftRegisters, DRAM_LOG_PHY_ADDR_H); |
2182 | case DRAM_LOG_PHY_ADDR_L: |
2183 | return offsetof(SMU75_SoftRegisters, DRAM_LOG_PHY_ADDR_L); |
2184 | case DRAM_LOG_BUFF_SIZE: |
2185 | return offsetof(SMU75_SoftRegisters, DRAM_LOG_BUFF_SIZE); |
2186 | } |
2187 | break; |
2188 | case SMU_Discrete_DpmTable: |
2189 | switch (member) { |
2190 | case UvdBootLevel: |
2191 | return offsetof(SMU75_Discrete_DpmTable, UvdBootLevel); |
2192 | case VceBootLevel: |
2193 | return offsetof(SMU75_Discrete_DpmTable, VceBootLevel); |
2194 | case LowSclkInterruptThreshold: |
2195 | return offsetof(SMU75_Discrete_DpmTable, LowSclkInterruptThreshold); |
2196 | } |
2197 | break; |
2198 | } |
2199 | pr_warn("can't get the offset of type %x member %x\n" , type, member); |
2200 | return 0; |
2201 | } |
2202 | |
2203 | static int vegam_program_mem_timing_parameters(struct pp_hwmgr *hwmgr) |
2204 | { |
2205 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
2206 | |
2207 | if (data->need_update_smu7_dpm_table & |
2208 | (DPMTABLE_OD_UPDATE_SCLK + |
2209 | DPMTABLE_UPDATE_SCLK + |
2210 | DPMTABLE_UPDATE_MCLK)) |
2211 | return vegam_program_memory_timing_parameters(hwmgr); |
2212 | |
2213 | return 0; |
2214 | } |
2215 | |
2216 | static int vegam_update_sclk_threshold(struct pp_hwmgr *hwmgr) |
2217 | { |
2218 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
2219 | struct vegam_smumgr *smu_data = |
2220 | (struct vegam_smumgr *)(hwmgr->smu_backend); |
2221 | int result = 0; |
2222 | uint32_t low_sclk_interrupt_threshold = 0; |
2223 | |
2224 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
2225 | PHM_PlatformCaps_SclkThrottleLowNotification) |
2226 | && (data->low_sclk_interrupt_threshold != 0)) { |
2227 | low_sclk_interrupt_threshold = |
2228 | data->low_sclk_interrupt_threshold; |
2229 | |
2230 | CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold); |
2231 | |
2232 | result = smu7_copy_bytes_to_smc( |
2233 | hwmgr, |
2234 | smu_data->smu7_data.dpm_table_start + |
2235 | offsetof(SMU75_Discrete_DpmTable, |
2236 | LowSclkInterruptThreshold), |
2237 | (uint8_t *)&low_sclk_interrupt_threshold, |
2238 | sizeof(uint32_t), |
2239 | SMC_RAM_END); |
2240 | } |
2241 | PP_ASSERT_WITH_CODE((result == 0), |
2242 | "Failed to update SCLK threshold!" , return result); |
2243 | |
2244 | result = vegam_program_mem_timing_parameters(hwmgr); |
2245 | PP_ASSERT_WITH_CODE((result == 0), |
2246 | "Failed to program memory timing parameters!" , |
2247 | ); |
2248 | |
2249 | return result; |
2250 | } |
2251 | |
2252 | int vegam_thermal_avfs_enable(struct pp_hwmgr *hwmgr) |
2253 | { |
2254 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
2255 | int ret; |
2256 | |
2257 | if (!hwmgr->avfs_supported) |
2258 | return 0; |
2259 | |
2260 | ret = smum_send_msg_to_smc(hwmgr, PPSMC_MSG_EnableAvfs); |
2261 | if (!ret) { |
2262 | if (data->apply_avfs_cks_off_voltage) |
2263 | ret = smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ApplyAvfsCksOffVoltage); |
2264 | } |
2265 | |
2266 | return ret; |
2267 | } |
2268 | |
2269 | static int vegam_thermal_setup_fan_table(struct pp_hwmgr *hwmgr) |
2270 | { |
2271 | PP_ASSERT_WITH_CODE(hwmgr->thermal_controller.fanInfo.bNoFan, |
2272 | "VBIOS fan info is not correct!" , |
2273 | ); |
2274 | phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
2275 | PHM_PlatformCaps_MicrocodeFanControl); |
2276 | return 0; |
2277 | } |
2278 | |
2279 | const struct pp_smumgr_func vegam_smu_funcs = { |
2280 | .smu_init = vegam_smu_init, |
2281 | .smu_fini = smu7_smu_fini, |
2282 | .start_smu = vegam_start_smu, |
2283 | .check_fw_load_finish = smu7_check_fw_load_finish, |
2284 | .request_smu_load_fw = smu7_reload_firmware, |
2285 | .request_smu_load_specific_fw = NULL, |
2286 | .send_msg_to_smc = smu7_send_msg_to_smc, |
2287 | .send_msg_to_smc_with_parameter = smu7_send_msg_to_smc_with_parameter, |
2288 | .process_firmware_header = vegam_process_firmware_header, |
2289 | .is_dpm_running = vegam_is_dpm_running, |
2290 | .get_mac_definition = vegam_get_mac_definition, |
2291 | .update_smc_table = vegam_update_smc_table, |
2292 | .init_smc_table = vegam_init_smc_table, |
2293 | .get_offsetof = vegam_get_offsetof, |
2294 | .populate_all_graphic_levels = vegam_populate_all_graphic_levels, |
2295 | .populate_all_memory_levels = vegam_populate_all_memory_levels, |
2296 | .update_sclk_threshold = vegam_update_sclk_threshold, |
2297 | .is_hw_avfs_present = vegam_is_hw_avfs_present, |
2298 | .thermal_avfs_enable = vegam_thermal_avfs_enable, |
2299 | .thermal_setup_fan_table = vegam_thermal_setup_fan_table, |
2300 | }; |
2301 | |