1/*
2 * Copyright 2009 Jerome Glisse.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sub license, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19 * USE OR OTHER DEALINGS IN THE SOFTWARE.
20 *
21 * The above copyright notice and this permission notice (including the
22 * next paragraph) shall be included in all copies or substantial portions
23 * of the Software.
24 *
25 */
26/*
27 * Authors:
28 * Jerome Glisse <glisse@freedesktop.org>
29 * Dave Airlie
30 */
31
32#include <linux/atomic.h>
33#include <linux/firmware.h>
34#include <linux/kref.h>
35#include <linux/sched/signal.h>
36#include <linux/seq_file.h>
37#include <linux/slab.h>
38#include <linux/wait.h>
39
40#include <drm/drm_device.h>
41#include <drm/drm_file.h>
42
43#include "radeon.h"
44#include "radeon_reg.h"
45#include "radeon_trace.h"
46
47/*
48 * Fences mark an event in the GPUs pipeline and are used
49 * for GPU/CPU synchronization. When the fence is written,
50 * it is expected that all buffers associated with that fence
51 * are no longer in use by the associated ring on the GPU and
52 * that the relevant GPU caches have been flushed. Whether
53 * we use a scratch register or memory location depends on the asic
54 * and whether writeback is enabled.
55 */
56
57/**
58 * radeon_fence_write - write a fence value
59 *
60 * @rdev: radeon_device pointer
61 * @seq: sequence number to write
62 * @ring: ring index the fence is associated with
63 *
64 * Writes a fence value to memory or a scratch register (all asics).
65 */
66static void radeon_fence_write(struct radeon_device *rdev, u32 seq, int ring)
67{
68 struct radeon_fence_driver *drv = &rdev->fence_drv[ring];
69
70 if (likely(rdev->wb.enabled || !drv->scratch_reg)) {
71 if (drv->cpu_addr)
72 *drv->cpu_addr = cpu_to_le32(seq);
73 } else {
74 WREG32(drv->scratch_reg, seq);
75 }
76}
77
78/**
79 * radeon_fence_read - read a fence value
80 *
81 * @rdev: radeon_device pointer
82 * @ring: ring index the fence is associated with
83 *
84 * Reads a fence value from memory or a scratch register (all asics).
85 * Returns the value of the fence read from memory or register.
86 */
87static u32 radeon_fence_read(struct radeon_device *rdev, int ring)
88{
89 struct radeon_fence_driver *drv = &rdev->fence_drv[ring];
90 u32 seq = 0;
91
92 if (likely(rdev->wb.enabled || !drv->scratch_reg)) {
93 if (drv->cpu_addr)
94 seq = le32_to_cpu(*drv->cpu_addr);
95 else
96 seq = lower_32_bits(atomic64_read(&drv->last_seq));
97 } else {
98 seq = RREG32(drv->scratch_reg);
99 }
100 return seq;
101}
102
103/**
104 * radeon_fence_schedule_check - schedule lockup check
105 *
106 * @rdev: radeon_device pointer
107 * @ring: ring index we should work with
108 *
109 * Queues a delayed work item to check for lockups.
110 */
111static void radeon_fence_schedule_check(struct radeon_device *rdev, int ring)
112{
113 /*
114 * Do not reset the timer here with mod_delayed_work,
115 * this can livelock in an interaction with TTM delayed destroy.
116 */
117 queue_delayed_work(wq: system_power_efficient_wq,
118 dwork: &rdev->fence_drv[ring].lockup_work,
119 RADEON_FENCE_JIFFIES_TIMEOUT);
120}
121
122/**
123 * radeon_fence_emit - emit a fence on the requested ring
124 *
125 * @rdev: radeon_device pointer
126 * @fence: radeon fence object
127 * @ring: ring index the fence is associated with
128 *
129 * Emits a fence command on the requested ring (all asics).
130 * Returns 0 on success, -ENOMEM on failure.
131 */
132int radeon_fence_emit(struct radeon_device *rdev,
133 struct radeon_fence **fence,
134 int ring)
135{
136 u64 seq;
137
138 /* we are protected by the ring emission mutex */
139 *fence = kmalloc(size: sizeof(struct radeon_fence), GFP_KERNEL);
140 if ((*fence) == NULL)
141 return -ENOMEM;
142
143 (*fence)->rdev = rdev;
144 (*fence)->seq = seq = ++rdev->fence_drv[ring].sync_seq[ring];
145 (*fence)->ring = ring;
146 (*fence)->is_vm_update = false;
147 dma_fence_init(fence: &(*fence)->base, ops: &radeon_fence_ops,
148 lock: &rdev->fence_queue.lock,
149 context: rdev->fence_context + ring,
150 seqno: seq);
151 radeon_fence_ring_emit(rdev, ring, *fence);
152 trace_radeon_fence_emit(dev: rdev->ddev, ring, seqno: (*fence)->seq);
153 radeon_fence_schedule_check(rdev, ring);
154 return 0;
155}
156
157/*
158 * radeon_fence_check_signaled - callback from fence_queue
159 *
160 * this function is called with fence_queue lock held, which is also used
161 * for the fence locking itself, so unlocked variants are used for
162 * fence_signal, and remove_wait_queue.
163 */
164static int radeon_fence_check_signaled(wait_queue_entry_t *wait,
165 unsigned int mode, int flags, void *key)
166{
167 struct radeon_fence *fence;
168 u64 seq;
169
170 fence = container_of(wait, struct radeon_fence, fence_wake);
171
172 /*
173 * We cannot use radeon_fence_process here because we're already
174 * in the waitqueue, in a call from wake_up_all.
175 */
176 seq = atomic64_read(v: &fence->rdev->fence_drv[fence->ring].last_seq);
177 if (seq >= fence->seq) {
178 dma_fence_signal_locked(fence: &fence->base);
179 radeon_irq_kms_sw_irq_put(rdev: fence->rdev, ring: fence->ring);
180 __remove_wait_queue(wq_head: &fence->rdev->fence_queue, wq_entry: &fence->fence_wake);
181 dma_fence_put(fence: &fence->base);
182 }
183 return 0;
184}
185
186/**
187 * radeon_fence_activity - check for fence activity
188 *
189 * @rdev: radeon_device pointer
190 * @ring: ring index the fence is associated with
191 *
192 * Checks the current fence value and calculates the last
193 * signalled fence value. Returns true if activity occured
194 * on the ring, and the fence_queue should be waken up.
195 */
196static bool radeon_fence_activity(struct radeon_device *rdev, int ring)
197{
198 uint64_t seq, last_seq, last_emitted;
199 unsigned int count_loop = 0;
200 bool wake = false;
201
202 /* Note there is a scenario here for an infinite loop but it's
203 * very unlikely to happen. For it to happen, the current polling
204 * process need to be interrupted by another process and another
205 * process needs to update the last_seq btw the atomic read and
206 * xchg of the current process.
207 *
208 * More over for this to go in infinite loop there need to be
209 * continuously new fence signaled ie radeon_fence_read needs
210 * to return a different value each time for both the currently
211 * polling process and the other process that xchg the last_seq
212 * btw atomic read and xchg of the current process. And the
213 * value the other process set as last seq must be higher than
214 * the seq value we just read. Which means that current process
215 * need to be interrupted after radeon_fence_read and before
216 * atomic xchg.
217 *
218 * To be even more safe we count the number of time we loop and
219 * we bail after 10 loop just accepting the fact that we might
220 * have temporarly set the last_seq not to the true real last
221 * seq but to an older one.
222 */
223 last_seq = atomic64_read(v: &rdev->fence_drv[ring].last_seq);
224 do {
225 last_emitted = rdev->fence_drv[ring].sync_seq[ring];
226 seq = radeon_fence_read(rdev, ring);
227 seq |= last_seq & 0xffffffff00000000LL;
228 if (seq < last_seq) {
229 seq &= 0xffffffff;
230 seq |= last_emitted & 0xffffffff00000000LL;
231 }
232
233 if (seq <= last_seq || seq > last_emitted)
234 break;
235
236 /* If we loop over we don't want to return without
237 * checking if a fence is signaled as it means that the
238 * seq we just read is different from the previous on.
239 */
240 wake = true;
241 last_seq = seq;
242 if ((count_loop++) > 10) {
243 /* We looped over too many time leave with the
244 * fact that we might have set an older fence
245 * seq then the current real last seq as signaled
246 * by the hw.
247 */
248 break;
249 }
250 } while (atomic64_xchg(v: &rdev->fence_drv[ring].last_seq, new: seq) > seq);
251
252 if (seq < last_emitted)
253 radeon_fence_schedule_check(rdev, ring);
254
255 return wake;
256}
257
258/**
259 * radeon_fence_check_lockup - check for hardware lockup
260 *
261 * @work: delayed work item
262 *
263 * Checks for fence activity and if there is none probe
264 * the hardware if a lockup occured.
265 */
266static void radeon_fence_check_lockup(struct work_struct *work)
267{
268 struct radeon_fence_driver *fence_drv;
269 struct radeon_device *rdev;
270 int ring;
271
272 fence_drv = container_of(work, struct radeon_fence_driver,
273 lockup_work.work);
274 rdev = fence_drv->rdev;
275 ring = fence_drv - &rdev->fence_drv[0];
276
277 if (!down_read_trylock(sem: &rdev->exclusive_lock)) {
278 /* just reschedule the check if a reset is going on */
279 radeon_fence_schedule_check(rdev, ring);
280 return;
281 }
282
283 if (fence_drv->delayed_irq && rdev->irq.installed) {
284 unsigned long irqflags;
285
286 fence_drv->delayed_irq = false;
287 spin_lock_irqsave(&rdev->irq.lock, irqflags);
288 radeon_irq_set(rdev);
289 spin_unlock_irqrestore(lock: &rdev->irq.lock, flags: irqflags);
290 }
291
292 if (radeon_fence_activity(rdev, ring))
293 wake_up_all(&rdev->fence_queue);
294
295 else if (radeon_ring_is_lockup(rdev, ring, &rdev->ring[ring])) {
296
297 /* good news we believe it's a lockup */
298 dev_warn(rdev->dev, "GPU lockup (current fence id 0x%016llx last fence id 0x%016llx on ring %d)\n",
299 (uint64_t)atomic64_read(&fence_drv->last_seq),
300 fence_drv->sync_seq[ring], ring);
301
302 /* remember that we need an reset */
303 rdev->needs_reset = true;
304 wake_up_all(&rdev->fence_queue);
305 }
306 up_read(sem: &rdev->exclusive_lock);
307}
308
309/**
310 * radeon_fence_process - process a fence
311 *
312 * @rdev: radeon_device pointer
313 * @ring: ring index the fence is associated with
314 *
315 * Checks the current fence value and wakes the fence queue
316 * if the sequence number has increased (all asics).
317 */
318void radeon_fence_process(struct radeon_device *rdev, int ring)
319{
320 if (radeon_fence_activity(rdev, ring))
321 wake_up_all(&rdev->fence_queue);
322}
323
324/**
325 * radeon_fence_seq_signaled - check if a fence sequence number has signaled
326 *
327 * @rdev: radeon device pointer
328 * @seq: sequence number
329 * @ring: ring index the fence is associated with
330 *
331 * Check if the last signaled fence sequnce number is >= the requested
332 * sequence number (all asics).
333 * Returns true if the fence has signaled (current fence value
334 * is >= requested value) or false if it has not (current fence
335 * value is < the requested value. Helper function for
336 * radeon_fence_signaled().
337 */
338static bool radeon_fence_seq_signaled(struct radeon_device *rdev,
339 u64 seq, unsigned int ring)
340{
341 if (atomic64_read(v: &rdev->fence_drv[ring].last_seq) >= seq)
342 return true;
343
344 /* poll new last sequence at least once */
345 radeon_fence_process(rdev, ring);
346 if (atomic64_read(v: &rdev->fence_drv[ring].last_seq) >= seq)
347 return true;
348
349 return false;
350}
351
352static bool radeon_fence_is_signaled(struct dma_fence *f)
353{
354 struct radeon_fence *fence = to_radeon_fence(f);
355 struct radeon_device *rdev = fence->rdev;
356 unsigned int ring = fence->ring;
357 u64 seq = fence->seq;
358
359 if (atomic64_read(v: &rdev->fence_drv[ring].last_seq) >= seq)
360 return true;
361
362 if (down_read_trylock(sem: &rdev->exclusive_lock)) {
363 radeon_fence_process(rdev, ring);
364 up_read(sem: &rdev->exclusive_lock);
365
366 if (atomic64_read(v: &rdev->fence_drv[ring].last_seq) >= seq)
367 return true;
368 }
369 return false;
370}
371
372/**
373 * radeon_fence_enable_signaling - enable signalling on fence
374 * @f: fence
375 *
376 * This function is called with fence_queue lock held, and adds a callback
377 * to fence_queue that checks if this fence is signaled, and if so it
378 * signals the fence and removes itself.
379 */
380static bool radeon_fence_enable_signaling(struct dma_fence *f)
381{
382 struct radeon_fence *fence = to_radeon_fence(f);
383 struct radeon_device *rdev = fence->rdev;
384
385 if (atomic64_read(v: &rdev->fence_drv[fence->ring].last_seq) >= fence->seq)
386 return false;
387
388 if (down_read_trylock(sem: &rdev->exclusive_lock)) {
389 radeon_irq_kms_sw_irq_get(rdev, ring: fence->ring);
390
391 if (radeon_fence_activity(rdev, ring: fence->ring))
392 wake_up_all_locked(&rdev->fence_queue);
393
394 /* did fence get signaled after we enabled the sw irq? */
395 if (atomic64_read(v: &rdev->fence_drv[fence->ring].last_seq) >= fence->seq) {
396 radeon_irq_kms_sw_irq_put(rdev, ring: fence->ring);
397 up_read(sem: &rdev->exclusive_lock);
398 return false;
399 }
400
401 up_read(sem: &rdev->exclusive_lock);
402 } else {
403 /* we're probably in a lockup, lets not fiddle too much */
404 if (radeon_irq_kms_sw_irq_get_delayed(rdev, ring: fence->ring))
405 rdev->fence_drv[fence->ring].delayed_irq = true;
406 radeon_fence_schedule_check(rdev, ring: fence->ring);
407 }
408
409 fence->fence_wake.flags = 0;
410 fence->fence_wake.private = NULL;
411 fence->fence_wake.func = radeon_fence_check_signaled;
412 __add_wait_queue(wq_head: &rdev->fence_queue, wq_entry: &fence->fence_wake);
413 dma_fence_get(fence: f);
414 return true;
415}
416
417/**
418 * radeon_fence_signaled - check if a fence has signaled
419 *
420 * @fence: radeon fence object
421 *
422 * Check if the requested fence has signaled (all asics).
423 * Returns true if the fence has signaled or false if it has not.
424 */
425bool radeon_fence_signaled(struct radeon_fence *fence)
426{
427 if (!fence)
428 return true;
429
430 if (radeon_fence_seq_signaled(rdev: fence->rdev, seq: fence->seq, ring: fence->ring)) {
431 dma_fence_signal(fence: &fence->base);
432 return true;
433 }
434 return false;
435}
436
437/**
438 * radeon_fence_any_seq_signaled - check if any sequence number is signaled
439 *
440 * @rdev: radeon device pointer
441 * @seq: sequence numbers
442 *
443 * Check if the last signaled fence sequnce number is >= the requested
444 * sequence number (all asics).
445 * Returns true if any has signaled (current value is >= requested value)
446 * or false if it has not. Helper function for radeon_fence_wait_seq.
447 */
448static bool radeon_fence_any_seq_signaled(struct radeon_device *rdev, u64 *seq)
449{
450 unsigned int i;
451
452 for (i = 0; i < RADEON_NUM_RINGS; ++i) {
453 if (seq[i] && radeon_fence_seq_signaled(rdev, seq: seq[i], ring: i))
454 return true;
455 }
456 return false;
457}
458
459/**
460 * radeon_fence_wait_seq_timeout - wait for a specific sequence numbers
461 *
462 * @rdev: radeon device pointer
463 * @target_seq: sequence number(s) we want to wait for
464 * @intr: use interruptable sleep
465 * @timeout: maximum time to wait, or MAX_SCHEDULE_TIMEOUT for infinite wait
466 *
467 * Wait for the requested sequence number(s) to be written by any ring
468 * (all asics). Sequnce number array is indexed by ring id.
469 * @intr selects whether to use interruptable (true) or non-interruptable
470 * (false) sleep when waiting for the sequence number. Helper function
471 * for radeon_fence_wait_*().
472 * Returns remaining time if the sequence number has passed, 0 when
473 * the wait timeout, or an error for all other cases.
474 * -EDEADLK is returned when a GPU lockup has been detected.
475 */
476static long radeon_fence_wait_seq_timeout(struct radeon_device *rdev,
477 u64 *target_seq, bool intr,
478 long timeout)
479{
480 long r;
481 int i;
482
483 if (radeon_fence_any_seq_signaled(rdev, seq: target_seq))
484 return timeout;
485
486 /* enable IRQs and tracing */
487 for (i = 0; i < RADEON_NUM_RINGS; ++i) {
488 if (!target_seq[i])
489 continue;
490
491 trace_radeon_fence_wait_begin(dev: rdev->ddev, ring: i, seqno: target_seq[i]);
492 radeon_irq_kms_sw_irq_get(rdev, ring: i);
493 }
494
495 if (intr) {
496 r = wait_event_interruptible_timeout(rdev->fence_queue, (
497 radeon_fence_any_seq_signaled(rdev, target_seq)
498 || rdev->needs_reset), timeout);
499 } else {
500 r = wait_event_timeout(rdev->fence_queue, (
501 radeon_fence_any_seq_signaled(rdev, target_seq)
502 || rdev->needs_reset), timeout);
503 }
504
505 if (rdev->needs_reset)
506 r = -EDEADLK;
507
508 for (i = 0; i < RADEON_NUM_RINGS; ++i) {
509 if (!target_seq[i])
510 continue;
511
512 radeon_irq_kms_sw_irq_put(rdev, ring: i);
513 trace_radeon_fence_wait_end(dev: rdev->ddev, ring: i, seqno: target_seq[i]);
514 }
515
516 return r;
517}
518
519/**
520 * radeon_fence_wait_timeout - wait for a fence to signal with timeout
521 *
522 * @fence: radeon fence object
523 * @intr: use interruptible sleep
524 *
525 * Wait for the requested fence to signal (all asics).
526 * @intr selects whether to use interruptable (true) or non-interruptable
527 * (false) sleep when waiting for the fence.
528 * @timeout: maximum time to wait, or MAX_SCHEDULE_TIMEOUT for infinite wait
529 * Returns remaining time if the sequence number has passed, 0 when
530 * the wait timeout, or an error for all other cases.
531 */
532long radeon_fence_wait_timeout(struct radeon_fence *fence, bool intr, long timeout)
533{
534 uint64_t seq[RADEON_NUM_RINGS] = {};
535 long r;
536
537 /*
538 * This function should not be called on !radeon fences.
539 * If this is the case, it would mean this function can
540 * also be called on radeon fences belonging to another card.
541 * exclusive_lock is not held in that case.
542 */
543 if (WARN_ON_ONCE(!to_radeon_fence(&fence->base)))
544 return dma_fence_wait(fence: &fence->base, intr);
545
546 seq[fence->ring] = fence->seq;
547 r = radeon_fence_wait_seq_timeout(rdev: fence->rdev, target_seq: seq, intr, timeout);
548 if (r <= 0)
549 return r;
550
551 dma_fence_signal(fence: &fence->base);
552 return r;
553}
554
555/**
556 * radeon_fence_wait - wait for a fence to signal
557 *
558 * @fence: radeon fence object
559 * @intr: use interruptible sleep
560 *
561 * Wait for the requested fence to signal (all asics).
562 * @intr selects whether to use interruptable (true) or non-interruptable
563 * (false) sleep when waiting for the fence.
564 * Returns 0 if the fence has passed, error for all other cases.
565 */
566int radeon_fence_wait(struct radeon_fence *fence, bool intr)
567{
568 long r = radeon_fence_wait_timeout(fence, intr, MAX_SCHEDULE_TIMEOUT);
569
570 if (r > 0)
571 return 0;
572 else
573 return r;
574}
575
576/**
577 * radeon_fence_wait_any - wait for a fence to signal on any ring
578 *
579 * @rdev: radeon device pointer
580 * @fences: radeon fence object(s)
581 * @intr: use interruptable sleep
582 *
583 * Wait for any requested fence to signal (all asics). Fence
584 * array is indexed by ring id. @intr selects whether to use
585 * interruptable (true) or non-interruptable (false) sleep when
586 * waiting for the fences. Used by the suballocator.
587 * Returns 0 if any fence has passed, error for all other cases.
588 */
589int radeon_fence_wait_any(struct radeon_device *rdev,
590 struct radeon_fence **fences,
591 bool intr)
592{
593 uint64_t seq[RADEON_NUM_RINGS];
594 unsigned int i, num_rings = 0;
595 long r;
596
597 for (i = 0; i < RADEON_NUM_RINGS; ++i) {
598 seq[i] = 0;
599
600 if (!fences[i])
601 continue;
602
603 seq[i] = fences[i]->seq;
604 ++num_rings;
605 }
606
607 /* nothing to wait for ? */
608 if (num_rings == 0)
609 return -ENOENT;
610
611 r = radeon_fence_wait_seq_timeout(rdev, target_seq: seq, intr, MAX_SCHEDULE_TIMEOUT);
612 if (r < 0)
613 return r;
614
615 return 0;
616}
617
618/**
619 * radeon_fence_wait_next - wait for the next fence to signal
620 *
621 * @rdev: radeon device pointer
622 * @ring: ring index the fence is associated with
623 *
624 * Wait for the next fence on the requested ring to signal (all asics).
625 * Returns 0 if the next fence has passed, error for all other cases.
626 * Caller must hold ring lock.
627 */
628int radeon_fence_wait_next(struct radeon_device *rdev, int ring)
629{
630 uint64_t seq[RADEON_NUM_RINGS] = {};
631 long r;
632
633 seq[ring] = atomic64_read(v: &rdev->fence_drv[ring].last_seq) + 1ULL;
634 if (seq[ring] >= rdev->fence_drv[ring].sync_seq[ring]) {
635 /* nothing to wait for, last_seq is already
636 * the last emited fence
637 */
638 return -ENOENT;
639 }
640
641 r = radeon_fence_wait_seq_timeout(rdev, target_seq: seq, intr: false, MAX_SCHEDULE_TIMEOUT);
642 if (r < 0)
643 return r;
644
645 return 0;
646}
647
648/**
649 * radeon_fence_wait_empty - wait for all fences to signal
650 *
651 * @rdev: radeon device pointer
652 * @ring: ring index the fence is associated with
653 *
654 * Wait for all fences on the requested ring to signal (all asics).
655 * Returns 0 if the fences have passed, error for all other cases.
656 * Caller must hold ring lock.
657 */
658int radeon_fence_wait_empty(struct radeon_device *rdev, int ring)
659{
660 uint64_t seq[RADEON_NUM_RINGS] = {};
661 long r;
662
663 seq[ring] = rdev->fence_drv[ring].sync_seq[ring];
664 if (!seq[ring])
665 return 0;
666
667 r = radeon_fence_wait_seq_timeout(rdev, target_seq: seq, intr: false, MAX_SCHEDULE_TIMEOUT);
668 if (r < 0) {
669 if (r == -EDEADLK)
670 return -EDEADLK;
671
672 dev_err(rdev->dev, "error waiting for ring[%d] to become idle (%ld)\n",
673 ring, r);
674 }
675 return 0;
676}
677
678/**
679 * radeon_fence_ref - take a ref on a fence
680 *
681 * @fence: radeon fence object
682 *
683 * Take a reference on a fence (all asics).
684 * Returns the fence.
685 */
686struct radeon_fence *radeon_fence_ref(struct radeon_fence *fence)
687{
688 dma_fence_get(fence: &fence->base);
689 return fence;
690}
691
692/**
693 * radeon_fence_unref - remove a ref on a fence
694 *
695 * @fence: radeon fence object
696 *
697 * Remove a reference on a fence (all asics).
698 */
699void radeon_fence_unref(struct radeon_fence **fence)
700{
701 struct radeon_fence *tmp = *fence;
702
703 *fence = NULL;
704 if (tmp)
705 dma_fence_put(fence: &tmp->base);
706}
707
708/**
709 * radeon_fence_count_emitted - get the count of emitted fences
710 *
711 * @rdev: radeon device pointer
712 * @ring: ring index the fence is associated with
713 *
714 * Get the number of fences emitted on the requested ring (all asics).
715 * Returns the number of emitted fences on the ring. Used by the
716 * dynpm code to ring track activity.
717 */
718unsigned int radeon_fence_count_emitted(struct radeon_device *rdev, int ring)
719{
720 uint64_t emitted;
721
722 /* We are not protected by ring lock when reading the last sequence
723 * but it's ok to report slightly wrong fence count here.
724 */
725 radeon_fence_process(rdev, ring);
726 emitted = rdev->fence_drv[ring].sync_seq[ring]
727 - atomic64_read(v: &rdev->fence_drv[ring].last_seq);
728 /* to avoid 32bits warp around */
729 if (emitted > 0x10000000)
730 emitted = 0x10000000;
731
732 return (unsigned int)emitted;
733}
734
735/**
736 * radeon_fence_need_sync - do we need a semaphore
737 *
738 * @fence: radeon fence object
739 * @dst_ring: which ring to check against
740 *
741 * Check if the fence needs to be synced against another ring
742 * (all asics). If so, we need to emit a semaphore.
743 * Returns true if we need to sync with another ring, false if
744 * not.
745 */
746bool radeon_fence_need_sync(struct radeon_fence *fence, int dst_ring)
747{
748 struct radeon_fence_driver *fdrv;
749
750 if (!fence)
751 return false;
752
753 if (fence->ring == dst_ring)
754 return false;
755
756 /* we are protected by the ring mutex */
757 fdrv = &fence->rdev->fence_drv[dst_ring];
758 if (fence->seq <= fdrv->sync_seq[fence->ring])
759 return false;
760
761 return true;
762}
763
764/**
765 * radeon_fence_note_sync - record the sync point
766 *
767 * @fence: radeon fence object
768 * @dst_ring: which ring to check against
769 *
770 * Note the sequence number at which point the fence will
771 * be synced with the requested ring (all asics).
772 */
773void radeon_fence_note_sync(struct radeon_fence *fence, int dst_ring)
774{
775 struct radeon_fence_driver *dst, *src;
776 unsigned int i;
777
778 if (!fence)
779 return;
780
781 if (fence->ring == dst_ring)
782 return;
783
784 /* we are protected by the ring mutex */
785 src = &fence->rdev->fence_drv[fence->ring];
786 dst = &fence->rdev->fence_drv[dst_ring];
787 for (i = 0; i < RADEON_NUM_RINGS; ++i) {
788 if (i == dst_ring)
789 continue;
790
791 dst->sync_seq[i] = max(dst->sync_seq[i], src->sync_seq[i]);
792 }
793}
794
795/**
796 * radeon_fence_driver_start_ring - make the fence driver
797 * ready for use on the requested ring.
798 *
799 * @rdev: radeon device pointer
800 * @ring: ring index to start the fence driver on
801 *
802 * Make the fence driver ready for processing (all asics).
803 * Not all asics have all rings, so each asic will only
804 * start the fence driver on the rings it has.
805 * Returns 0 for success, errors for failure.
806 */
807int radeon_fence_driver_start_ring(struct radeon_device *rdev, int ring)
808{
809 uint64_t index;
810 int r;
811
812 radeon_scratch_free(rdev, reg: rdev->fence_drv[ring].scratch_reg);
813 if (rdev->wb.use_event || !radeon_ring_supports_scratch_reg(rdev, ring: &rdev->ring[ring])) {
814 rdev->fence_drv[ring].scratch_reg = 0;
815 if (ring != R600_RING_TYPE_UVD_INDEX) {
816 index = R600_WB_EVENT_OFFSET + ring * 4;
817 rdev->fence_drv[ring].cpu_addr = &rdev->wb.wb[index/4];
818 rdev->fence_drv[ring].gpu_addr = rdev->wb.gpu_addr +
819 index;
820
821 } else {
822 /* put fence directly behind firmware */
823 index = ALIGN(rdev->uvd_fw->size, 8);
824 rdev->fence_drv[ring].cpu_addr = rdev->uvd.cpu_addr + index;
825 rdev->fence_drv[ring].gpu_addr = rdev->uvd.gpu_addr + index;
826 }
827
828 } else {
829 r = radeon_scratch_get(rdev, reg: &rdev->fence_drv[ring].scratch_reg);
830 if (r) {
831 dev_err(rdev->dev, "fence failed to get scratch register\n");
832 return r;
833 }
834 index = RADEON_WB_SCRATCH_OFFSET +
835 rdev->fence_drv[ring].scratch_reg -
836 rdev->scratch.reg_base;
837 rdev->fence_drv[ring].cpu_addr = &rdev->wb.wb[index/4];
838 rdev->fence_drv[ring].gpu_addr = rdev->wb.gpu_addr + index;
839 }
840 radeon_fence_write(rdev, seq: atomic64_read(v: &rdev->fence_drv[ring].last_seq), ring);
841 rdev->fence_drv[ring].initialized = true;
842 dev_info(rdev->dev, "fence driver on ring %d use gpu addr 0x%016llx\n",
843 ring, rdev->fence_drv[ring].gpu_addr);
844 return 0;
845}
846
847/**
848 * radeon_fence_driver_init_ring - init the fence driver
849 * for the requested ring.
850 *
851 * @rdev: radeon device pointer
852 * @ring: ring index to start the fence driver on
853 *
854 * Init the fence driver for the requested ring (all asics).
855 * Helper function for radeon_fence_driver_init().
856 */
857static void radeon_fence_driver_init_ring(struct radeon_device *rdev, int ring)
858{
859 int i;
860
861 rdev->fence_drv[ring].scratch_reg = -1;
862 rdev->fence_drv[ring].cpu_addr = NULL;
863 rdev->fence_drv[ring].gpu_addr = 0;
864 for (i = 0; i < RADEON_NUM_RINGS; ++i)
865 rdev->fence_drv[ring].sync_seq[i] = 0;
866 atomic64_set(v: &rdev->fence_drv[ring].last_seq, i: 0);
867 rdev->fence_drv[ring].initialized = false;
868 INIT_DELAYED_WORK(&rdev->fence_drv[ring].lockup_work,
869 radeon_fence_check_lockup);
870 rdev->fence_drv[ring].rdev = rdev;
871}
872
873/**
874 * radeon_fence_driver_init - init the fence driver
875 * for all possible rings.
876 *
877 * @rdev: radeon device pointer
878 *
879 * Init the fence driver for all possible rings (all asics).
880 * Not all asics have all rings, so each asic will only
881 * start the fence driver on the rings it has using
882 * radeon_fence_driver_start_ring().
883 */
884void radeon_fence_driver_init(struct radeon_device *rdev)
885{
886 int ring;
887
888 init_waitqueue_head(&rdev->fence_queue);
889 for (ring = 0; ring < RADEON_NUM_RINGS; ring++)
890 radeon_fence_driver_init_ring(rdev, ring);
891
892 radeon_debugfs_fence_init(rdev);
893}
894
895/**
896 * radeon_fence_driver_fini - tear down the fence driver
897 * for all possible rings.
898 *
899 * @rdev: radeon device pointer
900 *
901 * Tear down the fence driver for all possible rings (all asics).
902 */
903void radeon_fence_driver_fini(struct radeon_device *rdev)
904{
905 int ring, r;
906
907 mutex_lock(&rdev->ring_lock);
908 for (ring = 0; ring < RADEON_NUM_RINGS; ring++) {
909 if (!rdev->fence_drv[ring].initialized)
910 continue;
911 r = radeon_fence_wait_empty(rdev, ring);
912 if (r) {
913 /* no need to trigger GPU reset as we are unloading */
914 radeon_fence_driver_force_completion(rdev, ring);
915 }
916 cancel_delayed_work_sync(dwork: &rdev->fence_drv[ring].lockup_work);
917 wake_up_all(&rdev->fence_queue);
918 radeon_scratch_free(rdev, reg: rdev->fence_drv[ring].scratch_reg);
919 rdev->fence_drv[ring].initialized = false;
920 }
921 mutex_unlock(lock: &rdev->ring_lock);
922}
923
924/**
925 * radeon_fence_driver_force_completion - force all fence waiter to complete
926 *
927 * @rdev: radeon device pointer
928 * @ring: the ring to complete
929 *
930 * In case of GPU reset failure make sure no process keep waiting on fence
931 * that will never complete.
932 */
933void radeon_fence_driver_force_completion(struct radeon_device *rdev, int ring)
934{
935 if (rdev->fence_drv[ring].initialized) {
936 radeon_fence_write(rdev, seq: rdev->fence_drv[ring].sync_seq[ring], ring);
937 cancel_delayed_work_sync(dwork: &rdev->fence_drv[ring].lockup_work);
938 }
939}
940
941
942/*
943 * Fence debugfs
944 */
945#if defined(CONFIG_DEBUG_FS)
946static int radeon_debugfs_fence_info_show(struct seq_file *m, void *data)
947{
948 struct radeon_device *rdev = m->private;
949 int i, j;
950
951 for (i = 0; i < RADEON_NUM_RINGS; ++i) {
952 if (!rdev->fence_drv[i].initialized)
953 continue;
954
955 radeon_fence_process(rdev, ring: i);
956
957 seq_printf(m, fmt: "--- ring %d ---\n", i);
958 seq_printf(m, fmt: "Last signaled fence 0x%016llx\n",
959 (unsigned long long)atomic64_read(v: &rdev->fence_drv[i].last_seq));
960 seq_printf(m, fmt: "Last emitted 0x%016llx\n",
961 rdev->fence_drv[i].sync_seq[i]);
962
963 for (j = 0; j < RADEON_NUM_RINGS; ++j) {
964 if (i != j && rdev->fence_drv[j].initialized)
965 seq_printf(m, fmt: "Last sync to ring %d 0x%016llx\n",
966 j, rdev->fence_drv[i].sync_seq[j]);
967 }
968 }
969 return 0;
970}
971
972/*
973 * radeon_debugfs_gpu_reset - manually trigger a gpu reset
974 *
975 * Manually trigger a gpu reset at the next fence wait.
976 */
977static int radeon_debugfs_gpu_reset(void *data, u64 *val)
978{
979 struct radeon_device *rdev = (struct radeon_device *)data;
980
981 down_read(sem: &rdev->exclusive_lock);
982 *val = rdev->needs_reset;
983 rdev->needs_reset = true;
984 wake_up_all(&rdev->fence_queue);
985 up_read(sem: &rdev->exclusive_lock);
986
987 return 0;
988}
989DEFINE_SHOW_ATTRIBUTE(radeon_debugfs_fence_info);
990DEFINE_DEBUGFS_ATTRIBUTE(radeon_debugfs_gpu_reset_fops,
991 radeon_debugfs_gpu_reset, NULL, "%lld\n");
992#endif
993
994void radeon_debugfs_fence_init(struct radeon_device *rdev)
995{
996#if defined(CONFIG_DEBUG_FS)
997 struct dentry *root = rdev->ddev->primary->debugfs_root;
998
999 debugfs_create_file(name: "radeon_gpu_reset", mode: 0444, parent: root, data: rdev,
1000 fops: &radeon_debugfs_gpu_reset_fops);
1001 debugfs_create_file(name: "radeon_fence_info", mode: 0444, parent: root, data: rdev,
1002 fops: &radeon_debugfs_fence_info_fops);
1003
1004
1005#endif
1006}
1007
1008static const char *radeon_fence_get_driver_name(struct dma_fence *fence)
1009{
1010 return "radeon";
1011}
1012
1013static const char *radeon_fence_get_timeline_name(struct dma_fence *f)
1014{
1015 struct radeon_fence *fence = to_radeon_fence(f);
1016
1017 switch (fence->ring) {
1018 case RADEON_RING_TYPE_GFX_INDEX: return "radeon.gfx";
1019 case CAYMAN_RING_TYPE_CP1_INDEX: return "radeon.cp1";
1020 case CAYMAN_RING_TYPE_CP2_INDEX: return "radeon.cp2";
1021 case R600_RING_TYPE_DMA_INDEX: return "radeon.dma";
1022 case CAYMAN_RING_TYPE_DMA1_INDEX: return "radeon.dma1";
1023 case R600_RING_TYPE_UVD_INDEX: return "radeon.uvd";
1024 case TN_RING_TYPE_VCE1_INDEX: return "radeon.vce1";
1025 case TN_RING_TYPE_VCE2_INDEX: return "radeon.vce2";
1026 default:
1027 WARN_ON_ONCE(1);
1028 return "radeon.unk";
1029 }
1030}
1031
1032static inline bool radeon_test_signaled(struct radeon_fence *fence)
1033{
1034 return test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->base.flags);
1035}
1036
1037struct radeon_wait_cb {
1038 struct dma_fence_cb base;
1039 struct task_struct *task;
1040};
1041
1042static void
1043radeon_fence_wait_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
1044{
1045 struct radeon_wait_cb *wait =
1046 container_of(cb, struct radeon_wait_cb, base);
1047
1048 wake_up_process(tsk: wait->task);
1049}
1050
1051static signed long radeon_fence_default_wait(struct dma_fence *f, bool intr,
1052 signed long t)
1053{
1054 struct radeon_fence *fence = to_radeon_fence(f);
1055 struct radeon_device *rdev = fence->rdev;
1056 struct radeon_wait_cb cb;
1057
1058 cb.task = current;
1059
1060 if (dma_fence_add_callback(fence: f, cb: &cb.base, func: radeon_fence_wait_cb))
1061 return t;
1062
1063 while (t > 0) {
1064 if (intr)
1065 set_current_state(TASK_INTERRUPTIBLE);
1066 else
1067 set_current_state(TASK_UNINTERRUPTIBLE);
1068
1069 /*
1070 * radeon_test_signaled must be called after
1071 * set_current_state to prevent a race with wake_up_process
1072 */
1073 if (radeon_test_signaled(fence))
1074 break;
1075
1076 if (rdev->needs_reset) {
1077 t = -EDEADLK;
1078 break;
1079 }
1080
1081 t = schedule_timeout(timeout: t);
1082
1083 if (t > 0 && intr && signal_pending(current))
1084 t = -ERESTARTSYS;
1085 }
1086
1087 __set_current_state(TASK_RUNNING);
1088 dma_fence_remove_callback(fence: f, cb: &cb.base);
1089
1090 return t;
1091}
1092
1093const struct dma_fence_ops radeon_fence_ops = {
1094 .get_driver_name = radeon_fence_get_driver_name,
1095 .get_timeline_name = radeon_fence_get_timeline_name,
1096 .enable_signaling = radeon_fence_enable_signaling,
1097 .signaled = radeon_fence_is_signaled,
1098 .wait = radeon_fence_default_wait,
1099 .release = NULL,
1100};
1101

source code of linux/drivers/gpu/drm/radeon/radeon_fence.c