1/*
2 * HID support for Linux
3 *
4 * Copyright (c) 1999 Andreas Gal
5 * Copyright (c) 2000-2005 Vojtech Pavlik <vojtech@suse.cz>
6 * Copyright (c) 2005 Michael Haboustak <mike-@cinci.rr.com> for Concept2, Inc
7 * Copyright (c) 2006-2012 Jiri Kosina
8 */
9
10/*
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the Free
13 * Software Foundation; either version 2 of the License, or (at your option)
14 * any later version.
15 */
16
17#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
19#include <linux/module.h>
20#include <linux/slab.h>
21#include <linux/init.h>
22#include <linux/kernel.h>
23#include <linux/list.h>
24#include <linux/mm.h>
25#include <linux/spinlock.h>
26#include <asm/unaligned.h>
27#include <asm/byteorder.h>
28#include <linux/input.h>
29#include <linux/wait.h>
30#include <linux/vmalloc.h>
31#include <linux/sched.h>
32#include <linux/semaphore.h>
33
34#include <linux/hid.h>
35#include <linux/hiddev.h>
36#include <linux/hid-debug.h>
37#include <linux/hidraw.h>
38
39#include "hid-ids.h"
40
41/*
42 * Version Information
43 */
44
45#define DRIVER_DESC "HID core driver"
46
47int hid_debug = 0;
48module_param_named(debug, hid_debug, int, 0600);
49MODULE_PARM_DESC(debug, "toggle HID debugging messages");
50EXPORT_SYMBOL_GPL(hid_debug);
51
52static int hid_ignore_special_drivers = 0;
53module_param_named(ignore_special_drivers, hid_ignore_special_drivers, int, 0600);
54MODULE_PARM_DESC(ignore_special_drivers, "Ignore any special drivers and handle all devices by generic driver");
55
56/*
57 * Register a new report for a device.
58 */
59
60struct hid_report *hid_register_report(struct hid_device *device,
61 unsigned int type, unsigned int id,
62 unsigned int application)
63{
64 struct hid_report_enum *report_enum = device->report_enum + type;
65 struct hid_report *report;
66
67 if (id >= HID_MAX_IDS)
68 return NULL;
69 if (report_enum->report_id_hash[id])
70 return report_enum->report_id_hash[id];
71
72 report = kzalloc(sizeof(struct hid_report), GFP_KERNEL);
73 if (!report)
74 return NULL;
75
76 if (id != 0)
77 report_enum->numbered = 1;
78
79 report->id = id;
80 report->type = type;
81 report->size = 0;
82 report->device = device;
83 report->application = application;
84 report_enum->report_id_hash[id] = report;
85
86 list_add_tail(&report->list, &report_enum->report_list);
87
88 return report;
89}
90EXPORT_SYMBOL_GPL(hid_register_report);
91
92/*
93 * Register a new field for this report.
94 */
95
96static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages, unsigned values)
97{
98 struct hid_field *field;
99
100 if (report->maxfield == HID_MAX_FIELDS) {
101 hid_err(report->device, "too many fields in report\n");
102 return NULL;
103 }
104
105 field = kzalloc((sizeof(struct hid_field) +
106 usages * sizeof(struct hid_usage) +
107 values * sizeof(unsigned)), GFP_KERNEL);
108 if (!field)
109 return NULL;
110
111 field->index = report->maxfield++;
112 report->field[field->index] = field;
113 field->usage = (struct hid_usage *)(field + 1);
114 field->value = (s32 *)(field->usage + usages);
115 field->report = report;
116
117 return field;
118}
119
120/*
121 * Open a collection. The type/usage is pushed on the stack.
122 */
123
124static int open_collection(struct hid_parser *parser, unsigned type)
125{
126 struct hid_collection *collection;
127 unsigned usage;
128 int collection_index;
129
130 usage = parser->local.usage[0];
131
132 if (parser->collection_stack_ptr == parser->collection_stack_size) {
133 unsigned int *collection_stack;
134 unsigned int new_size = parser->collection_stack_size +
135 HID_COLLECTION_STACK_SIZE;
136
137 collection_stack = krealloc(parser->collection_stack,
138 new_size * sizeof(unsigned int),
139 GFP_KERNEL);
140 if (!collection_stack)
141 return -ENOMEM;
142
143 parser->collection_stack = collection_stack;
144 parser->collection_stack_size = new_size;
145 }
146
147 if (parser->device->maxcollection == parser->device->collection_size) {
148 collection = kmalloc(
149 array3_size(sizeof(struct hid_collection),
150 parser->device->collection_size,
151 2),
152 GFP_KERNEL);
153 if (collection == NULL) {
154 hid_err(parser->device, "failed to reallocate collection array\n");
155 return -ENOMEM;
156 }
157 memcpy(collection, parser->device->collection,
158 sizeof(struct hid_collection) *
159 parser->device->collection_size);
160 memset(collection + parser->device->collection_size, 0,
161 sizeof(struct hid_collection) *
162 parser->device->collection_size);
163 kfree(parser->device->collection);
164 parser->device->collection = collection;
165 parser->device->collection_size *= 2;
166 }
167
168 parser->collection_stack[parser->collection_stack_ptr++] =
169 parser->device->maxcollection;
170
171 collection_index = parser->device->maxcollection++;
172 collection = parser->device->collection + collection_index;
173 collection->type = type;
174 collection->usage = usage;
175 collection->level = parser->collection_stack_ptr - 1;
176 collection->parent_idx = (collection->level == 0) ? -1 :
177 parser->collection_stack[collection->level - 1];
178
179 if (type == HID_COLLECTION_APPLICATION)
180 parser->device->maxapplication++;
181
182 return 0;
183}
184
185/*
186 * Close a collection.
187 */
188
189static int close_collection(struct hid_parser *parser)
190{
191 if (!parser->collection_stack_ptr) {
192 hid_err(parser->device, "collection stack underflow\n");
193 return -EINVAL;
194 }
195 parser->collection_stack_ptr--;
196 return 0;
197}
198
199/*
200 * Climb up the stack, search for the specified collection type
201 * and return the usage.
202 */
203
204static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type)
205{
206 struct hid_collection *collection = parser->device->collection;
207 int n;
208
209 for (n = parser->collection_stack_ptr - 1; n >= 0; n--) {
210 unsigned index = parser->collection_stack[n];
211 if (collection[index].type == type)
212 return collection[index].usage;
213 }
214 return 0; /* we know nothing about this usage type */
215}
216
217/*
218 * Add a usage to the temporary parser table.
219 */
220
221static int hid_add_usage(struct hid_parser *parser, unsigned usage)
222{
223 if (parser->local.usage_index >= HID_MAX_USAGES) {
224 hid_err(parser->device, "usage index exceeded\n");
225 return -1;
226 }
227 parser->local.usage[parser->local.usage_index] = usage;
228 parser->local.collection_index[parser->local.usage_index] =
229 parser->collection_stack_ptr ?
230 parser->collection_stack[parser->collection_stack_ptr - 1] : 0;
231 parser->local.usage_index++;
232 return 0;
233}
234
235/*
236 * Register a new field for this report.
237 */
238
239static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags)
240{
241 struct hid_report *report;
242 struct hid_field *field;
243 unsigned int usages;
244 unsigned int offset;
245 unsigned int i;
246 unsigned int application;
247
248 application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION);
249
250 report = hid_register_report(parser->device, report_type,
251 parser->global.report_id, application);
252 if (!report) {
253 hid_err(parser->device, "hid_register_report failed\n");
254 return -1;
255 }
256
257 /* Handle both signed and unsigned cases properly */
258 if ((parser->global.logical_minimum < 0 &&
259 parser->global.logical_maximum <
260 parser->global.logical_minimum) ||
261 (parser->global.logical_minimum >= 0 &&
262 (__u32)parser->global.logical_maximum <
263 (__u32)parser->global.logical_minimum)) {
264 dbg_hid("logical range invalid 0x%x 0x%x\n",
265 parser->global.logical_minimum,
266 parser->global.logical_maximum);
267 return -1;
268 }
269
270 offset = report->size;
271 report->size += parser->global.report_size * parser->global.report_count;
272
273 if (!parser->local.usage_index) /* Ignore padding fields */
274 return 0;
275
276 usages = max_t(unsigned, parser->local.usage_index,
277 parser->global.report_count);
278
279 field = hid_register_field(report, usages, parser->global.report_count);
280 if (!field)
281 return 0;
282
283 field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL);
284 field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL);
285 field->application = application;
286
287 for (i = 0; i < usages; i++) {
288 unsigned j = i;
289 /* Duplicate the last usage we parsed if we have excess values */
290 if (i >= parser->local.usage_index)
291 j = parser->local.usage_index - 1;
292 field->usage[i].hid = parser->local.usage[j];
293 field->usage[i].collection_index =
294 parser->local.collection_index[j];
295 field->usage[i].usage_index = i;
296 field->usage[i].resolution_multiplier = 1;
297 }
298
299 field->maxusage = usages;
300 field->flags = flags;
301 field->report_offset = offset;
302 field->report_type = report_type;
303 field->report_size = parser->global.report_size;
304 field->report_count = parser->global.report_count;
305 field->logical_minimum = parser->global.logical_minimum;
306 field->logical_maximum = parser->global.logical_maximum;
307 field->physical_minimum = parser->global.physical_minimum;
308 field->physical_maximum = parser->global.physical_maximum;
309 field->unit_exponent = parser->global.unit_exponent;
310 field->unit = parser->global.unit;
311
312 return 0;
313}
314
315/*
316 * Read data value from item.
317 */
318
319static u32 item_udata(struct hid_item *item)
320{
321 switch (item->size) {
322 case 1: return item->data.u8;
323 case 2: return item->data.u16;
324 case 4: return item->data.u32;
325 }
326 return 0;
327}
328
329static s32 item_sdata(struct hid_item *item)
330{
331 switch (item->size) {
332 case 1: return item->data.s8;
333 case 2: return item->data.s16;
334 case 4: return item->data.s32;
335 }
336 return 0;
337}
338
339/*
340 * Process a global item.
341 */
342
343static int hid_parser_global(struct hid_parser *parser, struct hid_item *item)
344{
345 __s32 raw_value;
346 switch (item->tag) {
347 case HID_GLOBAL_ITEM_TAG_PUSH:
348
349 if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) {
350 hid_err(parser->device, "global environment stack overflow\n");
351 return -1;
352 }
353
354 memcpy(parser->global_stack + parser->global_stack_ptr++,
355 &parser->global, sizeof(struct hid_global));
356 return 0;
357
358 case HID_GLOBAL_ITEM_TAG_POP:
359
360 if (!parser->global_stack_ptr) {
361 hid_err(parser->device, "global environment stack underflow\n");
362 return -1;
363 }
364
365 memcpy(&parser->global, parser->global_stack +
366 --parser->global_stack_ptr, sizeof(struct hid_global));
367 return 0;
368
369 case HID_GLOBAL_ITEM_TAG_USAGE_PAGE:
370 parser->global.usage_page = item_udata(item);
371 return 0;
372
373 case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM:
374 parser->global.logical_minimum = item_sdata(item);
375 return 0;
376
377 case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM:
378 if (parser->global.logical_minimum < 0)
379 parser->global.logical_maximum = item_sdata(item);
380 else
381 parser->global.logical_maximum = item_udata(item);
382 return 0;
383
384 case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM:
385 parser->global.physical_minimum = item_sdata(item);
386 return 0;
387
388 case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM:
389 if (parser->global.physical_minimum < 0)
390 parser->global.physical_maximum = item_sdata(item);
391 else
392 parser->global.physical_maximum = item_udata(item);
393 return 0;
394
395 case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT:
396 /* Many devices provide unit exponent as a two's complement
397 * nibble due to the common misunderstanding of HID
398 * specification 1.11, 6.2.2.7 Global Items. Attempt to handle
399 * both this and the standard encoding. */
400 raw_value = item_sdata(item);
401 if (!(raw_value & 0xfffffff0))
402 parser->global.unit_exponent = hid_snto32(raw_value, 4);
403 else
404 parser->global.unit_exponent = raw_value;
405 return 0;
406
407 case HID_GLOBAL_ITEM_TAG_UNIT:
408 parser->global.unit = item_udata(item);
409 return 0;
410
411 case HID_GLOBAL_ITEM_TAG_REPORT_SIZE:
412 parser->global.report_size = item_udata(item);
413 if (parser->global.report_size > 256) {
414 hid_err(parser->device, "invalid report_size %d\n",
415 parser->global.report_size);
416 return -1;
417 }
418 return 0;
419
420 case HID_GLOBAL_ITEM_TAG_REPORT_COUNT:
421 parser->global.report_count = item_udata(item);
422 if (parser->global.report_count > HID_MAX_USAGES) {
423 hid_err(parser->device, "invalid report_count %d\n",
424 parser->global.report_count);
425 return -1;
426 }
427 return 0;
428
429 case HID_GLOBAL_ITEM_TAG_REPORT_ID:
430 parser->global.report_id = item_udata(item);
431 if (parser->global.report_id == 0 ||
432 parser->global.report_id >= HID_MAX_IDS) {
433 hid_err(parser->device, "report_id %u is invalid\n",
434 parser->global.report_id);
435 return -1;
436 }
437 return 0;
438
439 default:
440 hid_err(parser->device, "unknown global tag 0x%x\n", item->tag);
441 return -1;
442 }
443}
444
445/*
446 * Process a local item.
447 */
448
449static int hid_parser_local(struct hid_parser *parser, struct hid_item *item)
450{
451 __u32 data;
452 unsigned n;
453 __u32 count;
454
455 data = item_udata(item);
456
457 switch (item->tag) {
458 case HID_LOCAL_ITEM_TAG_DELIMITER:
459
460 if (data) {
461 /*
462 * We treat items before the first delimiter
463 * as global to all usage sets (branch 0).
464 * In the moment we process only these global
465 * items and the first delimiter set.
466 */
467 if (parser->local.delimiter_depth != 0) {
468 hid_err(parser->device, "nested delimiters\n");
469 return -1;
470 }
471 parser->local.delimiter_depth++;
472 parser->local.delimiter_branch++;
473 } else {
474 if (parser->local.delimiter_depth < 1) {
475 hid_err(parser->device, "bogus close delimiter\n");
476 return -1;
477 }
478 parser->local.delimiter_depth--;
479 }
480 return 0;
481
482 case HID_LOCAL_ITEM_TAG_USAGE:
483
484 if (parser->local.delimiter_branch > 1) {
485 dbg_hid("alternative usage ignored\n");
486 return 0;
487 }
488
489 if (item->size <= 2)
490 data = (parser->global.usage_page << 16) + data;
491
492 return hid_add_usage(parser, data);
493
494 case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM:
495
496 if (parser->local.delimiter_branch > 1) {
497 dbg_hid("alternative usage ignored\n");
498 return 0;
499 }
500
501 if (item->size <= 2)
502 data = (parser->global.usage_page << 16) + data;
503
504 parser->local.usage_minimum = data;
505 return 0;
506
507 case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM:
508
509 if (parser->local.delimiter_branch > 1) {
510 dbg_hid("alternative usage ignored\n");
511 return 0;
512 }
513
514 if (item->size <= 2)
515 data = (parser->global.usage_page << 16) + data;
516
517 count = data - parser->local.usage_minimum;
518 if (count + parser->local.usage_index >= HID_MAX_USAGES) {
519 /*
520 * We do not warn if the name is not set, we are
521 * actually pre-scanning the device.
522 */
523 if (dev_name(&parser->device->dev))
524 hid_warn(parser->device,
525 "ignoring exceeding usage max\n");
526 data = HID_MAX_USAGES - parser->local.usage_index +
527 parser->local.usage_minimum - 1;
528 if (data <= 0) {
529 hid_err(parser->device,
530 "no more usage index available\n");
531 return -1;
532 }
533 }
534
535 for (n = parser->local.usage_minimum; n <= data; n++)
536 if (hid_add_usage(parser, n)) {
537 dbg_hid("hid_add_usage failed\n");
538 return -1;
539 }
540 return 0;
541
542 default:
543
544 dbg_hid("unknown local item tag 0x%x\n", item->tag);
545 return 0;
546 }
547 return 0;
548}
549
550/*
551 * Process a main item.
552 */
553
554static int hid_parser_main(struct hid_parser *parser, struct hid_item *item)
555{
556 __u32 data;
557 int ret;
558
559 data = item_udata(item);
560
561 switch (item->tag) {
562 case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
563 ret = open_collection(parser, data & 0xff);
564 break;
565 case HID_MAIN_ITEM_TAG_END_COLLECTION:
566 ret = close_collection(parser);
567 break;
568 case HID_MAIN_ITEM_TAG_INPUT:
569 ret = hid_add_field(parser, HID_INPUT_REPORT, data);
570 break;
571 case HID_MAIN_ITEM_TAG_OUTPUT:
572 ret = hid_add_field(parser, HID_OUTPUT_REPORT, data);
573 break;
574 case HID_MAIN_ITEM_TAG_FEATURE:
575 ret = hid_add_field(parser, HID_FEATURE_REPORT, data);
576 break;
577 default:
578 hid_warn(parser->device, "unknown main item tag 0x%x\n", item->tag);
579 ret = 0;
580 }
581
582 memset(&parser->local, 0, sizeof(parser->local)); /* Reset the local parser environment */
583
584 return ret;
585}
586
587/*
588 * Process a reserved item.
589 */
590
591static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item)
592{
593 dbg_hid("reserved item type, tag 0x%x\n", item->tag);
594 return 0;
595}
596
597/*
598 * Free a report and all registered fields. The field->usage and
599 * field->value table's are allocated behind the field, so we need
600 * only to free(field) itself.
601 */
602
603static void hid_free_report(struct hid_report *report)
604{
605 unsigned n;
606
607 for (n = 0; n < report->maxfield; n++)
608 kfree(report->field[n]);
609 kfree(report);
610}
611
612/*
613 * Close report. This function returns the device
614 * state to the point prior to hid_open_report().
615 */
616static void hid_close_report(struct hid_device *device)
617{
618 unsigned i, j;
619
620 for (i = 0; i < HID_REPORT_TYPES; i++) {
621 struct hid_report_enum *report_enum = device->report_enum + i;
622
623 for (j = 0; j < HID_MAX_IDS; j++) {
624 struct hid_report *report = report_enum->report_id_hash[j];
625 if (report)
626 hid_free_report(report);
627 }
628 memset(report_enum, 0, sizeof(*report_enum));
629 INIT_LIST_HEAD(&report_enum->report_list);
630 }
631
632 kfree(device->rdesc);
633 device->rdesc = NULL;
634 device->rsize = 0;
635
636 kfree(device->collection);
637 device->collection = NULL;
638 device->collection_size = 0;
639 device->maxcollection = 0;
640 device->maxapplication = 0;
641
642 device->status &= ~HID_STAT_PARSED;
643}
644
645/*
646 * Free a device structure, all reports, and all fields.
647 */
648
649static void hid_device_release(struct device *dev)
650{
651 struct hid_device *hid = to_hid_device(dev);
652
653 hid_close_report(hid);
654 kfree(hid->dev_rdesc);
655 kfree(hid);
656}
657
658/*
659 * Fetch a report description item from the data stream. We support long
660 * items, though they are not used yet.
661 */
662
663static u8 *fetch_item(__u8 *start, __u8 *end, struct hid_item *item)
664{
665 u8 b;
666
667 if ((end - start) <= 0)
668 return NULL;
669
670 b = *start++;
671
672 item->type = (b >> 2) & 3;
673 item->tag = (b >> 4) & 15;
674
675 if (item->tag == HID_ITEM_TAG_LONG) {
676
677 item->format = HID_ITEM_FORMAT_LONG;
678
679 if ((end - start) < 2)
680 return NULL;
681
682 item->size = *start++;
683 item->tag = *start++;
684
685 if ((end - start) < item->size)
686 return NULL;
687
688 item->data.longdata = start;
689 start += item->size;
690 return start;
691 }
692
693 item->format = HID_ITEM_FORMAT_SHORT;
694 item->size = b & 3;
695
696 switch (item->size) {
697 case 0:
698 return start;
699
700 case 1:
701 if ((end - start) < 1)
702 return NULL;
703 item->data.u8 = *start++;
704 return start;
705
706 case 2:
707 if ((end - start) < 2)
708 return NULL;
709 item->data.u16 = get_unaligned_le16(start);
710 start = (__u8 *)((__le16 *)start + 1);
711 return start;
712
713 case 3:
714 item->size++;
715 if ((end - start) < 4)
716 return NULL;
717 item->data.u32 = get_unaligned_le32(start);
718 start = (__u8 *)((__le32 *)start + 1);
719 return start;
720 }
721
722 return NULL;
723}
724
725static void hid_scan_input_usage(struct hid_parser *parser, u32 usage)
726{
727 struct hid_device *hid = parser->device;
728
729 if (usage == HID_DG_CONTACTID)
730 hid->group = HID_GROUP_MULTITOUCH;
731}
732
733static void hid_scan_feature_usage(struct hid_parser *parser, u32 usage)
734{
735 if (usage == 0xff0000c5 && parser->global.report_count == 256 &&
736 parser->global.report_size == 8)
737 parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
738}
739
740static void hid_scan_collection(struct hid_parser *parser, unsigned type)
741{
742 struct hid_device *hid = parser->device;
743 int i;
744
745 if (((parser->global.usage_page << 16) == HID_UP_SENSOR) &&
746 type == HID_COLLECTION_PHYSICAL)
747 hid->group = HID_GROUP_SENSOR_HUB;
748
749 if (hid->vendor == USB_VENDOR_ID_MICROSOFT &&
750 hid->product == USB_DEVICE_ID_MS_POWER_COVER &&
751 hid->group == HID_GROUP_MULTITOUCH)
752 hid->group = HID_GROUP_GENERIC;
753
754 if ((parser->global.usage_page << 16) == HID_UP_GENDESK)
755 for (i = 0; i < parser->local.usage_index; i++)
756 if (parser->local.usage[i] == HID_GD_POINTER)
757 parser->scan_flags |= HID_SCAN_FLAG_GD_POINTER;
758
759 if ((parser->global.usage_page << 16) >= HID_UP_MSVENDOR)
760 parser->scan_flags |= HID_SCAN_FLAG_VENDOR_SPECIFIC;
761}
762
763static int hid_scan_main(struct hid_parser *parser, struct hid_item *item)
764{
765 __u32 data;
766 int i;
767
768 data = item_udata(item);
769
770 switch (item->tag) {
771 case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
772 hid_scan_collection(parser, data & 0xff);
773 break;
774 case HID_MAIN_ITEM_TAG_END_COLLECTION:
775 break;
776 case HID_MAIN_ITEM_TAG_INPUT:
777 /* ignore constant inputs, they will be ignored by hid-input */
778 if (data & HID_MAIN_ITEM_CONSTANT)
779 break;
780 for (i = 0; i < parser->local.usage_index; i++)
781 hid_scan_input_usage(parser, parser->local.usage[i]);
782 break;
783 case HID_MAIN_ITEM_TAG_OUTPUT:
784 break;
785 case HID_MAIN_ITEM_TAG_FEATURE:
786 for (i = 0; i < parser->local.usage_index; i++)
787 hid_scan_feature_usage(parser, parser->local.usage[i]);
788 break;
789 }
790
791 /* Reset the local parser environment */
792 memset(&parser->local, 0, sizeof(parser->local));
793
794 return 0;
795}
796
797/*
798 * Scan a report descriptor before the device is added to the bus.
799 * Sets device groups and other properties that determine what driver
800 * to load.
801 */
802static int hid_scan_report(struct hid_device *hid)
803{
804 struct hid_parser *parser;
805 struct hid_item item;
806 __u8 *start = hid->dev_rdesc;
807 __u8 *end = start + hid->dev_rsize;
808 static int (*dispatch_type[])(struct hid_parser *parser,
809 struct hid_item *item) = {
810 hid_scan_main,
811 hid_parser_global,
812 hid_parser_local,
813 hid_parser_reserved
814 };
815
816 parser = vzalloc(sizeof(struct hid_parser));
817 if (!parser)
818 return -ENOMEM;
819
820 parser->device = hid;
821 hid->group = HID_GROUP_GENERIC;
822
823 /*
824 * The parsing is simpler than the one in hid_open_report() as we should
825 * be robust against hid errors. Those errors will be raised by
826 * hid_open_report() anyway.
827 */
828 while ((start = fetch_item(start, end, &item)) != NULL)
829 dispatch_type[item.type](parser, &item);
830
831 /*
832 * Handle special flags set during scanning.
833 */
834 if ((parser->scan_flags & HID_SCAN_FLAG_MT_WIN_8) &&
835 (hid->group == HID_GROUP_MULTITOUCH))
836 hid->group = HID_GROUP_MULTITOUCH_WIN_8;
837
838 /*
839 * Vendor specific handlings
840 */
841 switch (hid->vendor) {
842 case USB_VENDOR_ID_WACOM:
843 hid->group = HID_GROUP_WACOM;
844 break;
845 case USB_VENDOR_ID_SYNAPTICS:
846 if (hid->group == HID_GROUP_GENERIC)
847 if ((parser->scan_flags & HID_SCAN_FLAG_VENDOR_SPECIFIC)
848 && (parser->scan_flags & HID_SCAN_FLAG_GD_POINTER))
849 /*
850 * hid-rmi should take care of them,
851 * not hid-generic
852 */
853 hid->group = HID_GROUP_RMI;
854 break;
855 }
856
857 kfree(parser->collection_stack);
858 vfree(parser);
859 return 0;
860}
861
862/**
863 * hid_parse_report - parse device report
864 *
865 * @device: hid device
866 * @start: report start
867 * @size: report size
868 *
869 * Allocate the device report as read by the bus driver. This function should
870 * only be called from parse() in ll drivers.
871 */
872int hid_parse_report(struct hid_device *hid, __u8 *start, unsigned size)
873{
874 hid->dev_rdesc = kmemdup(start, size, GFP_KERNEL);
875 if (!hid->dev_rdesc)
876 return -ENOMEM;
877 hid->dev_rsize = size;
878 return 0;
879}
880EXPORT_SYMBOL_GPL(hid_parse_report);
881
882static const char * const hid_report_names[] = {
883 "HID_INPUT_REPORT",
884 "HID_OUTPUT_REPORT",
885 "HID_FEATURE_REPORT",
886};
887/**
888 * hid_validate_values - validate existing device report's value indexes
889 *
890 * @device: hid device
891 * @type: which report type to examine
892 * @id: which report ID to examine (0 for first)
893 * @field_index: which report field to examine
894 * @report_counts: expected number of values
895 *
896 * Validate the number of values in a given field of a given report, after
897 * parsing.
898 */
899struct hid_report *hid_validate_values(struct hid_device *hid,
900 unsigned int type, unsigned int id,
901 unsigned int field_index,
902 unsigned int report_counts)
903{
904 struct hid_report *report;
905
906 if (type > HID_FEATURE_REPORT) {
907 hid_err(hid, "invalid HID report type %u\n", type);
908 return NULL;
909 }
910
911 if (id >= HID_MAX_IDS) {
912 hid_err(hid, "invalid HID report id %u\n", id);
913 return NULL;
914 }
915
916 /*
917 * Explicitly not using hid_get_report() here since it depends on
918 * ->numbered being checked, which may not always be the case when
919 * drivers go to access report values.
920 */
921 if (id == 0) {
922 /*
923 * Validating on id 0 means we should examine the first
924 * report in the list.
925 */
926 report = list_entry(
927 hid->report_enum[type].report_list.next,
928 struct hid_report, list);
929 } else {
930 report = hid->report_enum[type].report_id_hash[id];
931 }
932 if (!report) {
933 hid_err(hid, "missing %s %u\n", hid_report_names[type], id);
934 return NULL;
935 }
936 if (report->maxfield <= field_index) {
937 hid_err(hid, "not enough fields in %s %u\n",
938 hid_report_names[type], id);
939 return NULL;
940 }
941 if (report->field[field_index]->report_count < report_counts) {
942 hid_err(hid, "not enough values in %s %u field %u\n",
943 hid_report_names[type], id, field_index);
944 return NULL;
945 }
946 return report;
947}
948EXPORT_SYMBOL_GPL(hid_validate_values);
949
950static int hid_calculate_multiplier(struct hid_device *hid,
951 struct hid_field *multiplier)
952{
953 int m;
954 __s32 v = *multiplier->value;
955 __s32 lmin = multiplier->logical_minimum;
956 __s32 lmax = multiplier->logical_maximum;
957 __s32 pmin = multiplier->physical_minimum;
958 __s32 pmax = multiplier->physical_maximum;
959
960 /*
961 * "Because OS implementations will generally divide the control's
962 * reported count by the Effective Resolution Multiplier, designers
963 * should take care not to establish a potential Effective
964 * Resolution Multiplier of zero."
965 * HID Usage Table, v1.12, Section 4.3.1, p31
966 */
967 if (lmax - lmin == 0)
968 return 1;
969 /*
970 * Handling the unit exponent is left as an exercise to whoever
971 * finds a device where that exponent is not 0.
972 */
973 m = ((v - lmin)/(lmax - lmin) * (pmax - pmin) + pmin);
974 if (unlikely(multiplier->unit_exponent != 0)) {
975 hid_warn(hid,
976 "unsupported Resolution Multiplier unit exponent %d\n",
977 multiplier->unit_exponent);
978 }
979
980 /* There are no devices with an effective multiplier > 255 */
981 if (unlikely(m == 0 || m > 255 || m < -255)) {
982 hid_warn(hid, "unsupported Resolution Multiplier %d\n", m);
983 m = 1;
984 }
985
986 return m;
987}
988
989static void hid_apply_multiplier_to_field(struct hid_device *hid,
990 struct hid_field *field,
991 struct hid_collection *multiplier_collection,
992 int effective_multiplier)
993{
994 struct hid_collection *collection;
995 struct hid_usage *usage;
996 int i;
997
998 /*
999 * If multiplier_collection is NULL, the multiplier applies
1000 * to all fields in the report.
1001 * Otherwise, it is the Logical Collection the multiplier applies to
1002 * but our field may be in a subcollection of that collection.
1003 */
1004 for (i = 0; i < field->maxusage; i++) {
1005 usage = &field->usage[i];
1006
1007 collection = &hid->collection[usage->collection_index];
1008 while (collection->parent_idx != -1 &&
1009 collection != multiplier_collection)
1010 collection = &hid->collection[collection->parent_idx];
1011
1012 if (collection->parent_idx != -1 ||
1013 multiplier_collection == NULL)
1014 usage->resolution_multiplier = effective_multiplier;
1015
1016 }
1017}
1018
1019static void hid_apply_multiplier(struct hid_device *hid,
1020 struct hid_field *multiplier)
1021{
1022 struct hid_report_enum *rep_enum;
1023 struct hid_report *rep;
1024 struct hid_field *field;
1025 struct hid_collection *multiplier_collection;
1026 int effective_multiplier;
1027 int i;
1028
1029 /*
1030 * "The Resolution Multiplier control must be contained in the same
1031 * Logical Collection as the control(s) to which it is to be applied.
1032 * If no Resolution Multiplier is defined, then the Resolution
1033 * Multiplier defaults to 1. If more than one control exists in a
1034 * Logical Collection, the Resolution Multiplier is associated with
1035 * all controls in the collection. If no Logical Collection is
1036 * defined, the Resolution Multiplier is associated with all
1037 * controls in the report."
1038 * HID Usage Table, v1.12, Section 4.3.1, p30
1039 *
1040 * Thus, search from the current collection upwards until we find a
1041 * logical collection. Then search all fields for that same parent
1042 * collection. Those are the fields the multiplier applies to.
1043 *
1044 * If we have more than one multiplier, it will overwrite the
1045 * applicable fields later.
1046 */
1047 multiplier_collection = &hid->collection[multiplier->usage->collection_index];
1048 while (multiplier_collection->parent_idx != -1 &&
1049 multiplier_collection->type != HID_COLLECTION_LOGICAL)
1050 multiplier_collection = &hid->collection[multiplier_collection->parent_idx];
1051
1052 effective_multiplier = hid_calculate_multiplier(hid, multiplier);
1053
1054 rep_enum = &hid->report_enum[HID_INPUT_REPORT];
1055 list_for_each_entry(rep, &rep_enum->report_list, list) {
1056 for (i = 0; i < rep->maxfield; i++) {
1057 field = rep->field[i];
1058 hid_apply_multiplier_to_field(hid, field,
1059 multiplier_collection,
1060 effective_multiplier);
1061 }
1062 }
1063}
1064
1065/*
1066 * hid_setup_resolution_multiplier - set up all resolution multipliers
1067 *
1068 * @device: hid device
1069 *
1070 * Search for all Resolution Multiplier Feature Reports and apply their
1071 * value to all matching Input items. This only updates the internal struct
1072 * fields.
1073 *
1074 * The Resolution Multiplier is applied by the hardware. If the multiplier
1075 * is anything other than 1, the hardware will send pre-multiplied events
1076 * so that the same physical interaction generates an accumulated
1077 * accumulated_value = value * * multiplier
1078 * This may be achieved by sending
1079 * - "value * multiplier" for each event, or
1080 * - "value" but "multiplier" times as frequently, or
1081 * - a combination of the above
1082 * The only guarantee is that the same physical interaction always generates
1083 * an accumulated 'value * multiplier'.
1084 *
1085 * This function must be called before any event processing and after
1086 * any SetRequest to the Resolution Multiplier.
1087 */
1088void hid_setup_resolution_multiplier(struct hid_device *hid)
1089{
1090 struct hid_report_enum *rep_enum;
1091 struct hid_report *rep;
1092 struct hid_usage *usage;
1093 int i, j;
1094
1095 rep_enum = &hid->report_enum[HID_FEATURE_REPORT];
1096 list_for_each_entry(rep, &rep_enum->report_list, list) {
1097 for (i = 0; i < rep->maxfield; i++) {
1098 /* Ignore if report count is out of bounds. */
1099 if (rep->field[i]->report_count < 1)
1100 continue;
1101
1102 for (j = 0; j < rep->field[i]->maxusage; j++) {
1103 usage = &rep->field[i]->usage[j];
1104 if (usage->hid == HID_GD_RESOLUTION_MULTIPLIER)
1105 hid_apply_multiplier(hid,
1106 rep->field[i]);
1107 }
1108 }
1109 }
1110}
1111EXPORT_SYMBOL_GPL(hid_setup_resolution_multiplier);
1112
1113/**
1114 * hid_open_report - open a driver-specific device report
1115 *
1116 * @device: hid device
1117 *
1118 * Parse a report description into a hid_device structure. Reports are
1119 * enumerated, fields are attached to these reports.
1120 * 0 returned on success, otherwise nonzero error value.
1121 *
1122 * This function (or the equivalent hid_parse() macro) should only be
1123 * called from probe() in drivers, before starting the device.
1124 */
1125int hid_open_report(struct hid_device *device)
1126{
1127 struct hid_parser *parser;
1128 struct hid_item item;
1129 unsigned int size;
1130 __u8 *start;
1131 __u8 *buf;
1132 __u8 *end;
1133 int ret;
1134 static int (*dispatch_type[])(struct hid_parser *parser,
1135 struct hid_item *item) = {
1136 hid_parser_main,
1137 hid_parser_global,
1138 hid_parser_local,
1139 hid_parser_reserved
1140 };
1141
1142 if (WARN_ON(device->status & HID_STAT_PARSED))
1143 return -EBUSY;
1144
1145 start = device->dev_rdesc;
1146 if (WARN_ON(!start))
1147 return -ENODEV;
1148 size = device->dev_rsize;
1149
1150 buf = kmemdup(start, size, GFP_KERNEL);
1151 if (buf == NULL)
1152 return -ENOMEM;
1153
1154 if (device->driver->report_fixup)
1155 start = device->driver->report_fixup(device, buf, &size);
1156 else
1157 start = buf;
1158
1159 start = kmemdup(start, size, GFP_KERNEL);
1160 kfree(buf);
1161 if (start == NULL)
1162 return -ENOMEM;
1163
1164 device->rdesc = start;
1165 device->rsize = size;
1166
1167 parser = vzalloc(sizeof(struct hid_parser));
1168 if (!parser) {
1169 ret = -ENOMEM;
1170 goto alloc_err;
1171 }
1172
1173 parser->device = device;
1174
1175 end = start + size;
1176
1177 device->collection = kcalloc(HID_DEFAULT_NUM_COLLECTIONS,
1178 sizeof(struct hid_collection), GFP_KERNEL);
1179 if (!device->collection) {
1180 ret = -ENOMEM;
1181 goto err;
1182 }
1183 device->collection_size = HID_DEFAULT_NUM_COLLECTIONS;
1184
1185 ret = -EINVAL;
1186 while ((start = fetch_item(start, end, &item)) != NULL) {
1187
1188 if (item.format != HID_ITEM_FORMAT_SHORT) {
1189 hid_err(device, "unexpected long global item\n");
1190 goto err;
1191 }
1192
1193 if (dispatch_type[item.type](parser, &item)) {
1194 hid_err(device, "item %u %u %u %u parsing failed\n",
1195 item.format, (unsigned)item.size,
1196 (unsigned)item.type, (unsigned)item.tag);
1197 goto err;
1198 }
1199
1200 if (start == end) {
1201 if (parser->collection_stack_ptr) {
1202 hid_err(device, "unbalanced collection at end of report description\n");
1203 goto err;
1204 }
1205 if (parser->local.delimiter_depth) {
1206 hid_err(device, "unbalanced delimiter at end of report description\n");
1207 goto err;
1208 }
1209
1210 /*
1211 * fetch initial values in case the device's
1212 * default multiplier isn't the recommended 1
1213 */
1214 hid_setup_resolution_multiplier(device);
1215
1216 kfree(parser->collection_stack);
1217 vfree(parser);
1218 device->status |= HID_STAT_PARSED;
1219
1220 return 0;
1221 }
1222 }
1223
1224 hid_err(device, "item fetching failed at offset %d\n", (int)(end - start));
1225err:
1226 kfree(parser->collection_stack);
1227alloc_err:
1228 vfree(parser);
1229 hid_close_report(device);
1230 return ret;
1231}
1232EXPORT_SYMBOL_GPL(hid_open_report);
1233
1234/*
1235 * Convert a signed n-bit integer to signed 32-bit integer. Common
1236 * cases are done through the compiler, the screwed things has to be
1237 * done by hand.
1238 */
1239
1240static s32 snto32(__u32 value, unsigned n)
1241{
1242 switch (n) {
1243 case 8: return ((__s8)value);
1244 case 16: return ((__s16)value);
1245 case 32: return ((__s32)value);
1246 }
1247 return value & (1 << (n - 1)) ? value | (~0U << n) : value;
1248}
1249
1250s32 hid_snto32(__u32 value, unsigned n)
1251{
1252 return snto32(value, n);
1253}
1254EXPORT_SYMBOL_GPL(hid_snto32);
1255
1256/*
1257 * Convert a signed 32-bit integer to a signed n-bit integer.
1258 */
1259
1260static u32 s32ton(__s32 value, unsigned n)
1261{
1262 s32 a = value >> (n - 1);
1263 if (a && a != -1)
1264 return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1;
1265 return value & ((1 << n) - 1);
1266}
1267
1268/*
1269 * Extract/implement a data field from/to a little endian report (bit array).
1270 *
1271 * Code sort-of follows HID spec:
1272 * http://www.usb.org/developers/hidpage/HID1_11.pdf
1273 *
1274 * While the USB HID spec allows unlimited length bit fields in "report
1275 * descriptors", most devices never use more than 16 bits.
1276 * One model of UPS is claimed to report "LINEV" as a 32-bit field.
1277 * Search linux-kernel and linux-usb-devel archives for "hid-core extract".
1278 */
1279
1280static u32 __extract(u8 *report, unsigned offset, int n)
1281{
1282 unsigned int idx = offset / 8;
1283 unsigned int bit_nr = 0;
1284 unsigned int bit_shift = offset % 8;
1285 int bits_to_copy = 8 - bit_shift;
1286 u32 value = 0;
1287 u32 mask = n < 32 ? (1U << n) - 1 : ~0U;
1288
1289 while (n > 0) {
1290 value |= ((u32)report[idx] >> bit_shift) << bit_nr;
1291 n -= bits_to_copy;
1292 bit_nr += bits_to_copy;
1293 bits_to_copy = 8;
1294 bit_shift = 0;
1295 idx++;
1296 }
1297
1298 return value & mask;
1299}
1300
1301u32 hid_field_extract(const struct hid_device *hid, u8 *report,
1302 unsigned offset, unsigned n)
1303{
1304 if (n > 32) {
1305 hid_warn(hid, "hid_field_extract() called with n (%d) > 32! (%s)\n",
1306 n, current->comm);
1307 n = 32;
1308 }
1309
1310 return __extract(report, offset, n);
1311}
1312EXPORT_SYMBOL_GPL(hid_field_extract);
1313
1314/*
1315 * "implement" : set bits in a little endian bit stream.
1316 * Same concepts as "extract" (see comments above).
1317 * The data mangled in the bit stream remains in little endian
1318 * order the whole time. It make more sense to talk about
1319 * endianness of register values by considering a register
1320 * a "cached" copy of the little endian bit stream.
1321 */
1322
1323static void __implement(u8 *report, unsigned offset, int n, u32 value)
1324{
1325 unsigned int idx = offset / 8;
1326 unsigned int bit_shift = offset % 8;
1327 int bits_to_set = 8 - bit_shift;
1328
1329 while (n - bits_to_set >= 0) {
1330 report[idx] &= ~(0xff << bit_shift);
1331 report[idx] |= value << bit_shift;
1332 value >>= bits_to_set;
1333 n -= bits_to_set;
1334 bits_to_set = 8;
1335 bit_shift = 0;
1336 idx++;
1337 }
1338
1339 /* last nibble */
1340 if (n) {
1341 u8 bit_mask = ((1U << n) - 1);
1342 report[idx] &= ~(bit_mask << bit_shift);
1343 report[idx] |= value << bit_shift;
1344 }
1345}
1346
1347static void implement(const struct hid_device *hid, u8 *report,
1348 unsigned offset, unsigned n, u32 value)
1349{
1350 if (unlikely(n > 32)) {
1351 hid_warn(hid, "%s() called with n (%d) > 32! (%s)\n",
1352 __func__, n, current->comm);
1353 n = 32;
1354 } else if (n < 32) {
1355 u32 m = (1U << n) - 1;
1356
1357 if (unlikely(value > m)) {
1358 hid_warn(hid,
1359 "%s() called with too large value %d (n: %d)! (%s)\n",
1360 __func__, value, n, current->comm);
1361 WARN_ON(1);
1362 value &= m;
1363 }
1364 }
1365
1366 __implement(report, offset, n, value);
1367}
1368
1369/*
1370 * Search an array for a value.
1371 */
1372
1373static int search(__s32 *array, __s32 value, unsigned n)
1374{
1375 while (n--) {
1376 if (*array++ == value)
1377 return 0;
1378 }
1379 return -1;
1380}
1381
1382/**
1383 * hid_match_report - check if driver's raw_event should be called
1384 *
1385 * @hid: hid device
1386 * @report_type: type to match against
1387 *
1388 * compare hid->driver->report_table->report_type to report->type
1389 */
1390static int hid_match_report(struct hid_device *hid, struct hid_report *report)
1391{
1392 const struct hid_report_id *id = hid->driver->report_table;
1393
1394 if (!id) /* NULL means all */
1395 return 1;
1396
1397 for (; id->report_type != HID_TERMINATOR; id++)
1398 if (id->report_type == HID_ANY_ID ||
1399 id->report_type == report->type)
1400 return 1;
1401 return 0;
1402}
1403
1404/**
1405 * hid_match_usage - check if driver's event should be called
1406 *
1407 * @hid: hid device
1408 * @usage: usage to match against
1409 *
1410 * compare hid->driver->usage_table->usage_{type,code} to
1411 * usage->usage_{type,code}
1412 */
1413static int hid_match_usage(struct hid_device *hid, struct hid_usage *usage)
1414{
1415 const struct hid_usage_id *id = hid->driver->usage_table;
1416
1417 if (!id) /* NULL means all */
1418 return 1;
1419
1420 for (; id->usage_type != HID_ANY_ID - 1; id++)
1421 if ((id->usage_hid == HID_ANY_ID ||
1422 id->usage_hid == usage->hid) &&
1423 (id->usage_type == HID_ANY_ID ||
1424 id->usage_type == usage->type) &&
1425 (id->usage_code == HID_ANY_ID ||
1426 id->usage_code == usage->code))
1427 return 1;
1428 return 0;
1429}
1430
1431static void hid_process_event(struct hid_device *hid, struct hid_field *field,
1432 struct hid_usage *usage, __s32 value, int interrupt)
1433{
1434 struct hid_driver *hdrv = hid->driver;
1435 int ret;
1436
1437 if (!list_empty(&hid->debug_list))
1438 hid_dump_input(hid, usage, value);
1439
1440 if (hdrv && hdrv->event && hid_match_usage(hid, usage)) {
1441 ret = hdrv->event(hid, field, usage, value);
1442 if (ret != 0) {
1443 if (ret < 0)
1444 hid_err(hid, "%s's event failed with %d\n",
1445 hdrv->name, ret);
1446 return;
1447 }
1448 }
1449
1450 if (hid->claimed & HID_CLAIMED_INPUT)
1451 hidinput_hid_event(hid, field, usage, value);
1452 if (hid->claimed & HID_CLAIMED_HIDDEV && interrupt && hid->hiddev_hid_event)
1453 hid->hiddev_hid_event(hid, field, usage, value);
1454}
1455
1456/*
1457 * Analyse a received field, and fetch the data from it. The field
1458 * content is stored for next report processing (we do differential
1459 * reporting to the layer).
1460 */
1461
1462static void hid_input_field(struct hid_device *hid, struct hid_field *field,
1463 __u8 *data, int interrupt)
1464{
1465 unsigned n;
1466 unsigned count = field->report_count;
1467 unsigned offset = field->report_offset;
1468 unsigned size = field->report_size;
1469 __s32 min = field->logical_minimum;
1470 __s32 max = field->logical_maximum;
1471 __s32 *value;
1472
1473 value = kmalloc_array(count, sizeof(__s32), GFP_ATOMIC);
1474 if (!value)
1475 return;
1476
1477 for (n = 0; n < count; n++) {
1478
1479 value[n] = min < 0 ?
1480 snto32(hid_field_extract(hid, data, offset + n * size,
1481 size), size) :
1482 hid_field_extract(hid, data, offset + n * size, size);
1483
1484 /* Ignore report if ErrorRollOver */
1485 if (!(field->flags & HID_MAIN_ITEM_VARIABLE) &&
1486 value[n] >= min && value[n] <= max &&
1487 value[n] - min < field->maxusage &&
1488 field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1)
1489 goto exit;
1490 }
1491
1492 for (n = 0; n < count; n++) {
1493
1494 if (HID_MAIN_ITEM_VARIABLE & field->flags) {
1495 hid_process_event(hid, field, &field->usage[n], value[n], interrupt);
1496 continue;
1497 }
1498
1499 if (field->value[n] >= min && field->value[n] <= max
1500 && field->value[n] - min < field->maxusage
1501 && field->usage[field->value[n] - min].hid
1502 && search(value, field->value[n], count))
1503 hid_process_event(hid, field, &field->usage[field->value[n] - min], 0, interrupt);
1504
1505 if (value[n] >= min && value[n] <= max
1506 && value[n] - min < field->maxusage
1507 && field->usage[value[n] - min].hid
1508 && search(field->value, value[n], count))
1509 hid_process_event(hid, field, &field->usage[value[n] - min], 1, interrupt);
1510 }
1511
1512 memcpy(field->value, value, count * sizeof(__s32));
1513exit:
1514 kfree(value);
1515}
1516
1517/*
1518 * Output the field into the report.
1519 */
1520
1521static void hid_output_field(const struct hid_device *hid,
1522 struct hid_field *field, __u8 *data)
1523{
1524 unsigned count = field->report_count;
1525 unsigned offset = field->report_offset;
1526 unsigned size = field->report_size;
1527 unsigned n;
1528
1529 for (n = 0; n < count; n++) {
1530 if (field->logical_minimum < 0) /* signed values */
1531 implement(hid, data, offset + n * size, size,
1532 s32ton(field->value[n], size));
1533 else /* unsigned values */
1534 implement(hid, data, offset + n * size, size,
1535 field->value[n]);
1536 }
1537}
1538
1539/*
1540 * Create a report. 'data' has to be allocated using
1541 * hid_alloc_report_buf() so that it has proper size.
1542 */
1543
1544void hid_output_report(struct hid_report *report, __u8 *data)
1545{
1546 unsigned n;
1547
1548 if (report->id > 0)
1549 *data++ = report->id;
1550
1551 memset(data, 0, ((report->size - 1) >> 3) + 1);
1552 for (n = 0; n < report->maxfield; n++)
1553 hid_output_field(report->device, report->field[n], data);
1554}
1555EXPORT_SYMBOL_GPL(hid_output_report);
1556
1557/*
1558 * Allocator for buffer that is going to be passed to hid_output_report()
1559 */
1560u8 *hid_alloc_report_buf(struct hid_report *report, gfp_t flags)
1561{
1562 /*
1563 * 7 extra bytes are necessary to achieve proper functionality
1564 * of implement() working on 8 byte chunks
1565 */
1566
1567 u32 len = hid_report_len(report) + 7;
1568
1569 return kmalloc(len, flags);
1570}
1571EXPORT_SYMBOL_GPL(hid_alloc_report_buf);
1572
1573/*
1574 * Set a field value. The report this field belongs to has to be
1575 * created and transferred to the device, to set this value in the
1576 * device.
1577 */
1578
1579int hid_set_field(struct hid_field *field, unsigned offset, __s32 value)
1580{
1581 unsigned size;
1582
1583 if (!field)
1584 return -1;
1585
1586 size = field->report_size;
1587
1588 hid_dump_input(field->report->device, field->usage + offset, value);
1589
1590 if (offset >= field->report_count) {
1591 hid_err(field->report->device, "offset (%d) exceeds report_count (%d)\n",
1592 offset, field->report_count);
1593 return -1;
1594 }
1595 if (field->logical_minimum < 0) {
1596 if (value != snto32(s32ton(value, size), size)) {
1597 hid_err(field->report->device, "value %d is out of range\n", value);
1598 return -1;
1599 }
1600 }
1601 field->value[offset] = value;
1602 return 0;
1603}
1604EXPORT_SYMBOL_GPL(hid_set_field);
1605
1606static struct hid_report *hid_get_report(struct hid_report_enum *report_enum,
1607 const u8 *data)
1608{
1609 struct hid_report *report;
1610 unsigned int n = 0; /* Normally report number is 0 */
1611
1612 /* Device uses numbered reports, data[0] is report number */
1613 if (report_enum->numbered)
1614 n = *data;
1615
1616 report = report_enum->report_id_hash[n];
1617 if (report == NULL)
1618 dbg_hid("undefined report_id %u received\n", n);
1619
1620 return report;
1621}
1622
1623/*
1624 * Implement a generic .request() callback, using .raw_request()
1625 * DO NOT USE in hid drivers directly, but through hid_hw_request instead.
1626 */
1627void __hid_request(struct hid_device *hid, struct hid_report *report,
1628 int reqtype)
1629{
1630 char *buf;
1631 int ret;
1632 u32 len;
1633
1634 buf = hid_alloc_report_buf(report, GFP_KERNEL);
1635 if (!buf)
1636 return;
1637
1638 len = hid_report_len(report);
1639
1640 if (reqtype == HID_REQ_SET_REPORT)
1641 hid_output_report(report, buf);
1642
1643 ret = hid->ll_driver->raw_request(hid, report->id, buf, len,
1644 report->type, reqtype);
1645 if (ret < 0) {
1646 dbg_hid("unable to complete request: %d\n", ret);
1647 goto out;
1648 }
1649
1650 if (reqtype == HID_REQ_GET_REPORT)
1651 hid_input_report(hid, report->type, buf, ret, 0);
1652
1653out:
1654 kfree(buf);
1655}
1656EXPORT_SYMBOL_GPL(__hid_request);
1657
1658int hid_report_raw_event(struct hid_device *hid, int type, u8 *data, u32 size,
1659 int interrupt)
1660{
1661 struct hid_report_enum *report_enum = hid->report_enum + type;
1662 struct hid_report *report;
1663 struct hid_driver *hdrv;
1664 unsigned int a;
1665 u32 rsize, csize = size;
1666 u8 *cdata = data;
1667 int ret = 0;
1668
1669 report = hid_get_report(report_enum, data);
1670 if (!report)
1671 goto out;
1672
1673 if (report_enum->numbered) {
1674 cdata++;
1675 csize--;
1676 }
1677
1678 rsize = ((report->size - 1) >> 3) + 1;
1679
1680 if (rsize > HID_MAX_BUFFER_SIZE)
1681 rsize = HID_MAX_BUFFER_SIZE;
1682
1683 if (csize < rsize) {
1684 dbg_hid("report %d is too short, (%d < %d)\n", report->id,
1685 csize, rsize);
1686 memset(cdata + csize, 0, rsize - csize);
1687 }
1688
1689 if ((hid->claimed & HID_CLAIMED_HIDDEV) && hid->hiddev_report_event)
1690 hid->hiddev_report_event(hid, report);
1691 if (hid->claimed & HID_CLAIMED_HIDRAW) {
1692 ret = hidraw_report_event(hid, data, size);
1693 if (ret)
1694 goto out;
1695 }
1696
1697 if (hid->claimed != HID_CLAIMED_HIDRAW && report->maxfield) {
1698 for (a = 0; a < report->maxfield; a++)
1699 hid_input_field(hid, report->field[a], cdata, interrupt);
1700 hdrv = hid->driver;
1701 if (hdrv && hdrv->report)
1702 hdrv->report(hid, report);
1703 }
1704
1705 if (hid->claimed & HID_CLAIMED_INPUT)
1706 hidinput_report_event(hid, report);
1707out:
1708 return ret;
1709}
1710EXPORT_SYMBOL_GPL(hid_report_raw_event);
1711
1712/**
1713 * hid_input_report - report data from lower layer (usb, bt...)
1714 *
1715 * @hid: hid device
1716 * @type: HID report type (HID_*_REPORT)
1717 * @data: report contents
1718 * @size: size of data parameter
1719 * @interrupt: distinguish between interrupt and control transfers
1720 *
1721 * This is data entry for lower layers.
1722 */
1723int hid_input_report(struct hid_device *hid, int type, u8 *data, u32 size, int interrupt)
1724{
1725 struct hid_report_enum *report_enum;
1726 struct hid_driver *hdrv;
1727 struct hid_report *report;
1728 int ret = 0;
1729
1730 if (!hid)
1731 return -ENODEV;
1732
1733 if (down_trylock(&hid->driver_input_lock))
1734 return -EBUSY;
1735
1736 if (!hid->driver) {
1737 ret = -ENODEV;
1738 goto unlock;
1739 }
1740 report_enum = hid->report_enum + type;
1741 hdrv = hid->driver;
1742
1743 if (!size) {
1744 dbg_hid("empty report\n");
1745 ret = -1;
1746 goto unlock;
1747 }
1748
1749 /* Avoid unnecessary overhead if debugfs is disabled */
1750 if (!list_empty(&hid->debug_list))
1751 hid_dump_report(hid, type, data, size);
1752
1753 report = hid_get_report(report_enum, data);
1754
1755 if (!report) {
1756 ret = -1;
1757 goto unlock;
1758 }
1759
1760 if (hdrv && hdrv->raw_event && hid_match_report(hid, report)) {
1761 ret = hdrv->raw_event(hid, report, data, size);
1762 if (ret < 0)
1763 goto unlock;
1764 }
1765
1766 ret = hid_report_raw_event(hid, type, data, size, interrupt);
1767
1768unlock:
1769 up(&hid->driver_input_lock);
1770 return ret;
1771}
1772EXPORT_SYMBOL_GPL(hid_input_report);
1773
1774bool hid_match_one_id(const struct hid_device *hdev,
1775 const struct hid_device_id *id)
1776{
1777 return (id->bus == HID_BUS_ANY || id->bus == hdev->bus) &&
1778 (id->group == HID_GROUP_ANY || id->group == hdev->group) &&
1779 (id->vendor == HID_ANY_ID || id->vendor == hdev->vendor) &&
1780 (id->product == HID_ANY_ID || id->product == hdev->product);
1781}
1782
1783const struct hid_device_id *hid_match_id(const struct hid_device *hdev,
1784 const struct hid_device_id *id)
1785{
1786 for (; id->bus; id++)
1787 if (hid_match_one_id(hdev, id))
1788 return id;
1789
1790 return NULL;
1791}
1792
1793static const struct hid_device_id hid_hiddev_list[] = {
1794 { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS) },
1795 { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS1) },
1796 { }
1797};
1798
1799static bool hid_hiddev(struct hid_device *hdev)
1800{
1801 return !!hid_match_id(hdev, hid_hiddev_list);
1802}
1803
1804
1805static ssize_t
1806read_report_descriptor(struct file *filp, struct kobject *kobj,
1807 struct bin_attribute *attr,
1808 char *buf, loff_t off, size_t count)
1809{
1810 struct device *dev = kobj_to_dev(kobj);
1811 struct hid_device *hdev = to_hid_device(dev);
1812
1813 if (off >= hdev->rsize)
1814 return 0;
1815
1816 if (off + count > hdev->rsize)
1817 count = hdev->rsize - off;
1818
1819 memcpy(buf, hdev->rdesc + off, count);
1820
1821 return count;
1822}
1823
1824static ssize_t
1825show_country(struct device *dev, struct device_attribute *attr,
1826 char *buf)
1827{
1828 struct hid_device *hdev = to_hid_device(dev);
1829
1830 return sprintf(buf, "%02x\n", hdev->country & 0xff);
1831}
1832
1833static struct bin_attribute dev_bin_attr_report_desc = {
1834 .attr = { .name = "report_descriptor", .mode = 0444 },
1835 .read = read_report_descriptor,
1836 .size = HID_MAX_DESCRIPTOR_SIZE,
1837};
1838
1839static const struct device_attribute dev_attr_country = {
1840 .attr = { .name = "country", .mode = 0444 },
1841 .show = show_country,
1842};
1843
1844int hid_connect(struct hid_device *hdev, unsigned int connect_mask)
1845{
1846 static const char *types[] = { "Device", "Pointer", "Mouse", "Device",
1847 "Joystick", "Gamepad", "Keyboard", "Keypad",
1848 "Multi-Axis Controller"
1849 };
1850 const char *type, *bus;
1851 char buf[64] = "";
1852 unsigned int i;
1853 int len;
1854 int ret;
1855
1856 if (hdev->quirks & HID_QUIRK_HIDDEV_FORCE)
1857 connect_mask |= (HID_CONNECT_HIDDEV_FORCE | HID_CONNECT_HIDDEV);
1858 if (hdev->quirks & HID_QUIRK_HIDINPUT_FORCE)
1859 connect_mask |= HID_CONNECT_HIDINPUT_FORCE;
1860 if (hdev->bus != BUS_USB)
1861 connect_mask &= ~HID_CONNECT_HIDDEV;
1862 if (hid_hiddev(hdev))
1863 connect_mask |= HID_CONNECT_HIDDEV_FORCE;
1864
1865 if ((connect_mask & HID_CONNECT_HIDINPUT) && !hidinput_connect(hdev,
1866 connect_mask & HID_CONNECT_HIDINPUT_FORCE))
1867 hdev->claimed |= HID_CLAIMED_INPUT;
1868
1869 if ((connect_mask & HID_CONNECT_HIDDEV) && hdev->hiddev_connect &&
1870 !hdev->hiddev_connect(hdev,
1871 connect_mask & HID_CONNECT_HIDDEV_FORCE))
1872 hdev->claimed |= HID_CLAIMED_HIDDEV;
1873 if ((connect_mask & HID_CONNECT_HIDRAW) && !hidraw_connect(hdev))
1874 hdev->claimed |= HID_CLAIMED_HIDRAW;
1875
1876 if (connect_mask & HID_CONNECT_DRIVER)
1877 hdev->claimed |= HID_CLAIMED_DRIVER;
1878
1879 /* Drivers with the ->raw_event callback set are not required to connect
1880 * to any other listener. */
1881 if (!hdev->claimed && !hdev->driver->raw_event) {
1882 hid_err(hdev, "device has no listeners, quitting\n");
1883 return -ENODEV;
1884 }
1885
1886 if ((hdev->claimed & HID_CLAIMED_INPUT) &&
1887 (connect_mask & HID_CONNECT_FF) && hdev->ff_init)
1888 hdev->ff_init(hdev);
1889
1890 len = 0;
1891 if (hdev->claimed & HID_CLAIMED_INPUT)
1892 len += sprintf(buf + len, "input");
1893 if (hdev->claimed & HID_CLAIMED_HIDDEV)
1894 len += sprintf(buf + len, "%shiddev%d", len ? "," : "",
1895 ((struct hiddev *)hdev->hiddev)->minor);
1896 if (hdev->claimed & HID_CLAIMED_HIDRAW)
1897 len += sprintf(buf + len, "%shidraw%d", len ? "," : "",
1898 ((struct hidraw *)hdev->hidraw)->minor);
1899
1900 type = "Device";
1901 for (i = 0; i < hdev->maxcollection; i++) {
1902 struct hid_collection *col = &hdev->collection[i];
1903 if (col->type == HID_COLLECTION_APPLICATION &&
1904 (col->usage & HID_USAGE_PAGE) == HID_UP_GENDESK &&
1905 (col->usage & 0xffff) < ARRAY_SIZE(types)) {
1906 type = types[col->usage & 0xffff];
1907 break;
1908 }
1909 }
1910
1911 switch (hdev->bus) {
1912 case BUS_USB:
1913 bus = "USB";
1914 break;
1915 case BUS_BLUETOOTH:
1916 bus = "BLUETOOTH";
1917 break;
1918 case BUS_I2C:
1919 bus = "I2C";
1920 break;
1921 default:
1922 bus = "<UNKNOWN>";
1923 }
1924
1925 ret = device_create_file(&hdev->dev, &dev_attr_country);
1926 if (ret)
1927 hid_warn(hdev,
1928 "can't create sysfs country code attribute err: %d\n", ret);
1929
1930 hid_info(hdev, "%s: %s HID v%x.%02x %s [%s] on %s\n",
1931 buf, bus, hdev->version >> 8, hdev->version & 0xff,
1932 type, hdev->name, hdev->phys);
1933
1934 return 0;
1935}
1936EXPORT_SYMBOL_GPL(hid_connect);
1937
1938void hid_disconnect(struct hid_device *hdev)
1939{
1940 device_remove_file(&hdev->dev, &dev_attr_country);
1941 if (hdev->claimed & HID_CLAIMED_INPUT)
1942 hidinput_disconnect(hdev);
1943 if (hdev->claimed & HID_CLAIMED_HIDDEV)
1944 hdev->hiddev_disconnect(hdev);
1945 if (hdev->claimed & HID_CLAIMED_HIDRAW)
1946 hidraw_disconnect(hdev);
1947 hdev->claimed = 0;
1948}
1949EXPORT_SYMBOL_GPL(hid_disconnect);
1950
1951/**
1952 * hid_hw_start - start underlying HW
1953 * @hdev: hid device
1954 * @connect_mask: which outputs to connect, see HID_CONNECT_*
1955 *
1956 * Call this in probe function *after* hid_parse. This will setup HW
1957 * buffers and start the device (if not defeirred to device open).
1958 * hid_hw_stop must be called if this was successful.
1959 */
1960int hid_hw_start(struct hid_device *hdev, unsigned int connect_mask)
1961{
1962 int error;
1963
1964 error = hdev->ll_driver->start(hdev);
1965 if (error)
1966 return error;
1967
1968 if (connect_mask) {
1969 error = hid_connect(hdev, connect_mask);
1970 if (error) {
1971 hdev->ll_driver->stop(hdev);
1972 return error;
1973 }
1974 }
1975
1976 return 0;
1977}
1978EXPORT_SYMBOL_GPL(hid_hw_start);
1979
1980/**
1981 * hid_hw_stop - stop underlying HW
1982 * @hdev: hid device
1983 *
1984 * This is usually called from remove function or from probe when something
1985 * failed and hid_hw_start was called already.
1986 */
1987void hid_hw_stop(struct hid_device *hdev)
1988{
1989 hid_disconnect(hdev);
1990 hdev->ll_driver->stop(hdev);
1991}
1992EXPORT_SYMBOL_GPL(hid_hw_stop);
1993
1994/**
1995 * hid_hw_open - signal underlying HW to start delivering events
1996 * @hdev: hid device
1997 *
1998 * Tell underlying HW to start delivering events from the device.
1999 * This function should be called sometime after successful call
2000 * to hid_hw_start().
2001 */
2002int hid_hw_open(struct hid_device *hdev)
2003{
2004 int ret;
2005
2006 ret = mutex_lock_killable(&hdev->ll_open_lock);
2007 if (ret)
2008 return ret;
2009
2010 if (!hdev->ll_open_count++) {
2011 ret = hdev->ll_driver->open(hdev);
2012 if (ret)
2013 hdev->ll_open_count--;
2014 }
2015
2016 mutex_unlock(&hdev->ll_open_lock);
2017 return ret;
2018}
2019EXPORT_SYMBOL_GPL(hid_hw_open);
2020
2021/**
2022 * hid_hw_close - signal underlaying HW to stop delivering events
2023 *
2024 * @hdev: hid device
2025 *
2026 * This function indicates that we are not interested in the events
2027 * from this device anymore. Delivery of events may or may not stop,
2028 * depending on the number of users still outstanding.
2029 */
2030void hid_hw_close(struct hid_device *hdev)
2031{
2032 mutex_lock(&hdev->ll_open_lock);
2033 if (!--hdev->ll_open_count)
2034 hdev->ll_driver->close(hdev);
2035 mutex_unlock(&hdev->ll_open_lock);
2036}
2037EXPORT_SYMBOL_GPL(hid_hw_close);
2038
2039struct hid_dynid {
2040 struct list_head list;
2041 struct hid_device_id id;
2042};
2043
2044/**
2045 * store_new_id - add a new HID device ID to this driver and re-probe devices
2046 * @driver: target device driver
2047 * @buf: buffer for scanning device ID data
2048 * @count: input size
2049 *
2050 * Adds a new dynamic hid device ID to this driver,
2051 * and causes the driver to probe for all devices again.
2052 */
2053static ssize_t new_id_store(struct device_driver *drv, const char *buf,
2054 size_t count)
2055{
2056 struct hid_driver *hdrv = to_hid_driver(drv);
2057 struct hid_dynid *dynid;
2058 __u32 bus, vendor, product;
2059 unsigned long driver_data = 0;
2060 int ret;
2061
2062 ret = sscanf(buf, "%x %x %x %lx",
2063 &bus, &vendor, &product, &driver_data);
2064 if (ret < 3)
2065 return -EINVAL;
2066
2067 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
2068 if (!dynid)
2069 return -ENOMEM;
2070
2071 dynid->id.bus = bus;
2072 dynid->id.group = HID_GROUP_ANY;
2073 dynid->id.vendor = vendor;
2074 dynid->id.product = product;
2075 dynid->id.driver_data = driver_data;
2076
2077 spin_lock(&hdrv->dyn_lock);
2078 list_add_tail(&dynid->list, &hdrv->dyn_list);
2079 spin_unlock(&hdrv->dyn_lock);
2080
2081 ret = driver_attach(&hdrv->driver);
2082
2083 return ret ? : count;
2084}
2085static DRIVER_ATTR_WO(new_id);
2086
2087static struct attribute *hid_drv_attrs[] = {
2088 &driver_attr_new_id.attr,
2089 NULL,
2090};
2091ATTRIBUTE_GROUPS(hid_drv);
2092
2093static void hid_free_dynids(struct hid_driver *hdrv)
2094{
2095 struct hid_dynid *dynid, *n;
2096
2097 spin_lock(&hdrv->dyn_lock);
2098 list_for_each_entry_safe(dynid, n, &hdrv->dyn_list, list) {
2099 list_del(&dynid->list);
2100 kfree(dynid);
2101 }
2102 spin_unlock(&hdrv->dyn_lock);
2103}
2104
2105const struct hid_device_id *hid_match_device(struct hid_device *hdev,
2106 struct hid_driver *hdrv)
2107{
2108 struct hid_dynid *dynid;
2109
2110 spin_lock(&hdrv->dyn_lock);
2111 list_for_each_entry(dynid, &hdrv->dyn_list, list) {
2112 if (hid_match_one_id(hdev, &dynid->id)) {
2113 spin_unlock(&hdrv->dyn_lock);
2114 return &dynid->id;
2115 }
2116 }
2117 spin_unlock(&hdrv->dyn_lock);
2118
2119 return hid_match_id(hdev, hdrv->id_table);
2120}
2121EXPORT_SYMBOL_GPL(hid_match_device);
2122
2123static int hid_bus_match(struct device *dev, struct device_driver *drv)
2124{
2125 struct hid_driver *hdrv = to_hid_driver(drv);
2126 struct hid_device *hdev = to_hid_device(dev);
2127
2128 return hid_match_device(hdev, hdrv) != NULL;
2129}
2130
2131/**
2132 * hid_compare_device_paths - check if both devices share the same path
2133 * @hdev_a: hid device
2134 * @hdev_b: hid device
2135 * @separator: char to use as separator
2136 *
2137 * Check if two devices share the same path up to the last occurrence of
2138 * the separator char. Both paths must exist (i.e., zero-length paths
2139 * don't match).
2140 */
2141bool hid_compare_device_paths(struct hid_device *hdev_a,
2142 struct hid_device *hdev_b, char separator)
2143{
2144 int n1 = strrchr(hdev_a->phys, separator) - hdev_a->phys;
2145 int n2 = strrchr(hdev_b->phys, separator) - hdev_b->phys;
2146
2147 if (n1 != n2 || n1 <= 0 || n2 <= 0)
2148 return false;
2149
2150 return !strncmp(hdev_a->phys, hdev_b->phys, n1);
2151}
2152EXPORT_SYMBOL_GPL(hid_compare_device_paths);
2153
2154static int hid_device_probe(struct device *dev)
2155{
2156 struct hid_driver *hdrv = to_hid_driver(dev->driver);
2157 struct hid_device *hdev = to_hid_device(dev);
2158 const struct hid_device_id *id;
2159 int ret = 0;
2160
2161 if (down_interruptible(&hdev->driver_input_lock)) {
2162 ret = -EINTR;
2163 goto end;
2164 }
2165 hdev->io_started = false;
2166
2167 clear_bit(ffs(HID_STAT_REPROBED), &hdev->status);
2168
2169 if (!hdev->driver) {
2170 id = hid_match_device(hdev, hdrv);
2171 if (id == NULL) {
2172 ret = -ENODEV;
2173 goto unlock;
2174 }
2175
2176 if (hdrv->match) {
2177 if (!hdrv->match(hdev, hid_ignore_special_drivers)) {
2178 ret = -ENODEV;
2179 goto unlock;
2180 }
2181 } else {
2182 /*
2183 * hid-generic implements .match(), so if
2184 * hid_ignore_special_drivers is set, we can safely
2185 * return.
2186 */
2187 if (hid_ignore_special_drivers) {
2188 ret = -ENODEV;
2189 goto unlock;
2190 }
2191 }
2192
2193 /* reset the quirks that has been previously set */
2194 hdev->quirks = hid_lookup_quirk(hdev);
2195 hdev->driver = hdrv;
2196 if (hdrv->probe) {
2197 ret = hdrv->probe(hdev, id);
2198 } else { /* default probe */
2199 ret = hid_open_report(hdev);
2200 if (!ret)
2201 ret = hid_hw_start(hdev, HID_CONNECT_DEFAULT);
2202 }
2203 if (ret) {
2204 hid_close_report(hdev);
2205 hdev->driver = NULL;
2206 }
2207 }
2208unlock:
2209 if (!hdev->io_started)
2210 up(&hdev->driver_input_lock);
2211end:
2212 return ret;
2213}
2214
2215static int hid_device_remove(struct device *dev)
2216{
2217 struct hid_device *hdev = to_hid_device(dev);
2218 struct hid_driver *hdrv;
2219 int ret = 0;
2220
2221 if (down_interruptible(&hdev->driver_input_lock)) {
2222 ret = -EINTR;
2223 goto end;
2224 }
2225 hdev->io_started = false;
2226
2227 hdrv = hdev->driver;
2228 if (hdrv) {
2229 if (hdrv->remove)
2230 hdrv->remove(hdev);
2231 else /* default remove */
2232 hid_hw_stop(hdev);
2233 hid_close_report(hdev);
2234 hdev->driver = NULL;
2235 }
2236
2237 if (!hdev->io_started)
2238 up(&hdev->driver_input_lock);
2239end:
2240 return ret;
2241}
2242
2243static ssize_t modalias_show(struct device *dev, struct device_attribute *a,
2244 char *buf)
2245{
2246 struct hid_device *hdev = container_of(dev, struct hid_device, dev);
2247
2248 return scnprintf(buf, PAGE_SIZE, "hid:b%04Xg%04Xv%08Xp%08X\n",
2249 hdev->bus, hdev->group, hdev->vendor, hdev->product);
2250}
2251static DEVICE_ATTR_RO(modalias);
2252
2253static struct attribute *hid_dev_attrs[] = {
2254 &dev_attr_modalias.attr,
2255 NULL,
2256};
2257static struct bin_attribute *hid_dev_bin_attrs[] = {
2258 &dev_bin_attr_report_desc,
2259 NULL
2260};
2261static const struct attribute_group hid_dev_group = {
2262 .attrs = hid_dev_attrs,
2263 .bin_attrs = hid_dev_bin_attrs,
2264};
2265__ATTRIBUTE_GROUPS(hid_dev);
2266
2267static int hid_uevent(struct device *dev, struct kobj_uevent_env *env)
2268{
2269 struct hid_device *hdev = to_hid_device(dev);
2270
2271 if (add_uevent_var(env, "HID_ID=%04X:%08X:%08X",
2272 hdev->bus, hdev->vendor, hdev->product))
2273 return -ENOMEM;
2274
2275 if (add_uevent_var(env, "HID_NAME=%s", hdev->name))
2276 return -ENOMEM;
2277
2278 if (add_uevent_var(env, "HID_PHYS=%s", hdev->phys))
2279 return -ENOMEM;
2280
2281 if (add_uevent_var(env, "HID_UNIQ=%s", hdev->uniq))
2282 return -ENOMEM;
2283
2284 if (add_uevent_var(env, "MODALIAS=hid:b%04Xg%04Xv%08Xp%08X",
2285 hdev->bus, hdev->group, hdev->vendor, hdev->product))
2286 return -ENOMEM;
2287
2288 return 0;
2289}
2290
2291struct bus_type hid_bus_type = {
2292 .name = "hid",
2293 .dev_groups = hid_dev_groups,
2294 .drv_groups = hid_drv_groups,
2295 .match = hid_bus_match,
2296 .probe = hid_device_probe,
2297 .remove = hid_device_remove,
2298 .uevent = hid_uevent,
2299};
2300EXPORT_SYMBOL(hid_bus_type);
2301
2302int hid_add_device(struct hid_device *hdev)
2303{
2304 static atomic_t id = ATOMIC_INIT(0);
2305 int ret;
2306
2307 if (WARN_ON(hdev->status & HID_STAT_ADDED))
2308 return -EBUSY;
2309
2310 hdev->quirks = hid_lookup_quirk(hdev);
2311
2312 /* we need to kill them here, otherwise they will stay allocated to
2313 * wait for coming driver */
2314 if (hid_ignore(hdev))
2315 return -ENODEV;
2316
2317 /*
2318 * Check for the mandatory transport channel.
2319 */
2320 if (!hdev->ll_driver->raw_request) {
2321 hid_err(hdev, "transport driver missing .raw_request()\n");
2322 return -EINVAL;
2323 }
2324
2325 /*
2326 * Read the device report descriptor once and use as template
2327 * for the driver-specific modifications.
2328 */
2329 ret = hdev->ll_driver->parse(hdev);
2330 if (ret)
2331 return ret;
2332 if (!hdev->dev_rdesc)
2333 return -ENODEV;
2334
2335 /*
2336 * Scan generic devices for group information
2337 */
2338 if (hid_ignore_special_drivers) {
2339 hdev->group = HID_GROUP_GENERIC;
2340 } else if (!hdev->group &&
2341 !(hdev->quirks & HID_QUIRK_HAVE_SPECIAL_DRIVER)) {
2342 ret = hid_scan_report(hdev);
2343 if (ret)
2344 hid_warn(hdev, "bad device descriptor (%d)\n", ret);
2345 }
2346
2347 /* XXX hack, any other cleaner solution after the driver core
2348 * is converted to allow more than 20 bytes as the device name? */
2349 dev_set_name(&hdev->dev, "%04X:%04X:%04X.%04X", hdev->bus,
2350 hdev->vendor, hdev->product, atomic_inc_return(&id));
2351
2352 hid_debug_register(hdev, dev_name(&hdev->dev));
2353 ret = device_add(&hdev->dev);
2354 if (!ret)
2355 hdev->status |= HID_STAT_ADDED;
2356 else
2357 hid_debug_unregister(hdev);
2358
2359 return ret;
2360}
2361EXPORT_SYMBOL_GPL(hid_add_device);
2362
2363/**
2364 * hid_allocate_device - allocate new hid device descriptor
2365 *
2366 * Allocate and initialize hid device, so that hid_destroy_device might be
2367 * used to free it.
2368 *
2369 * New hid_device pointer is returned on success, otherwise ERR_PTR encoded
2370 * error value.
2371 */
2372struct hid_device *hid_allocate_device(void)
2373{
2374 struct hid_device *hdev;
2375 int ret = -ENOMEM;
2376
2377 hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
2378 if (hdev == NULL)
2379 return ERR_PTR(ret);
2380
2381 device_initialize(&hdev->dev);
2382 hdev->dev.release = hid_device_release;
2383 hdev->dev.bus = &hid_bus_type;
2384 device_enable_async_suspend(&hdev->dev);
2385
2386 hid_close_report(hdev);
2387
2388 init_waitqueue_head(&hdev->debug_wait);
2389 INIT_LIST_HEAD(&hdev->debug_list);
2390 spin_lock_init(&hdev->debug_list_lock);
2391 sema_init(&hdev->driver_input_lock, 1);
2392 mutex_init(&hdev->ll_open_lock);
2393
2394 return hdev;
2395}
2396EXPORT_SYMBOL_GPL(hid_allocate_device);
2397
2398static void hid_remove_device(struct hid_device *hdev)
2399{
2400 if (hdev->status & HID_STAT_ADDED) {
2401 device_del(&hdev->dev);
2402 hid_debug_unregister(hdev);
2403 hdev->status &= ~HID_STAT_ADDED;
2404 }
2405 kfree(hdev->dev_rdesc);
2406 hdev->dev_rdesc = NULL;
2407 hdev->dev_rsize = 0;
2408}
2409
2410/**
2411 * hid_destroy_device - free previously allocated device
2412 *
2413 * @hdev: hid device
2414 *
2415 * If you allocate hid_device through hid_allocate_device, you should ever
2416 * free by this function.
2417 */
2418void hid_destroy_device(struct hid_device *hdev)
2419{
2420 hid_remove_device(hdev);
2421 put_device(&hdev->dev);
2422}
2423EXPORT_SYMBOL_GPL(hid_destroy_device);
2424
2425
2426static int __hid_bus_reprobe_drivers(struct device *dev, void *data)
2427{
2428 struct hid_driver *hdrv = data;
2429 struct hid_device *hdev = to_hid_device(dev);
2430
2431 if (hdev->driver == hdrv &&
2432 !hdrv->match(hdev, hid_ignore_special_drivers) &&
2433 !test_and_set_bit(ffs(HID_STAT_REPROBED), &hdev->status))
2434 return device_reprobe(dev);
2435
2436 return 0;
2437}
2438
2439static int __hid_bus_driver_added(struct device_driver *drv, void *data)
2440{
2441 struct hid_driver *hdrv = to_hid_driver(drv);
2442
2443 if (hdrv->match) {
2444 bus_for_each_dev(&hid_bus_type, NULL, hdrv,
2445 __hid_bus_reprobe_drivers);
2446 }
2447
2448 return 0;
2449}
2450
2451static int __bus_removed_driver(struct device_driver *drv, void *data)
2452{
2453 return bus_rescan_devices(&hid_bus_type);
2454}
2455
2456int __hid_register_driver(struct hid_driver *hdrv, struct module *owner,
2457 const char *mod_name)
2458{
2459 int ret;
2460
2461 hdrv->driver.name = hdrv->name;
2462 hdrv->driver.bus = &hid_bus_type;
2463 hdrv->driver.owner = owner;
2464 hdrv->driver.mod_name = mod_name;
2465
2466 INIT_LIST_HEAD(&hdrv->dyn_list);
2467 spin_lock_init(&hdrv->dyn_lock);
2468
2469 ret = driver_register(&hdrv->driver);
2470
2471 if (ret == 0)
2472 bus_for_each_drv(&hid_bus_type, NULL, NULL,
2473 __hid_bus_driver_added);
2474
2475 return ret;
2476}
2477EXPORT_SYMBOL_GPL(__hid_register_driver);
2478
2479void hid_unregister_driver(struct hid_driver *hdrv)
2480{
2481 driver_unregister(&hdrv->driver);
2482 hid_free_dynids(hdrv);
2483
2484 bus_for_each_drv(&hid_bus_type, NULL, hdrv, __bus_removed_driver);
2485}
2486EXPORT_SYMBOL_GPL(hid_unregister_driver);
2487
2488int hid_check_keys_pressed(struct hid_device *hid)
2489{
2490 struct hid_input *hidinput;
2491 int i;
2492
2493 if (!(hid->claimed & HID_CLAIMED_INPUT))
2494 return 0;
2495
2496 list_for_each_entry(hidinput, &hid->inputs, list) {
2497 for (i = 0; i < BITS_TO_LONGS(KEY_MAX); i++)
2498 if (hidinput->input->key[i])
2499 return 1;
2500 }
2501
2502 return 0;
2503}
2504
2505EXPORT_SYMBOL_GPL(hid_check_keys_pressed);
2506
2507static int __init hid_init(void)
2508{
2509 int ret;
2510
2511 if (hid_debug)
2512 pr_warn("hid_debug is now used solely for parser and driver debugging.\n"
2513 "debugfs is now used for inspecting the device (report descriptor, reports)\n");
2514
2515 ret = bus_register(&hid_bus_type);
2516 if (ret) {
2517 pr_err("can't register hid bus\n");
2518 goto err;
2519 }
2520
2521 ret = hidraw_init();
2522 if (ret)
2523 goto err_bus;
2524
2525 hid_debug_init();
2526
2527 return 0;
2528err_bus:
2529 bus_unregister(&hid_bus_type);
2530err:
2531 return ret;
2532}
2533
2534static void __exit hid_exit(void)
2535{
2536 hid_debug_exit();
2537 hidraw_exit();
2538 bus_unregister(&hid_bus_type);
2539 hid_quirks_exit(HID_BUS_ANY);
2540}
2541
2542module_init(hid_init);
2543module_exit(hid_exit);
2544
2545MODULE_AUTHOR("Andreas Gal");
2546MODULE_AUTHOR("Vojtech Pavlik");
2547MODULE_AUTHOR("Jiri Kosina");
2548MODULE_LICENSE("GPL");
2549