1/*
2 * fschmd.c
3 *
4 * Copyright (C) 2007 - 2009 Hans de Goede <hdegoede@redhat.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21/*
22 * Merged Fujitsu Siemens hwmon driver, supporting the Poseidon, Hermes,
23 * Scylla, Heracles, Heimdall, Hades and Syleus chips
24 *
25 * Based on the original 2.4 fscscy, 2.6 fscpos, 2.6 fscher and 2.6
26 * (candidate) fschmd drivers:
27 * Copyright (C) 2006 Thilo Cestonaro
28 * <thilo.cestonaro.external@fujitsu-siemens.com>
29 * Copyright (C) 2004, 2005 Stefan Ott <stefan@desire.ch>
30 * Copyright (C) 2003, 2004 Reinhard Nissl <rnissl@gmx.de>
31 * Copyright (c) 2001 Martin Knoblauch <mkn@teraport.de, knobi@knobisoft.de>
32 * Copyright (C) 2000 Hermann Jung <hej@odn.de>
33 */
34
35#include <linux/module.h>
36#include <linux/init.h>
37#include <linux/slab.h>
38#include <linux/jiffies.h>
39#include <linux/i2c.h>
40#include <linux/hwmon.h>
41#include <linux/hwmon-sysfs.h>
42#include <linux/err.h>
43#include <linux/mutex.h>
44#include <linux/sysfs.h>
45#include <linux/dmi.h>
46#include <linux/fs.h>
47#include <linux/watchdog.h>
48#include <linux/miscdevice.h>
49#include <linux/uaccess.h>
50#include <linux/kref.h>
51
52/* Addresses to scan */
53static const unsigned short normal_i2c[] = { 0x73, I2C_CLIENT_END };
54
55/* Insmod parameters */
56static bool nowayout = WATCHDOG_NOWAYOUT;
57module_param(nowayout, bool, 0);
58MODULE_PARM_DESC(nowayout, "Watchdog cannot be stopped once started (default="
59 __MODULE_STRING(WATCHDOG_NOWAYOUT) ")");
60
61enum chips { fscpos, fscher, fscscy, fschrc, fschmd, fschds, fscsyl };
62
63/*
64 * The FSCHMD registers and other defines
65 */
66
67/* chip identification */
68#define FSCHMD_REG_IDENT_0 0x00
69#define FSCHMD_REG_IDENT_1 0x01
70#define FSCHMD_REG_IDENT_2 0x02
71#define FSCHMD_REG_REVISION 0x03
72
73/* global control and status */
74#define FSCHMD_REG_EVENT_STATE 0x04
75#define FSCHMD_REG_CONTROL 0x05
76
77#define FSCHMD_CONTROL_ALERT_LED 0x01
78
79/* watchdog */
80static const u8 FSCHMD_REG_WDOG_CONTROL[7] = {
81 0x21, 0x21, 0x21, 0x21, 0x21, 0x28, 0x28 };
82static const u8 FSCHMD_REG_WDOG_STATE[7] = {
83 0x23, 0x23, 0x23, 0x23, 0x23, 0x29, 0x29 };
84static const u8 FSCHMD_REG_WDOG_PRESET[7] = {
85 0x28, 0x28, 0x28, 0x28, 0x28, 0x2a, 0x2a };
86
87#define FSCHMD_WDOG_CONTROL_TRIGGER 0x10
88#define FSCHMD_WDOG_CONTROL_STARTED 0x10 /* the same as trigger */
89#define FSCHMD_WDOG_CONTROL_STOP 0x20
90#define FSCHMD_WDOG_CONTROL_RESOLUTION 0x40
91
92#define FSCHMD_WDOG_STATE_CARDRESET 0x02
93
94/* voltages, weird order is to keep the same order as the old drivers */
95static const u8 FSCHMD_REG_VOLT[7][6] = {
96 { 0x45, 0x42, 0x48 }, /* pos */
97 { 0x45, 0x42, 0x48 }, /* her */
98 { 0x45, 0x42, 0x48 }, /* scy */
99 { 0x45, 0x42, 0x48 }, /* hrc */
100 { 0x45, 0x42, 0x48 }, /* hmd */
101 { 0x21, 0x20, 0x22 }, /* hds */
102 { 0x21, 0x20, 0x22, 0x23, 0x24, 0x25 }, /* syl */
103};
104
105static const int FSCHMD_NO_VOLT_SENSORS[7] = { 3, 3, 3, 3, 3, 3, 6 };
106
107/*
108 * minimum pwm at which the fan is driven (pwm can be increased depending on
109 * the temp. Notice that for the scy some fans share there minimum speed.
110 * Also notice that with the scy the sensor order is different than with the
111 * other chips, this order was in the 2.4 driver and kept for consistency.
112 */
113static const u8 FSCHMD_REG_FAN_MIN[7][7] = {
114 { 0x55, 0x65 }, /* pos */
115 { 0x55, 0x65, 0xb5 }, /* her */
116 { 0x65, 0x65, 0x55, 0xa5, 0x55, 0xa5 }, /* scy */
117 { 0x55, 0x65, 0xa5, 0xb5 }, /* hrc */
118 { 0x55, 0x65, 0xa5, 0xb5, 0xc5 }, /* hmd */
119 { 0x55, 0x65, 0xa5, 0xb5, 0xc5 }, /* hds */
120 { 0x54, 0x64, 0x74, 0x84, 0x94, 0xa4, 0xb4 }, /* syl */
121};
122
123/* actual fan speed */
124static const u8 FSCHMD_REG_FAN_ACT[7][7] = {
125 { 0x0e, 0x6b, 0xab }, /* pos */
126 { 0x0e, 0x6b, 0xbb }, /* her */
127 { 0x6b, 0x6c, 0x0e, 0xab, 0x5c, 0xbb }, /* scy */
128 { 0x0e, 0x6b, 0xab, 0xbb }, /* hrc */
129 { 0x5b, 0x6b, 0xab, 0xbb, 0xcb }, /* hmd */
130 { 0x5b, 0x6b, 0xab, 0xbb, 0xcb }, /* hds */
131 { 0x57, 0x67, 0x77, 0x87, 0x97, 0xa7, 0xb7 }, /* syl */
132};
133
134/* fan status registers */
135static const u8 FSCHMD_REG_FAN_STATE[7][7] = {
136 { 0x0d, 0x62, 0xa2 }, /* pos */
137 { 0x0d, 0x62, 0xb2 }, /* her */
138 { 0x62, 0x61, 0x0d, 0xa2, 0x52, 0xb2 }, /* scy */
139 { 0x0d, 0x62, 0xa2, 0xb2 }, /* hrc */
140 { 0x52, 0x62, 0xa2, 0xb2, 0xc2 }, /* hmd */
141 { 0x52, 0x62, 0xa2, 0xb2, 0xc2 }, /* hds */
142 { 0x50, 0x60, 0x70, 0x80, 0x90, 0xa0, 0xb0 }, /* syl */
143};
144
145/* fan ripple / divider registers */
146static const u8 FSCHMD_REG_FAN_RIPPLE[7][7] = {
147 { 0x0f, 0x6f, 0xaf }, /* pos */
148 { 0x0f, 0x6f, 0xbf }, /* her */
149 { 0x6f, 0x6f, 0x0f, 0xaf, 0x0f, 0xbf }, /* scy */
150 { 0x0f, 0x6f, 0xaf, 0xbf }, /* hrc */
151 { 0x5f, 0x6f, 0xaf, 0xbf, 0xcf }, /* hmd */
152 { 0x5f, 0x6f, 0xaf, 0xbf, 0xcf }, /* hds */
153 { 0x56, 0x66, 0x76, 0x86, 0x96, 0xa6, 0xb6 }, /* syl */
154};
155
156static const int FSCHMD_NO_FAN_SENSORS[7] = { 3, 3, 6, 4, 5, 5, 7 };
157
158/* Fan status register bitmasks */
159#define FSCHMD_FAN_ALARM 0x04 /* called fault by FSC! */
160#define FSCHMD_FAN_NOT_PRESENT 0x08
161#define FSCHMD_FAN_DISABLED 0x80
162
163
164/* actual temperature registers */
165static const u8 FSCHMD_REG_TEMP_ACT[7][11] = {
166 { 0x64, 0x32, 0x35 }, /* pos */
167 { 0x64, 0x32, 0x35 }, /* her */
168 { 0x64, 0xD0, 0x32, 0x35 }, /* scy */
169 { 0x64, 0x32, 0x35 }, /* hrc */
170 { 0x70, 0x80, 0x90, 0xd0, 0xe0 }, /* hmd */
171 { 0x70, 0x80, 0x90, 0xd0, 0xe0 }, /* hds */
172 { 0x58, 0x68, 0x78, 0x88, 0x98, 0xa8, /* syl */
173 0xb8, 0xc8, 0xd8, 0xe8, 0xf8 },
174};
175
176/* temperature state registers */
177static const u8 FSCHMD_REG_TEMP_STATE[7][11] = {
178 { 0x71, 0x81, 0x91 }, /* pos */
179 { 0x71, 0x81, 0x91 }, /* her */
180 { 0x71, 0xd1, 0x81, 0x91 }, /* scy */
181 { 0x71, 0x81, 0x91 }, /* hrc */
182 { 0x71, 0x81, 0x91, 0xd1, 0xe1 }, /* hmd */
183 { 0x71, 0x81, 0x91, 0xd1, 0xe1 }, /* hds */
184 { 0x59, 0x69, 0x79, 0x89, 0x99, 0xa9, /* syl */
185 0xb9, 0xc9, 0xd9, 0xe9, 0xf9 },
186};
187
188/*
189 * temperature high limit registers, FSC does not document these. Proven to be
190 * there with field testing on the fscher and fschrc, already supported / used
191 * in the fscscy 2.4 driver. FSC has confirmed that the fschmd has registers
192 * at these addresses, but doesn't want to confirm they are the same as with
193 * the fscher??
194 */
195static const u8 FSCHMD_REG_TEMP_LIMIT[7][11] = {
196 { 0, 0, 0 }, /* pos */
197 { 0x76, 0x86, 0x96 }, /* her */
198 { 0x76, 0xd6, 0x86, 0x96 }, /* scy */
199 { 0x76, 0x86, 0x96 }, /* hrc */
200 { 0x76, 0x86, 0x96, 0xd6, 0xe6 }, /* hmd */
201 { 0x76, 0x86, 0x96, 0xd6, 0xe6 }, /* hds */
202 { 0x5a, 0x6a, 0x7a, 0x8a, 0x9a, 0xaa, /* syl */
203 0xba, 0xca, 0xda, 0xea, 0xfa },
204};
205
206/*
207 * These were found through experimenting with an fscher, currently they are
208 * not used, but we keep them around for future reference.
209 * On the fscsyl AUTOP1 lives at 0x#c (so 0x5c for fan1, 0x6c for fan2, etc),
210 * AUTOP2 lives at 0x#e, and 0x#1 is a bitmask defining which temps influence
211 * the fan speed.
212 * static const u8 FSCHER_REG_TEMP_AUTOP1[] = { 0x73, 0x83, 0x93 };
213 * static const u8 FSCHER_REG_TEMP_AUTOP2[] = { 0x75, 0x85, 0x95 };
214 */
215
216static const int FSCHMD_NO_TEMP_SENSORS[7] = { 3, 3, 4, 3, 5, 5, 11 };
217
218/* temp status register bitmasks */
219#define FSCHMD_TEMP_WORKING 0x01
220#define FSCHMD_TEMP_ALERT 0x02
221#define FSCHMD_TEMP_DISABLED 0x80
222/* there only really is an alarm if the sensor is working and alert == 1 */
223#define FSCHMD_TEMP_ALARM_MASK \
224 (FSCHMD_TEMP_WORKING | FSCHMD_TEMP_ALERT)
225
226/*
227 * Functions declarations
228 */
229
230static int fschmd_probe(struct i2c_client *client,
231 const struct i2c_device_id *id);
232static int fschmd_detect(struct i2c_client *client,
233 struct i2c_board_info *info);
234static int fschmd_remove(struct i2c_client *client);
235static struct fschmd_data *fschmd_update_device(struct device *dev);
236
237/*
238 * Driver data (common to all clients)
239 */
240
241static const struct i2c_device_id fschmd_id[] = {
242 { "fscpos", fscpos },
243 { "fscher", fscher },
244 { "fscscy", fscscy },
245 { "fschrc", fschrc },
246 { "fschmd", fschmd },
247 { "fschds", fschds },
248 { "fscsyl", fscsyl },
249 { }
250};
251MODULE_DEVICE_TABLE(i2c, fschmd_id);
252
253static struct i2c_driver fschmd_driver = {
254 .class = I2C_CLASS_HWMON,
255 .driver = {
256 .name = "fschmd",
257 },
258 .probe = fschmd_probe,
259 .remove = fschmd_remove,
260 .id_table = fschmd_id,
261 .detect = fschmd_detect,
262 .address_list = normal_i2c,
263};
264
265/*
266 * Client data (each client gets its own)
267 */
268
269struct fschmd_data {
270 struct i2c_client *client;
271 struct device *hwmon_dev;
272 struct mutex update_lock;
273 struct mutex watchdog_lock;
274 struct list_head list; /* member of the watchdog_data_list */
275 struct kref kref;
276 struct miscdevice watchdog_miscdev;
277 enum chips kind;
278 unsigned long watchdog_is_open;
279 char watchdog_expect_close;
280 char watchdog_name[10]; /* must be unique to avoid sysfs conflict */
281 char valid; /* zero until following fields are valid */
282 unsigned long last_updated; /* in jiffies */
283
284 /* register values */
285 u8 revision; /* chip revision */
286 u8 global_control; /* global control register */
287 u8 watchdog_control; /* watchdog control register */
288 u8 watchdog_state; /* watchdog status register */
289 u8 watchdog_preset; /* watchdog counter preset on trigger val */
290 u8 volt[6]; /* voltage */
291 u8 temp_act[11]; /* temperature */
292 u8 temp_status[11]; /* status of sensor */
293 u8 temp_max[11]; /* high temp limit, notice: undocumented! */
294 u8 fan_act[7]; /* fans revolutions per second */
295 u8 fan_status[7]; /* fan status */
296 u8 fan_min[7]; /* fan min value for rps */
297 u8 fan_ripple[7]; /* divider for rps */
298};
299
300/*
301 * Global variables to hold information read from special DMI tables, which are
302 * available on FSC machines with an fscher or later chip. There is no need to
303 * protect these with a lock as they are only modified from our attach function
304 * which always gets called with the i2c-core lock held and never accessed
305 * before the attach function is done with them.
306 */
307static int dmi_mult[6] = { 490, 200, 100, 100, 200, 100 };
308static int dmi_offset[6] = { 0, 0, 0, 0, 0, 0 };
309static int dmi_vref = -1;
310
311/*
312 * Somewhat ugly :( global data pointer list with all fschmd devices, so that
313 * we can find our device data as when using misc_register there is no other
314 * method to get to ones device data from the open fop.
315 */
316static LIST_HEAD(watchdog_data_list);
317/* Note this lock not only protect list access, but also data.kref access */
318static DEFINE_MUTEX(watchdog_data_mutex);
319
320/*
321 * Release our data struct when we're detached from the i2c client *and* all
322 * references to our watchdog device are released
323 */
324static void fschmd_release_resources(struct kref *ref)
325{
326 struct fschmd_data *data = container_of(ref, struct fschmd_data, kref);
327 kfree(data);
328}
329
330/*
331 * Sysfs attr show / store functions
332 */
333
334static ssize_t in_value_show(struct device *dev,
335 struct device_attribute *devattr, char *buf)
336{
337 const int max_reading[3] = { 14200, 6600, 3300 };
338 int index = to_sensor_dev_attr(devattr)->index;
339 struct fschmd_data *data = fschmd_update_device(dev);
340
341 if (data->kind == fscher || data->kind >= fschrc)
342 return sprintf(buf, "%d\n", (data->volt[index] * dmi_vref *
343 dmi_mult[index]) / 255 + dmi_offset[index]);
344 else
345 return sprintf(buf, "%d\n", (data->volt[index] *
346 max_reading[index] + 128) / 255);
347}
348
349
350#define TEMP_FROM_REG(val) (((val) - 128) * 1000)
351
352static ssize_t temp_value_show(struct device *dev,
353 struct device_attribute *devattr, char *buf)
354{
355 int index = to_sensor_dev_attr(devattr)->index;
356 struct fschmd_data *data = fschmd_update_device(dev);
357
358 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_act[index]));
359}
360
361static ssize_t temp_max_show(struct device *dev,
362 struct device_attribute *devattr, char *buf)
363{
364 int index = to_sensor_dev_attr(devattr)->index;
365 struct fschmd_data *data = fschmd_update_device(dev);
366
367 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[index]));
368}
369
370static ssize_t temp_max_store(struct device *dev,
371 struct device_attribute *devattr,
372 const char *buf, size_t count)
373{
374 int index = to_sensor_dev_attr(devattr)->index;
375 struct fschmd_data *data = dev_get_drvdata(dev);
376 long v;
377 int err;
378
379 err = kstrtol(buf, 10, &v);
380 if (err)
381 return err;
382
383 v = clamp_val(v / 1000, -128, 127) + 128;
384
385 mutex_lock(&data->update_lock);
386 i2c_smbus_write_byte_data(to_i2c_client(dev),
387 FSCHMD_REG_TEMP_LIMIT[data->kind][index], v);
388 data->temp_max[index] = v;
389 mutex_unlock(&data->update_lock);
390
391 return count;
392}
393
394static ssize_t temp_fault_show(struct device *dev,
395 struct device_attribute *devattr, char *buf)
396{
397 int index = to_sensor_dev_attr(devattr)->index;
398 struct fschmd_data *data = fschmd_update_device(dev);
399
400 /* bit 0 set means sensor working ok, so no fault! */
401 if (data->temp_status[index] & FSCHMD_TEMP_WORKING)
402 return sprintf(buf, "0\n");
403 else
404 return sprintf(buf, "1\n");
405}
406
407static ssize_t temp_alarm_show(struct device *dev,
408 struct device_attribute *devattr, char *buf)
409{
410 int index = to_sensor_dev_attr(devattr)->index;
411 struct fschmd_data *data = fschmd_update_device(dev);
412
413 if ((data->temp_status[index] & FSCHMD_TEMP_ALARM_MASK) ==
414 FSCHMD_TEMP_ALARM_MASK)
415 return sprintf(buf, "1\n");
416 else
417 return sprintf(buf, "0\n");
418}
419
420
421#define RPM_FROM_REG(val) ((val) * 60)
422
423static ssize_t fan_value_show(struct device *dev,
424 struct device_attribute *devattr, char *buf)
425{
426 int index = to_sensor_dev_attr(devattr)->index;
427 struct fschmd_data *data = fschmd_update_device(dev);
428
429 return sprintf(buf, "%u\n", RPM_FROM_REG(data->fan_act[index]));
430}
431
432static ssize_t fan_div_show(struct device *dev,
433 struct device_attribute *devattr, char *buf)
434{
435 int index = to_sensor_dev_attr(devattr)->index;
436 struct fschmd_data *data = fschmd_update_device(dev);
437
438 /* bits 2..7 reserved => mask with 3 */
439 return sprintf(buf, "%d\n", 1 << (data->fan_ripple[index] & 3));
440}
441
442static ssize_t fan_div_store(struct device *dev,
443 struct device_attribute *devattr,
444 const char *buf, size_t count)
445{
446 u8 reg;
447 int index = to_sensor_dev_attr(devattr)->index;
448 struct fschmd_data *data = dev_get_drvdata(dev);
449 /* supported values: 2, 4, 8 */
450 unsigned long v;
451 int err;
452
453 err = kstrtoul(buf, 10, &v);
454 if (err)
455 return err;
456
457 switch (v) {
458 case 2:
459 v = 1;
460 break;
461 case 4:
462 v = 2;
463 break;
464 case 8:
465 v = 3;
466 break;
467 default:
468 dev_err(dev,
469 "fan_div value %lu not supported. Choose one of 2, 4 or 8!\n",
470 v);
471 return -EINVAL;
472 }
473
474 mutex_lock(&data->update_lock);
475
476 reg = i2c_smbus_read_byte_data(to_i2c_client(dev),
477 FSCHMD_REG_FAN_RIPPLE[data->kind][index]);
478
479 /* bits 2..7 reserved => mask with 0x03 */
480 reg &= ~0x03;
481 reg |= v;
482
483 i2c_smbus_write_byte_data(to_i2c_client(dev),
484 FSCHMD_REG_FAN_RIPPLE[data->kind][index], reg);
485
486 data->fan_ripple[index] = reg;
487
488 mutex_unlock(&data->update_lock);
489
490 return count;
491}
492
493static ssize_t fan_alarm_show(struct device *dev,
494 struct device_attribute *devattr, char *buf)
495{
496 int index = to_sensor_dev_attr(devattr)->index;
497 struct fschmd_data *data = fschmd_update_device(dev);
498
499 if (data->fan_status[index] & FSCHMD_FAN_ALARM)
500 return sprintf(buf, "1\n");
501 else
502 return sprintf(buf, "0\n");
503}
504
505static ssize_t fan_fault_show(struct device *dev,
506 struct device_attribute *devattr, char *buf)
507{
508 int index = to_sensor_dev_attr(devattr)->index;
509 struct fschmd_data *data = fschmd_update_device(dev);
510
511 if (data->fan_status[index] & FSCHMD_FAN_NOT_PRESENT)
512 return sprintf(buf, "1\n");
513 else
514 return sprintf(buf, "0\n");
515}
516
517
518static ssize_t pwm_auto_point1_pwm_show(struct device *dev,
519 struct device_attribute *devattr,
520 char *buf)
521{
522 int index = to_sensor_dev_attr(devattr)->index;
523 struct fschmd_data *data = fschmd_update_device(dev);
524 int val = data->fan_min[index];
525
526 /* 0 = allow turning off (except on the syl), 1-255 = 50-100% */
527 if (val || data->kind == fscsyl)
528 val = val / 2 + 128;
529
530 return sprintf(buf, "%d\n", val);
531}
532
533static ssize_t pwm_auto_point1_pwm_store(struct device *dev,
534 struct device_attribute *devattr,
535 const char *buf, size_t count)
536{
537 int index = to_sensor_dev_attr(devattr)->index;
538 struct fschmd_data *data = dev_get_drvdata(dev);
539 unsigned long v;
540 int err;
541
542 err = kstrtoul(buf, 10, &v);
543 if (err)
544 return err;
545
546 /* reg: 0 = allow turning off (except on the syl), 1-255 = 50-100% */
547 if (v || data->kind == fscsyl) {
548 v = clamp_val(v, 128, 255);
549 v = (v - 128) * 2 + 1;
550 }
551
552 mutex_lock(&data->update_lock);
553
554 i2c_smbus_write_byte_data(to_i2c_client(dev),
555 FSCHMD_REG_FAN_MIN[data->kind][index], v);
556 data->fan_min[index] = v;
557
558 mutex_unlock(&data->update_lock);
559
560 return count;
561}
562
563
564/*
565 * The FSC hwmon family has the ability to force an attached alert led to flash
566 * from software, we export this as an alert_led sysfs attr
567 */
568static ssize_t alert_led_show(struct device *dev,
569 struct device_attribute *devattr, char *buf)
570{
571 struct fschmd_data *data = fschmd_update_device(dev);
572
573 if (data->global_control & FSCHMD_CONTROL_ALERT_LED)
574 return sprintf(buf, "1\n");
575 else
576 return sprintf(buf, "0\n");
577}
578
579static ssize_t alert_led_store(struct device *dev,
580 struct device_attribute *devattr, const char *buf, size_t count)
581{
582 u8 reg;
583 struct fschmd_data *data = dev_get_drvdata(dev);
584 unsigned long v;
585 int err;
586
587 err = kstrtoul(buf, 10, &v);
588 if (err)
589 return err;
590
591 mutex_lock(&data->update_lock);
592
593 reg = i2c_smbus_read_byte_data(to_i2c_client(dev), FSCHMD_REG_CONTROL);
594
595 if (v)
596 reg |= FSCHMD_CONTROL_ALERT_LED;
597 else
598 reg &= ~FSCHMD_CONTROL_ALERT_LED;
599
600 i2c_smbus_write_byte_data(to_i2c_client(dev), FSCHMD_REG_CONTROL, reg);
601
602 data->global_control = reg;
603
604 mutex_unlock(&data->update_lock);
605
606 return count;
607}
608
609static DEVICE_ATTR_RW(alert_led);
610
611static struct sensor_device_attribute fschmd_attr[] = {
612 SENSOR_ATTR_RO(in0_input, in_value, 0),
613 SENSOR_ATTR_RO(in1_input, in_value, 1),
614 SENSOR_ATTR_RO(in2_input, in_value, 2),
615 SENSOR_ATTR_RO(in3_input, in_value, 3),
616 SENSOR_ATTR_RO(in4_input, in_value, 4),
617 SENSOR_ATTR_RO(in5_input, in_value, 5),
618};
619
620static struct sensor_device_attribute fschmd_temp_attr[] = {
621 SENSOR_ATTR_RO(temp1_input, temp_value, 0),
622 SENSOR_ATTR_RW(temp1_max, temp_max, 0),
623 SENSOR_ATTR_RO(temp1_fault, temp_fault, 0),
624 SENSOR_ATTR_RO(temp1_alarm, temp_alarm, 0),
625 SENSOR_ATTR_RO(temp2_input, temp_value, 1),
626 SENSOR_ATTR_RW(temp2_max, temp_max, 1),
627 SENSOR_ATTR_RO(temp2_fault, temp_fault, 1),
628 SENSOR_ATTR_RO(temp2_alarm, temp_alarm, 1),
629 SENSOR_ATTR_RO(temp3_input, temp_value, 2),
630 SENSOR_ATTR_RW(temp3_max, temp_max, 2),
631 SENSOR_ATTR_RO(temp3_fault, temp_fault, 2),
632 SENSOR_ATTR_RO(temp3_alarm, temp_alarm, 2),
633 SENSOR_ATTR_RO(temp4_input, temp_value, 3),
634 SENSOR_ATTR_RW(temp4_max, temp_max, 3),
635 SENSOR_ATTR_RO(temp4_fault, temp_fault, 3),
636 SENSOR_ATTR_RO(temp4_alarm, temp_alarm, 3),
637 SENSOR_ATTR_RO(temp5_input, temp_value, 4),
638 SENSOR_ATTR_RW(temp5_max, temp_max, 4),
639 SENSOR_ATTR_RO(temp5_fault, temp_fault, 4),
640 SENSOR_ATTR_RO(temp5_alarm, temp_alarm, 4),
641 SENSOR_ATTR_RO(temp6_input, temp_value, 5),
642 SENSOR_ATTR_RW(temp6_max, temp_max, 5),
643 SENSOR_ATTR_RO(temp6_fault, temp_fault, 5),
644 SENSOR_ATTR_RO(temp6_alarm, temp_alarm, 5),
645 SENSOR_ATTR_RO(temp7_input, temp_value, 6),
646 SENSOR_ATTR_RW(temp7_max, temp_max, 6),
647 SENSOR_ATTR_RO(temp7_fault, temp_fault, 6),
648 SENSOR_ATTR_RO(temp7_alarm, temp_alarm, 6),
649 SENSOR_ATTR_RO(temp8_input, temp_value, 7),
650 SENSOR_ATTR_RW(temp8_max, temp_max, 7),
651 SENSOR_ATTR_RO(temp8_fault, temp_fault, 7),
652 SENSOR_ATTR_RO(temp8_alarm, temp_alarm, 7),
653 SENSOR_ATTR_RO(temp9_input, temp_value, 8),
654 SENSOR_ATTR_RW(temp9_max, temp_max, 8),
655 SENSOR_ATTR_RO(temp9_fault, temp_fault, 8),
656 SENSOR_ATTR_RO(temp9_alarm, temp_alarm, 8),
657 SENSOR_ATTR_RO(temp10_input, temp_value, 9),
658 SENSOR_ATTR_RW(temp10_max, temp_max, 9),
659 SENSOR_ATTR_RO(temp10_fault, temp_fault, 9),
660 SENSOR_ATTR_RO(temp10_alarm, temp_alarm, 9),
661 SENSOR_ATTR_RO(temp11_input, temp_value, 10),
662 SENSOR_ATTR_RW(temp11_max, temp_max, 10),
663 SENSOR_ATTR_RO(temp11_fault, temp_fault, 10),
664 SENSOR_ATTR_RO(temp11_alarm, temp_alarm, 10),
665};
666
667static struct sensor_device_attribute fschmd_fan_attr[] = {
668 SENSOR_ATTR_RO(fan1_input, fan_value, 0),
669 SENSOR_ATTR_RW(fan1_div, fan_div, 0),
670 SENSOR_ATTR_RO(fan1_alarm, fan_alarm, 0),
671 SENSOR_ATTR_RO(fan1_fault, fan_fault, 0),
672 SENSOR_ATTR_RW(pwm1_auto_point1_pwm, pwm_auto_point1_pwm, 0),
673 SENSOR_ATTR_RO(fan2_input, fan_value, 1),
674 SENSOR_ATTR_RW(fan2_div, fan_div, 1),
675 SENSOR_ATTR_RO(fan2_alarm, fan_alarm, 1),
676 SENSOR_ATTR_RO(fan2_fault, fan_fault, 1),
677 SENSOR_ATTR_RW(pwm2_auto_point1_pwm, pwm_auto_point1_pwm, 1),
678 SENSOR_ATTR_RO(fan3_input, fan_value, 2),
679 SENSOR_ATTR_RW(fan3_div, fan_div, 2),
680 SENSOR_ATTR_RO(fan3_alarm, fan_alarm, 2),
681 SENSOR_ATTR_RO(fan3_fault, fan_fault, 2),
682 SENSOR_ATTR_RW(pwm3_auto_point1_pwm, pwm_auto_point1_pwm, 2),
683 SENSOR_ATTR_RO(fan4_input, fan_value, 3),
684 SENSOR_ATTR_RW(fan4_div, fan_div, 3),
685 SENSOR_ATTR_RO(fan4_alarm, fan_alarm, 3),
686 SENSOR_ATTR_RO(fan4_fault, fan_fault, 3),
687 SENSOR_ATTR_RW(pwm4_auto_point1_pwm, pwm_auto_point1_pwm, 3),
688 SENSOR_ATTR_RO(fan5_input, fan_value, 4),
689 SENSOR_ATTR_RW(fan5_div, fan_div, 4),
690 SENSOR_ATTR_RO(fan5_alarm, fan_alarm, 4),
691 SENSOR_ATTR_RO(fan5_fault, fan_fault, 4),
692 SENSOR_ATTR_RW(pwm5_auto_point1_pwm, pwm_auto_point1_pwm, 4),
693 SENSOR_ATTR_RO(fan6_input, fan_value, 5),
694 SENSOR_ATTR_RW(fan6_div, fan_div, 5),
695 SENSOR_ATTR_RO(fan6_alarm, fan_alarm, 5),
696 SENSOR_ATTR_RO(fan6_fault, fan_fault, 5),
697 SENSOR_ATTR_RW(pwm6_auto_point1_pwm, pwm_auto_point1_pwm, 5),
698 SENSOR_ATTR_RO(fan7_input, fan_value, 6),
699 SENSOR_ATTR_RW(fan7_div, fan_div, 6),
700 SENSOR_ATTR_RO(fan7_alarm, fan_alarm, 6),
701 SENSOR_ATTR_RO(fan7_fault, fan_fault, 6),
702 SENSOR_ATTR_RW(pwm7_auto_point1_pwm, pwm_auto_point1_pwm, 6),
703};
704
705
706/*
707 * Watchdog routines
708 */
709
710static int watchdog_set_timeout(struct fschmd_data *data, int timeout)
711{
712 int ret, resolution;
713 int kind = data->kind + 1; /* 0-x array index -> 1-x module param */
714
715 /* 2 second or 60 second resolution? */
716 if (timeout <= 510 || kind == fscpos || kind == fscscy)
717 resolution = 2;
718 else
719 resolution = 60;
720
721 if (timeout < resolution || timeout > (resolution * 255))
722 return -EINVAL;
723
724 mutex_lock(&data->watchdog_lock);
725 if (!data->client) {
726 ret = -ENODEV;
727 goto leave;
728 }
729
730 if (resolution == 2)
731 data->watchdog_control &= ~FSCHMD_WDOG_CONTROL_RESOLUTION;
732 else
733 data->watchdog_control |= FSCHMD_WDOG_CONTROL_RESOLUTION;
734
735 data->watchdog_preset = DIV_ROUND_UP(timeout, resolution);
736
737 /* Write new timeout value */
738 i2c_smbus_write_byte_data(data->client,
739 FSCHMD_REG_WDOG_PRESET[data->kind], data->watchdog_preset);
740 /* Write new control register, do not trigger! */
741 i2c_smbus_write_byte_data(data->client,
742 FSCHMD_REG_WDOG_CONTROL[data->kind],
743 data->watchdog_control & ~FSCHMD_WDOG_CONTROL_TRIGGER);
744
745 ret = data->watchdog_preset * resolution;
746
747leave:
748 mutex_unlock(&data->watchdog_lock);
749 return ret;
750}
751
752static int watchdog_get_timeout(struct fschmd_data *data)
753{
754 int timeout;
755
756 mutex_lock(&data->watchdog_lock);
757 if (data->watchdog_control & FSCHMD_WDOG_CONTROL_RESOLUTION)
758 timeout = data->watchdog_preset * 60;
759 else
760 timeout = data->watchdog_preset * 2;
761 mutex_unlock(&data->watchdog_lock);
762
763 return timeout;
764}
765
766static int watchdog_trigger(struct fschmd_data *data)
767{
768 int ret = 0;
769
770 mutex_lock(&data->watchdog_lock);
771 if (!data->client) {
772 ret = -ENODEV;
773 goto leave;
774 }
775
776 data->watchdog_control |= FSCHMD_WDOG_CONTROL_TRIGGER;
777 i2c_smbus_write_byte_data(data->client,
778 FSCHMD_REG_WDOG_CONTROL[data->kind],
779 data->watchdog_control);
780leave:
781 mutex_unlock(&data->watchdog_lock);
782 return ret;
783}
784
785static int watchdog_stop(struct fschmd_data *data)
786{
787 int ret = 0;
788
789 mutex_lock(&data->watchdog_lock);
790 if (!data->client) {
791 ret = -ENODEV;
792 goto leave;
793 }
794
795 data->watchdog_control &= ~FSCHMD_WDOG_CONTROL_STARTED;
796 /*
797 * Don't store the stop flag in our watchdog control register copy, as
798 * its a write only bit (read always returns 0)
799 */
800 i2c_smbus_write_byte_data(data->client,
801 FSCHMD_REG_WDOG_CONTROL[data->kind],
802 data->watchdog_control | FSCHMD_WDOG_CONTROL_STOP);
803leave:
804 mutex_unlock(&data->watchdog_lock);
805 return ret;
806}
807
808static int watchdog_open(struct inode *inode, struct file *filp)
809{
810 struct fschmd_data *pos, *data = NULL;
811 int watchdog_is_open;
812
813 /*
814 * We get called from drivers/char/misc.c with misc_mtx hold, and we
815 * call misc_register() from fschmd_probe() with watchdog_data_mutex
816 * hold, as misc_register() takes the misc_mtx lock, this is a possible
817 * deadlock, so we use mutex_trylock here.
818 */
819 if (!mutex_trylock(&watchdog_data_mutex))
820 return -ERESTARTSYS;
821 list_for_each_entry(pos, &watchdog_data_list, list) {
822 if (pos->watchdog_miscdev.minor == iminor(inode)) {
823 data = pos;
824 break;
825 }
826 }
827 /* Note we can never not have found data, so we don't check for this */
828 watchdog_is_open = test_and_set_bit(0, &data->watchdog_is_open);
829 if (!watchdog_is_open)
830 kref_get(&data->kref);
831 mutex_unlock(&watchdog_data_mutex);
832
833 if (watchdog_is_open)
834 return -EBUSY;
835
836 /* Start the watchdog */
837 watchdog_trigger(data);
838 filp->private_data = data;
839
840 return nonseekable_open(inode, filp);
841}
842
843static int watchdog_release(struct inode *inode, struct file *filp)
844{
845 struct fschmd_data *data = filp->private_data;
846
847 if (data->watchdog_expect_close) {
848 watchdog_stop(data);
849 data->watchdog_expect_close = 0;
850 } else {
851 watchdog_trigger(data);
852 dev_crit(&data->client->dev,
853 "unexpected close, not stopping watchdog!\n");
854 }
855
856 clear_bit(0, &data->watchdog_is_open);
857
858 mutex_lock(&watchdog_data_mutex);
859 kref_put(&data->kref, fschmd_release_resources);
860 mutex_unlock(&watchdog_data_mutex);
861
862 return 0;
863}
864
865static ssize_t watchdog_write(struct file *filp, const char __user *buf,
866 size_t count, loff_t *offset)
867{
868 int ret;
869 struct fschmd_data *data = filp->private_data;
870
871 if (count) {
872 if (!nowayout) {
873 size_t i;
874
875 /* Clear it in case it was set with a previous write */
876 data->watchdog_expect_close = 0;
877
878 for (i = 0; i != count; i++) {
879 char c;
880 if (get_user(c, buf + i))
881 return -EFAULT;
882 if (c == 'V')
883 data->watchdog_expect_close = 1;
884 }
885 }
886 ret = watchdog_trigger(data);
887 if (ret < 0)
888 return ret;
889 }
890 return count;
891}
892
893static long watchdog_ioctl(struct file *filp, unsigned int cmd,
894 unsigned long arg)
895{
896 struct watchdog_info ident = {
897 .options = WDIOF_KEEPALIVEPING | WDIOF_SETTIMEOUT |
898 WDIOF_CARDRESET,
899 .identity = "FSC watchdog"
900 };
901 int i, ret = 0;
902 struct fschmd_data *data = filp->private_data;
903
904 switch (cmd) {
905 case WDIOC_GETSUPPORT:
906 ident.firmware_version = data->revision;
907 if (!nowayout)
908 ident.options |= WDIOF_MAGICCLOSE;
909 if (copy_to_user((void __user *)arg, &ident, sizeof(ident)))
910 ret = -EFAULT;
911 break;
912
913 case WDIOC_GETSTATUS:
914 ret = put_user(0, (int __user *)arg);
915 break;
916
917 case WDIOC_GETBOOTSTATUS:
918 if (data->watchdog_state & FSCHMD_WDOG_STATE_CARDRESET)
919 ret = put_user(WDIOF_CARDRESET, (int __user *)arg);
920 else
921 ret = put_user(0, (int __user *)arg);
922 break;
923
924 case WDIOC_KEEPALIVE:
925 ret = watchdog_trigger(data);
926 break;
927
928 case WDIOC_GETTIMEOUT:
929 i = watchdog_get_timeout(data);
930 ret = put_user(i, (int __user *)arg);
931 break;
932
933 case WDIOC_SETTIMEOUT:
934 if (get_user(i, (int __user *)arg)) {
935 ret = -EFAULT;
936 break;
937 }
938 ret = watchdog_set_timeout(data, i);
939 if (ret > 0)
940 ret = put_user(ret, (int __user *)arg);
941 break;
942
943 case WDIOC_SETOPTIONS:
944 if (get_user(i, (int __user *)arg)) {
945 ret = -EFAULT;
946 break;
947 }
948
949 if (i & WDIOS_DISABLECARD)
950 ret = watchdog_stop(data);
951 else if (i & WDIOS_ENABLECARD)
952 ret = watchdog_trigger(data);
953 else
954 ret = -EINVAL;
955
956 break;
957 default:
958 ret = -ENOTTY;
959 }
960 return ret;
961}
962
963static const struct file_operations watchdog_fops = {
964 .owner = THIS_MODULE,
965 .llseek = no_llseek,
966 .open = watchdog_open,
967 .release = watchdog_release,
968 .write = watchdog_write,
969 .unlocked_ioctl = watchdog_ioctl,
970};
971
972
973/*
974 * Detect, register, unregister and update device functions
975 */
976
977/*
978 * DMI decode routine to read voltage scaling factors from special DMI tables,
979 * which are available on FSC machines with an fscher or later chip.
980 */
981static void fschmd_dmi_decode(const struct dmi_header *header, void *dummy)
982{
983 int i, mult[3] = { 0 }, offset[3] = { 0 }, vref = 0, found = 0;
984
985 /*
986 * dmi code ugliness, we get passed the address of the contents of
987 * a complete DMI record, but in the form of a dmi_header pointer, in
988 * reality this address holds header->length bytes of which the header
989 * are the first 4 bytes
990 */
991 u8 *dmi_data = (u8 *)header;
992
993 /* We are looking for OEM-specific type 185 */
994 if (header->type != 185)
995 return;
996
997 /*
998 * we are looking for what Siemens calls "subtype" 19, the subtype
999 * is stored in byte 5 of the dmi block
1000 */
1001 if (header->length < 5 || dmi_data[4] != 19)
1002 return;
1003
1004 /*
1005 * After the subtype comes 1 unknown byte and then blocks of 5 bytes,
1006 * consisting of what Siemens calls an "Entity" number, followed by
1007 * 2 16-bit words in LSB first order
1008 */
1009 for (i = 6; (i + 4) < header->length; i += 5) {
1010 /* entity 1 - 3: voltage multiplier and offset */
1011 if (dmi_data[i] >= 1 && dmi_data[i] <= 3) {
1012 /* Our in sensors order and the DMI order differ */
1013 const int shuffle[3] = { 1, 0, 2 };
1014 int in = shuffle[dmi_data[i] - 1];
1015
1016 /* Check for twice the same entity */
1017 if (found & (1 << in))
1018 return;
1019
1020 mult[in] = dmi_data[i + 1] | (dmi_data[i + 2] << 8);
1021 offset[in] = dmi_data[i + 3] | (dmi_data[i + 4] << 8);
1022
1023 found |= 1 << in;
1024 }
1025
1026 /* entity 7: reference voltage */
1027 if (dmi_data[i] == 7) {
1028 /* Check for twice the same entity */
1029 if (found & 0x08)
1030 return;
1031
1032 vref = dmi_data[i + 1] | (dmi_data[i + 2] << 8);
1033
1034 found |= 0x08;
1035 }
1036 }
1037
1038 if (found == 0x0F) {
1039 for (i = 0; i < 3; i++) {
1040 dmi_mult[i] = mult[i] * 10;
1041 dmi_offset[i] = offset[i] * 10;
1042 }
1043 /*
1044 * According to the docs there should be separate dmi entries
1045 * for the mult's and offsets of in3-5 of the syl, but on
1046 * my test machine these are not present
1047 */
1048 dmi_mult[3] = dmi_mult[2];
1049 dmi_mult[4] = dmi_mult[1];
1050 dmi_mult[5] = dmi_mult[2];
1051 dmi_offset[3] = dmi_offset[2];
1052 dmi_offset[4] = dmi_offset[1];
1053 dmi_offset[5] = dmi_offset[2];
1054 dmi_vref = vref;
1055 }
1056}
1057
1058static int fschmd_detect(struct i2c_client *client,
1059 struct i2c_board_info *info)
1060{
1061 enum chips kind;
1062 struct i2c_adapter *adapter = client->adapter;
1063 char id[4];
1064
1065 if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
1066 return -ENODEV;
1067
1068 /* Detect & Identify the chip */
1069 id[0] = i2c_smbus_read_byte_data(client, FSCHMD_REG_IDENT_0);
1070 id[1] = i2c_smbus_read_byte_data(client, FSCHMD_REG_IDENT_1);
1071 id[2] = i2c_smbus_read_byte_data(client, FSCHMD_REG_IDENT_2);
1072 id[3] = '\0';
1073
1074 if (!strcmp(id, "PEG"))
1075 kind = fscpos;
1076 else if (!strcmp(id, "HER"))
1077 kind = fscher;
1078 else if (!strcmp(id, "SCY"))
1079 kind = fscscy;
1080 else if (!strcmp(id, "HRC"))
1081 kind = fschrc;
1082 else if (!strcmp(id, "HMD"))
1083 kind = fschmd;
1084 else if (!strcmp(id, "HDS"))
1085 kind = fschds;
1086 else if (!strcmp(id, "SYL"))
1087 kind = fscsyl;
1088 else
1089 return -ENODEV;
1090
1091 strlcpy(info->type, fschmd_id[kind].name, I2C_NAME_SIZE);
1092
1093 return 0;
1094}
1095
1096static int fschmd_probe(struct i2c_client *client,
1097 const struct i2c_device_id *id)
1098{
1099 struct fschmd_data *data;
1100 const char * const names[7] = { "Poseidon", "Hermes", "Scylla",
1101 "Heracles", "Heimdall", "Hades", "Syleus" };
1102 const int watchdog_minors[] = { WATCHDOG_MINOR, 212, 213, 214, 215 };
1103 int i, err;
1104 enum chips kind = id->driver_data;
1105
1106 data = kzalloc(sizeof(struct fschmd_data), GFP_KERNEL);
1107 if (!data)
1108 return -ENOMEM;
1109
1110 i2c_set_clientdata(client, data);
1111 mutex_init(&data->update_lock);
1112 mutex_init(&data->watchdog_lock);
1113 INIT_LIST_HEAD(&data->list);
1114 kref_init(&data->kref);
1115 /*
1116 * Store client pointer in our data struct for watchdog usage
1117 * (where the client is found through a data ptr instead of the
1118 * otherway around)
1119 */
1120 data->client = client;
1121 data->kind = kind;
1122
1123 if (kind == fscpos) {
1124 /*
1125 * The Poseidon has hardwired temp limits, fill these
1126 * in for the alarm resetting code
1127 */
1128 data->temp_max[0] = 70 + 128;
1129 data->temp_max[1] = 50 + 128;
1130 data->temp_max[2] = 50 + 128;
1131 }
1132
1133 /* Read the special DMI table for fscher and newer chips */
1134 if ((kind == fscher || kind >= fschrc) && dmi_vref == -1) {
1135 dmi_walk(fschmd_dmi_decode, NULL);
1136 if (dmi_vref == -1) {
1137 dev_warn(&client->dev,
1138 "Couldn't get voltage scaling factors from "
1139 "BIOS DMI table, using builtin defaults\n");
1140 dmi_vref = 33;
1141 }
1142 }
1143
1144 /* Read in some never changing registers */
1145 data->revision = i2c_smbus_read_byte_data(client, FSCHMD_REG_REVISION);
1146 data->global_control = i2c_smbus_read_byte_data(client,
1147 FSCHMD_REG_CONTROL);
1148 data->watchdog_control = i2c_smbus_read_byte_data(client,
1149 FSCHMD_REG_WDOG_CONTROL[data->kind]);
1150 data->watchdog_state = i2c_smbus_read_byte_data(client,
1151 FSCHMD_REG_WDOG_STATE[data->kind]);
1152 data->watchdog_preset = i2c_smbus_read_byte_data(client,
1153 FSCHMD_REG_WDOG_PRESET[data->kind]);
1154
1155 err = device_create_file(&client->dev, &dev_attr_alert_led);
1156 if (err)
1157 goto exit_detach;
1158
1159 for (i = 0; i < FSCHMD_NO_VOLT_SENSORS[data->kind]; i++) {
1160 err = device_create_file(&client->dev,
1161 &fschmd_attr[i].dev_attr);
1162 if (err)
1163 goto exit_detach;
1164 }
1165
1166 for (i = 0; i < (FSCHMD_NO_TEMP_SENSORS[data->kind] * 4); i++) {
1167 /* Poseidon doesn't have TEMP_LIMIT registers */
1168 if (kind == fscpos && fschmd_temp_attr[i].dev_attr.show ==
1169 temp_max_show)
1170 continue;
1171
1172 if (kind == fscsyl) {
1173 if (i % 4 == 0)
1174 data->temp_status[i / 4] =
1175 i2c_smbus_read_byte_data(client,
1176 FSCHMD_REG_TEMP_STATE
1177 [data->kind][i / 4]);
1178 if (data->temp_status[i / 4] & FSCHMD_TEMP_DISABLED)
1179 continue;
1180 }
1181
1182 err = device_create_file(&client->dev,
1183 &fschmd_temp_attr[i].dev_attr);
1184 if (err)
1185 goto exit_detach;
1186 }
1187
1188 for (i = 0; i < (FSCHMD_NO_FAN_SENSORS[data->kind] * 5); i++) {
1189 /* Poseidon doesn't have a FAN_MIN register for its 3rd fan */
1190 if (kind == fscpos &&
1191 !strcmp(fschmd_fan_attr[i].dev_attr.attr.name,
1192 "pwm3_auto_point1_pwm"))
1193 continue;
1194
1195 if (kind == fscsyl) {
1196 if (i % 5 == 0)
1197 data->fan_status[i / 5] =
1198 i2c_smbus_read_byte_data(client,
1199 FSCHMD_REG_FAN_STATE
1200 [data->kind][i / 5]);
1201 if (data->fan_status[i / 5] & FSCHMD_FAN_DISABLED)
1202 continue;
1203 }
1204
1205 err = device_create_file(&client->dev,
1206 &fschmd_fan_attr[i].dev_attr);
1207 if (err)
1208 goto exit_detach;
1209 }
1210
1211 data->hwmon_dev = hwmon_device_register(&client->dev);
1212 if (IS_ERR(data->hwmon_dev)) {
1213 err = PTR_ERR(data->hwmon_dev);
1214 data->hwmon_dev = NULL;
1215 goto exit_detach;
1216 }
1217
1218 /*
1219 * We take the data_mutex lock early so that watchdog_open() cannot
1220 * run when misc_register() has completed, but we've not yet added
1221 * our data to the watchdog_data_list (and set the default timeout)
1222 */
1223 mutex_lock(&watchdog_data_mutex);
1224 for (i = 0; i < ARRAY_SIZE(watchdog_minors); i++) {
1225 /* Register our watchdog part */
1226 snprintf(data->watchdog_name, sizeof(data->watchdog_name),
1227 "watchdog%c", (i == 0) ? '\0' : ('0' + i));
1228 data->watchdog_miscdev.name = data->watchdog_name;
1229 data->watchdog_miscdev.fops = &watchdog_fops;
1230 data->watchdog_miscdev.minor = watchdog_minors[i];
1231 err = misc_register(&data->watchdog_miscdev);
1232 if (err == -EBUSY)
1233 continue;
1234 if (err) {
1235 data->watchdog_miscdev.minor = 0;
1236 dev_err(&client->dev,
1237 "Registering watchdog chardev: %d\n", err);
1238 break;
1239 }
1240
1241 list_add(&data->list, &watchdog_data_list);
1242 watchdog_set_timeout(data, 60);
1243 dev_info(&client->dev,
1244 "Registered watchdog chardev major 10, minor: %d\n",
1245 watchdog_minors[i]);
1246 break;
1247 }
1248 if (i == ARRAY_SIZE(watchdog_minors)) {
1249 data->watchdog_miscdev.minor = 0;
1250 dev_warn(&client->dev,
1251 "Couldn't register watchdog chardev (due to no free minor)\n");
1252 }
1253 mutex_unlock(&watchdog_data_mutex);
1254
1255 dev_info(&client->dev, "Detected FSC %s chip, revision: %d\n",
1256 names[data->kind], (int) data->revision);
1257
1258 return 0;
1259
1260exit_detach:
1261 fschmd_remove(client); /* will also free data for us */
1262 return err;
1263}
1264
1265static int fschmd_remove(struct i2c_client *client)
1266{
1267 struct fschmd_data *data = i2c_get_clientdata(client);
1268 int i;
1269
1270 /* Unregister the watchdog (if registered) */
1271 if (data->watchdog_miscdev.minor) {
1272 misc_deregister(&data->watchdog_miscdev);
1273 if (data->watchdog_is_open) {
1274 dev_warn(&client->dev,
1275 "i2c client detached with watchdog open! "
1276 "Stopping watchdog.\n");
1277 watchdog_stop(data);
1278 }
1279 mutex_lock(&watchdog_data_mutex);
1280 list_del(&data->list);
1281 mutex_unlock(&watchdog_data_mutex);
1282 /* Tell the watchdog code the client is gone */
1283 mutex_lock(&data->watchdog_lock);
1284 data->client = NULL;
1285 mutex_unlock(&data->watchdog_lock);
1286 }
1287
1288 /*
1289 * Check if registered in case we're called from fschmd_detect
1290 * to cleanup after an error
1291 */
1292 if (data->hwmon_dev)
1293 hwmon_device_unregister(data->hwmon_dev);
1294
1295 device_remove_file(&client->dev, &dev_attr_alert_led);
1296 for (i = 0; i < (FSCHMD_NO_VOLT_SENSORS[data->kind]); i++)
1297 device_remove_file(&client->dev, &fschmd_attr[i].dev_attr);
1298 for (i = 0; i < (FSCHMD_NO_TEMP_SENSORS[data->kind] * 4); i++)
1299 device_remove_file(&client->dev,
1300 &fschmd_temp_attr[i].dev_attr);
1301 for (i = 0; i < (FSCHMD_NO_FAN_SENSORS[data->kind] * 5); i++)
1302 device_remove_file(&client->dev,
1303 &fschmd_fan_attr[i].dev_attr);
1304
1305 mutex_lock(&watchdog_data_mutex);
1306 kref_put(&data->kref, fschmd_release_resources);
1307 mutex_unlock(&watchdog_data_mutex);
1308
1309 return 0;
1310}
1311
1312static struct fschmd_data *fschmd_update_device(struct device *dev)
1313{
1314 struct i2c_client *client = to_i2c_client(dev);
1315 struct fschmd_data *data = i2c_get_clientdata(client);
1316 int i;
1317
1318 mutex_lock(&data->update_lock);
1319
1320 if (time_after(jiffies, data->last_updated + 2 * HZ) || !data->valid) {
1321
1322 for (i = 0; i < FSCHMD_NO_TEMP_SENSORS[data->kind]; i++) {
1323 data->temp_act[i] = i2c_smbus_read_byte_data(client,
1324 FSCHMD_REG_TEMP_ACT[data->kind][i]);
1325 data->temp_status[i] = i2c_smbus_read_byte_data(client,
1326 FSCHMD_REG_TEMP_STATE[data->kind][i]);
1327
1328 /* The fscpos doesn't have TEMP_LIMIT registers */
1329 if (FSCHMD_REG_TEMP_LIMIT[data->kind][i])
1330 data->temp_max[i] = i2c_smbus_read_byte_data(
1331 client,
1332 FSCHMD_REG_TEMP_LIMIT[data->kind][i]);
1333
1334 /*
1335 * reset alarm if the alarm condition is gone,
1336 * the chip doesn't do this itself
1337 */
1338 if ((data->temp_status[i] & FSCHMD_TEMP_ALARM_MASK) ==
1339 FSCHMD_TEMP_ALARM_MASK &&
1340 data->temp_act[i] < data->temp_max[i])
1341 i2c_smbus_write_byte_data(client,
1342 FSCHMD_REG_TEMP_STATE[data->kind][i],
1343 data->temp_status[i]);
1344 }
1345
1346 for (i = 0; i < FSCHMD_NO_FAN_SENSORS[data->kind]; i++) {
1347 data->fan_act[i] = i2c_smbus_read_byte_data(client,
1348 FSCHMD_REG_FAN_ACT[data->kind][i]);
1349 data->fan_status[i] = i2c_smbus_read_byte_data(client,
1350 FSCHMD_REG_FAN_STATE[data->kind][i]);
1351 data->fan_ripple[i] = i2c_smbus_read_byte_data(client,
1352 FSCHMD_REG_FAN_RIPPLE[data->kind][i]);
1353
1354 /* The fscpos third fan doesn't have a fan_min */
1355 if (FSCHMD_REG_FAN_MIN[data->kind][i])
1356 data->fan_min[i] = i2c_smbus_read_byte_data(
1357 client,
1358 FSCHMD_REG_FAN_MIN[data->kind][i]);
1359
1360 /* reset fan status if speed is back to > 0 */
1361 if ((data->fan_status[i] & FSCHMD_FAN_ALARM) &&
1362 data->fan_act[i])
1363 i2c_smbus_write_byte_data(client,
1364 FSCHMD_REG_FAN_STATE[data->kind][i],
1365 data->fan_status[i]);
1366 }
1367
1368 for (i = 0; i < FSCHMD_NO_VOLT_SENSORS[data->kind]; i++)
1369 data->volt[i] = i2c_smbus_read_byte_data(client,
1370 FSCHMD_REG_VOLT[data->kind][i]);
1371
1372 data->last_updated = jiffies;
1373 data->valid = 1;
1374 }
1375
1376 mutex_unlock(&data->update_lock);
1377
1378 return data;
1379}
1380
1381module_i2c_driver(fschmd_driver);
1382
1383MODULE_AUTHOR("Hans de Goede <hdegoede@redhat.com>");
1384MODULE_DESCRIPTION("FSC Poseidon, Hermes, Scylla, Heracles, Heimdall, Hades "
1385 "and Syleus driver");
1386MODULE_LICENSE("GPL");
1387