1/*
2 * Driver for Lineage Compact Power Line series of power entry modules.
3 *
4 * Copyright (C) 2010, 2011 Ericsson AB.
5 *
6 * Documentation:
7 * http://www.lineagepower.com/oem/pdf/CPLI2C.pdf
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22 */
23
24#include <linux/kernel.h>
25#include <linux/module.h>
26#include <linux/init.h>
27#include <linux/err.h>
28#include <linux/slab.h>
29#include <linux/i2c.h>
30#include <linux/hwmon.h>
31#include <linux/hwmon-sysfs.h>
32#include <linux/jiffies.h>
33
34/*
35 * This driver supports various Lineage Compact Power Line DC/DC and AC/DC
36 * converters such as CP1800, CP2000AC, CP2000DC, CP2100DC, and others.
37 *
38 * The devices are nominally PMBus compliant. However, most standard PMBus
39 * commands are not supported. Specifically, all hardware monitoring and
40 * status reporting commands are non-standard. For this reason, a standard
41 * PMBus driver can not be used.
42 *
43 * All Lineage CPL devices have a built-in I2C bus master selector (PCA9541).
44 * To ensure device access, this driver should only be used as client driver
45 * to the pca9541 I2C master selector driver.
46 */
47
48/* Command codes */
49#define PEM_OPERATION 0x01
50#define PEM_CLEAR_INFO_FLAGS 0x03
51#define PEM_VOUT_COMMAND 0x21
52#define PEM_VOUT_OV_FAULT_LIMIT 0x40
53#define PEM_READ_DATA_STRING 0xd0
54#define PEM_READ_INPUT_STRING 0xdc
55#define PEM_READ_FIRMWARE_REV 0xdd
56#define PEM_READ_RUN_TIMER 0xde
57#define PEM_FAN_HI_SPEED 0xdf
58#define PEM_FAN_NORMAL_SPEED 0xe0
59#define PEM_READ_FAN_SPEED 0xe1
60
61/* offsets in data string */
62#define PEM_DATA_STATUS_2 0
63#define PEM_DATA_STATUS_1 1
64#define PEM_DATA_ALARM_2 2
65#define PEM_DATA_ALARM_1 3
66#define PEM_DATA_VOUT_LSB 4
67#define PEM_DATA_VOUT_MSB 5
68#define PEM_DATA_CURRENT 6
69#define PEM_DATA_TEMP 7
70
71/* Virtual entries, to report constants */
72#define PEM_DATA_TEMP_MAX 10
73#define PEM_DATA_TEMP_CRIT 11
74
75/* offsets in input string */
76#define PEM_INPUT_VOLTAGE 0
77#define PEM_INPUT_POWER_LSB 1
78#define PEM_INPUT_POWER_MSB 2
79
80/* offsets in fan data */
81#define PEM_FAN_ADJUSTMENT 0
82#define PEM_FAN_FAN1 1
83#define PEM_FAN_FAN2 2
84#define PEM_FAN_FAN3 3
85
86/* Status register bits */
87#define STS1_OUTPUT_ON (1 << 0)
88#define STS1_LEDS_FLASHING (1 << 1)
89#define STS1_EXT_FAULT (1 << 2)
90#define STS1_SERVICE_LED_ON (1 << 3)
91#define STS1_SHUTDOWN_OCCURRED (1 << 4)
92#define STS1_INT_FAULT (1 << 5)
93#define STS1_ISOLATION_TEST_OK (1 << 6)
94
95#define STS2_ENABLE_PIN_HI (1 << 0)
96#define STS2_DATA_OUT_RANGE (1 << 1)
97#define STS2_RESTARTED_OK (1 << 1)
98#define STS2_ISOLATION_TEST_FAIL (1 << 3)
99#define STS2_HIGH_POWER_CAP (1 << 4)
100#define STS2_INVALID_INSTR (1 << 5)
101#define STS2_WILL_RESTART (1 << 6)
102#define STS2_PEC_ERR (1 << 7)
103
104/* Alarm register bits */
105#define ALRM1_VIN_OUT_LIMIT (1 << 0)
106#define ALRM1_VOUT_OUT_LIMIT (1 << 1)
107#define ALRM1_OV_VOLT_SHUTDOWN (1 << 2)
108#define ALRM1_VIN_OVERCURRENT (1 << 3)
109#define ALRM1_TEMP_WARNING (1 << 4)
110#define ALRM1_TEMP_SHUTDOWN (1 << 5)
111#define ALRM1_PRIMARY_FAULT (1 << 6)
112#define ALRM1_POWER_LIMIT (1 << 7)
113
114#define ALRM2_5V_OUT_LIMIT (1 << 1)
115#define ALRM2_TEMP_FAULT (1 << 2)
116#define ALRM2_OV_LOW (1 << 3)
117#define ALRM2_DCDC_TEMP_HIGH (1 << 4)
118#define ALRM2_PRI_TEMP_HIGH (1 << 5)
119#define ALRM2_NO_PRIMARY (1 << 6)
120#define ALRM2_FAN_FAULT (1 << 7)
121
122#define FIRMWARE_REV_LEN 4
123#define DATA_STRING_LEN 9
124#define INPUT_STRING_LEN 5 /* 4 for most devices */
125#define FAN_SPEED_LEN 5
126
127struct pem_data {
128 struct i2c_client *client;
129 const struct attribute_group *groups[4];
130
131 struct mutex update_lock;
132 bool valid;
133 bool fans_supported;
134 int input_length;
135 unsigned long last_updated; /* in jiffies */
136
137 u8 firmware_rev[FIRMWARE_REV_LEN];
138 u8 data_string[DATA_STRING_LEN];
139 u8 input_string[INPUT_STRING_LEN];
140 u8 fan_speed[FAN_SPEED_LEN];
141};
142
143static int pem_read_block(struct i2c_client *client, u8 command, u8 *data,
144 int data_len)
145{
146 u8 block_buffer[I2C_SMBUS_BLOCK_MAX];
147 int result;
148
149 result = i2c_smbus_read_block_data(client, command, block_buffer);
150 if (unlikely(result < 0))
151 goto abort;
152 if (unlikely(result == 0xff || result != data_len)) {
153 result = -EIO;
154 goto abort;
155 }
156 memcpy(data, block_buffer, data_len);
157 result = 0;
158abort:
159 return result;
160}
161
162static struct pem_data *pem_update_device(struct device *dev)
163{
164 struct pem_data *data = dev_get_drvdata(dev);
165 struct i2c_client *client = data->client;
166 struct pem_data *ret = data;
167
168 mutex_lock(&data->update_lock);
169
170 if (time_after(jiffies, data->last_updated + HZ) || !data->valid) {
171 int result;
172
173 /* Read data string */
174 result = pem_read_block(client, PEM_READ_DATA_STRING,
175 data->data_string,
176 sizeof(data->data_string));
177 if (unlikely(result < 0)) {
178 ret = ERR_PTR(result);
179 goto abort;
180 }
181
182 /* Read input string */
183 if (data->input_length) {
184 result = pem_read_block(client, PEM_READ_INPUT_STRING,
185 data->input_string,
186 data->input_length);
187 if (unlikely(result < 0)) {
188 ret = ERR_PTR(result);
189 goto abort;
190 }
191 }
192
193 /* Read fan speeds */
194 if (data->fans_supported) {
195 result = pem_read_block(client, PEM_READ_FAN_SPEED,
196 data->fan_speed,
197 sizeof(data->fan_speed));
198 if (unlikely(result < 0)) {
199 ret = ERR_PTR(result);
200 goto abort;
201 }
202 }
203
204 i2c_smbus_write_byte(client, PEM_CLEAR_INFO_FLAGS);
205
206 data->last_updated = jiffies;
207 data->valid = 1;
208 }
209abort:
210 mutex_unlock(&data->update_lock);
211 return ret;
212}
213
214static long pem_get_data(u8 *data, int len, int index)
215{
216 long val;
217
218 switch (index) {
219 case PEM_DATA_VOUT_LSB:
220 val = (data[index] + (data[index+1] << 8)) * 5 / 2;
221 break;
222 case PEM_DATA_CURRENT:
223 val = data[index] * 200;
224 break;
225 case PEM_DATA_TEMP:
226 val = data[index] * 1000;
227 break;
228 case PEM_DATA_TEMP_MAX:
229 val = 97 * 1000; /* 97 degrees C per datasheet */
230 break;
231 case PEM_DATA_TEMP_CRIT:
232 val = 107 * 1000; /* 107 degrees C per datasheet */
233 break;
234 default:
235 WARN_ON_ONCE(1);
236 val = 0;
237 }
238 return val;
239}
240
241static long pem_get_input(u8 *data, int len, int index)
242{
243 long val;
244
245 switch (index) {
246 case PEM_INPUT_VOLTAGE:
247 if (len == INPUT_STRING_LEN)
248 val = (data[index] + (data[index+1] << 8) - 75) * 1000;
249 else
250 val = (data[index] - 75) * 1000;
251 break;
252 case PEM_INPUT_POWER_LSB:
253 if (len == INPUT_STRING_LEN)
254 index++;
255 val = (data[index] + (data[index+1] << 8)) * 1000000L;
256 break;
257 default:
258 WARN_ON_ONCE(1);
259 val = 0;
260 }
261 return val;
262}
263
264static long pem_get_fan(u8 *data, int len, int index)
265{
266 long val;
267
268 switch (index) {
269 case PEM_FAN_FAN1:
270 case PEM_FAN_FAN2:
271 case PEM_FAN_FAN3:
272 val = data[index] * 100;
273 break;
274 default:
275 WARN_ON_ONCE(1);
276 val = 0;
277 }
278 return val;
279}
280
281/*
282 * Show boolean, either a fault or an alarm.
283 * .nr points to the register, .index is the bit mask to check
284 */
285static ssize_t pem_bool_show(struct device *dev, struct device_attribute *da,
286 char *buf)
287{
288 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(da);
289 struct pem_data *data = pem_update_device(dev);
290 u8 status;
291
292 if (IS_ERR(data))
293 return PTR_ERR(data);
294
295 status = data->data_string[attr->nr] & attr->index;
296 return snprintf(buf, PAGE_SIZE, "%d\n", !!status);
297}
298
299static ssize_t pem_data_show(struct device *dev, struct device_attribute *da,
300 char *buf)
301{
302 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
303 struct pem_data *data = pem_update_device(dev);
304 long value;
305
306 if (IS_ERR(data))
307 return PTR_ERR(data);
308
309 value = pem_get_data(data->data_string, sizeof(data->data_string),
310 attr->index);
311
312 return snprintf(buf, PAGE_SIZE, "%ld\n", value);
313}
314
315static ssize_t pem_input_show(struct device *dev, struct device_attribute *da,
316 char *buf)
317{
318 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
319 struct pem_data *data = pem_update_device(dev);
320 long value;
321
322 if (IS_ERR(data))
323 return PTR_ERR(data);
324
325 value = pem_get_input(data->input_string, sizeof(data->input_string),
326 attr->index);
327
328 return snprintf(buf, PAGE_SIZE, "%ld\n", value);
329}
330
331static ssize_t pem_fan_show(struct device *dev, struct device_attribute *da,
332 char *buf)
333{
334 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
335 struct pem_data *data = pem_update_device(dev);
336 long value;
337
338 if (IS_ERR(data))
339 return PTR_ERR(data);
340
341 value = pem_get_fan(data->fan_speed, sizeof(data->fan_speed),
342 attr->index);
343
344 return snprintf(buf, PAGE_SIZE, "%ld\n", value);
345}
346
347/* Voltages */
348static SENSOR_DEVICE_ATTR_RO(in1_input, pem_data, PEM_DATA_VOUT_LSB);
349static SENSOR_DEVICE_ATTR_2_RO(in1_alarm, pem_bool, PEM_DATA_ALARM_1,
350 ALRM1_VOUT_OUT_LIMIT);
351static SENSOR_DEVICE_ATTR_2_RO(in1_crit_alarm, pem_bool, PEM_DATA_ALARM_1,
352 ALRM1_OV_VOLT_SHUTDOWN);
353static SENSOR_DEVICE_ATTR_RO(in2_input, pem_input, PEM_INPUT_VOLTAGE);
354static SENSOR_DEVICE_ATTR_2_RO(in2_alarm, pem_bool, PEM_DATA_ALARM_1,
355 ALRM1_VIN_OUT_LIMIT | ALRM1_PRIMARY_FAULT);
356
357/* Currents */
358static SENSOR_DEVICE_ATTR_RO(curr1_input, pem_data, PEM_DATA_CURRENT);
359static SENSOR_DEVICE_ATTR_2_RO(curr1_alarm, pem_bool, PEM_DATA_ALARM_1,
360 ALRM1_VIN_OVERCURRENT);
361
362/* Power */
363static SENSOR_DEVICE_ATTR_RO(power1_input, pem_input, PEM_INPUT_POWER_LSB);
364static SENSOR_DEVICE_ATTR_2_RO(power1_alarm, pem_bool, PEM_DATA_ALARM_1,
365 ALRM1_POWER_LIMIT);
366
367/* Fans */
368static SENSOR_DEVICE_ATTR_RO(fan1_input, pem_fan, PEM_FAN_FAN1);
369static SENSOR_DEVICE_ATTR_RO(fan2_input, pem_fan, PEM_FAN_FAN2);
370static SENSOR_DEVICE_ATTR_RO(fan3_input, pem_fan, PEM_FAN_FAN3);
371static SENSOR_DEVICE_ATTR_2_RO(fan1_alarm, pem_bool, PEM_DATA_ALARM_2,
372 ALRM2_FAN_FAULT);
373
374/* Temperatures */
375static SENSOR_DEVICE_ATTR_RO(temp1_input, pem_data, PEM_DATA_TEMP);
376static SENSOR_DEVICE_ATTR_RO(temp1_max, pem_data, PEM_DATA_TEMP_MAX);
377static SENSOR_DEVICE_ATTR_RO(temp1_crit, pem_data, PEM_DATA_TEMP_CRIT);
378static SENSOR_DEVICE_ATTR_2_RO(temp1_alarm, pem_bool, PEM_DATA_ALARM_1,
379 ALRM1_TEMP_WARNING);
380static SENSOR_DEVICE_ATTR_2_RO(temp1_crit_alarm, pem_bool, PEM_DATA_ALARM_1,
381 ALRM1_TEMP_SHUTDOWN);
382static SENSOR_DEVICE_ATTR_2_RO(temp1_fault, pem_bool, PEM_DATA_ALARM_2,
383 ALRM2_TEMP_FAULT);
384
385static struct attribute *pem_attributes[] = {
386 &sensor_dev_attr_in1_input.dev_attr.attr,
387 &sensor_dev_attr_in1_alarm.dev_attr.attr,
388 &sensor_dev_attr_in1_crit_alarm.dev_attr.attr,
389 &sensor_dev_attr_in2_alarm.dev_attr.attr,
390
391 &sensor_dev_attr_curr1_alarm.dev_attr.attr,
392
393 &sensor_dev_attr_power1_alarm.dev_attr.attr,
394
395 &sensor_dev_attr_fan1_alarm.dev_attr.attr,
396
397 &sensor_dev_attr_temp1_input.dev_attr.attr,
398 &sensor_dev_attr_temp1_max.dev_attr.attr,
399 &sensor_dev_attr_temp1_crit.dev_attr.attr,
400 &sensor_dev_attr_temp1_alarm.dev_attr.attr,
401 &sensor_dev_attr_temp1_crit_alarm.dev_attr.attr,
402 &sensor_dev_attr_temp1_fault.dev_attr.attr,
403
404 NULL,
405};
406
407static const struct attribute_group pem_group = {
408 .attrs = pem_attributes,
409};
410
411static struct attribute *pem_input_attributes[] = {
412 &sensor_dev_attr_in2_input.dev_attr.attr,
413 &sensor_dev_attr_curr1_input.dev_attr.attr,
414 &sensor_dev_attr_power1_input.dev_attr.attr,
415 NULL
416};
417
418static const struct attribute_group pem_input_group = {
419 .attrs = pem_input_attributes,
420};
421
422static struct attribute *pem_fan_attributes[] = {
423 &sensor_dev_attr_fan1_input.dev_attr.attr,
424 &sensor_dev_attr_fan2_input.dev_attr.attr,
425 &sensor_dev_attr_fan3_input.dev_attr.attr,
426 NULL
427};
428
429static const struct attribute_group pem_fan_group = {
430 .attrs = pem_fan_attributes,
431};
432
433static int pem_probe(struct i2c_client *client,
434 const struct i2c_device_id *id)
435{
436 struct i2c_adapter *adapter = client->adapter;
437 struct device *dev = &client->dev;
438 struct device *hwmon_dev;
439 struct pem_data *data;
440 int ret, idx = 0;
441
442 if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BLOCK_DATA
443 | I2C_FUNC_SMBUS_WRITE_BYTE))
444 return -ENODEV;
445
446 data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
447 if (!data)
448 return -ENOMEM;
449
450 data->client = client;
451 mutex_init(&data->update_lock);
452
453 /*
454 * We use the next two commands to determine if the device is really
455 * there.
456 */
457 ret = pem_read_block(client, PEM_READ_FIRMWARE_REV,
458 data->firmware_rev, sizeof(data->firmware_rev));
459 if (ret < 0)
460 return ret;
461
462 ret = i2c_smbus_write_byte(client, PEM_CLEAR_INFO_FLAGS);
463 if (ret < 0)
464 return ret;
465
466 dev_info(dev, "Firmware revision %d.%d.%d\n",
467 data->firmware_rev[0], data->firmware_rev[1],
468 data->firmware_rev[2]);
469
470 /* sysfs hooks */
471 data->groups[idx++] = &pem_group;
472
473 /*
474 * Check if input readings are supported.
475 * This is the case if we can read input data,
476 * and if the returned data is not all zeros.
477 * Note that input alarms are always supported.
478 */
479 ret = pem_read_block(client, PEM_READ_INPUT_STRING,
480 data->input_string,
481 sizeof(data->input_string) - 1);
482 if (!ret && (data->input_string[0] || data->input_string[1] ||
483 data->input_string[2]))
484 data->input_length = sizeof(data->input_string) - 1;
485 else if (ret < 0) {
486 /* Input string is one byte longer for some devices */
487 ret = pem_read_block(client, PEM_READ_INPUT_STRING,
488 data->input_string,
489 sizeof(data->input_string));
490 if (!ret && (data->input_string[0] || data->input_string[1] ||
491 data->input_string[2] || data->input_string[3]))
492 data->input_length = sizeof(data->input_string);
493 }
494
495 if (data->input_length)
496 data->groups[idx++] = &pem_input_group;
497
498 /*
499 * Check if fan speed readings are supported.
500 * This is the case if we can read fan speed data,
501 * and if the returned data is not all zeros.
502 * Note that the fan alarm is always supported.
503 */
504 ret = pem_read_block(client, PEM_READ_FAN_SPEED,
505 data->fan_speed,
506 sizeof(data->fan_speed));
507 if (!ret && (data->fan_speed[0] || data->fan_speed[1] ||
508 data->fan_speed[2] || data->fan_speed[3])) {
509 data->fans_supported = true;
510 data->groups[idx++] = &pem_fan_group;
511 }
512
513 hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name,
514 data, data->groups);
515 return PTR_ERR_OR_ZERO(hwmon_dev);
516}
517
518static const struct i2c_device_id pem_id[] = {
519 {"lineage_pem", 0},
520 {}
521};
522MODULE_DEVICE_TABLE(i2c, pem_id);
523
524static struct i2c_driver pem_driver = {
525 .driver = {
526 .name = "lineage_pem",
527 },
528 .probe = pem_probe,
529 .id_table = pem_id,
530};
531
532module_i2c_driver(pem_driver);
533
534MODULE_AUTHOR("Guenter Roeck <linux@roeck-us.net>");
535MODULE_DESCRIPTION("Lineage CPL PEM hardware monitoring driver");
536MODULE_LICENSE("GPL");
537