1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright(C) 2016 Linaro Limited. All rights reserved.
4 * Author: Mathieu Poirier <mathieu.poirier@linaro.org>
5 */
6
7#include <linux/atomic.h>
8#include <linux/coresight.h>
9#include <linux/dma-mapping.h>
10#include <linux/iommu.h>
11#include <linux/idr.h>
12#include <linux/mutex.h>
13#include <linux/refcount.h>
14#include <linux/slab.h>
15#include <linux/types.h>
16#include <linux/vmalloc.h>
17#include "coresight-catu.h"
18#include "coresight-etm-perf.h"
19#include "coresight-priv.h"
20#include "coresight-tmc.h"
21
22struct etr_flat_buf {
23 struct device *dev;
24 dma_addr_t daddr;
25 void *vaddr;
26 size_t size;
27};
28
29/*
30 * etr_perf_buffer - Perf buffer used for ETR
31 * @drvdata - The ETR drvdaga this buffer has been allocated for.
32 * @etr_buf - Actual buffer used by the ETR
33 * @pid - The PID this etr_perf_buffer belongs to.
34 * @snaphost - Perf session mode
35 * @nr_pages - Number of pages in the ring buffer.
36 * @pages - Array of Pages in the ring buffer.
37 */
38struct etr_perf_buffer {
39 struct tmc_drvdata *drvdata;
40 struct etr_buf *etr_buf;
41 pid_t pid;
42 bool snapshot;
43 int nr_pages;
44 void **pages;
45};
46
47/* Convert the perf index to an offset within the ETR buffer */
48#define PERF_IDX2OFF(idx, buf) \
49 ((idx) % ((unsigned long)(buf)->nr_pages << PAGE_SHIFT))
50
51/* Lower limit for ETR hardware buffer */
52#define TMC_ETR_PERF_MIN_BUF_SIZE SZ_1M
53
54/*
55 * The TMC ETR SG has a page size of 4K. The SG table contains pointers
56 * to 4KB buffers. However, the OS may use a PAGE_SIZE different from
57 * 4K (i.e, 16KB or 64KB). This implies that a single OS page could
58 * contain more than one SG buffer and tables.
59 *
60 * A table entry has the following format:
61 *
62 * ---Bit31------------Bit4-------Bit1-----Bit0--
63 * | Address[39:12] | SBZ | Entry Type |
64 * ----------------------------------------------
65 *
66 * Address: Bits [39:12] of a physical page address. Bits [11:0] are
67 * always zero.
68 *
69 * Entry type:
70 * b00 - Reserved.
71 * b01 - Last entry in the tables, points to 4K page buffer.
72 * b10 - Normal entry, points to 4K page buffer.
73 * b11 - Link. The address points to the base of next table.
74 */
75
76typedef u32 sgte_t;
77
78#define ETR_SG_PAGE_SHIFT 12
79#define ETR_SG_PAGE_SIZE (1UL << ETR_SG_PAGE_SHIFT)
80#define ETR_SG_PAGES_PER_SYSPAGE (PAGE_SIZE / ETR_SG_PAGE_SIZE)
81#define ETR_SG_PTRS_PER_PAGE (ETR_SG_PAGE_SIZE / sizeof(sgte_t))
82#define ETR_SG_PTRS_PER_SYSPAGE (PAGE_SIZE / sizeof(sgte_t))
83
84#define ETR_SG_ET_MASK 0x3
85#define ETR_SG_ET_LAST 0x1
86#define ETR_SG_ET_NORMAL 0x2
87#define ETR_SG_ET_LINK 0x3
88
89#define ETR_SG_ADDR_SHIFT 4
90
91#define ETR_SG_ENTRY(addr, type) \
92 (sgte_t)((((addr) >> ETR_SG_PAGE_SHIFT) << ETR_SG_ADDR_SHIFT) | \
93 (type & ETR_SG_ET_MASK))
94
95#define ETR_SG_ADDR(entry) \
96 (((dma_addr_t)(entry) >> ETR_SG_ADDR_SHIFT) << ETR_SG_PAGE_SHIFT)
97#define ETR_SG_ET(entry) ((entry) & ETR_SG_ET_MASK)
98
99/*
100 * struct etr_sg_table : ETR SG Table
101 * @sg_table: Generic SG Table holding the data/table pages.
102 * @hwaddr: hwaddress used by the TMC, which is the base
103 * address of the table.
104 */
105struct etr_sg_table {
106 struct tmc_sg_table *sg_table;
107 dma_addr_t hwaddr;
108};
109
110/*
111 * tmc_etr_sg_table_entries: Total number of table entries required to map
112 * @nr_pages system pages.
113 *
114 * We need to map @nr_pages * ETR_SG_PAGES_PER_SYSPAGE data pages.
115 * Each TMC page can map (ETR_SG_PTRS_PER_PAGE - 1) buffer pointers,
116 * with the last entry pointing to another page of table entries.
117 * If we spill over to a new page for mapping 1 entry, we could as
118 * well replace the link entry of the previous page with the last entry.
119 */
120static inline unsigned long __attribute_const__
121tmc_etr_sg_table_entries(int nr_pages)
122{
123 unsigned long nr_sgpages = nr_pages * ETR_SG_PAGES_PER_SYSPAGE;
124 unsigned long nr_sglinks = nr_sgpages / (ETR_SG_PTRS_PER_PAGE - 1);
125 /*
126 * If we spill over to a new page for 1 entry, we could as well
127 * make it the LAST entry in the previous page, skipping the Link
128 * address.
129 */
130 if (nr_sglinks && (nr_sgpages % (ETR_SG_PTRS_PER_PAGE - 1) < 2))
131 nr_sglinks--;
132 return nr_sgpages + nr_sglinks;
133}
134
135/*
136 * tmc_pages_get_offset: Go through all the pages in the tmc_pages
137 * and map the device address @addr to an offset within the virtual
138 * contiguous buffer.
139 */
140static long
141tmc_pages_get_offset(struct tmc_pages *tmc_pages, dma_addr_t addr)
142{
143 int i;
144 dma_addr_t page_start;
145
146 for (i = 0; i < tmc_pages->nr_pages; i++) {
147 page_start = tmc_pages->daddrs[i];
148 if (addr >= page_start && addr < (page_start + PAGE_SIZE))
149 return i * PAGE_SIZE + (addr - page_start);
150 }
151
152 return -EINVAL;
153}
154
155/*
156 * tmc_pages_free : Unmap and free the pages used by tmc_pages.
157 * If the pages were not allocated in tmc_pages_alloc(), we would
158 * simply drop the refcount.
159 */
160static void tmc_pages_free(struct tmc_pages *tmc_pages,
161 struct device *dev, enum dma_data_direction dir)
162{
163 int i;
164 struct device *real_dev = dev->parent;
165
166 for (i = 0; i < tmc_pages->nr_pages; i++) {
167 if (tmc_pages->daddrs && tmc_pages->daddrs[i])
168 dma_unmap_page(real_dev, tmc_pages->daddrs[i],
169 PAGE_SIZE, dir);
170 if (tmc_pages->pages && tmc_pages->pages[i])
171 __free_page(tmc_pages->pages[i]);
172 }
173
174 kfree(objp: tmc_pages->pages);
175 kfree(objp: tmc_pages->daddrs);
176 tmc_pages->pages = NULL;
177 tmc_pages->daddrs = NULL;
178 tmc_pages->nr_pages = 0;
179}
180
181/*
182 * tmc_pages_alloc : Allocate and map pages for a given @tmc_pages.
183 * If @pages is not NULL, the list of page virtual addresses are
184 * used as the data pages. The pages are then dma_map'ed for @dev
185 * with dma_direction @dir.
186 *
187 * Returns 0 upon success, else the error number.
188 */
189static int tmc_pages_alloc(struct tmc_pages *tmc_pages,
190 struct device *dev, int node,
191 enum dma_data_direction dir, void **pages)
192{
193 int i, nr_pages;
194 dma_addr_t paddr;
195 struct page *page;
196 struct device *real_dev = dev->parent;
197
198 nr_pages = tmc_pages->nr_pages;
199 tmc_pages->daddrs = kcalloc(n: nr_pages, size: sizeof(*tmc_pages->daddrs),
200 GFP_KERNEL);
201 if (!tmc_pages->daddrs)
202 return -ENOMEM;
203 tmc_pages->pages = kcalloc(n: nr_pages, size: sizeof(*tmc_pages->pages),
204 GFP_KERNEL);
205 if (!tmc_pages->pages) {
206 kfree(objp: tmc_pages->daddrs);
207 tmc_pages->daddrs = NULL;
208 return -ENOMEM;
209 }
210
211 for (i = 0; i < nr_pages; i++) {
212 if (pages && pages[i]) {
213 page = virt_to_page(pages[i]);
214 /* Hold a refcount on the page */
215 get_page(page);
216 } else {
217 page = alloc_pages_node(nid: node,
218 GFP_KERNEL | __GFP_ZERO, order: 0);
219 if (!page)
220 goto err;
221 }
222 paddr = dma_map_page(real_dev, page, 0, PAGE_SIZE, dir);
223 if (dma_mapping_error(dev: real_dev, dma_addr: paddr))
224 goto err;
225 tmc_pages->daddrs[i] = paddr;
226 tmc_pages->pages[i] = page;
227 }
228 return 0;
229err:
230 tmc_pages_free(tmc_pages, dev, dir);
231 return -ENOMEM;
232}
233
234static inline long
235tmc_sg_get_data_page_offset(struct tmc_sg_table *sg_table, dma_addr_t addr)
236{
237 return tmc_pages_get_offset(tmc_pages: &sg_table->data_pages, addr);
238}
239
240static inline void tmc_free_table_pages(struct tmc_sg_table *sg_table)
241{
242 if (sg_table->table_vaddr)
243 vunmap(addr: sg_table->table_vaddr);
244 tmc_pages_free(tmc_pages: &sg_table->table_pages, dev: sg_table->dev, dir: DMA_TO_DEVICE);
245}
246
247static void tmc_free_data_pages(struct tmc_sg_table *sg_table)
248{
249 if (sg_table->data_vaddr)
250 vunmap(addr: sg_table->data_vaddr);
251 tmc_pages_free(tmc_pages: &sg_table->data_pages, dev: sg_table->dev, dir: DMA_FROM_DEVICE);
252}
253
254void tmc_free_sg_table(struct tmc_sg_table *sg_table)
255{
256 tmc_free_table_pages(sg_table);
257 tmc_free_data_pages(sg_table);
258}
259EXPORT_SYMBOL_GPL(tmc_free_sg_table);
260
261/*
262 * Alloc pages for the table. Since this will be used by the device,
263 * allocate the pages closer to the device (i.e, dev_to_node(dev)
264 * rather than the CPU node).
265 */
266static int tmc_alloc_table_pages(struct tmc_sg_table *sg_table)
267{
268 int rc;
269 struct tmc_pages *table_pages = &sg_table->table_pages;
270
271 rc = tmc_pages_alloc(tmc_pages: table_pages, dev: sg_table->dev,
272 node: dev_to_node(dev: sg_table->dev),
273 dir: DMA_TO_DEVICE, NULL);
274 if (rc)
275 return rc;
276 sg_table->table_vaddr = vmap(pages: table_pages->pages,
277 count: table_pages->nr_pages,
278 VM_MAP,
279 PAGE_KERNEL);
280 if (!sg_table->table_vaddr)
281 rc = -ENOMEM;
282 else
283 sg_table->table_daddr = table_pages->daddrs[0];
284 return rc;
285}
286
287static int tmc_alloc_data_pages(struct tmc_sg_table *sg_table, void **pages)
288{
289 int rc;
290
291 /* Allocate data pages on the node requested by the caller */
292 rc = tmc_pages_alloc(tmc_pages: &sg_table->data_pages,
293 dev: sg_table->dev, node: sg_table->node,
294 dir: DMA_FROM_DEVICE, pages);
295 if (!rc) {
296 sg_table->data_vaddr = vmap(pages: sg_table->data_pages.pages,
297 count: sg_table->data_pages.nr_pages,
298 VM_MAP,
299 PAGE_KERNEL);
300 if (!sg_table->data_vaddr)
301 rc = -ENOMEM;
302 }
303 return rc;
304}
305
306/*
307 * tmc_alloc_sg_table: Allocate and setup dma pages for the TMC SG table
308 * and data buffers. TMC writes to the data buffers and reads from the SG
309 * Table pages.
310 *
311 * @dev - Coresight device to which page should be DMA mapped.
312 * @node - Numa node for mem allocations
313 * @nr_tpages - Number of pages for the table entries.
314 * @nr_dpages - Number of pages for Data buffer.
315 * @pages - Optional list of virtual address of pages.
316 */
317struct tmc_sg_table *tmc_alloc_sg_table(struct device *dev,
318 int node,
319 int nr_tpages,
320 int nr_dpages,
321 void **pages)
322{
323 long rc;
324 struct tmc_sg_table *sg_table;
325
326 sg_table = kzalloc(size: sizeof(*sg_table), GFP_KERNEL);
327 if (!sg_table)
328 return ERR_PTR(error: -ENOMEM);
329 sg_table->data_pages.nr_pages = nr_dpages;
330 sg_table->table_pages.nr_pages = nr_tpages;
331 sg_table->node = node;
332 sg_table->dev = dev;
333
334 rc = tmc_alloc_data_pages(sg_table, pages);
335 if (!rc)
336 rc = tmc_alloc_table_pages(sg_table);
337 if (rc) {
338 tmc_free_sg_table(sg_table);
339 kfree(objp: sg_table);
340 return ERR_PTR(error: rc);
341 }
342
343 return sg_table;
344}
345EXPORT_SYMBOL_GPL(tmc_alloc_sg_table);
346
347/*
348 * tmc_sg_table_sync_data_range: Sync the data buffer written
349 * by the device from @offset upto a @size bytes.
350 */
351void tmc_sg_table_sync_data_range(struct tmc_sg_table *table,
352 u64 offset, u64 size)
353{
354 int i, index, start;
355 int npages = DIV_ROUND_UP(size, PAGE_SIZE);
356 struct device *real_dev = table->dev->parent;
357 struct tmc_pages *data = &table->data_pages;
358
359 start = offset >> PAGE_SHIFT;
360 for (i = start; i < (start + npages); i++) {
361 index = i % data->nr_pages;
362 dma_sync_single_for_cpu(dev: real_dev, addr: data->daddrs[index],
363 PAGE_SIZE, dir: DMA_FROM_DEVICE);
364 }
365}
366EXPORT_SYMBOL_GPL(tmc_sg_table_sync_data_range);
367
368/* tmc_sg_sync_table: Sync the page table */
369void tmc_sg_table_sync_table(struct tmc_sg_table *sg_table)
370{
371 int i;
372 struct device *real_dev = sg_table->dev->parent;
373 struct tmc_pages *table_pages = &sg_table->table_pages;
374
375 for (i = 0; i < table_pages->nr_pages; i++)
376 dma_sync_single_for_device(dev: real_dev, addr: table_pages->daddrs[i],
377 PAGE_SIZE, dir: DMA_TO_DEVICE);
378}
379EXPORT_SYMBOL_GPL(tmc_sg_table_sync_table);
380
381/*
382 * tmc_sg_table_get_data: Get the buffer pointer for data @offset
383 * in the SG buffer. The @bufpp is updated to point to the buffer.
384 * Returns :
385 * the length of linear data available at @offset.
386 * or
387 * <= 0 if no data is available.
388 */
389ssize_t tmc_sg_table_get_data(struct tmc_sg_table *sg_table,
390 u64 offset, size_t len, char **bufpp)
391{
392 size_t size;
393 int pg_idx = offset >> PAGE_SHIFT;
394 int pg_offset = offset & (PAGE_SIZE - 1);
395 struct tmc_pages *data_pages = &sg_table->data_pages;
396
397 size = tmc_sg_table_buf_size(sg_table);
398 if (offset >= size)
399 return -EINVAL;
400
401 /* Make sure we don't go beyond the end */
402 len = (len < (size - offset)) ? len : size - offset;
403 /* Respect the page boundaries */
404 len = (len < (PAGE_SIZE - pg_offset)) ? len : (PAGE_SIZE - pg_offset);
405 if (len > 0)
406 *bufpp = page_address(data_pages->pages[pg_idx]) + pg_offset;
407 return len;
408}
409EXPORT_SYMBOL_GPL(tmc_sg_table_get_data);
410
411#ifdef ETR_SG_DEBUG
412/* Map a dma address to virtual address */
413static unsigned long
414tmc_sg_daddr_to_vaddr(struct tmc_sg_table *sg_table,
415 dma_addr_t addr, bool table)
416{
417 long offset;
418 unsigned long base;
419 struct tmc_pages *tmc_pages;
420
421 if (table) {
422 tmc_pages = &sg_table->table_pages;
423 base = (unsigned long)sg_table->table_vaddr;
424 } else {
425 tmc_pages = &sg_table->data_pages;
426 base = (unsigned long)sg_table->data_vaddr;
427 }
428
429 offset = tmc_pages_get_offset(tmc_pages, addr);
430 if (offset < 0)
431 return 0;
432 return base + offset;
433}
434
435/* Dump the given sg_table */
436static void tmc_etr_sg_table_dump(struct etr_sg_table *etr_table)
437{
438 sgte_t *ptr;
439 int i = 0;
440 dma_addr_t addr;
441 struct tmc_sg_table *sg_table = etr_table->sg_table;
442
443 ptr = (sgte_t *)tmc_sg_daddr_to_vaddr(sg_table,
444 etr_table->hwaddr, true);
445 while (ptr) {
446 addr = ETR_SG_ADDR(*ptr);
447 switch (ETR_SG_ET(*ptr)) {
448 case ETR_SG_ET_NORMAL:
449 dev_dbg(sg_table->dev,
450 "%05d: %p\t:[N] 0x%llx\n", i, ptr, addr);
451 ptr++;
452 break;
453 case ETR_SG_ET_LINK:
454 dev_dbg(sg_table->dev,
455 "%05d: *** %p\t:{L} 0x%llx ***\n",
456 i, ptr, addr);
457 ptr = (sgte_t *)tmc_sg_daddr_to_vaddr(sg_table,
458 addr, true);
459 break;
460 case ETR_SG_ET_LAST:
461 dev_dbg(sg_table->dev,
462 "%05d: ### %p\t:[L] 0x%llx ###\n",
463 i, ptr, addr);
464 return;
465 default:
466 dev_dbg(sg_table->dev,
467 "%05d: xxx %p\t:[INVALID] 0x%llx xxx\n",
468 i, ptr, addr);
469 return;
470 }
471 i++;
472 }
473 dev_dbg(sg_table->dev, "******* End of Table *****\n");
474}
475#else
476static inline void tmc_etr_sg_table_dump(struct etr_sg_table *etr_table) {}
477#endif
478
479/*
480 * Populate the SG Table page table entries from table/data
481 * pages allocated. Each Data page has ETR_SG_PAGES_PER_SYSPAGE SG pages.
482 * So does a Table page. So we keep track of indices of the tables
483 * in each system page and move the pointers accordingly.
484 */
485#define INC_IDX_ROUND(idx, size) ((idx) = ((idx) + 1) % (size))
486static void tmc_etr_sg_table_populate(struct etr_sg_table *etr_table)
487{
488 dma_addr_t paddr;
489 int i, type, nr_entries;
490 int tpidx = 0; /* index to the current system table_page */
491 int sgtidx = 0; /* index to the sg_table within the current syspage */
492 int sgtentry = 0; /* the entry within the sg_table */
493 int dpidx = 0; /* index to the current system data_page */
494 int spidx = 0; /* index to the SG page within the current data page */
495 sgte_t *ptr; /* pointer to the table entry to fill */
496 struct tmc_sg_table *sg_table = etr_table->sg_table;
497 dma_addr_t *table_daddrs = sg_table->table_pages.daddrs;
498 dma_addr_t *data_daddrs = sg_table->data_pages.daddrs;
499
500 nr_entries = tmc_etr_sg_table_entries(nr_pages: sg_table->data_pages.nr_pages);
501 /*
502 * Use the contiguous virtual address of the table to update entries.
503 */
504 ptr = sg_table->table_vaddr;
505 /*
506 * Fill all the entries, except the last entry to avoid special
507 * checks within the loop.
508 */
509 for (i = 0; i < nr_entries - 1; i++) {
510 if (sgtentry == ETR_SG_PTRS_PER_PAGE - 1) {
511 /*
512 * Last entry in a sg_table page is a link address to
513 * the next table page. If this sg_table is the last
514 * one in the system page, it links to the first
515 * sg_table in the next system page. Otherwise, it
516 * links to the next sg_table page within the system
517 * page.
518 */
519 if (sgtidx == ETR_SG_PAGES_PER_SYSPAGE - 1) {
520 paddr = table_daddrs[tpidx + 1];
521 } else {
522 paddr = table_daddrs[tpidx] +
523 (ETR_SG_PAGE_SIZE * (sgtidx + 1));
524 }
525 type = ETR_SG_ET_LINK;
526 } else {
527 /*
528 * Update the indices to the data_pages to point to the
529 * next sg_page in the data buffer.
530 */
531 type = ETR_SG_ET_NORMAL;
532 paddr = data_daddrs[dpidx] + spidx * ETR_SG_PAGE_SIZE;
533 if (!INC_IDX_ROUND(spidx, ETR_SG_PAGES_PER_SYSPAGE))
534 dpidx++;
535 }
536 *ptr++ = ETR_SG_ENTRY(paddr, type);
537 /*
538 * Move to the next table pointer, moving the table page index
539 * if necessary
540 */
541 if (!INC_IDX_ROUND(sgtentry, ETR_SG_PTRS_PER_PAGE)) {
542 if (!INC_IDX_ROUND(sgtidx, ETR_SG_PAGES_PER_SYSPAGE))
543 tpidx++;
544 }
545 }
546
547 /* Set up the last entry, which is always a data pointer */
548 paddr = data_daddrs[dpidx] + spidx * ETR_SG_PAGE_SIZE;
549 *ptr++ = ETR_SG_ENTRY(paddr, ETR_SG_ET_LAST);
550}
551
552/*
553 * tmc_init_etr_sg_table: Allocate a TMC ETR SG table, data buffer of @size and
554 * populate the table.
555 *
556 * @dev - Device pointer for the TMC
557 * @node - NUMA node where the memory should be allocated
558 * @size - Total size of the data buffer
559 * @pages - Optional list of page virtual address
560 */
561static struct etr_sg_table *
562tmc_init_etr_sg_table(struct device *dev, int node,
563 unsigned long size, void **pages)
564{
565 int nr_entries, nr_tpages;
566 int nr_dpages = size >> PAGE_SHIFT;
567 struct tmc_sg_table *sg_table;
568 struct etr_sg_table *etr_table;
569
570 etr_table = kzalloc(size: sizeof(*etr_table), GFP_KERNEL);
571 if (!etr_table)
572 return ERR_PTR(error: -ENOMEM);
573 nr_entries = tmc_etr_sg_table_entries(nr_pages: nr_dpages);
574 nr_tpages = DIV_ROUND_UP(nr_entries, ETR_SG_PTRS_PER_SYSPAGE);
575
576 sg_table = tmc_alloc_sg_table(dev, node, nr_tpages, nr_dpages, pages);
577 if (IS_ERR(ptr: sg_table)) {
578 kfree(objp: etr_table);
579 return ERR_CAST(ptr: sg_table);
580 }
581
582 etr_table->sg_table = sg_table;
583 /* TMC should use table base address for DBA */
584 etr_table->hwaddr = sg_table->table_daddr;
585 tmc_etr_sg_table_populate(etr_table);
586 /* Sync the table pages for the HW */
587 tmc_sg_table_sync_table(sg_table);
588 tmc_etr_sg_table_dump(etr_table);
589
590 return etr_table;
591}
592
593/*
594 * tmc_etr_alloc_flat_buf: Allocate a contiguous DMA buffer.
595 */
596static int tmc_etr_alloc_flat_buf(struct tmc_drvdata *drvdata,
597 struct etr_buf *etr_buf, int node,
598 void **pages)
599{
600 struct etr_flat_buf *flat_buf;
601 struct device *real_dev = drvdata->csdev->dev.parent;
602
603 /* We cannot reuse existing pages for flat buf */
604 if (pages)
605 return -EINVAL;
606
607 flat_buf = kzalloc(size: sizeof(*flat_buf), GFP_KERNEL);
608 if (!flat_buf)
609 return -ENOMEM;
610
611 flat_buf->vaddr = dma_alloc_noncoherent(dev: real_dev, size: etr_buf->size,
612 dma_handle: &flat_buf->daddr,
613 dir: DMA_FROM_DEVICE,
614 GFP_KERNEL | __GFP_NOWARN);
615 if (!flat_buf->vaddr) {
616 kfree(objp: flat_buf);
617 return -ENOMEM;
618 }
619
620 flat_buf->size = etr_buf->size;
621 flat_buf->dev = &drvdata->csdev->dev;
622 etr_buf->hwaddr = flat_buf->daddr;
623 etr_buf->mode = ETR_MODE_FLAT;
624 etr_buf->private = flat_buf;
625 return 0;
626}
627
628static void tmc_etr_free_flat_buf(struct etr_buf *etr_buf)
629{
630 struct etr_flat_buf *flat_buf = etr_buf->private;
631
632 if (flat_buf && flat_buf->daddr) {
633 struct device *real_dev = flat_buf->dev->parent;
634
635 dma_free_noncoherent(dev: real_dev, size: etr_buf->size,
636 vaddr: flat_buf->vaddr, dma_handle: flat_buf->daddr,
637 dir: DMA_FROM_DEVICE);
638 }
639 kfree(objp: flat_buf);
640}
641
642static void tmc_etr_sync_flat_buf(struct etr_buf *etr_buf, u64 rrp, u64 rwp)
643{
644 struct etr_flat_buf *flat_buf = etr_buf->private;
645 struct device *real_dev = flat_buf->dev->parent;
646
647 /*
648 * Adjust the buffer to point to the beginning of the trace data
649 * and update the available trace data.
650 */
651 etr_buf->offset = rrp - etr_buf->hwaddr;
652 if (etr_buf->full)
653 etr_buf->len = etr_buf->size;
654 else
655 etr_buf->len = rwp - rrp;
656
657 /*
658 * The driver always starts tracing at the beginning of the buffer,
659 * the only reason why we would get a wrap around is when the buffer
660 * is full. Sync the entire buffer in one go for this case.
661 */
662 if (etr_buf->offset + etr_buf->len > etr_buf->size)
663 dma_sync_single_for_cpu(dev: real_dev, addr: flat_buf->daddr,
664 size: etr_buf->size, dir: DMA_FROM_DEVICE);
665 else
666 dma_sync_single_for_cpu(dev: real_dev,
667 addr: flat_buf->daddr + etr_buf->offset,
668 size: etr_buf->len, dir: DMA_FROM_DEVICE);
669}
670
671static ssize_t tmc_etr_get_data_flat_buf(struct etr_buf *etr_buf,
672 u64 offset, size_t len, char **bufpp)
673{
674 struct etr_flat_buf *flat_buf = etr_buf->private;
675
676 *bufpp = (char *)flat_buf->vaddr + offset;
677 /*
678 * tmc_etr_buf_get_data already adjusts the length to handle
679 * buffer wrapping around.
680 */
681 return len;
682}
683
684static const struct etr_buf_operations etr_flat_buf_ops = {
685 .alloc = tmc_etr_alloc_flat_buf,
686 .free = tmc_etr_free_flat_buf,
687 .sync = tmc_etr_sync_flat_buf,
688 .get_data = tmc_etr_get_data_flat_buf,
689};
690
691/*
692 * tmc_etr_alloc_sg_buf: Allocate an SG buf @etr_buf. Setup the parameters
693 * appropriately.
694 */
695static int tmc_etr_alloc_sg_buf(struct tmc_drvdata *drvdata,
696 struct etr_buf *etr_buf, int node,
697 void **pages)
698{
699 struct etr_sg_table *etr_table;
700 struct device *dev = &drvdata->csdev->dev;
701
702 etr_table = tmc_init_etr_sg_table(dev, node,
703 size: etr_buf->size, pages);
704 if (IS_ERR(ptr: etr_table))
705 return -ENOMEM;
706 etr_buf->hwaddr = etr_table->hwaddr;
707 etr_buf->mode = ETR_MODE_ETR_SG;
708 etr_buf->private = etr_table;
709 return 0;
710}
711
712static void tmc_etr_free_sg_buf(struct etr_buf *etr_buf)
713{
714 struct etr_sg_table *etr_table = etr_buf->private;
715
716 if (etr_table) {
717 tmc_free_sg_table(etr_table->sg_table);
718 kfree(objp: etr_table);
719 }
720}
721
722static ssize_t tmc_etr_get_data_sg_buf(struct etr_buf *etr_buf, u64 offset,
723 size_t len, char **bufpp)
724{
725 struct etr_sg_table *etr_table = etr_buf->private;
726
727 return tmc_sg_table_get_data(etr_table->sg_table, offset, len, bufpp);
728}
729
730static void tmc_etr_sync_sg_buf(struct etr_buf *etr_buf, u64 rrp, u64 rwp)
731{
732 long r_offset, w_offset;
733 struct etr_sg_table *etr_table = etr_buf->private;
734 struct tmc_sg_table *table = etr_table->sg_table;
735
736 /* Convert hw address to offset in the buffer */
737 r_offset = tmc_sg_get_data_page_offset(sg_table: table, addr: rrp);
738 if (r_offset < 0) {
739 dev_warn(table->dev,
740 "Unable to map RRP %llx to offset\n", rrp);
741 etr_buf->len = 0;
742 return;
743 }
744
745 w_offset = tmc_sg_get_data_page_offset(sg_table: table, addr: rwp);
746 if (w_offset < 0) {
747 dev_warn(table->dev,
748 "Unable to map RWP %llx to offset\n", rwp);
749 etr_buf->len = 0;
750 return;
751 }
752
753 etr_buf->offset = r_offset;
754 if (etr_buf->full)
755 etr_buf->len = etr_buf->size;
756 else
757 etr_buf->len = ((w_offset < r_offset) ? etr_buf->size : 0) +
758 w_offset - r_offset;
759 tmc_sg_table_sync_data_range(table, r_offset, etr_buf->len);
760}
761
762static const struct etr_buf_operations etr_sg_buf_ops = {
763 .alloc = tmc_etr_alloc_sg_buf,
764 .free = tmc_etr_free_sg_buf,
765 .sync = tmc_etr_sync_sg_buf,
766 .get_data = tmc_etr_get_data_sg_buf,
767};
768
769/*
770 * TMC ETR could be connected to a CATU device, which can provide address
771 * translation service. This is represented by the Output port of the TMC
772 * (ETR) connected to the input port of the CATU.
773 *
774 * Returns : coresight_device ptr for the CATU device if a CATU is found.
775 * : NULL otherwise.
776 */
777struct coresight_device *
778tmc_etr_get_catu_device(struct tmc_drvdata *drvdata)
779{
780 struct coresight_device *etr = drvdata->csdev;
781 union coresight_dev_subtype catu_subtype = {
782 .helper_subtype = CORESIGHT_DEV_SUBTYPE_HELPER_CATU
783 };
784
785 if (!IS_ENABLED(CONFIG_CORESIGHT_CATU))
786 return NULL;
787
788 return coresight_find_output_type(pdata: etr->pdata, type: CORESIGHT_DEV_TYPE_HELPER,
789 subtype: catu_subtype);
790}
791EXPORT_SYMBOL_GPL(tmc_etr_get_catu_device);
792
793static const struct etr_buf_operations *etr_buf_ops[] = {
794 [ETR_MODE_FLAT] = &etr_flat_buf_ops,
795 [ETR_MODE_ETR_SG] = &etr_sg_buf_ops,
796 [ETR_MODE_CATU] = NULL,
797};
798
799void tmc_etr_set_catu_ops(const struct etr_buf_operations *catu)
800{
801 etr_buf_ops[ETR_MODE_CATU] = catu;
802}
803EXPORT_SYMBOL_GPL(tmc_etr_set_catu_ops);
804
805void tmc_etr_remove_catu_ops(void)
806{
807 etr_buf_ops[ETR_MODE_CATU] = NULL;
808}
809EXPORT_SYMBOL_GPL(tmc_etr_remove_catu_ops);
810
811static inline int tmc_etr_mode_alloc_buf(int mode,
812 struct tmc_drvdata *drvdata,
813 struct etr_buf *etr_buf, int node,
814 void **pages)
815{
816 int rc = -EINVAL;
817
818 switch (mode) {
819 case ETR_MODE_FLAT:
820 case ETR_MODE_ETR_SG:
821 case ETR_MODE_CATU:
822 if (etr_buf_ops[mode] && etr_buf_ops[mode]->alloc)
823 rc = etr_buf_ops[mode]->alloc(drvdata, etr_buf,
824 node, pages);
825 if (!rc)
826 etr_buf->ops = etr_buf_ops[mode];
827 return rc;
828 default:
829 return -EINVAL;
830 }
831}
832
833/*
834 * tmc_alloc_etr_buf: Allocate a buffer use by ETR.
835 * @drvdata : ETR device details.
836 * @size : size of the requested buffer.
837 * @flags : Required properties for the buffer.
838 * @node : Node for memory allocations.
839 * @pages : An optional list of pages.
840 */
841static struct etr_buf *tmc_alloc_etr_buf(struct tmc_drvdata *drvdata,
842 ssize_t size, int flags,
843 int node, void **pages)
844{
845 int rc = -ENOMEM;
846 bool has_etr_sg, has_iommu;
847 bool has_sg, has_catu;
848 struct etr_buf *etr_buf;
849 struct device *dev = &drvdata->csdev->dev;
850
851 has_etr_sg = tmc_etr_has_cap(drvdata, TMC_ETR_SG);
852 has_iommu = iommu_get_domain_for_dev(dev: dev->parent);
853 has_catu = !!tmc_etr_get_catu_device(drvdata);
854
855 has_sg = has_catu || has_etr_sg;
856
857 etr_buf = kzalloc(size: sizeof(*etr_buf), GFP_KERNEL);
858 if (!etr_buf)
859 return ERR_PTR(error: -ENOMEM);
860
861 etr_buf->size = size;
862
863 /*
864 * If we have to use an existing list of pages, we cannot reliably
865 * use a contiguous DMA memory (even if we have an IOMMU). Otherwise,
866 * we use the contiguous DMA memory if at least one of the following
867 * conditions is true:
868 * a) The ETR cannot use Scatter-Gather.
869 * b) we have a backing IOMMU
870 * c) The requested memory size is smaller (< 1M).
871 *
872 * Fallback to available mechanisms.
873 *
874 */
875 if (!pages &&
876 (!has_sg || has_iommu || size < SZ_1M))
877 rc = tmc_etr_mode_alloc_buf(mode: ETR_MODE_FLAT, drvdata,
878 etr_buf, node, pages);
879 if (rc && has_etr_sg)
880 rc = tmc_etr_mode_alloc_buf(mode: ETR_MODE_ETR_SG, drvdata,
881 etr_buf, node, pages);
882 if (rc && has_catu)
883 rc = tmc_etr_mode_alloc_buf(mode: ETR_MODE_CATU, drvdata,
884 etr_buf, node, pages);
885 if (rc) {
886 kfree(objp: etr_buf);
887 return ERR_PTR(error: rc);
888 }
889
890 refcount_set(r: &etr_buf->refcount, n: 1);
891 dev_dbg(dev, "allocated buffer of size %ldKB in mode %d\n",
892 (unsigned long)size >> 10, etr_buf->mode);
893 return etr_buf;
894}
895
896static void tmc_free_etr_buf(struct etr_buf *etr_buf)
897{
898 WARN_ON(!etr_buf->ops || !etr_buf->ops->free);
899 etr_buf->ops->free(etr_buf);
900 kfree(objp: etr_buf);
901}
902
903/*
904 * tmc_etr_buf_get_data: Get the pointer the trace data at @offset
905 * with a maximum of @len bytes.
906 * Returns: The size of the linear data available @pos, with *bufpp
907 * updated to point to the buffer.
908 */
909static ssize_t tmc_etr_buf_get_data(struct etr_buf *etr_buf,
910 u64 offset, size_t len, char **bufpp)
911{
912 /* Adjust the length to limit this transaction to end of buffer */
913 len = (len < (etr_buf->size - offset)) ? len : etr_buf->size - offset;
914
915 return etr_buf->ops->get_data(etr_buf, (u64)offset, len, bufpp);
916}
917
918static inline s64
919tmc_etr_buf_insert_barrier_packet(struct etr_buf *etr_buf, u64 offset)
920{
921 ssize_t len;
922 char *bufp;
923
924 len = tmc_etr_buf_get_data(etr_buf, offset,
925 CORESIGHT_BARRIER_PKT_SIZE, bufpp: &bufp);
926 if (WARN_ON(len < 0 || len < CORESIGHT_BARRIER_PKT_SIZE))
927 return -EINVAL;
928 coresight_insert_barrier_packet(buf: bufp);
929 return offset + CORESIGHT_BARRIER_PKT_SIZE;
930}
931
932/*
933 * tmc_sync_etr_buf: Sync the trace buffer availability with drvdata.
934 * Makes sure the trace data is synced to the memory for consumption.
935 * @etr_buf->offset will hold the offset to the beginning of the trace data
936 * within the buffer, with @etr_buf->len bytes to consume.
937 */
938static void tmc_sync_etr_buf(struct tmc_drvdata *drvdata)
939{
940 struct etr_buf *etr_buf = drvdata->etr_buf;
941 u64 rrp, rwp;
942 u32 status;
943
944 rrp = tmc_read_rrp(drvdata);
945 rwp = tmc_read_rwp(drvdata);
946 status = readl_relaxed(drvdata->base + TMC_STS);
947
948 /*
949 * If there were memory errors in the session, truncate the
950 * buffer.
951 */
952 if (WARN_ON_ONCE(status & TMC_STS_MEMERR)) {
953 dev_dbg(&drvdata->csdev->dev,
954 "tmc memory error detected, truncating buffer\n");
955 etr_buf->len = 0;
956 etr_buf->full = false;
957 return;
958 }
959
960 etr_buf->full = !!(status & TMC_STS_FULL);
961
962 WARN_ON(!etr_buf->ops || !etr_buf->ops->sync);
963
964 etr_buf->ops->sync(etr_buf, rrp, rwp);
965}
966
967static int __tmc_etr_enable_hw(struct tmc_drvdata *drvdata)
968{
969 u32 axictl, sts;
970 struct etr_buf *etr_buf = drvdata->etr_buf;
971 int rc = 0;
972
973 CS_UNLOCK(addr: drvdata->base);
974
975 /* Wait for TMCSReady bit to be set */
976 rc = tmc_wait_for_tmcready(drvdata);
977 if (rc) {
978 dev_err(&drvdata->csdev->dev,
979 "Failed to enable : TMC not ready\n");
980 CS_LOCK(addr: drvdata->base);
981 return rc;
982 }
983
984 writel_relaxed(etr_buf->size / 4, drvdata->base + TMC_RSZ);
985 writel_relaxed(TMC_MODE_CIRCULAR_BUFFER, drvdata->base + TMC_MODE);
986
987 axictl = readl_relaxed(drvdata->base + TMC_AXICTL);
988 axictl &= ~TMC_AXICTL_CLEAR_MASK;
989 axictl |= TMC_AXICTL_PROT_CTL_B1;
990 axictl |= TMC_AXICTL_WR_BURST(drvdata->max_burst_size);
991 axictl |= TMC_AXICTL_AXCACHE_OS;
992
993 if (tmc_etr_has_cap(drvdata, TMC_ETR_AXI_ARCACHE)) {
994 axictl &= ~TMC_AXICTL_ARCACHE_MASK;
995 axictl |= TMC_AXICTL_ARCACHE_OS;
996 }
997
998 if (etr_buf->mode == ETR_MODE_ETR_SG)
999 axictl |= TMC_AXICTL_SCT_GAT_MODE;
1000
1001 writel_relaxed(axictl, drvdata->base + TMC_AXICTL);
1002 tmc_write_dba(drvdata, val: etr_buf->hwaddr);
1003 /*
1004 * If the TMC pointers must be programmed before the session,
1005 * we have to set it properly (i.e, RRP/RWP to base address and
1006 * STS to "not full").
1007 */
1008 if (tmc_etr_has_cap(drvdata, TMC_ETR_SAVE_RESTORE)) {
1009 tmc_write_rrp(drvdata, val: etr_buf->hwaddr);
1010 tmc_write_rwp(drvdata, val: etr_buf->hwaddr);
1011 sts = readl_relaxed(drvdata->base + TMC_STS) & ~TMC_STS_FULL;
1012 writel_relaxed(sts, drvdata->base + TMC_STS);
1013 }
1014
1015 writel_relaxed(TMC_FFCR_EN_FMT | TMC_FFCR_EN_TI |
1016 TMC_FFCR_FON_FLIN | TMC_FFCR_FON_TRIG_EVT |
1017 TMC_FFCR_TRIGON_TRIGIN,
1018 drvdata->base + TMC_FFCR);
1019 writel_relaxed(drvdata->trigger_cntr, drvdata->base + TMC_TRG);
1020 tmc_enable_hw(drvdata);
1021
1022 CS_LOCK(addr: drvdata->base);
1023 return rc;
1024}
1025
1026static int tmc_etr_enable_hw(struct tmc_drvdata *drvdata,
1027 struct etr_buf *etr_buf)
1028{
1029 int rc;
1030
1031 /* Callers should provide an appropriate buffer for use */
1032 if (WARN_ON(!etr_buf))
1033 return -EINVAL;
1034
1035 if ((etr_buf->mode == ETR_MODE_ETR_SG) &&
1036 WARN_ON(!tmc_etr_has_cap(drvdata, TMC_ETR_SG)))
1037 return -EINVAL;
1038
1039 if (WARN_ON(drvdata->etr_buf))
1040 return -EBUSY;
1041
1042 rc = coresight_claim_device(csdev: drvdata->csdev);
1043 if (!rc) {
1044 drvdata->etr_buf = etr_buf;
1045 rc = __tmc_etr_enable_hw(drvdata);
1046 if (rc) {
1047 drvdata->etr_buf = NULL;
1048 coresight_disclaim_device(csdev: drvdata->csdev);
1049 }
1050 }
1051
1052 return rc;
1053}
1054
1055/*
1056 * Return the available trace data in the buffer (starts at etr_buf->offset,
1057 * limited by etr_buf->len) from @pos, with a maximum limit of @len,
1058 * also updating the @bufpp on where to find it. Since the trace data
1059 * starts at anywhere in the buffer, depending on the RRP, we adjust the
1060 * @len returned to handle buffer wrapping around.
1061 *
1062 * We are protected here by drvdata->reading != 0, which ensures the
1063 * sysfs_buf stays alive.
1064 */
1065ssize_t tmc_etr_get_sysfs_trace(struct tmc_drvdata *drvdata,
1066 loff_t pos, size_t len, char **bufpp)
1067{
1068 s64 offset;
1069 ssize_t actual = len;
1070 struct etr_buf *etr_buf = drvdata->sysfs_buf;
1071
1072 if (pos + actual > etr_buf->len)
1073 actual = etr_buf->len - pos;
1074 if (actual <= 0)
1075 return actual;
1076
1077 /* Compute the offset from which we read the data */
1078 offset = etr_buf->offset + pos;
1079 if (offset >= etr_buf->size)
1080 offset -= etr_buf->size;
1081 return tmc_etr_buf_get_data(etr_buf, offset, len: actual, bufpp);
1082}
1083
1084static struct etr_buf *
1085tmc_etr_setup_sysfs_buf(struct tmc_drvdata *drvdata)
1086{
1087 return tmc_alloc_etr_buf(drvdata, size: drvdata->size,
1088 flags: 0, cpu_to_node(cpu: 0), NULL);
1089}
1090
1091static void
1092tmc_etr_free_sysfs_buf(struct etr_buf *buf)
1093{
1094 if (buf)
1095 tmc_free_etr_buf(etr_buf: buf);
1096}
1097
1098static void tmc_etr_sync_sysfs_buf(struct tmc_drvdata *drvdata)
1099{
1100 struct etr_buf *etr_buf = drvdata->etr_buf;
1101
1102 if (WARN_ON(drvdata->sysfs_buf != etr_buf)) {
1103 tmc_etr_free_sysfs_buf(buf: drvdata->sysfs_buf);
1104 drvdata->sysfs_buf = NULL;
1105 } else {
1106 tmc_sync_etr_buf(drvdata);
1107 /*
1108 * Insert barrier packets at the beginning, if there was
1109 * an overflow.
1110 */
1111 if (etr_buf->full)
1112 tmc_etr_buf_insert_barrier_packet(etr_buf,
1113 offset: etr_buf->offset);
1114 }
1115}
1116
1117static void __tmc_etr_disable_hw(struct tmc_drvdata *drvdata)
1118{
1119 CS_UNLOCK(addr: drvdata->base);
1120
1121 tmc_flush_and_stop(drvdata);
1122 /*
1123 * When operating in sysFS mode the content of the buffer needs to be
1124 * read before the TMC is disabled.
1125 */
1126 if (drvdata->mode == CS_MODE_SYSFS)
1127 tmc_etr_sync_sysfs_buf(drvdata);
1128
1129 tmc_disable_hw(drvdata);
1130
1131 CS_LOCK(addr: drvdata->base);
1132
1133}
1134
1135void tmc_etr_disable_hw(struct tmc_drvdata *drvdata)
1136{
1137 __tmc_etr_disable_hw(drvdata);
1138 coresight_disclaim_device(csdev: drvdata->csdev);
1139 /* Reset the ETR buf used by hardware */
1140 drvdata->etr_buf = NULL;
1141}
1142
1143static struct etr_buf *tmc_etr_get_sysfs_buffer(struct coresight_device *csdev)
1144{
1145 int ret = 0;
1146 unsigned long flags;
1147 struct tmc_drvdata *drvdata = dev_get_drvdata(dev: csdev->dev.parent);
1148 struct etr_buf *sysfs_buf = NULL, *new_buf = NULL, *free_buf = NULL;
1149
1150 /*
1151 * If we are enabling the ETR from disabled state, we need to make
1152 * sure we have a buffer with the right size. The etr_buf is not reset
1153 * immediately after we stop the tracing in SYSFS mode as we wait for
1154 * the user to collect the data. We may be able to reuse the existing
1155 * buffer, provided the size matches. Any allocation has to be done
1156 * with the lock released.
1157 */
1158 spin_lock_irqsave(&drvdata->spinlock, flags);
1159 sysfs_buf = READ_ONCE(drvdata->sysfs_buf);
1160 if (!sysfs_buf || (sysfs_buf->size != drvdata->size)) {
1161 spin_unlock_irqrestore(lock: &drvdata->spinlock, flags);
1162
1163 /* Allocate memory with the locks released */
1164 free_buf = new_buf = tmc_etr_setup_sysfs_buf(drvdata);
1165 if (IS_ERR(ptr: new_buf))
1166 return new_buf;
1167
1168 /* Let's try again */
1169 spin_lock_irqsave(&drvdata->spinlock, flags);
1170 }
1171
1172 if (drvdata->reading || drvdata->mode == CS_MODE_PERF) {
1173 ret = -EBUSY;
1174 goto out;
1175 }
1176
1177 /*
1178 * If we don't have a buffer or it doesn't match the requested size,
1179 * use the buffer allocated above. Otherwise reuse the existing buffer.
1180 */
1181 sysfs_buf = READ_ONCE(drvdata->sysfs_buf);
1182 if (!sysfs_buf || (new_buf && sysfs_buf->size != new_buf->size)) {
1183 free_buf = sysfs_buf;
1184 drvdata->sysfs_buf = new_buf;
1185 }
1186
1187out:
1188 spin_unlock_irqrestore(lock: &drvdata->spinlock, flags);
1189
1190 /* Free memory outside the spinlock if need be */
1191 if (free_buf)
1192 tmc_etr_free_sysfs_buf(buf: free_buf);
1193 return ret ? ERR_PTR(error: ret) : drvdata->sysfs_buf;
1194}
1195
1196static int tmc_enable_etr_sink_sysfs(struct coresight_device *csdev)
1197{
1198 int ret = 0;
1199 unsigned long flags;
1200 struct tmc_drvdata *drvdata = dev_get_drvdata(dev: csdev->dev.parent);
1201 struct etr_buf *sysfs_buf = tmc_etr_get_sysfs_buffer(csdev);
1202
1203 if (IS_ERR(ptr: sysfs_buf))
1204 return PTR_ERR(ptr: sysfs_buf);
1205
1206 spin_lock_irqsave(&drvdata->spinlock, flags);
1207
1208 /*
1209 * In sysFS mode we can have multiple writers per sink. Since this
1210 * sink is already enabled no memory is needed and the HW need not be
1211 * touched, even if the buffer size has changed.
1212 */
1213 if (drvdata->mode == CS_MODE_SYSFS) {
1214 atomic_inc(v: &csdev->refcnt);
1215 goto out;
1216 }
1217
1218 ret = tmc_etr_enable_hw(drvdata, etr_buf: sysfs_buf);
1219 if (!ret) {
1220 drvdata->mode = CS_MODE_SYSFS;
1221 atomic_inc(v: &csdev->refcnt);
1222 }
1223
1224out:
1225 spin_unlock_irqrestore(lock: &drvdata->spinlock, flags);
1226
1227 if (!ret)
1228 dev_dbg(&csdev->dev, "TMC-ETR enabled\n");
1229
1230 return ret;
1231}
1232
1233struct etr_buf *tmc_etr_get_buffer(struct coresight_device *csdev,
1234 enum cs_mode mode, void *data)
1235{
1236 struct perf_output_handle *handle = data;
1237 struct etr_perf_buffer *etr_perf;
1238
1239 switch (mode) {
1240 case CS_MODE_SYSFS:
1241 return tmc_etr_get_sysfs_buffer(csdev);
1242 case CS_MODE_PERF:
1243 etr_perf = etm_perf_sink_config(handle);
1244 if (WARN_ON(!etr_perf || !etr_perf->etr_buf))
1245 return ERR_PTR(error: -EINVAL);
1246 return etr_perf->etr_buf;
1247 default:
1248 return ERR_PTR(error: -EINVAL);
1249 }
1250}
1251EXPORT_SYMBOL_GPL(tmc_etr_get_buffer);
1252
1253/*
1254 * alloc_etr_buf: Allocate ETR buffer for use by perf.
1255 * The size of the hardware buffer is dependent on the size configured
1256 * via sysfs and the perf ring buffer size. We prefer to allocate the
1257 * largest possible size, scaling down the size by half until it
1258 * reaches a minimum limit (1M), beyond which we give up.
1259 */
1260static struct etr_buf *
1261alloc_etr_buf(struct tmc_drvdata *drvdata, struct perf_event *event,
1262 int nr_pages, void **pages, bool snapshot)
1263{
1264 int node;
1265 struct etr_buf *etr_buf;
1266 unsigned long size;
1267
1268 node = (event->cpu == -1) ? NUMA_NO_NODE : cpu_to_node(cpu: event->cpu);
1269 /*
1270 * Try to match the perf ring buffer size if it is larger
1271 * than the size requested via sysfs.
1272 */
1273 if ((nr_pages << PAGE_SHIFT) > drvdata->size) {
1274 etr_buf = tmc_alloc_etr_buf(drvdata, size: ((ssize_t)nr_pages << PAGE_SHIFT),
1275 flags: 0, node, NULL);
1276 if (!IS_ERR(ptr: etr_buf))
1277 goto done;
1278 }
1279
1280 /*
1281 * Else switch to configured size for this ETR
1282 * and scale down until we hit the minimum limit.
1283 */
1284 size = drvdata->size;
1285 do {
1286 etr_buf = tmc_alloc_etr_buf(drvdata, size, flags: 0, node, NULL);
1287 if (!IS_ERR(ptr: etr_buf))
1288 goto done;
1289 size /= 2;
1290 } while (size >= TMC_ETR_PERF_MIN_BUF_SIZE);
1291
1292 return ERR_PTR(error: -ENOMEM);
1293
1294done:
1295 return etr_buf;
1296}
1297
1298static struct etr_buf *
1299get_perf_etr_buf_cpu_wide(struct tmc_drvdata *drvdata,
1300 struct perf_event *event, int nr_pages,
1301 void **pages, bool snapshot)
1302{
1303 int ret;
1304 pid_t pid = task_pid_nr(tsk: event->owner);
1305 struct etr_buf *etr_buf;
1306
1307retry:
1308 /*
1309 * An etr_perf_buffer is associated with an event and holds a reference
1310 * to the AUX ring buffer that was created for that event. In CPU-wide
1311 * N:1 mode multiple events (one per CPU), each with its own AUX ring
1312 * buffer, share a sink. As such an etr_perf_buffer is created for each
1313 * event but a single etr_buf associated with the ETR is shared between
1314 * them. The last event in a trace session will copy the content of the
1315 * etr_buf to its AUX ring buffer. Ring buffer associated to other
1316 * events are simply not used an freed as events are destoyed. We still
1317 * need to allocate a ring buffer for each event since we don't know
1318 * which event will be last.
1319 */
1320
1321 /*
1322 * The first thing to do here is check if an etr_buf has already been
1323 * allocated for this session. If so it is shared with this event,
1324 * otherwise it is created.
1325 */
1326 mutex_lock(&drvdata->idr_mutex);
1327 etr_buf = idr_find(&drvdata->idr, id: pid);
1328 if (etr_buf) {
1329 refcount_inc(r: &etr_buf->refcount);
1330 mutex_unlock(lock: &drvdata->idr_mutex);
1331 return etr_buf;
1332 }
1333
1334 /* If we made it here no buffer has been allocated, do so now. */
1335 mutex_unlock(lock: &drvdata->idr_mutex);
1336
1337 etr_buf = alloc_etr_buf(drvdata, event, nr_pages, pages, snapshot);
1338 if (IS_ERR(ptr: etr_buf))
1339 return etr_buf;
1340
1341 /* Now that we have a buffer, add it to the IDR. */
1342 mutex_lock(&drvdata->idr_mutex);
1343 ret = idr_alloc(&drvdata->idr, ptr: etr_buf, start: pid, end: pid + 1, GFP_KERNEL);
1344 mutex_unlock(lock: &drvdata->idr_mutex);
1345
1346 /* Another event with this session ID has allocated this buffer. */
1347 if (ret == -ENOSPC) {
1348 tmc_free_etr_buf(etr_buf);
1349 goto retry;
1350 }
1351
1352 /* The IDR can't allocate room for a new session, abandon ship. */
1353 if (ret == -ENOMEM) {
1354 tmc_free_etr_buf(etr_buf);
1355 return ERR_PTR(error: ret);
1356 }
1357
1358
1359 return etr_buf;
1360}
1361
1362static struct etr_buf *
1363get_perf_etr_buf_per_thread(struct tmc_drvdata *drvdata,
1364 struct perf_event *event, int nr_pages,
1365 void **pages, bool snapshot)
1366{
1367 /*
1368 * In per-thread mode the etr_buf isn't shared, so just go ahead
1369 * with memory allocation.
1370 */
1371 return alloc_etr_buf(drvdata, event, nr_pages, pages, snapshot);
1372}
1373
1374static struct etr_buf *
1375get_perf_etr_buf(struct tmc_drvdata *drvdata, struct perf_event *event,
1376 int nr_pages, void **pages, bool snapshot)
1377{
1378 if (event->cpu == -1)
1379 return get_perf_etr_buf_per_thread(drvdata, event, nr_pages,
1380 pages, snapshot);
1381
1382 return get_perf_etr_buf_cpu_wide(drvdata, event, nr_pages,
1383 pages, snapshot);
1384}
1385
1386static struct etr_perf_buffer *
1387tmc_etr_setup_perf_buf(struct tmc_drvdata *drvdata, struct perf_event *event,
1388 int nr_pages, void **pages, bool snapshot)
1389{
1390 int node;
1391 struct etr_buf *etr_buf;
1392 struct etr_perf_buffer *etr_perf;
1393
1394 node = (event->cpu == -1) ? NUMA_NO_NODE : cpu_to_node(cpu: event->cpu);
1395
1396 etr_perf = kzalloc_node(size: sizeof(*etr_perf), GFP_KERNEL, node);
1397 if (!etr_perf)
1398 return ERR_PTR(error: -ENOMEM);
1399
1400 etr_buf = get_perf_etr_buf(drvdata, event, nr_pages, pages, snapshot);
1401 if (!IS_ERR(ptr: etr_buf))
1402 goto done;
1403
1404 kfree(objp: etr_perf);
1405 return ERR_PTR(error: -ENOMEM);
1406
1407done:
1408 /*
1409 * Keep a reference to the ETR this buffer has been allocated for
1410 * in order to have access to the IDR in tmc_free_etr_buffer().
1411 */
1412 etr_perf->drvdata = drvdata;
1413 etr_perf->etr_buf = etr_buf;
1414
1415 return etr_perf;
1416}
1417
1418
1419static void *tmc_alloc_etr_buffer(struct coresight_device *csdev,
1420 struct perf_event *event, void **pages,
1421 int nr_pages, bool snapshot)
1422{
1423 struct etr_perf_buffer *etr_perf;
1424 struct tmc_drvdata *drvdata = dev_get_drvdata(dev: csdev->dev.parent);
1425
1426 etr_perf = tmc_etr_setup_perf_buf(drvdata, event,
1427 nr_pages, pages, snapshot);
1428 if (IS_ERR(ptr: etr_perf)) {
1429 dev_dbg(&csdev->dev, "Unable to allocate ETR buffer\n");
1430 return NULL;
1431 }
1432
1433 etr_perf->pid = task_pid_nr(tsk: event->owner);
1434 etr_perf->snapshot = snapshot;
1435 etr_perf->nr_pages = nr_pages;
1436 etr_perf->pages = pages;
1437
1438 return etr_perf;
1439}
1440
1441static void tmc_free_etr_buffer(void *config)
1442{
1443 struct etr_perf_buffer *etr_perf = config;
1444 struct tmc_drvdata *drvdata = etr_perf->drvdata;
1445 struct etr_buf *buf, *etr_buf = etr_perf->etr_buf;
1446
1447 if (!etr_buf)
1448 goto free_etr_perf_buffer;
1449
1450 mutex_lock(&drvdata->idr_mutex);
1451 /* If we are not the last one to use the buffer, don't touch it. */
1452 if (!refcount_dec_and_test(r: &etr_buf->refcount)) {
1453 mutex_unlock(lock: &drvdata->idr_mutex);
1454 goto free_etr_perf_buffer;
1455 }
1456
1457 /* We are the last one, remove from the IDR and free the buffer. */
1458 buf = idr_remove(&drvdata->idr, id: etr_perf->pid);
1459 mutex_unlock(lock: &drvdata->idr_mutex);
1460
1461 /*
1462 * Something went very wrong if the buffer associated with this ID
1463 * is not the same in the IDR. Leak to avoid use after free.
1464 */
1465 if (buf && WARN_ON(buf != etr_buf))
1466 goto free_etr_perf_buffer;
1467
1468 tmc_free_etr_buf(etr_buf: etr_perf->etr_buf);
1469
1470free_etr_perf_buffer:
1471 kfree(objp: etr_perf);
1472}
1473
1474/*
1475 * tmc_etr_sync_perf_buffer: Copy the actual trace data from the hardware
1476 * buffer to the perf ring buffer.
1477 */
1478static void tmc_etr_sync_perf_buffer(struct etr_perf_buffer *etr_perf,
1479 unsigned long head,
1480 unsigned long src_offset,
1481 unsigned long to_copy)
1482{
1483 long bytes;
1484 long pg_idx, pg_offset;
1485 char **dst_pages, *src_buf;
1486 struct etr_buf *etr_buf = etr_perf->etr_buf;
1487
1488 head = PERF_IDX2OFF(head, etr_perf);
1489 pg_idx = head >> PAGE_SHIFT;
1490 pg_offset = head & (PAGE_SIZE - 1);
1491 dst_pages = (char **)etr_perf->pages;
1492
1493 while (to_copy > 0) {
1494 /*
1495 * In one iteration, we can copy minimum of :
1496 * 1) what is available in the source buffer,
1497 * 2) what is available in the source buffer, before it
1498 * wraps around.
1499 * 3) what is available in the destination page.
1500 * in one iteration.
1501 */
1502 if (src_offset >= etr_buf->size)
1503 src_offset -= etr_buf->size;
1504 bytes = tmc_etr_buf_get_data(etr_buf, offset: src_offset, len: to_copy,
1505 bufpp: &src_buf);
1506 if (WARN_ON_ONCE(bytes <= 0))
1507 break;
1508 bytes = min(bytes, (long)(PAGE_SIZE - pg_offset));
1509
1510 memcpy(dst_pages[pg_idx] + pg_offset, src_buf, bytes);
1511
1512 to_copy -= bytes;
1513
1514 /* Move destination pointers */
1515 pg_offset += bytes;
1516 if (pg_offset == PAGE_SIZE) {
1517 pg_offset = 0;
1518 if (++pg_idx == etr_perf->nr_pages)
1519 pg_idx = 0;
1520 }
1521
1522 /* Move source pointers */
1523 src_offset += bytes;
1524 }
1525}
1526
1527/*
1528 * tmc_update_etr_buffer : Update the perf ring buffer with the
1529 * available trace data. We use software double buffering at the moment.
1530 *
1531 * TODO: Add support for reusing the perf ring buffer.
1532 */
1533static unsigned long
1534tmc_update_etr_buffer(struct coresight_device *csdev,
1535 struct perf_output_handle *handle,
1536 void *config)
1537{
1538 bool lost = false;
1539 unsigned long flags, offset, size = 0;
1540 struct tmc_drvdata *drvdata = dev_get_drvdata(dev: csdev->dev.parent);
1541 struct etr_perf_buffer *etr_perf = config;
1542 struct etr_buf *etr_buf = etr_perf->etr_buf;
1543
1544 spin_lock_irqsave(&drvdata->spinlock, flags);
1545
1546 /* Don't do anything if another tracer is using this sink */
1547 if (atomic_read(v: &csdev->refcnt) != 1) {
1548 spin_unlock_irqrestore(lock: &drvdata->spinlock, flags);
1549 goto out;
1550 }
1551
1552 if (WARN_ON(drvdata->perf_buf != etr_buf)) {
1553 lost = true;
1554 spin_unlock_irqrestore(lock: &drvdata->spinlock, flags);
1555 goto out;
1556 }
1557
1558 CS_UNLOCK(addr: drvdata->base);
1559
1560 tmc_flush_and_stop(drvdata);
1561 tmc_sync_etr_buf(drvdata);
1562
1563 CS_LOCK(addr: drvdata->base);
1564 spin_unlock_irqrestore(lock: &drvdata->spinlock, flags);
1565
1566 lost = etr_buf->full;
1567 offset = etr_buf->offset;
1568 size = etr_buf->len;
1569
1570 /*
1571 * The ETR buffer may be bigger than the space available in the
1572 * perf ring buffer (handle->size). If so advance the offset so that we
1573 * get the latest trace data. In snapshot mode none of that matters
1574 * since we are expected to clobber stale data in favour of the latest
1575 * traces.
1576 */
1577 if (!etr_perf->snapshot && size > handle->size) {
1578 u32 mask = tmc_get_memwidth_mask(drvdata);
1579
1580 /*
1581 * Make sure the new size is aligned in accordance with the
1582 * requirement explained in function tmc_get_memwidth_mask().
1583 */
1584 size = handle->size & mask;
1585 offset = etr_buf->offset + etr_buf->len - size;
1586
1587 if (offset >= etr_buf->size)
1588 offset -= etr_buf->size;
1589 lost = true;
1590 }
1591
1592 /* Insert barrier packets at the beginning, if there was an overflow */
1593 if (lost)
1594 tmc_etr_buf_insert_barrier_packet(etr_buf, offset);
1595 tmc_etr_sync_perf_buffer(etr_perf, head: handle->head, src_offset: offset, to_copy: size);
1596
1597 /*
1598 * In snapshot mode we simply increment the head by the number of byte
1599 * that were written. User space will figure out how many bytes to get
1600 * from the AUX buffer based on the position of the head.
1601 */
1602 if (etr_perf->snapshot)
1603 handle->head += size;
1604
1605 /*
1606 * Ensure that the AUX trace data is visible before the aux_head
1607 * is updated via perf_aux_output_end(), as expected by the
1608 * perf ring buffer.
1609 */
1610 smp_wmb();
1611
1612out:
1613 /*
1614 * Don't set the TRUNCATED flag in snapshot mode because 1) the
1615 * captured buffer is expected to be truncated and 2) a full buffer
1616 * prevents the event from being re-enabled by the perf core,
1617 * resulting in stale data being send to user space.
1618 */
1619 if (!etr_perf->snapshot && lost)
1620 perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED);
1621 return size;
1622}
1623
1624static int tmc_enable_etr_sink_perf(struct coresight_device *csdev, void *data)
1625{
1626 int rc = 0;
1627 pid_t pid;
1628 unsigned long flags;
1629 struct tmc_drvdata *drvdata = dev_get_drvdata(dev: csdev->dev.parent);
1630 struct perf_output_handle *handle = data;
1631 struct etr_perf_buffer *etr_perf = etm_perf_sink_config(handle);
1632
1633 spin_lock_irqsave(&drvdata->spinlock, flags);
1634 /* Don't use this sink if it is already claimed by sysFS */
1635 if (drvdata->mode == CS_MODE_SYSFS) {
1636 rc = -EBUSY;
1637 goto unlock_out;
1638 }
1639
1640 if (WARN_ON(!etr_perf || !etr_perf->etr_buf)) {
1641 rc = -EINVAL;
1642 goto unlock_out;
1643 }
1644
1645 /* Get a handle on the pid of the process to monitor */
1646 pid = etr_perf->pid;
1647
1648 /* Do not proceed if this device is associated with another session */
1649 if (drvdata->pid != -1 && drvdata->pid != pid) {
1650 rc = -EBUSY;
1651 goto unlock_out;
1652 }
1653
1654 /*
1655 * No HW configuration is needed if the sink is already in
1656 * use for this session.
1657 */
1658 if (drvdata->pid == pid) {
1659 atomic_inc(v: &csdev->refcnt);
1660 goto unlock_out;
1661 }
1662
1663 rc = tmc_etr_enable_hw(drvdata, etr_buf: etr_perf->etr_buf);
1664 if (!rc) {
1665 /* Associate with monitored process. */
1666 drvdata->pid = pid;
1667 drvdata->mode = CS_MODE_PERF;
1668 drvdata->perf_buf = etr_perf->etr_buf;
1669 atomic_inc(v: &csdev->refcnt);
1670 }
1671
1672unlock_out:
1673 spin_unlock_irqrestore(lock: &drvdata->spinlock, flags);
1674 return rc;
1675}
1676
1677static int tmc_enable_etr_sink(struct coresight_device *csdev,
1678 enum cs_mode mode, void *data)
1679{
1680 switch (mode) {
1681 case CS_MODE_SYSFS:
1682 return tmc_enable_etr_sink_sysfs(csdev);
1683 case CS_MODE_PERF:
1684 return tmc_enable_etr_sink_perf(csdev, data);
1685 default:
1686 return -EINVAL;
1687 }
1688}
1689
1690static int tmc_disable_etr_sink(struct coresight_device *csdev)
1691{
1692 unsigned long flags;
1693 struct tmc_drvdata *drvdata = dev_get_drvdata(dev: csdev->dev.parent);
1694
1695 spin_lock_irqsave(&drvdata->spinlock, flags);
1696
1697 if (drvdata->reading) {
1698 spin_unlock_irqrestore(lock: &drvdata->spinlock, flags);
1699 return -EBUSY;
1700 }
1701
1702 if (atomic_dec_return(v: &csdev->refcnt)) {
1703 spin_unlock_irqrestore(lock: &drvdata->spinlock, flags);
1704 return -EBUSY;
1705 }
1706
1707 /* Complain if we (somehow) got out of sync */
1708 WARN_ON_ONCE(drvdata->mode == CS_MODE_DISABLED);
1709 tmc_etr_disable_hw(drvdata);
1710 /* Dissociate from monitored process. */
1711 drvdata->pid = -1;
1712 drvdata->mode = CS_MODE_DISABLED;
1713 /* Reset perf specific data */
1714 drvdata->perf_buf = NULL;
1715
1716 spin_unlock_irqrestore(lock: &drvdata->spinlock, flags);
1717
1718 dev_dbg(&csdev->dev, "TMC-ETR disabled\n");
1719 return 0;
1720}
1721
1722static const struct coresight_ops_sink tmc_etr_sink_ops = {
1723 .enable = tmc_enable_etr_sink,
1724 .disable = tmc_disable_etr_sink,
1725 .alloc_buffer = tmc_alloc_etr_buffer,
1726 .update_buffer = tmc_update_etr_buffer,
1727 .free_buffer = tmc_free_etr_buffer,
1728};
1729
1730const struct coresight_ops tmc_etr_cs_ops = {
1731 .sink_ops = &tmc_etr_sink_ops,
1732};
1733
1734int tmc_read_prepare_etr(struct tmc_drvdata *drvdata)
1735{
1736 int ret = 0;
1737 unsigned long flags;
1738
1739 /* config types are set a boot time and never change */
1740 if (WARN_ON_ONCE(drvdata->config_type != TMC_CONFIG_TYPE_ETR))
1741 return -EINVAL;
1742
1743 spin_lock_irqsave(&drvdata->spinlock, flags);
1744 if (drvdata->reading) {
1745 ret = -EBUSY;
1746 goto out;
1747 }
1748
1749 /*
1750 * We can safely allow reads even if the ETR is operating in PERF mode,
1751 * since the sysfs session is captured in mode specific data.
1752 * If drvdata::sysfs_data is NULL the trace data has been read already.
1753 */
1754 if (!drvdata->sysfs_buf) {
1755 ret = -EINVAL;
1756 goto out;
1757 }
1758
1759 /* Disable the TMC if we are trying to read from a running session. */
1760 if (drvdata->mode == CS_MODE_SYSFS)
1761 __tmc_etr_disable_hw(drvdata);
1762
1763 drvdata->reading = true;
1764out:
1765 spin_unlock_irqrestore(lock: &drvdata->spinlock, flags);
1766
1767 return ret;
1768}
1769
1770int tmc_read_unprepare_etr(struct tmc_drvdata *drvdata)
1771{
1772 unsigned long flags;
1773 struct etr_buf *sysfs_buf = NULL;
1774
1775 /* config types are set a boot time and never change */
1776 if (WARN_ON_ONCE(drvdata->config_type != TMC_CONFIG_TYPE_ETR))
1777 return -EINVAL;
1778
1779 spin_lock_irqsave(&drvdata->spinlock, flags);
1780
1781 /* RE-enable the TMC if need be */
1782 if (drvdata->mode == CS_MODE_SYSFS) {
1783 /*
1784 * The trace run will continue with the same allocated trace
1785 * buffer. Since the tracer is still enabled drvdata::buf can't
1786 * be NULL.
1787 */
1788 __tmc_etr_enable_hw(drvdata);
1789 } else {
1790 /*
1791 * The ETR is not tracing and the buffer was just read.
1792 * As such prepare to free the trace buffer.
1793 */
1794 sysfs_buf = drvdata->sysfs_buf;
1795 drvdata->sysfs_buf = NULL;
1796 }
1797
1798 drvdata->reading = false;
1799 spin_unlock_irqrestore(lock: &drvdata->spinlock, flags);
1800
1801 /* Free allocated memory out side of the spinlock */
1802 if (sysfs_buf)
1803 tmc_etr_free_sysfs_buf(buf: sysfs_buf);
1804
1805 return 0;
1806}
1807

source code of linux/drivers/hwtracing/coresight/coresight-tmc-etr.c