1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * I2C adapter for the IMG Serial Control Bus (SCB) IP block.
4 *
5 * Copyright (C) 2009, 2010, 2012, 2014 Imagination Technologies Ltd.
6 *
7 * There are three ways that this I2C controller can be driven:
8 *
9 * - Raw control of the SDA and SCK signals.
10 *
11 * This corresponds to MODE_RAW, which takes control of the signals
12 * directly for a certain number of clock cycles (the INT_TIMING
13 * interrupt can be used for timing).
14 *
15 * - Atomic commands. A low level I2C symbol (such as generate
16 * start/stop/ack/nack bit, generate byte, receive byte, and receive
17 * ACK) is given to the hardware, with detection of completion by bits
18 * in the LINESTAT register.
19 *
20 * This mode of operation is used by MODE_ATOMIC, which uses an I2C
21 * state machine in the interrupt handler to compose/react to I2C
22 * transactions using atomic mode commands, and also by MODE_SEQUENCE,
23 * which emits a simple fixed sequence of atomic mode commands.
24 *
25 * Due to software control, the use of atomic commands usually results
26 * in suboptimal use of the bus, with gaps between the I2C symbols while
27 * the driver decides what to do next.
28 *
29 * - Automatic mode. A bus address, and whether to read/write is
30 * specified, and the hardware takes care of the I2C state machine,
31 * using a FIFO to send/receive bytes of data to an I2C slave. The
32 * driver just has to keep the FIFO drained or filled in response to the
33 * appropriate FIFO interrupts.
34 *
35 * This corresponds to MODE_AUTOMATIC, which manages the FIFOs and deals
36 * with control of repeated start bits between I2C messages.
37 *
38 * Use of automatic mode and the FIFO can make much more efficient use
39 * of the bus compared to individual atomic commands, with potentially
40 * no wasted time between I2C symbols or I2C messages.
41 *
42 * In most cases MODE_AUTOMATIC is used, however if any of the messages in
43 * a transaction are zero byte writes (e.g. used by i2cdetect for probing
44 * the bus), MODE_ATOMIC must be used since automatic mode is normally
45 * started by the writing of data into the FIFO.
46 *
47 * The other modes are used in specific circumstances where MODE_ATOMIC and
48 * MODE_AUTOMATIC aren't appropriate. MODE_RAW is used to implement a bus
49 * recovery routine. MODE_SEQUENCE is used to reset the bus and make sure
50 * it is in a sane state.
51 *
52 * Notice that the driver implements a timer-based timeout mechanism.
53 * The reason for this mechanism is to reduce the number of interrupts
54 * received in automatic mode.
55 *
56 * The driver would get a slave event and transaction done interrupts for
57 * each atomic mode command that gets completed. However, these events are
58 * not needed in automatic mode, becase those atomic mode commands are
59 * managed automatically by the hardware.
60 *
61 * In practice, normal I2C transactions will be complete well before you
62 * get the timer interrupt, as the timer is re-scheduled during FIFO
63 * maintenance and disabled after the transaction is complete.
64 *
65 * In this way normal automatic mode operation isn't impacted by
66 * unnecessary interrupts, but the exceptional abort condition can still be
67 * detected (with a slight delay).
68 */
69
70#include <linux/bitops.h>
71#include <linux/clk.h>
72#include <linux/completion.h>
73#include <linux/err.h>
74#include <linux/i2c.h>
75#include <linux/init.h>
76#include <linux/interrupt.h>
77#include <linux/io.h>
78#include <linux/kernel.h>
79#include <linux/module.h>
80#include <linux/of_platform.h>
81#include <linux/platform_device.h>
82#include <linux/pm_runtime.h>
83#include <linux/slab.h>
84#include <linux/timer.h>
85
86/* Register offsets */
87
88#define SCB_STATUS_REG 0x00
89#define SCB_OVERRIDE_REG 0x04
90#define SCB_READ_ADDR_REG 0x08
91#define SCB_READ_COUNT_REG 0x0c
92#define SCB_WRITE_ADDR_REG 0x10
93#define SCB_READ_DATA_REG 0x14
94#define SCB_WRITE_DATA_REG 0x18
95#define SCB_FIFO_STATUS_REG 0x1c
96#define SCB_CONTROL_SOFT_RESET 0x1f
97#define SCB_CLK_SET_REG 0x3c
98#define SCB_INT_STATUS_REG 0x40
99#define SCB_INT_CLEAR_REG 0x44
100#define SCB_INT_MASK_REG 0x48
101#define SCB_CONTROL_REG 0x4c
102#define SCB_TIME_TPL_REG 0x50
103#define SCB_TIME_TPH_REG 0x54
104#define SCB_TIME_TP2S_REG 0x58
105#define SCB_TIME_TBI_REG 0x60
106#define SCB_TIME_TSL_REG 0x64
107#define SCB_TIME_TDL_REG 0x68
108#define SCB_TIME_TSDL_REG 0x6c
109#define SCB_TIME_TSDH_REG 0x70
110#define SCB_READ_XADDR_REG 0x74
111#define SCB_WRITE_XADDR_REG 0x78
112#define SCB_WRITE_COUNT_REG 0x7c
113#define SCB_CORE_REV_REG 0x80
114#define SCB_TIME_TCKH_REG 0x84
115#define SCB_TIME_TCKL_REG 0x88
116#define SCB_FIFO_FLUSH_REG 0x8c
117#define SCB_READ_FIFO_REG 0x94
118#define SCB_CLEAR_REG 0x98
119
120/* SCB_CONTROL_REG bits */
121
122#define SCB_CONTROL_CLK_ENABLE 0x1e0
123#define SCB_CONTROL_TRANSACTION_HALT 0x200
124
125#define FIFO_READ_FULL BIT(0)
126#define FIFO_READ_EMPTY BIT(1)
127#define FIFO_WRITE_FULL BIT(2)
128#define FIFO_WRITE_EMPTY BIT(3)
129
130/* SCB_CLK_SET_REG bits */
131#define SCB_FILT_DISABLE BIT(31)
132#define SCB_FILT_BYPASS BIT(30)
133#define SCB_FILT_INC_MASK 0x7f
134#define SCB_FILT_INC_SHIFT 16
135#define SCB_INC_MASK 0x7f
136#define SCB_INC_SHIFT 8
137
138/* SCB_INT_*_REG bits */
139
140#define INT_BUS_INACTIVE BIT(0)
141#define INT_UNEXPECTED_START BIT(1)
142#define INT_SCLK_LOW_TIMEOUT BIT(2)
143#define INT_SDAT_LOW_TIMEOUT BIT(3)
144#define INT_WRITE_ACK_ERR BIT(4)
145#define INT_ADDR_ACK_ERR BIT(5)
146#define INT_FIFO_FULL BIT(9)
147#define INT_FIFO_FILLING BIT(10)
148#define INT_FIFO_EMPTY BIT(11)
149#define INT_FIFO_EMPTYING BIT(12)
150#define INT_TRANSACTION_DONE BIT(15)
151#define INT_SLAVE_EVENT BIT(16)
152#define INT_MASTER_HALTED BIT(17)
153#define INT_TIMING BIT(18)
154#define INT_STOP_DETECTED BIT(19)
155
156#define INT_FIFO_FULL_FILLING (INT_FIFO_FULL | INT_FIFO_FILLING)
157
158/* Level interrupts need clearing after handling instead of before */
159#define INT_LEVEL 0x01e00
160
161/* Don't allow any interrupts while the clock may be off */
162#define INT_ENABLE_MASK_INACTIVE 0x00000
163
164/* Interrupt masks for the different driver modes */
165
166#define INT_ENABLE_MASK_RAW INT_TIMING
167
168#define INT_ENABLE_MASK_ATOMIC (INT_TRANSACTION_DONE | \
169 INT_SLAVE_EVENT | \
170 INT_ADDR_ACK_ERR | \
171 INT_WRITE_ACK_ERR)
172
173#define INT_ENABLE_MASK_AUTOMATIC (INT_SCLK_LOW_TIMEOUT | \
174 INT_ADDR_ACK_ERR | \
175 INT_WRITE_ACK_ERR | \
176 INT_FIFO_FULL | \
177 INT_FIFO_FILLING | \
178 INT_FIFO_EMPTY | \
179 INT_MASTER_HALTED | \
180 INT_STOP_DETECTED)
181
182#define INT_ENABLE_MASK_WAITSTOP (INT_SLAVE_EVENT | \
183 INT_ADDR_ACK_ERR | \
184 INT_WRITE_ACK_ERR)
185
186/* SCB_STATUS_REG fields */
187
188#define LINESTAT_SCLK_LINE_STATUS BIT(0)
189#define LINESTAT_SCLK_EN BIT(1)
190#define LINESTAT_SDAT_LINE_STATUS BIT(2)
191#define LINESTAT_SDAT_EN BIT(3)
192#define LINESTAT_DET_START_STATUS BIT(4)
193#define LINESTAT_DET_STOP_STATUS BIT(5)
194#define LINESTAT_DET_ACK_STATUS BIT(6)
195#define LINESTAT_DET_NACK_STATUS BIT(7)
196#define LINESTAT_BUS_IDLE BIT(8)
197#define LINESTAT_T_DONE_STATUS BIT(9)
198#define LINESTAT_SCLK_OUT_STATUS BIT(10)
199#define LINESTAT_SDAT_OUT_STATUS BIT(11)
200#define LINESTAT_GEN_LINE_MASK_STATUS BIT(12)
201#define LINESTAT_START_BIT_DET BIT(13)
202#define LINESTAT_STOP_BIT_DET BIT(14)
203#define LINESTAT_ACK_DET BIT(15)
204#define LINESTAT_NACK_DET BIT(16)
205#define LINESTAT_INPUT_HELD_V BIT(17)
206#define LINESTAT_ABORT_DET BIT(18)
207#define LINESTAT_ACK_OR_NACK_DET (LINESTAT_ACK_DET | LINESTAT_NACK_DET)
208#define LINESTAT_INPUT_DATA 0xff000000
209#define LINESTAT_INPUT_DATA_SHIFT 24
210
211#define LINESTAT_CLEAR_SHIFT 13
212#define LINESTAT_LATCHED (0x3f << LINESTAT_CLEAR_SHIFT)
213
214/* SCB_OVERRIDE_REG fields */
215
216#define OVERRIDE_SCLK_OVR BIT(0)
217#define OVERRIDE_SCLKEN_OVR BIT(1)
218#define OVERRIDE_SDAT_OVR BIT(2)
219#define OVERRIDE_SDATEN_OVR BIT(3)
220#define OVERRIDE_MASTER BIT(9)
221#define OVERRIDE_LINE_OVR_EN BIT(10)
222#define OVERRIDE_DIRECT BIT(11)
223#define OVERRIDE_CMD_SHIFT 4
224#define OVERRIDE_CMD_MASK 0x1f
225#define OVERRIDE_DATA_SHIFT 24
226
227#define OVERRIDE_SCLK_DOWN (OVERRIDE_LINE_OVR_EN | \
228 OVERRIDE_SCLKEN_OVR)
229#define OVERRIDE_SCLK_UP (OVERRIDE_LINE_OVR_EN | \
230 OVERRIDE_SCLKEN_OVR | \
231 OVERRIDE_SCLK_OVR)
232#define OVERRIDE_SDAT_DOWN (OVERRIDE_LINE_OVR_EN | \
233 OVERRIDE_SDATEN_OVR)
234#define OVERRIDE_SDAT_UP (OVERRIDE_LINE_OVR_EN | \
235 OVERRIDE_SDATEN_OVR | \
236 OVERRIDE_SDAT_OVR)
237
238/* OVERRIDE_CMD values */
239
240#define CMD_PAUSE 0x00
241#define CMD_GEN_DATA 0x01
242#define CMD_GEN_START 0x02
243#define CMD_GEN_STOP 0x03
244#define CMD_GEN_ACK 0x04
245#define CMD_GEN_NACK 0x05
246#define CMD_RET_DATA 0x08
247#define CMD_RET_ACK 0x09
248
249/* Fixed timing values */
250
251#define TIMEOUT_TBI 0x0
252#define TIMEOUT_TSL 0xffff
253#define TIMEOUT_TDL 0x0
254
255/* Transaction timeout */
256
257#define IMG_I2C_TIMEOUT (msecs_to_jiffies(1000))
258
259/*
260 * Worst incs are 1 (inaccurate) and 16*256 (irregular).
261 * So a sensible inc is the logarithmic mean: 64 (2^6), which is
262 * in the middle of the valid range (0-127).
263 */
264#define SCB_OPT_INC 64
265
266/* Setup the clock enable filtering for 25 ns */
267#define SCB_FILT_GLITCH 25
268
269/*
270 * Bits to return from interrupt handler functions for different modes.
271 * This delays completion until we've finished with the registers, so that the
272 * function waiting for completion can safely disable the clock to save power.
273 */
274#define ISR_COMPLETE_M BIT(31)
275#define ISR_FATAL_M BIT(30)
276#define ISR_WAITSTOP BIT(29)
277#define ISR_STATUS_M 0x0000ffff /* contains +ve errno */
278#define ISR_COMPLETE(err) (ISR_COMPLETE_M | (ISR_STATUS_M & (err)))
279#define ISR_FATAL(err) (ISR_COMPLETE(err) | ISR_FATAL_M)
280
281#define IMG_I2C_PM_TIMEOUT 1000 /* ms */
282
283enum img_i2c_mode {
284 MODE_INACTIVE,
285 MODE_RAW,
286 MODE_ATOMIC,
287 MODE_AUTOMATIC,
288 MODE_SEQUENCE,
289 MODE_FATAL,
290 MODE_WAITSTOP,
291 MODE_SUSPEND,
292};
293
294/* Timing parameters for i2c modes (in ns) */
295struct img_i2c_timings {
296 const char *name;
297 unsigned int max_bitrate;
298 unsigned int tckh, tckl, tsdh, tsdl;
299 unsigned int tp2s, tpl, tph;
300};
301
302/* The timings array must be ordered from slower to faster */
303static struct img_i2c_timings timings[] = {
304 /* Standard mode */
305 {
306 .name = "standard",
307 .max_bitrate = I2C_MAX_STANDARD_MODE_FREQ,
308 .tckh = 4000,
309 .tckl = 4700,
310 .tsdh = 4700,
311 .tsdl = 8700,
312 .tp2s = 4700,
313 .tpl = 4700,
314 .tph = 4000,
315 },
316 /* Fast mode */
317 {
318 .name = "fast",
319 .max_bitrate = I2C_MAX_FAST_MODE_FREQ,
320 .tckh = 600,
321 .tckl = 1300,
322 .tsdh = 600,
323 .tsdl = 1200,
324 .tp2s = 1300,
325 .tpl = 600,
326 .tph = 600,
327 },
328};
329
330/* Reset dance */
331static u8 img_i2c_reset_seq[] = { CMD_GEN_START,
332 CMD_GEN_DATA, 0xff,
333 CMD_RET_ACK,
334 CMD_GEN_START,
335 CMD_GEN_STOP,
336 0 };
337/* Just issue a stop (after an abort condition) */
338static u8 img_i2c_stop_seq[] = { CMD_GEN_STOP,
339 0 };
340
341/* We're interested in different interrupts depending on the mode */
342static unsigned int img_i2c_int_enable_by_mode[] = {
343 [MODE_INACTIVE] = INT_ENABLE_MASK_INACTIVE,
344 [MODE_RAW] = INT_ENABLE_MASK_RAW,
345 [MODE_ATOMIC] = INT_ENABLE_MASK_ATOMIC,
346 [MODE_AUTOMATIC] = INT_ENABLE_MASK_AUTOMATIC,
347 [MODE_SEQUENCE] = INT_ENABLE_MASK_ATOMIC,
348 [MODE_FATAL] = 0,
349 [MODE_WAITSTOP] = INT_ENABLE_MASK_WAITSTOP,
350 [MODE_SUSPEND] = 0,
351};
352
353/* Atomic command names */
354static const char * const img_i2c_atomic_cmd_names[] = {
355 [CMD_PAUSE] = "PAUSE",
356 [CMD_GEN_DATA] = "GEN_DATA",
357 [CMD_GEN_START] = "GEN_START",
358 [CMD_GEN_STOP] = "GEN_STOP",
359 [CMD_GEN_ACK] = "GEN_ACK",
360 [CMD_GEN_NACK] = "GEN_NACK",
361 [CMD_RET_DATA] = "RET_DATA",
362 [CMD_RET_ACK] = "RET_ACK",
363};
364
365struct img_i2c {
366 struct i2c_adapter adap;
367
368 void __iomem *base;
369
370 /*
371 * The scb core clock is used to get the input frequency, and to disable
372 * it after every set of transactions to save some power.
373 */
374 struct clk *scb_clk, *sys_clk;
375 unsigned int bitrate;
376 bool need_wr_rd_fence;
377
378 /* state */
379 struct completion msg_complete;
380 spinlock_t lock; /* lock before doing anything with the state */
381 struct i2c_msg msg;
382
383 /* After the last transaction, wait for a stop bit */
384 bool last_msg;
385 int msg_status;
386
387 enum img_i2c_mode mode;
388 u32 int_enable; /* depends on mode */
389 u32 line_status; /* line status over command */
390
391 /*
392 * To avoid slave event interrupts in automatic mode, use a timer to
393 * poll the abort condition if we don't get an interrupt for too long.
394 */
395 struct timer_list check_timer;
396 bool t_halt;
397
398 /* atomic mode state */
399 bool at_t_done;
400 bool at_slave_event;
401 int at_cur_cmd;
402 u8 at_cur_data;
403
404 /* Sequence: either reset or stop. See img_i2c_sequence. */
405 u8 *seq;
406
407 /* raw mode */
408 unsigned int raw_timeout;
409};
410
411static int img_i2c_runtime_suspend(struct device *dev);
412static int img_i2c_runtime_resume(struct device *dev);
413
414static void img_i2c_writel(struct img_i2c *i2c, u32 offset, u32 value)
415{
416 writel(val: value, addr: i2c->base + offset);
417}
418
419static u32 img_i2c_readl(struct img_i2c *i2c, u32 offset)
420{
421 return readl(addr: i2c->base + offset);
422}
423
424/*
425 * The code to read from the master read fifo, and write to the master
426 * write fifo, checks a bit in an SCB register before every byte to
427 * ensure that the fifo is not full (write fifo) or empty (read fifo).
428 * Due to clock domain crossing inside the SCB block the updated value
429 * of this bit is only visible after 2 cycles.
430 *
431 * The scb_wr_rd_fence() function does 2 dummy writes (to the read-only
432 * revision register), and it's called after reading from or writing to the
433 * fifos to ensure that subsequent reads of the fifo status bits do not read
434 * stale values.
435 */
436static void img_i2c_wr_rd_fence(struct img_i2c *i2c)
437{
438 if (i2c->need_wr_rd_fence) {
439 img_i2c_writel(i2c, SCB_CORE_REV_REG, value: 0);
440 img_i2c_writel(i2c, SCB_CORE_REV_REG, value: 0);
441 }
442}
443
444static void img_i2c_switch_mode(struct img_i2c *i2c, enum img_i2c_mode mode)
445{
446 i2c->mode = mode;
447 i2c->int_enable = img_i2c_int_enable_by_mode[mode];
448 i2c->line_status = 0;
449}
450
451static void img_i2c_raw_op(struct img_i2c *i2c)
452{
453 i2c->raw_timeout = 0;
454 img_i2c_writel(i2c, SCB_OVERRIDE_REG,
455 OVERRIDE_SCLKEN_OVR |
456 OVERRIDE_SDATEN_OVR |
457 OVERRIDE_MASTER |
458 OVERRIDE_LINE_OVR_EN |
459 OVERRIDE_DIRECT |
460 ((i2c->at_cur_cmd & OVERRIDE_CMD_MASK) << OVERRIDE_CMD_SHIFT) |
461 (i2c->at_cur_data << OVERRIDE_DATA_SHIFT));
462}
463
464static const char *img_i2c_atomic_op_name(unsigned int cmd)
465{
466 if (unlikely(cmd >= ARRAY_SIZE(img_i2c_atomic_cmd_names)))
467 return "UNKNOWN";
468 return img_i2c_atomic_cmd_names[cmd];
469}
470
471/* Send a single atomic mode command to the hardware */
472static void img_i2c_atomic_op(struct img_i2c *i2c, int cmd, u8 data)
473{
474 i2c->at_cur_cmd = cmd;
475 i2c->at_cur_data = data;
476
477 /* work around lack of data setup time when generating data */
478 if (cmd == CMD_GEN_DATA && i2c->mode == MODE_ATOMIC) {
479 u32 line_status = img_i2c_readl(i2c, SCB_STATUS_REG);
480
481 if (line_status & LINESTAT_SDAT_LINE_STATUS && !(data & 0x80)) {
482 /* hold the data line down for a moment */
483 img_i2c_switch_mode(i2c, mode: MODE_RAW);
484 img_i2c_raw_op(i2c);
485 return;
486 }
487 }
488
489 dev_dbg(i2c->adap.dev.parent,
490 "atomic cmd=%s (%d) data=%#x\n",
491 img_i2c_atomic_op_name(cmd), cmd, data);
492 i2c->at_t_done = (cmd == CMD_RET_DATA || cmd == CMD_RET_ACK);
493 i2c->at_slave_event = false;
494 i2c->line_status = 0;
495
496 img_i2c_writel(i2c, SCB_OVERRIDE_REG,
497 value: ((cmd & OVERRIDE_CMD_MASK) << OVERRIDE_CMD_SHIFT) |
498 OVERRIDE_MASTER |
499 OVERRIDE_DIRECT |
500 (data << OVERRIDE_DATA_SHIFT));
501}
502
503/* Start a transaction in atomic mode */
504static void img_i2c_atomic_start(struct img_i2c *i2c)
505{
506 img_i2c_switch_mode(i2c, mode: MODE_ATOMIC);
507 img_i2c_writel(i2c, SCB_INT_MASK_REG, value: i2c->int_enable);
508 img_i2c_atomic_op(i2c, CMD_GEN_START, data: 0x00);
509}
510
511static void img_i2c_soft_reset(struct img_i2c *i2c)
512{
513 i2c->t_halt = false;
514 img_i2c_writel(i2c, SCB_CONTROL_REG, value: 0);
515 img_i2c_writel(i2c, SCB_CONTROL_REG,
516 SCB_CONTROL_CLK_ENABLE | SCB_CONTROL_SOFT_RESET);
517}
518
519/*
520 * Enable or release transaction halt for control of repeated starts.
521 * In version 3.3 of the IP when transaction halt is set, an interrupt
522 * will be generated after each byte of a transfer instead of after
523 * every transfer but before the stop bit.
524 * Due to this behaviour we have to be careful that every time we
525 * release the transaction halt we have to re-enable it straight away
526 * so that we only process a single byte, not doing so will result in
527 * all remaining bytes been processed and a stop bit being issued,
528 * which will prevent us having a repeated start.
529 */
530static void img_i2c_transaction_halt(struct img_i2c *i2c, bool t_halt)
531{
532 u32 val;
533
534 if (i2c->t_halt == t_halt)
535 return;
536 i2c->t_halt = t_halt;
537 val = img_i2c_readl(i2c, SCB_CONTROL_REG);
538 if (t_halt)
539 val |= SCB_CONTROL_TRANSACTION_HALT;
540 else
541 val &= ~SCB_CONTROL_TRANSACTION_HALT;
542 img_i2c_writel(i2c, SCB_CONTROL_REG, value: val);
543}
544
545/* Drain data from the FIFO into the buffer (automatic mode) */
546static void img_i2c_read_fifo(struct img_i2c *i2c)
547{
548 while (i2c->msg.len) {
549 u32 fifo_status;
550 u8 data;
551
552 img_i2c_wr_rd_fence(i2c);
553 fifo_status = img_i2c_readl(i2c, SCB_FIFO_STATUS_REG);
554 if (fifo_status & FIFO_READ_EMPTY)
555 break;
556
557 data = img_i2c_readl(i2c, SCB_READ_DATA_REG);
558 *i2c->msg.buf = data;
559
560 img_i2c_writel(i2c, SCB_READ_FIFO_REG, value: 0xff);
561 i2c->msg.len--;
562 i2c->msg.buf++;
563 }
564}
565
566/* Fill the FIFO with data from the buffer (automatic mode) */
567static void img_i2c_write_fifo(struct img_i2c *i2c)
568{
569 while (i2c->msg.len) {
570 u32 fifo_status;
571
572 img_i2c_wr_rd_fence(i2c);
573 fifo_status = img_i2c_readl(i2c, SCB_FIFO_STATUS_REG);
574 if (fifo_status & FIFO_WRITE_FULL)
575 break;
576
577 img_i2c_writel(i2c, SCB_WRITE_DATA_REG, value: *i2c->msg.buf);
578 i2c->msg.len--;
579 i2c->msg.buf++;
580 }
581
582 /* Disable fifo emptying interrupt if nothing more to write */
583 if (!i2c->msg.len)
584 i2c->int_enable &= ~INT_FIFO_EMPTYING;
585}
586
587/* Start a read transaction in automatic mode */
588static void img_i2c_read(struct img_i2c *i2c)
589{
590 img_i2c_switch_mode(i2c, mode: MODE_AUTOMATIC);
591 if (!i2c->last_msg)
592 i2c->int_enable |= INT_SLAVE_EVENT;
593
594 img_i2c_writel(i2c, SCB_INT_MASK_REG, value: i2c->int_enable);
595 img_i2c_writel(i2c, SCB_READ_ADDR_REG, value: i2c->msg.addr);
596 img_i2c_writel(i2c, SCB_READ_COUNT_REG, value: i2c->msg.len);
597
598 mod_timer(timer: &i2c->check_timer, expires: jiffies + msecs_to_jiffies(m: 1));
599}
600
601/* Start a write transaction in automatic mode */
602static void img_i2c_write(struct img_i2c *i2c)
603{
604 img_i2c_switch_mode(i2c, mode: MODE_AUTOMATIC);
605 if (!i2c->last_msg)
606 i2c->int_enable |= INT_SLAVE_EVENT;
607
608 img_i2c_writel(i2c, SCB_WRITE_ADDR_REG, value: i2c->msg.addr);
609 img_i2c_writel(i2c, SCB_WRITE_COUNT_REG, value: i2c->msg.len);
610
611 mod_timer(timer: &i2c->check_timer, expires: jiffies + msecs_to_jiffies(m: 1));
612 img_i2c_write_fifo(i2c);
613
614 /* img_i2c_write_fifo() may modify int_enable */
615 img_i2c_writel(i2c, SCB_INT_MASK_REG, value: i2c->int_enable);
616}
617
618/*
619 * Indicate that the transaction is complete. This is called from the
620 * ISR to wake up the waiting thread, after which the ISR must not
621 * access any more SCB registers.
622 */
623static void img_i2c_complete_transaction(struct img_i2c *i2c, int status)
624{
625 img_i2c_switch_mode(i2c, mode: MODE_INACTIVE);
626 if (status) {
627 i2c->msg_status = status;
628 img_i2c_transaction_halt(i2c, t_halt: false);
629 }
630 complete(&i2c->msg_complete);
631}
632
633static unsigned int img_i2c_raw_atomic_delay_handler(struct img_i2c *i2c,
634 u32 int_status, u32 line_status)
635{
636 /* Stay in raw mode for this, so we don't just loop infinitely */
637 img_i2c_atomic_op(i2c, cmd: i2c->at_cur_cmd, data: i2c->at_cur_data);
638 img_i2c_switch_mode(i2c, mode: MODE_ATOMIC);
639 return 0;
640}
641
642static unsigned int img_i2c_raw(struct img_i2c *i2c, u32 int_status,
643 u32 line_status)
644{
645 if (int_status & INT_TIMING) {
646 if (i2c->raw_timeout == 0)
647 return img_i2c_raw_atomic_delay_handler(i2c,
648 int_status, line_status);
649 --i2c->raw_timeout;
650 }
651 return 0;
652}
653
654static unsigned int img_i2c_sequence(struct img_i2c *i2c, u32 int_status)
655{
656 static const unsigned int continue_bits[] = {
657 [CMD_GEN_START] = LINESTAT_START_BIT_DET,
658 [CMD_GEN_DATA] = LINESTAT_INPUT_HELD_V,
659 [CMD_RET_ACK] = LINESTAT_ACK_DET | LINESTAT_NACK_DET,
660 [CMD_RET_DATA] = LINESTAT_INPUT_HELD_V,
661 [CMD_GEN_STOP] = LINESTAT_STOP_BIT_DET,
662 };
663 int next_cmd = -1;
664 u8 next_data = 0x00;
665
666 if (int_status & INT_SLAVE_EVENT)
667 i2c->at_slave_event = true;
668 if (int_status & INT_TRANSACTION_DONE)
669 i2c->at_t_done = true;
670
671 if (!i2c->at_slave_event || !i2c->at_t_done)
672 return 0;
673
674 /* wait if no continue bits are set */
675 if (i2c->at_cur_cmd >= 0 &&
676 i2c->at_cur_cmd < ARRAY_SIZE(continue_bits)) {
677 unsigned int cont_bits = continue_bits[i2c->at_cur_cmd];
678
679 if (cont_bits) {
680 cont_bits |= LINESTAT_ABORT_DET;
681 if (!(i2c->line_status & cont_bits))
682 return 0;
683 }
684 }
685
686 /* follow the sequence of commands in i2c->seq */
687 next_cmd = *i2c->seq;
688 /* stop on a nil */
689 if (!next_cmd) {
690 img_i2c_writel(i2c, SCB_OVERRIDE_REG, value: 0);
691 return ISR_COMPLETE(0);
692 }
693 /* when generating data, the next byte is the data */
694 if (next_cmd == CMD_GEN_DATA) {
695 ++i2c->seq;
696 next_data = *i2c->seq;
697 }
698 ++i2c->seq;
699 img_i2c_atomic_op(i2c, cmd: next_cmd, data: next_data);
700
701 return 0;
702}
703
704static void img_i2c_reset_start(struct img_i2c *i2c)
705{
706 /* Initiate the magic dance */
707 img_i2c_switch_mode(i2c, mode: MODE_SEQUENCE);
708 img_i2c_writel(i2c, SCB_INT_MASK_REG, value: i2c->int_enable);
709 i2c->seq = img_i2c_reset_seq;
710 i2c->at_slave_event = true;
711 i2c->at_t_done = true;
712 i2c->at_cur_cmd = -1;
713
714 /* img_i2c_reset_seq isn't empty so the following won't fail */
715 img_i2c_sequence(i2c, int_status: 0);
716}
717
718static void img_i2c_stop_start(struct img_i2c *i2c)
719{
720 /* Initiate a stop bit sequence */
721 img_i2c_switch_mode(i2c, mode: MODE_SEQUENCE);
722 img_i2c_writel(i2c, SCB_INT_MASK_REG, value: i2c->int_enable);
723 i2c->seq = img_i2c_stop_seq;
724 i2c->at_slave_event = true;
725 i2c->at_t_done = true;
726 i2c->at_cur_cmd = -1;
727
728 /* img_i2c_stop_seq isn't empty so the following won't fail */
729 img_i2c_sequence(i2c, int_status: 0);
730}
731
732static unsigned int img_i2c_atomic(struct img_i2c *i2c,
733 u32 int_status,
734 u32 line_status)
735{
736 int next_cmd = -1;
737 u8 next_data = 0x00;
738
739 if (int_status & INT_SLAVE_EVENT)
740 i2c->at_slave_event = true;
741 if (int_status & INT_TRANSACTION_DONE)
742 i2c->at_t_done = true;
743
744 if (!i2c->at_slave_event || !i2c->at_t_done)
745 goto next_atomic_cmd;
746 if (i2c->line_status & LINESTAT_ABORT_DET) {
747 dev_dbg(i2c->adap.dev.parent, "abort condition detected\n");
748 next_cmd = CMD_GEN_STOP;
749 i2c->msg_status = -EIO;
750 goto next_atomic_cmd;
751 }
752
753 /* i2c->at_cur_cmd may have completed */
754 switch (i2c->at_cur_cmd) {
755 case CMD_GEN_START:
756 next_cmd = CMD_GEN_DATA;
757 next_data = i2c_8bit_addr_from_msg(msg: &i2c->msg);
758 break;
759 case CMD_GEN_DATA:
760 if (i2c->line_status & LINESTAT_INPUT_HELD_V)
761 next_cmd = CMD_RET_ACK;
762 break;
763 case CMD_RET_ACK:
764 if (i2c->line_status & LINESTAT_ACK_DET ||
765 (i2c->line_status & LINESTAT_NACK_DET &&
766 i2c->msg.flags & I2C_M_IGNORE_NAK)) {
767 if (i2c->msg.len == 0) {
768 next_cmd = CMD_GEN_STOP;
769 } else if (i2c->msg.flags & I2C_M_RD) {
770 next_cmd = CMD_RET_DATA;
771 } else {
772 next_cmd = CMD_GEN_DATA;
773 next_data = *i2c->msg.buf;
774 --i2c->msg.len;
775 ++i2c->msg.buf;
776 }
777 } else if (i2c->line_status & LINESTAT_NACK_DET) {
778 i2c->msg_status = -EIO;
779 next_cmd = CMD_GEN_STOP;
780 }
781 break;
782 case CMD_RET_DATA:
783 if (i2c->line_status & LINESTAT_INPUT_HELD_V) {
784 *i2c->msg.buf = (i2c->line_status &
785 LINESTAT_INPUT_DATA)
786 >> LINESTAT_INPUT_DATA_SHIFT;
787 --i2c->msg.len;
788 ++i2c->msg.buf;
789 if (i2c->msg.len)
790 next_cmd = CMD_GEN_ACK;
791 else
792 next_cmd = CMD_GEN_NACK;
793 }
794 break;
795 case CMD_GEN_ACK:
796 if (i2c->line_status & LINESTAT_ACK_DET) {
797 next_cmd = CMD_RET_DATA;
798 } else {
799 i2c->msg_status = -EIO;
800 next_cmd = CMD_GEN_STOP;
801 }
802 break;
803 case CMD_GEN_NACK:
804 next_cmd = CMD_GEN_STOP;
805 break;
806 case CMD_GEN_STOP:
807 img_i2c_writel(i2c, SCB_OVERRIDE_REG, value: 0);
808 return ISR_COMPLETE(0);
809 default:
810 dev_err(i2c->adap.dev.parent, "bad atomic command %d\n",
811 i2c->at_cur_cmd);
812 i2c->msg_status = -EIO;
813 next_cmd = CMD_GEN_STOP;
814 break;
815 }
816
817next_atomic_cmd:
818 if (next_cmd != -1) {
819 /* don't actually stop unless we're the last transaction */
820 if (next_cmd == CMD_GEN_STOP && !i2c->msg_status &&
821 !i2c->last_msg)
822 return ISR_COMPLETE(0);
823 img_i2c_atomic_op(i2c, cmd: next_cmd, data: next_data);
824 }
825 return 0;
826}
827
828/*
829 * Timer function to check if something has gone wrong in automatic mode (so we
830 * don't have to handle so many interrupts just to catch an exception).
831 */
832static void img_i2c_check_timer(struct timer_list *t)
833{
834 struct img_i2c *i2c = from_timer(i2c, t, check_timer);
835 unsigned long flags;
836 unsigned int line_status;
837
838 spin_lock_irqsave(&i2c->lock, flags);
839 line_status = img_i2c_readl(i2c, SCB_STATUS_REG);
840
841 /* check for an abort condition */
842 if (line_status & LINESTAT_ABORT_DET) {
843 dev_dbg(i2c->adap.dev.parent,
844 "abort condition detected by check timer\n");
845 /* enable slave event interrupt mask to trigger irq */
846 img_i2c_writel(i2c, SCB_INT_MASK_REG,
847 value: i2c->int_enable | INT_SLAVE_EVENT);
848 }
849
850 spin_unlock_irqrestore(lock: &i2c->lock, flags);
851}
852
853static unsigned int img_i2c_auto(struct img_i2c *i2c,
854 unsigned int int_status,
855 unsigned int line_status)
856{
857 if (int_status & (INT_WRITE_ACK_ERR | INT_ADDR_ACK_ERR))
858 return ISR_COMPLETE(EIO);
859
860 if (line_status & LINESTAT_ABORT_DET) {
861 dev_dbg(i2c->adap.dev.parent, "abort condition detected\n");
862 /* empty the read fifo */
863 if ((i2c->msg.flags & I2C_M_RD) &&
864 (int_status & INT_FIFO_FULL_FILLING))
865 img_i2c_read_fifo(i2c);
866 /* use atomic mode and try to force a stop bit */
867 i2c->msg_status = -EIO;
868 img_i2c_stop_start(i2c);
869 return 0;
870 }
871
872 /* Enable transaction halt on start bit */
873 if (!i2c->last_msg && line_status & LINESTAT_START_BIT_DET) {
874 img_i2c_transaction_halt(i2c, t_halt: !i2c->last_msg);
875 /* we're no longer interested in the slave event */
876 i2c->int_enable &= ~INT_SLAVE_EVENT;
877 }
878
879 mod_timer(timer: &i2c->check_timer, expires: jiffies + msecs_to_jiffies(m: 1));
880
881 if (int_status & INT_STOP_DETECTED) {
882 /* Drain remaining data in FIFO and complete transaction */
883 if (i2c->msg.flags & I2C_M_RD)
884 img_i2c_read_fifo(i2c);
885 return ISR_COMPLETE(0);
886 }
887
888 if (i2c->msg.flags & I2C_M_RD) {
889 if (int_status & (INT_FIFO_FULL_FILLING | INT_MASTER_HALTED)) {
890 img_i2c_read_fifo(i2c);
891 if (i2c->msg.len == 0)
892 return ISR_WAITSTOP;
893 }
894 } else {
895 if (int_status & (INT_FIFO_EMPTY | INT_MASTER_HALTED)) {
896 if ((int_status & INT_FIFO_EMPTY) &&
897 i2c->msg.len == 0)
898 return ISR_WAITSTOP;
899 img_i2c_write_fifo(i2c);
900 }
901 }
902 if (int_status & INT_MASTER_HALTED) {
903 /*
904 * Release and then enable transaction halt, to
905 * allow only a single byte to proceed.
906 */
907 img_i2c_transaction_halt(i2c, t_halt: false);
908 img_i2c_transaction_halt(i2c, t_halt: !i2c->last_msg);
909 }
910
911 return 0;
912}
913
914static irqreturn_t img_i2c_isr(int irq, void *dev_id)
915{
916 struct img_i2c *i2c = dev_id;
917 u32 int_status, line_status;
918 /* We handle transaction completion AFTER accessing registers */
919 unsigned int hret;
920
921 /* Read interrupt status register. */
922 int_status = img_i2c_readl(i2c, SCB_INT_STATUS_REG);
923 /* Clear detected interrupts. */
924 img_i2c_writel(i2c, SCB_INT_CLEAR_REG, value: int_status);
925
926 /*
927 * Read line status and clear it until it actually is clear. We have
928 * to be careful not to lose any line status bits that get latched.
929 */
930 line_status = img_i2c_readl(i2c, SCB_STATUS_REG);
931 if (line_status & LINESTAT_LATCHED) {
932 img_i2c_writel(i2c, SCB_CLEAR_REG,
933 value: (line_status & LINESTAT_LATCHED)
934 >> LINESTAT_CLEAR_SHIFT);
935 img_i2c_wr_rd_fence(i2c);
936 }
937
938 spin_lock(lock: &i2c->lock);
939
940 /* Keep track of line status bits received */
941 i2c->line_status &= ~LINESTAT_INPUT_DATA;
942 i2c->line_status |= line_status;
943
944 /*
945 * Certain interrupts indicate that sclk low timeout is not
946 * a problem. If any of these are set, just continue.
947 */
948 if ((int_status & INT_SCLK_LOW_TIMEOUT) &&
949 !(int_status & (INT_SLAVE_EVENT |
950 INT_FIFO_EMPTY |
951 INT_FIFO_FULL))) {
952 dev_crit(i2c->adap.dev.parent,
953 "fatal: clock low timeout occurred %s addr 0x%02x\n",
954 (i2c->msg.flags & I2C_M_RD) ? "reading" : "writing",
955 i2c->msg.addr);
956 hret = ISR_FATAL(EIO);
957 goto out;
958 }
959
960 if (i2c->mode == MODE_ATOMIC)
961 hret = img_i2c_atomic(i2c, int_status, line_status);
962 else if (i2c->mode == MODE_AUTOMATIC)
963 hret = img_i2c_auto(i2c, int_status, line_status);
964 else if (i2c->mode == MODE_SEQUENCE)
965 hret = img_i2c_sequence(i2c, int_status);
966 else if (i2c->mode == MODE_WAITSTOP && (int_status & INT_SLAVE_EVENT) &&
967 (line_status & LINESTAT_STOP_BIT_DET))
968 hret = ISR_COMPLETE(0);
969 else if (i2c->mode == MODE_RAW)
970 hret = img_i2c_raw(i2c, int_status, line_status);
971 else
972 hret = 0;
973
974 /* Clear detected level interrupts. */
975 img_i2c_writel(i2c, SCB_INT_CLEAR_REG, value: int_status & INT_LEVEL);
976
977out:
978 if (hret & ISR_WAITSTOP) {
979 /*
980 * Only wait for stop on last message.
981 * Also we may already have detected the stop bit.
982 */
983 if (!i2c->last_msg || i2c->line_status & LINESTAT_STOP_BIT_DET)
984 hret = ISR_COMPLETE(0);
985 else
986 img_i2c_switch_mode(i2c, mode: MODE_WAITSTOP);
987 }
988
989 /* now we've finished using regs, handle transaction completion */
990 if (hret & ISR_COMPLETE_M) {
991 int status = -(hret & ISR_STATUS_M);
992
993 img_i2c_complete_transaction(i2c, status);
994 if (hret & ISR_FATAL_M)
995 img_i2c_switch_mode(i2c, mode: MODE_FATAL);
996 }
997
998 /* Enable interrupts (int_enable may be altered by changing mode) */
999 img_i2c_writel(i2c, SCB_INT_MASK_REG, value: i2c->int_enable);
1000
1001 spin_unlock(lock: &i2c->lock);
1002
1003 return IRQ_HANDLED;
1004}
1005
1006/* Force a bus reset sequence and wait for it to complete */
1007static int img_i2c_reset_bus(struct img_i2c *i2c)
1008{
1009 unsigned long flags;
1010 unsigned long time_left;
1011
1012 spin_lock_irqsave(&i2c->lock, flags);
1013 reinit_completion(x: &i2c->msg_complete);
1014 img_i2c_reset_start(i2c);
1015 spin_unlock_irqrestore(lock: &i2c->lock, flags);
1016
1017 time_left = wait_for_completion_timeout(x: &i2c->msg_complete,
1018 IMG_I2C_TIMEOUT);
1019 if (time_left == 0)
1020 return -ETIMEDOUT;
1021 return 0;
1022}
1023
1024static int img_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs,
1025 int num)
1026{
1027 struct img_i2c *i2c = i2c_get_adapdata(adap);
1028 bool atomic = false;
1029 int i, ret;
1030 unsigned long time_left;
1031
1032 if (i2c->mode == MODE_SUSPEND) {
1033 WARN(1, "refusing to service transaction in suspended state\n");
1034 return -EIO;
1035 }
1036
1037 if (i2c->mode == MODE_FATAL)
1038 return -EIO;
1039
1040 for (i = 0; i < num; i++) {
1041 /*
1042 * 0 byte reads are not possible because the slave could try
1043 * and pull the data line low, preventing a stop bit.
1044 */
1045 if (!msgs[i].len && msgs[i].flags & I2C_M_RD)
1046 return -EIO;
1047 /*
1048 * 0 byte writes are possible and used for probing, but we
1049 * cannot do them in automatic mode, so use atomic mode
1050 * instead.
1051 *
1052 * Also, the I2C_M_IGNORE_NAK mode can only be implemented
1053 * in atomic mode.
1054 */
1055 if (!msgs[i].len ||
1056 (msgs[i].flags & I2C_M_IGNORE_NAK))
1057 atomic = true;
1058 }
1059
1060 ret = pm_runtime_resume_and_get(dev: adap->dev.parent);
1061 if (ret < 0)
1062 return ret;
1063
1064 for (i = 0; i < num; i++) {
1065 struct i2c_msg *msg = &msgs[i];
1066 unsigned long flags;
1067
1068 spin_lock_irqsave(&i2c->lock, flags);
1069
1070 /*
1071 * Make a copy of the message struct. We mustn't modify the
1072 * original or we'll confuse drivers and i2c-dev.
1073 */
1074 i2c->msg = *msg;
1075 i2c->msg_status = 0;
1076
1077 /*
1078 * After the last message we must have waited for a stop bit.
1079 * Not waiting can cause problems when the clock is disabled
1080 * before the stop bit is sent, and the linux I2C interface
1081 * requires separate transfers not to joined with repeated
1082 * start.
1083 */
1084 i2c->last_msg = (i == num - 1);
1085 reinit_completion(x: &i2c->msg_complete);
1086
1087 /*
1088 * Clear line status and all interrupts before starting a
1089 * transfer, as we may have unserviced interrupts from
1090 * previous transfers that might be handled in the context
1091 * of the new transfer.
1092 */
1093 img_i2c_writel(i2c, SCB_INT_CLEAR_REG, value: ~0);
1094 img_i2c_writel(i2c, SCB_CLEAR_REG, value: ~0);
1095
1096 if (atomic) {
1097 img_i2c_atomic_start(i2c);
1098 } else {
1099 /*
1100 * Enable transaction halt if not the last message in
1101 * the queue so that we can control repeated starts.
1102 */
1103 img_i2c_transaction_halt(i2c, t_halt: !i2c->last_msg);
1104
1105 if (msg->flags & I2C_M_RD)
1106 img_i2c_read(i2c);
1107 else
1108 img_i2c_write(i2c);
1109
1110 /*
1111 * Release and then enable transaction halt, to
1112 * allow only a single byte to proceed.
1113 * This doesn't have an effect on the initial transfer
1114 * but will allow the following transfers to start
1115 * processing if the previous transfer was marked as
1116 * complete while the i2c block was halted.
1117 */
1118 img_i2c_transaction_halt(i2c, t_halt: false);
1119 img_i2c_transaction_halt(i2c, t_halt: !i2c->last_msg);
1120 }
1121 spin_unlock_irqrestore(lock: &i2c->lock, flags);
1122
1123 time_left = wait_for_completion_timeout(x: &i2c->msg_complete,
1124 IMG_I2C_TIMEOUT);
1125 del_timer_sync(timer: &i2c->check_timer);
1126
1127 if (time_left == 0) {
1128 dev_err(adap->dev.parent, "i2c transfer timed out\n");
1129 i2c->msg_status = -ETIMEDOUT;
1130 break;
1131 }
1132
1133 if (i2c->msg_status)
1134 break;
1135 }
1136
1137 pm_runtime_mark_last_busy(dev: adap->dev.parent);
1138 pm_runtime_put_autosuspend(dev: adap->dev.parent);
1139
1140 return i2c->msg_status ? i2c->msg_status : num;
1141}
1142
1143static u32 img_i2c_func(struct i2c_adapter *adap)
1144{
1145 return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
1146}
1147
1148static const struct i2c_algorithm img_i2c_algo = {
1149 .master_xfer = img_i2c_xfer,
1150 .functionality = img_i2c_func,
1151};
1152
1153static int img_i2c_init(struct img_i2c *i2c)
1154{
1155 unsigned int clk_khz, bitrate_khz, clk_period, tckh, tckl, tsdh;
1156 unsigned int i, data, prescale, inc, int_bitrate, filt;
1157 struct img_i2c_timings timing;
1158 u32 rev;
1159 int ret;
1160
1161 ret = pm_runtime_resume_and_get(dev: i2c->adap.dev.parent);
1162 if (ret < 0)
1163 return ret;
1164
1165 rev = img_i2c_readl(i2c, SCB_CORE_REV_REG);
1166 if ((rev & 0x00ffffff) < 0x00020200) {
1167 dev_info(i2c->adap.dev.parent,
1168 "Unknown hardware revision (%d.%d.%d.%d)\n",
1169 (rev >> 24) & 0xff, (rev >> 16) & 0xff,
1170 (rev >> 8) & 0xff, rev & 0xff);
1171 pm_runtime_mark_last_busy(dev: i2c->adap.dev.parent);
1172 pm_runtime_put_autosuspend(dev: i2c->adap.dev.parent);
1173 return -EINVAL;
1174 }
1175
1176 /* Fencing enabled by default. */
1177 i2c->need_wr_rd_fence = true;
1178
1179 /* Determine what mode we're in from the bitrate */
1180 timing = timings[0];
1181 for (i = 0; i < ARRAY_SIZE(timings); i++) {
1182 if (i2c->bitrate <= timings[i].max_bitrate) {
1183 timing = timings[i];
1184 break;
1185 }
1186 }
1187 if (i2c->bitrate > timings[ARRAY_SIZE(timings) - 1].max_bitrate) {
1188 dev_warn(i2c->adap.dev.parent,
1189 "requested bitrate (%u) is higher than the max bitrate supported (%u)\n",
1190 i2c->bitrate,
1191 timings[ARRAY_SIZE(timings) - 1].max_bitrate);
1192 timing = timings[ARRAY_SIZE(timings) - 1];
1193 i2c->bitrate = timing.max_bitrate;
1194 }
1195
1196 bitrate_khz = i2c->bitrate / 1000;
1197 clk_khz = clk_get_rate(clk: i2c->scb_clk) / 1000;
1198
1199 /* Find the prescale that would give us that inc (approx delay = 0) */
1200 prescale = SCB_OPT_INC * clk_khz / (256 * 16 * bitrate_khz);
1201 prescale = clamp_t(unsigned int, prescale, 1, 8);
1202 clk_khz /= prescale;
1203
1204 /* Setup the clock increment value */
1205 inc = (256 * 16 * bitrate_khz) / clk_khz;
1206
1207 /*
1208 * The clock generation logic allows to filter glitches on the bus.
1209 * This filter is able to remove bus glitches shorter than 50ns.
1210 * If the clock enable rate is greater than 20 MHz, no filtering
1211 * is required, so we need to disable it.
1212 * If it's between the 20-40 MHz range, there's no need to divide
1213 * the clock to get a filter.
1214 */
1215 if (clk_khz < 20000) {
1216 filt = SCB_FILT_DISABLE;
1217 } else if (clk_khz < 40000) {
1218 filt = SCB_FILT_BYPASS;
1219 } else {
1220 /* Calculate filter clock */
1221 filt = (64000 / ((clk_khz / 1000) * SCB_FILT_GLITCH));
1222
1223 /* Scale up if needed */
1224 if (64000 % ((clk_khz / 1000) * SCB_FILT_GLITCH))
1225 inc++;
1226
1227 if (filt > SCB_FILT_INC_MASK)
1228 filt = SCB_FILT_INC_MASK;
1229
1230 filt = (filt & SCB_FILT_INC_MASK) << SCB_FILT_INC_SHIFT;
1231 }
1232 data = filt | ((inc & SCB_INC_MASK) << SCB_INC_SHIFT) | (prescale - 1);
1233 img_i2c_writel(i2c, SCB_CLK_SET_REG, value: data);
1234
1235 /* Obtain the clock period of the fx16 clock in ns */
1236 clk_period = (256 * 1000000) / (clk_khz * inc);
1237
1238 /* Calculate the bitrate in terms of internal clock pulses */
1239 int_bitrate = 1000000 / (bitrate_khz * clk_period);
1240 if ((1000000 % (bitrate_khz * clk_period)) >=
1241 ((bitrate_khz * clk_period) / 2))
1242 int_bitrate++;
1243
1244 /*
1245 * Setup clock duty cycle, start with 50% and adjust TCKH and TCKL
1246 * values from there if they don't meet minimum timing requirements
1247 */
1248 tckh = int_bitrate / 2;
1249 tckl = int_bitrate - tckh;
1250
1251 /* Adjust TCKH and TCKL values */
1252 data = DIV_ROUND_UP(timing.tckl, clk_period);
1253
1254 if (tckl < data) {
1255 tckl = data;
1256 tckh = int_bitrate - tckl;
1257 }
1258
1259 if (tckh > 0)
1260 --tckh;
1261
1262 if (tckl > 0)
1263 --tckl;
1264
1265 img_i2c_writel(i2c, SCB_TIME_TCKH_REG, value: tckh);
1266 img_i2c_writel(i2c, SCB_TIME_TCKL_REG, value: tckl);
1267
1268 /* Setup TSDH value */
1269 tsdh = DIV_ROUND_UP(timing.tsdh, clk_period);
1270
1271 if (tsdh > 1)
1272 data = tsdh - 1;
1273 else
1274 data = 0x01;
1275 img_i2c_writel(i2c, SCB_TIME_TSDH_REG, value: data);
1276
1277 /* This value is used later */
1278 tsdh = data;
1279
1280 /* Setup TPL value */
1281 data = timing.tpl / clk_period;
1282 if (data > 0)
1283 --data;
1284 img_i2c_writel(i2c, SCB_TIME_TPL_REG, value: data);
1285
1286 /* Setup TPH value */
1287 data = timing.tph / clk_period;
1288 if (data > 0)
1289 --data;
1290 img_i2c_writel(i2c, SCB_TIME_TPH_REG, value: data);
1291
1292 /* Setup TSDL value to TPL + TSDH + 2 */
1293 img_i2c_writel(i2c, SCB_TIME_TSDL_REG, value: data + tsdh + 2);
1294
1295 /* Setup TP2S value */
1296 data = timing.tp2s / clk_period;
1297 if (data > 0)
1298 --data;
1299 img_i2c_writel(i2c, SCB_TIME_TP2S_REG, value: data);
1300
1301 img_i2c_writel(i2c, SCB_TIME_TBI_REG, TIMEOUT_TBI);
1302 img_i2c_writel(i2c, SCB_TIME_TSL_REG, TIMEOUT_TSL);
1303 img_i2c_writel(i2c, SCB_TIME_TDL_REG, TIMEOUT_TDL);
1304
1305 /* Take module out of soft reset and enable clocks */
1306 img_i2c_soft_reset(i2c);
1307
1308 /* Disable all interrupts */
1309 img_i2c_writel(i2c, SCB_INT_MASK_REG, value: 0);
1310
1311 /* Clear all interrupts */
1312 img_i2c_writel(i2c, SCB_INT_CLEAR_REG, value: ~0);
1313
1314 /* Clear the scb_line_status events */
1315 img_i2c_writel(i2c, SCB_CLEAR_REG, value: ~0);
1316
1317 /* Enable interrupts */
1318 img_i2c_writel(i2c, SCB_INT_MASK_REG, value: i2c->int_enable);
1319
1320 /* Perform a synchronous sequence to reset the bus */
1321 ret = img_i2c_reset_bus(i2c);
1322
1323 pm_runtime_mark_last_busy(dev: i2c->adap.dev.parent);
1324 pm_runtime_put_autosuspend(dev: i2c->adap.dev.parent);
1325
1326 return ret;
1327}
1328
1329static int img_i2c_probe(struct platform_device *pdev)
1330{
1331 struct device_node *node = pdev->dev.of_node;
1332 struct img_i2c *i2c;
1333 int irq, ret;
1334 u32 val;
1335
1336 i2c = devm_kzalloc(dev: &pdev->dev, size: sizeof(struct img_i2c), GFP_KERNEL);
1337 if (!i2c)
1338 return -ENOMEM;
1339
1340 i2c->base = devm_platform_ioremap_resource(pdev, index: 0);
1341 if (IS_ERR(ptr: i2c->base))
1342 return PTR_ERR(ptr: i2c->base);
1343
1344 irq = platform_get_irq(pdev, 0);
1345 if (irq < 0)
1346 return irq;
1347
1348 i2c->sys_clk = devm_clk_get(dev: &pdev->dev, id: "sys");
1349 if (IS_ERR(ptr: i2c->sys_clk)) {
1350 dev_err(&pdev->dev, "can't get system clock\n");
1351 return PTR_ERR(ptr: i2c->sys_clk);
1352 }
1353
1354 i2c->scb_clk = devm_clk_get(dev: &pdev->dev, id: "scb");
1355 if (IS_ERR(ptr: i2c->scb_clk)) {
1356 dev_err(&pdev->dev, "can't get core clock\n");
1357 return PTR_ERR(ptr: i2c->scb_clk);
1358 }
1359
1360 ret = devm_request_irq(dev: &pdev->dev, irq, handler: img_i2c_isr, irqflags: 0,
1361 devname: pdev->name, dev_id: i2c);
1362 if (ret) {
1363 dev_err(&pdev->dev, "can't request irq %d\n", irq);
1364 return ret;
1365 }
1366
1367 /* Set up the exception check timer */
1368 timer_setup(&i2c->check_timer, img_i2c_check_timer, 0);
1369
1370 i2c->bitrate = timings[0].max_bitrate;
1371 if (!of_property_read_u32(np: node, propname: "clock-frequency", out_value: &val))
1372 i2c->bitrate = val;
1373
1374 i2c_set_adapdata(adap: &i2c->adap, data: i2c);
1375 i2c->adap.dev.parent = &pdev->dev;
1376 i2c->adap.dev.of_node = node;
1377 i2c->adap.owner = THIS_MODULE;
1378 i2c->adap.algo = &img_i2c_algo;
1379 i2c->adap.retries = 5;
1380 i2c->adap.nr = pdev->id;
1381 snprintf(buf: i2c->adap.name, size: sizeof(i2c->adap.name), fmt: "IMG SCB I2C");
1382
1383 img_i2c_switch_mode(i2c, mode: MODE_INACTIVE);
1384 spin_lock_init(&i2c->lock);
1385 init_completion(x: &i2c->msg_complete);
1386
1387 platform_set_drvdata(pdev, data: i2c);
1388
1389 pm_runtime_set_autosuspend_delay(dev: &pdev->dev, IMG_I2C_PM_TIMEOUT);
1390 pm_runtime_use_autosuspend(dev: &pdev->dev);
1391 pm_runtime_enable(dev: &pdev->dev);
1392 if (!pm_runtime_enabled(dev: &pdev->dev)) {
1393 ret = img_i2c_runtime_resume(dev: &pdev->dev);
1394 if (ret)
1395 return ret;
1396 }
1397
1398 ret = img_i2c_init(i2c);
1399 if (ret)
1400 goto rpm_disable;
1401
1402 ret = i2c_add_numbered_adapter(adap: &i2c->adap);
1403 if (ret < 0)
1404 goto rpm_disable;
1405
1406 return 0;
1407
1408rpm_disable:
1409 if (!pm_runtime_enabled(dev: &pdev->dev))
1410 img_i2c_runtime_suspend(dev: &pdev->dev);
1411 pm_runtime_disable(dev: &pdev->dev);
1412 pm_runtime_dont_use_autosuspend(dev: &pdev->dev);
1413 return ret;
1414}
1415
1416static void img_i2c_remove(struct platform_device *dev)
1417{
1418 struct img_i2c *i2c = platform_get_drvdata(pdev: dev);
1419
1420 i2c_del_adapter(adap: &i2c->adap);
1421 pm_runtime_disable(dev: &dev->dev);
1422 if (!pm_runtime_status_suspended(dev: &dev->dev))
1423 img_i2c_runtime_suspend(dev: &dev->dev);
1424}
1425
1426static int img_i2c_runtime_suspend(struct device *dev)
1427{
1428 struct img_i2c *i2c = dev_get_drvdata(dev);
1429
1430 clk_disable_unprepare(clk: i2c->scb_clk);
1431 clk_disable_unprepare(clk: i2c->sys_clk);
1432
1433 return 0;
1434}
1435
1436static int img_i2c_runtime_resume(struct device *dev)
1437{
1438 struct img_i2c *i2c = dev_get_drvdata(dev);
1439 int ret;
1440
1441 ret = clk_prepare_enable(clk: i2c->sys_clk);
1442 if (ret) {
1443 dev_err(dev, "Unable to enable sys clock\n");
1444 return ret;
1445 }
1446
1447 ret = clk_prepare_enable(clk: i2c->scb_clk);
1448 if (ret) {
1449 dev_err(dev, "Unable to enable scb clock\n");
1450 clk_disable_unprepare(clk: i2c->sys_clk);
1451 return ret;
1452 }
1453
1454 return 0;
1455}
1456
1457static int img_i2c_suspend(struct device *dev)
1458{
1459 struct img_i2c *i2c = dev_get_drvdata(dev);
1460 int ret;
1461
1462 ret = pm_runtime_force_suspend(dev);
1463 if (ret)
1464 return ret;
1465
1466 img_i2c_switch_mode(i2c, mode: MODE_SUSPEND);
1467
1468 return 0;
1469}
1470
1471static int img_i2c_resume(struct device *dev)
1472{
1473 struct img_i2c *i2c = dev_get_drvdata(dev);
1474 int ret;
1475
1476 ret = pm_runtime_force_resume(dev);
1477 if (ret)
1478 return ret;
1479
1480 img_i2c_init(i2c);
1481
1482 return 0;
1483}
1484
1485static const struct dev_pm_ops img_i2c_pm = {
1486 RUNTIME_PM_OPS(img_i2c_runtime_suspend, img_i2c_runtime_resume, NULL)
1487 SYSTEM_SLEEP_PM_OPS(img_i2c_suspend, img_i2c_resume)
1488};
1489
1490static const struct of_device_id img_scb_i2c_match[] = {
1491 { .compatible = "img,scb-i2c" },
1492 { }
1493};
1494MODULE_DEVICE_TABLE(of, img_scb_i2c_match);
1495
1496static struct platform_driver img_scb_i2c_driver = {
1497 .driver = {
1498 .name = "img-i2c-scb",
1499 .of_match_table = img_scb_i2c_match,
1500 .pm = pm_ptr(&img_i2c_pm),
1501 },
1502 .probe = img_i2c_probe,
1503 .remove_new = img_i2c_remove,
1504};
1505module_platform_driver(img_scb_i2c_driver);
1506
1507MODULE_AUTHOR("James Hogan <jhogan@kernel.org>");
1508MODULE_DESCRIPTION("IMG host I2C driver");
1509MODULE_LICENSE("GPL v2");
1510

source code of linux/drivers/i2c/busses/i2c-img-scb.c